
Interactive COBOL

Language Reference

 &

Developer’s Guide

ICOBOL Revision 3.60

No. 011-00100-13

01/11/2008

Much of the material in this manual is extracted from the ANSI X.3-1985 COBOL Standard, generally referred to as the ANSI COBOL 85
Standard. Accordingly, the following acknowledgment is made as required in that document.

COBOL is an industry language and is not the property of any company or group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL COBOL Committee as to the accuracy and functioning of
the programming system and language. Moreover, no responsibility is assumed by any contributor, or by the committee, in connection
therewith.

The authors and copyright holders of the copyrighted materials used herein are:

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for the UNIVAC (R) I and II, Data Automation System copyrighted
1958, 1959, by Sperry Rand Corporation; IBM Commercial Translator Form No. F 28-8013, copyrighted 1959 by IBM; FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell.

They have specifically authorized the use of this material in whole or in part, in the COBOL specifications. Such authorization extends to the
reproduction and use of COBOL specifications in programming manuals or similar publications.

Procedures have been established for the maintenance of COBOL. Inquiries concerning the procedures for proposing changes should be directed
to the Chairman of the CODASYL COBOL Committee, P.O. 1808, Washington, DC 20013.

LICENSE AGREEMENT

Carefully read the following terms and conditions. Use of this product constitutes your acceptance of these terms and
conditions and your agreement to abide by them.

You, the purchaser, are granted a non-exclusive license to use this software under the terms stated in this agreement. The
program and its documentation are copyrighted and may not be copied or reproduced in any part, in any form, for any purpose,
except according to the terms stated in this agreement.

You may:

1. use the software for up to the number of active users for which the software was purchased.

2. use the software provided a valid license is installed for the required number of active users to be supported at any one
time.

3. copy the software into any machine readable form for backup purposes.

4. transfer the software from one computer to another.

5. assign or transfer the software and license to another party if the other party agrees to all the terms and conditions of this
agreement. Once the transfer is complete you must destroy any copies of the software not transferred.

6. rent, sublicense, or lease the software and license if the user agrees to all the terms and conditions of this agreement.

7. not alter, modify, or adapt the software itself, including, but not limited to, translating, decompiling, or disassembling.

8. copy or reproduce the documentation for purposes of using a valid license.

This license and your right to use the software automatically terminate if you fail to comply with any provision of this License
Agreement. You agree upon such termination to destroy the software and license.

Restricted Rights Legend: Use, duplication, or disclosure by the U. S. Government is subject to restrictions as set forth in subparagraph
(c) (1) (ii) of the Rights in Technical Data and Computer Software clause at [DFARS] 252.227-7013 (October 1988).

Envyr Corporation
4904 Waters Edge Drive, Suite 160

Raleigh, N.C. 27606

LIMITED WARRANTY

Envyr Corporation warrants that (a) the software will perform substantially in accordance with the accompanying

written materials for a period of ninety (90) days from the date of receipt; and (b) any hardware accompanying the

software will be free from defects in materials and workmanship under normal use and service for a period of one (1)

year from the date of receipt. Any implied warranties on the software and hardware are limited to ninety (90) days

and one (1) year respectively. Some states do not allow limitations on duration of an implied warranty, so the above

limitation may not apply to you.

Envyr Corporation's entire liability and your exclusive remedy shall be, at Envyr Corporation’s option, either (a)

return the license fee or (b) repair or replacement of the software or hardware that does not meet the above Limited

Warranty and which is returned to the original vendor with a copy of the receipt. This Limited Warranty is void if

failure of the software or hardware has resulted from accident, abuse, or misapplication.

In no event shall Envyr Corporation or its suppliers be liable for any damages whatsoever, including, but without

limitation, damages for loss of business profits, business interruption, loss of business information, or other

pecuniary loss, arising out of the use of or inability to use this software or hardware, even if Envyr Corporation has

been advised of the possibility of such damages.

5

NOTICE

This manual has been prepared for use only with the Interactive COBOL product by prospective customers or valid

licensees. The information in this manual is preliminary and subject to change without prior notice.

In no event shall the seller be liable for any incidental, indirect, special or consequential damages whatsoever

(including but not limited to lost profits) arising out of or related to this document or the information contained in it,

even if the writers have been advised, knew or should have known of the possibility of such damage.

Program and Manual Copyright © 1995-96, 1998-2004, 2007 by Envyr Corporation, Raleigh, N.C. All rights

reserved.

 Revision History:

Release 2.20 - September 1996

Release 2.40 - June 1998

Release 2.60 - October 1999

Release 3.00 - August 2000

Release 3.01 - September 2000

Release 3.02 - October 2000

Release 3.03 - December 2000

Release 3.10 - April 2001

Release 3.20 - April 2002

Release 3.30 - February 2003

Release 3.40 - March 2004

Release 3.60 - January 2008

Effective with:

Interactive COBOL Revision 3.60

Interactive COBOL Language Reference & Developer’s Guide

6

TRADEMARKS

ICHOST is a tradem ark of Envyr Corporation

AIX, PC, PC/XT, PC/AT, PS/2, and RISC System/6000 are trademarks of International Business Machines Corporation.

AOS/VS and DG/UX are trademarks of Data General Corporation.

AViiON and INFOS are registered trademarks of Data General Corporation.

IBM , PC-DOS, and RT are registered trademarks of International Business Machines Corporation.

Intel is a registered trademark of Intel Corporation.

M icrosoft and MS-DOS are registered trademarks of M icrosoft Corporation.

SunOS and Solaris are tradem arks of Sun M icrosystem , Inc.

Transoft is a registered trademark of Transoft, Ltd.

U/FOS is a trademark of Transoft, Ltd.

UNIX is a tradem ark of UNIX Systems Laboratories, Inc. (USL)

All other product names mentioned herein are trademarks of their respective owners.

Table of Contents

7

TABLE OF CONTENTS

TABLE OF CONTENTS. 7

LIST OF EXAMPLES. 20

LIST OF FIGURES.. 21

LIST OF SCREENS. 22

LIST OF TABLES.. 22

PREFACE.. 25

ENHANCEMENTS. 27

PART ONE - LANGUAGE REFERENCE. . . 31

I. CONVENTIONS USED IN THIS MANUAL.. 33

A. Definition of a General Format. 33

1. Elements. 33

2. W ords. 33

3. Level-Numbers. 33

4. Brackets and Braces. 33

5. Ellipsis. 33

6. Format Punctuation. 34

7. Use of Special Character W ords in Formats. 34

8. Documentation Only. 34

B. Rules. 34

1. Syntax Rules. 34

2. General Rules. 34

C. ICOBOL Dialects and Feature-Sets. 35

1. Description of ICOBOL Dialects.. 35

2. Notation of Dialect Differences. 35

3. Description of Feature-sets. 36

4. Notation of Feature-set Differences. 37

II. COBOL SOURCE PROGRAM . 39

A. General Description.. 39

B. Concepts. 39

1. Character Set. 39

2. Language Structure. 39

2.1 Separators. 39

2.2 Character-Strings. 40

2.2.1 COBOL W ords. 40

2.2.2 Literals. 43

.1 Nonnumeric Literals. 44

.2 Nonnumeric Hexadecimal Literals. 45

.3 Numeric Literals. 45

.4 Numeric Hexadecimal Literals. 46

.5 Figurative Constant Values. 46

.6 Date Literals (ISQL). 48

.7 Time Literals (ISQL). 48

.8 Timestamp Literals (ISQL).. 49

.9 Interval Literals (ISQL).. 49

.9.1 Year-Month Interval Literals (ISQL). 50

Interactive COBOL Language Reference & Developer’s Guide

8

.9.2 Day-Time Interval Literals (ISQL). 51

2.2.3 LINAGE-COUNTER. 52

2.2.4 PICTURE Character-Strings. 52

2.2.5 Comment-Entries. 52

3. Program and Run Unit Organization and Communication. 52

3.1 Program and Run Unit Organization. 53

3.2 Accessing Data and Files. 53

3.2.1 Names. 53

3.2.2 Objects. 53

3.3 Inter-program Communication. 55

3.3.1 Transfer of Control. 55

3.3.2 Passing Parameters to Programs. 56

3.4 Intra-program Communication. 57

3.4.1 Transfer of Control. 57

3.4.2 Shared Data. 57

C. Organization. 57

D. Structure. 58

E. Divisions. 58

F. Reference Format (Source). 59

1. General Description. 59

2. ANSI Card Format. 59

3. Free-Form Format (CRT). 60

4. Sequence Numbers (ANSI Card Format). 61

5. Continuation of Lines. 61

6. Blank Lines. 61

7. Comments. 61

8. Debugging Lines. 62

9. Division, Section, and Paragraph Formats. 62

9.1 Division Header. 62

9.2 Section Header. 62

9.3 Paragraph Header, Paragraph-Name, and Paragraph. 62

10. DATA DIVISION Entries. 63

11. DECLARATIVES. 63

G. COPY Statement. 64

III. IDENTIFICATION DIVISION. 67

A. General Description.. 67

B. Organization. 67

C. PROGRAM-ID Paragraph. 69

D. DATE-COMPILED Paragraph. 69

IV. ENVIRONMENT DIVISION. 71

A. General Description.. 71

B. Concepts. 71

C. Organization. 71

D. CONFIGURATION SECTION. 73

1. SOURCE-COMPUTER Paragraph. 73

2. OBJECT-COMPUTER Paragraph. 74

3. SPECIAL-NAMES Paragraph. 74

E. INPUT-OUTPUT SECTION.. 83

1. FILE-CONTROL Paragraph. 83

2. File Control Entry. 84

3. ACCESS MODE Clause. 90

4. ALLOW SUB-INDEX and LEVELS Clauses (VXCOBOL). 92

5. ALTERNATE RECORD KEY Clause (ANSI 74 and ANSI 85). 93

6. ALTERNATE RECORD KEY Clause (VXCOBOL). 96

7. ASSIGN Clause.. 98

8. COMPRESSION Clauses (VXCOBOL). 101

Table of Contents

9

9. DELETE LOGICAL/PHYSICAL Clause (ANSI 74 and ANSI 85). 102

10. FILE STATUS Clause. 103

11. INDEX SIZE, DATA SIZE Clauses.. 104

12. INFOS STATUS Clause (VXCOBOL). 105

13. ORGANIZATION Clause. 106

14. QUEUE Clause. 107

15. RECORD DELIMITER Clause (ANSI 74 and ANSI 85). 108

16. RECORD KEY Clause. 110

17. RESERVE Clause (VXCOBOL). 113

18. I-O-CONTROL Paragraph.. 114

19. SAME Clause. 115

V. DATA DIVISION. 117

A. General Description.. 117

B. Concepts. 117

1. Logical Record Concept. 117

1.1 Physical Aspects of a File. 117

1.2 Conceptual Characteristics of a File. 117

1.3 Record Concepts. 117

2. Concept of Levels.. 117

3. Concept of Class and Category of Data. 118

4. Selection of Character Representation and Radix. 119

5. Algebraic Signs. 119

6. Standard Alignment Rules. 119

7. Item Alignment for Increased Object-Code Efficiency. 120

8. Table Handling. 120

8.1 Table Definition. 121

8.2 Initial Values of Tables. 122

8.3 References to Table Items. 122

8.4 Subscripting. 123

9. Uniqueness of Reference.. 124

9.1 Qualification. 124

9.2 Subscripting. 126

9.3 Identifiers. 127

9.3.1 Identifier. 127

9.3.2 Function-identifier. 129

9.3.3 Reference-modifier.. 130

9.3.4 Predefined-address. 131

9.3.5 Data-address-identifier. 132

9.3.6 Length-identifier. 132

9.3.7 LINAGE-COUNTER. 133

9.3.8 SQLSTATE (ISQL). 133

9.4. Condition-Name. 136

C. Organization. 137

D. FILE SECTION. 138

1. File Description Entry/Sort-Merge Description Entry. 138

2. Record Description Structure. 143

3. Initial Values. 143

4. BLOCK CONTAINS Clause.. 144

5. CODE-SET Clause. 145

6. DATA BLOCK and INDEX BLOCK Clauses (VXCOBOL).. 147

7. DATA RECORDS Clause. 148

8. EXTERNAL Clause. 149

9. FEEDBACK Clause (VXCOBOL). 150

10. INDEX NODE Clause (VXCOBOL). 151

11. LABEL RECORD Clause.. 152

12. LINAGE Clause. 153

13. MERIT Clause (VXCOBOL). 156

Interactive COBOL Language Reference & Developer’s Guide

10

14. PARTIAL RECORD Clause (VXCOBOL). 157

15. RECORD Clause (ANSI 74 and ANSI 85). 158

16. RECORDING MODE Clause (ANSI 74 and ANSI 85). 162

17. RECORDING MODE Clause (VXCOBOL). 163

E. W ORKING-STORAGE SECTION.. 165

1. Noncontiguous W orking Storage.. 165

2. W orking Storage Records. 165

3. Record Description Structure. 165

4. Initial Values. 165

5. Data Description Entry.. 166

6. BLANK W HEN ZERO Clause. 169

7. Data-Name or FILLER Clause. 170

8. EXTERNAL Clause. 171

9. JUSTIFIED Clause. 172

10. Level-Number. 173

11. OCCURS Clause. 174

12. PICTURE Clause. 176

13. REDEFINES Clause. 183

14. RENAMES Clause. 185

15. SIGN Clause. 186

16. SYNCHRONIZED Clause. 188

17. USAGE Clause. 189

18. USAGE Clause (ISQL). 192

19. VALUE Clause.. 195

F. VIRTUAL-STORAGE SECTION (VXCOBOL). 198

G. LINKAGE SECTION. 199

1. Noncontiguous Linkage Storage. 199

2. Linkage Records. 199

3. Initial Values. 199

H. SCREEN SECTION. 200

1. Screen Description. 200

2. Screen Description Entry.. 200

3. AUTO, FULL, REQUIRED Clauses.. 210

4. BACKGROUND-COLOR, FOREGROUND-COLOR Clauses (ANSI 74 and ANSI 85). . . . 211

5. BELL Clause. 212

6. BLANK Clause. 213

7. BLINK, BOLD/BRIGHT/HIGHLIGHT/DIM/LOW LIGHT, REVERSE/REVERSED/REVERSED-

VIDEO, UNDERLINE/UNDERLINED Clauses. 214

8. CONVERTING Clause. 216

9. ERASE Clause. 217

10. FROM, TO, USING Clauses. 218

11. LINE and COLUMN Clauses. 219

12. OCCURS Clause.. 222

13. PICTURE Clause. 223

14. SECURE Clause. 224

15. SIGN Clause. 225

16. USAGE Clause (ISQL). 226

17 VALUE Clause.. 228

VI. PROCEDURE DIVISION.. 229

A. General Description.. 229

1. DECLARATIVES. 229

2. Procedures. 229

3. Execution. 229

B. Concepts. 230

1. Arithmetic Expressions.. 230

1.1 Definition of an Arithmetic Expression. 230

1.2 Arithmetic Operators. 230

Table of Contents

11

1.3 Formation and Evaluation Rules. 231

2. Conditional Expressions. 232

2.1 Simple Conditions. 233

2.2 Complex Conditions.. 239

2.3 Abbreviated Combined Relation Conditions. 240

2.4 Order of Evaluation of Conditions. 241

3. Common Options and Rules for Statements. 245

3.1 ROUNDED Phrase. 245

3.2 ON SIZE ERROR Phrase. 246

3.3 CORRESPONDING Phrase. 246

3.4 Arithmetic Statements. 249

3.5 Overlapping Operands.. 249

3.6 Multiple Results in Arithmetic Statements. 249

3.7 Incompatible Data. 250

4. Statements and Sentences. 250

4.1 Conditional Statements and Sentences. 250

4.2 Compiler Directing Statements and Sentences. 252

4.3 Imperative Statements and Sentences. 252

5. Scope of Statements. 253

6. Explicit and Implicit Specifications. 253

6.1 Explicit and Implicit Procedure Division References. 253

6.2 Explicit and Implicit Transfers of Control. 253

6.3 Explicit and Implicit Attributes. 254

6.4 Scope Terminators.. 255

6.5 Explicit Scope Terminators. 255

6.6 Implicit Scope Terminators. 255

C. File Concepts. 256

1. File Attributes. 256

1.1 Sequential Organization.. 256

1.2 Relative Organization.. 256

1.3 Indexed Organization. 257

1.4 INFOS Organization (VXCOBOL). 257

2. Logical Records. 257

2.1 Fixed Length Records. 257

2.2 Variable Length Records (ANSI 74 and ANSI 85). 258

2.3 Variable Length Records (VXCOBOL). 258

3. File Processing. 258

4. Record Operations. 258

4.1 Sequential Access Mode. 258

4.2 Random Access Mode.. 259

4.3 Dynamic Access Mode. 259

4.4 Open Mode. 259

4.5 Current Volume Pointer. 260

4.6 File Position Indicator.. 260

5. File Operations. 260

6. Exception Handling. 260

6.1 I-O Status (FILE STATUS). 260

6.2 I-O Status (ANSI 74). 261

6.3 I-O Status (ANSI 85). 264

6.4 I-O Status (VXCOBOL).. 267

6.5 INFOS Status (VXCOBOL).. 271

6.6 The At End Condition. 271

6.7 The Invalid Key Condition. 271

6.8 The File Attribute Conflict Condition. 272

6.9 Exception Declaratives. 272

6.10 Optional Phrases. 272

6.11 ACCEPT FROM EXCEPTION STATUS. 273

7. Shared Record Area.. 273

Interactive COBOL Language Reference & Developer’s Guide

12

8. INFOS File I-O Common Phrases (VXCOBOL). 273

8.1 The POSITION Phrase. 273

8.2 The Relative Motion Phrase.. 274

8.3 The KEY Series Phrase. 275

8.4 The SUPPRESS Phrase. 275

8.5 The LOCK/UNLOCK Phrase. 276

D. Header.. 277

E. Statements. 279

1. ACCEPT (keyboard). 279

2. ACCEPT (system). 290

3. ADD. 297

4. CALL. 299

5. CALL PROGRAM. 303

6. CANCEL. 307

7. CLOSE. 309

8. COMMIT (ISQL). 311

9. COMPUTE. 313

10. CONNECT (ISQL).. 315

11. CONTINUE. 318

12. DEALLOCATE (ISQL). 319

13. DEFINE SUB-INDEX (VXCOBOL). 321

14. DELETE. 325

15. DELETE FILE. 331

16. DISCONNECT (ISQL).. 333

17. DISPLAY. 335

18. DIVIDE. 343

19. EVALUATE (ANSI 74 and ANSI 85). 347

20. EXECUTE (ISQL). 351

21. EXECUTE IMMEDIATE (ISQL). 353

22. EXIT. 355

23. EXIT PROGRAM.. 357

24. EXPUNGE (VXCOBOL).. 359

25. EXPUNGE SUB-INDEX (VXCOBOL). 361

26. FETCH (ISQL).. 363

27. GET DIAGNOSTICS (ISQL). 365

28. GO TO.. 369

29. GOBACK. 371

30. IF. 373

31. INITIALIZE (ANSI 74 and ANSI 85). 375

32. INSPECT. 379

33. LINK SUB-INDEX (VXCOBOL). 387

34. MERGE. 389

35. MOVE. 393

36. MULTIPLY. 397

37. OPEN. 399

38. PERFORM. 404

39. PREPARE (ISQL). 412

40. READ (ANSI 74 and ANSI 85). 414

41. READ (VXCOBOL). 420

42. RELEASE. 427

43. RETRIEVE (VXCOBOL). 429

44. RETURN. 431

45. REW RITE. 433

46. ROLLBACK (ISQL). 437

47. SEARCH. 439

48. SET (ANSI 74 and ANSI 85). 443

49. SET (VXCOBOL). 447

51. SORT. 451

Table of Contents

13

52. START. 457

53. STOP.. 463

54. STRING.. 465

55. SUBTRACT. 467

56. UNDELETE (ANSI 74 and ANSI 85).. 469

57. UNDELETE (VXCOBOL). 471

58. UNLOCK. 473

59. UNSTRING. 475

60. USE. 479

61. W RITE.. 483

VII. BUILTINS. 493

A. Introduction. 493

1. Overview.. 493

B. Builtins. 494

1. ?CBADDR. 494

2. ?CBBADDR. 495

3. ?CBSYS. 496

4. CLI. 497

5. IC_ABORT_TERM. 498

6. IC_CHANGE_DIR. 499

7. IC_CHANGE_PRIV. 500

8. IC_CHECK_DATA. 502

9. IC_COMPRESS_OFF. 503

10. IC_COMPRESS_ON. 504

11. IC_CREATE_DIR.. 505

12. IC_CURRENT_DIR. 506

13. IC_DECODE_URL. 507

14. IC_DELAY. 508

15. IC_DETACH_PROGRAM. 509

16. IC_DIR_LIST. 511

17. IC_DISABLE_HOTKEY. 512

18. IC_DISABLE_INTS. 513

19. IC_ENABLE_HOTKEY. 514

20. IC_ENABLE_INTS. 515

21. IC_ENCODE_URL. 516

22. IC_EXTRACT_STRING. 517

23. IC_FULL_DATE.. 518

24. IC_GET_DISK_SPACE. 519

25. IC_GET_ENV. 520

26. IC_GET_FILE_IND. 521

27. IC_GET_KEY. 522

28. IC_HANGUP. 524

29. IC_HEX_TO_NUM. 525

30. IC_INFOS_STATUS_TEXT (VXCOBOL). 526

31. IC_INSERT_STRING. 527

32. IC_KILL_TERM. 528

33. IC_LOGON. 529

34. IC_LOW ER. 530

35. IC_MOVE_FILE_DATA. 531

36. IC_MOVE_STRING.. 532

37. IC_MSG_TEXT. 533

38. IC_NUM_TO_HEX. 534

39. IC_PID_EXISTS. 535

40. IC_PRINT_STAT. 536

41. IC_QUEUE_LIST. 541

42. IC_QUEUE_OPERATION. 545

43. IC_QUEUE_STATUS. 549

44. IC_REMOVE_DIR. 550

Interactive COBOL Language Reference & Developer’s Guide

14

45. IC_RENAME. 551

46. IC_RESOLVE_FILE.. 552

47. IC_SEND_MAIL. 554

48. IC_SEND_MSG.. 556

49. IC_SERIAL_NUMBER. 557

50. IC_SET_ENV. 558

51. IC_SET_TIMEOUT. 559

52. IC_SET_USERNAME. 560

53. IC_SHUTDOW N. 561

54. IC_SYS_INFO. 562

55. IC_TERM_CTRL. 564

56. IC_TERM_STAT. 565

57. IC_TRIM. 567

58. IC_UPPER. 568

59. IC_VERSION.. 569

60. IC_W INDOW _TITLE.. 570

61. IC_W INDOW S_MSG_BOX. 572

62. IC_W INDOW S_SETFONT. 575

63. IC_W INDOW S_SHELLEXECUTE (W indows only). 576

64. IC_W INDOW S_SHOW _CONSOLE. 577

VIII. INTRINSIC FUNCTIONS. 579

A. General Description.. 579

1. Types of Functions. 579

2. Arguments. 579

3. Returned values. 580

4. Date conversion functions. 580

5. Summary of functions. 581

B. Intrinsic Functions. 584

1. ABS. 584

2. ACOS. 585

3. ANNUITY.. 586

4. ASIN. 588

5. ATAN. 589

6. BYTE-LENGTH. 590

7. CHAR. 592

8. COS.. 593

9. CURRENT-DATE. 594

10. DATE-OF-INTEGER. 596

11. DATE-TO-YYYYMMDD. 597

12. DAY-OF-INTEGER. 599

13. DAY-TO-YYYYDDD. 600

14. E. 602

15. EXP. 603

16. EXP10. 604

17. FACTORIAL. 605

18. FRACTION-PART. 606

19. HIGHEST-ALGEBRAIC. 607

20. INTEGER. 608

21. INTEGER-OF-DATE. 609

22. INTEGER-OF-DAY. 610

23. INTEGER-PART. 611

24. LENGTH. 612

25. LOG. 614

26. LOG10. 615

27. LOW ER-CASE. 616

28. LOW EST-ALGEBRAIC. 617

29. MAX.. 618

30. MEAN. 620

Table of Contents

15

31. MEDIAN. 622

32. MIDRANGE. 624

33. MIN. 626

34. MOD. 628

35. NUMVAL. 630

36. NUMVAL-C. 632

37. NUMVAL-F. 634

38. ORD. 635

39. ORD-MAX. 636

40. ORD-MIN.. 637

41. PI. 638

42. PRESENT-VALUE. 639

43. RANDOM. 641

44. RANGE. 642

45. REM. 643

46. REVERSE. 644

47. SIGN. 645

48. SIN. 646

49. SQRT. 647

50. STANDARD-DEVIATION. 648

51. SUM. 649

52. TAN. 650

53. TEST-DATE-YYYYMMDD. 651

54. TEST-DAY-YYYYDDD. 653

55. TEST-NUMVAL. 655

56. TEST-NUMVAL-C. 657

57. TEST-NUMVAL-F. 659

58. UPPER-CASE. 661

59. VARIANCE. 662

60. W HEN-COMPILED. 664

61. YEAR-TO-YYYY. 666

IX. SCREEN HANDLER. 669

A. General Description.. 669

1. Enabling the SCREEN HANDLER. 669

2. Summary of Calls. 670

3. Error Handling. 671

B. Calls. 672

1. SD_DRAW _BOX.. 672

2. SD_DRAW _HLINE and SD_DRAW _VLINE. 673

3. SD_GET_IMAGE. 674

4. SD_GET_POS. 675

5. SD_MESSAGE, SD_ERROR_MESSAGE, SD_MESSAGE_ONLY. 676

6. SD_NEW _W INDOW .. 677

7. SD_POP_UP_MENU. 678

8. SD_POP_UP_MENU2. 679

9. SD_READ_CHAR. 680

10. SD_REDRAW . 682

11. SD_REMOVE_W INDOW . 683

12. SD_RETURN_INPUT. 684

13. SD_SET_ACCEPT_TIMEOUT. 685

14. SD_SYS_ERROR_MESSAGE. 686

PART TWO - DEVELOPER’S GUIDE. 687

X. INTRODUCTION TO THE DEVELOPER’S GUIDE. 689

A. Overview. 689

Interactive COBOL Language Reference & Developer’s Guide

16

B. Operating Environment. 689

1. General Concepts. 689

1.1 Communication with the Operating System.. 689

1.2 I-O Redirection.. 689

1.3 Environment Variables. 689

2. Directory Structure. 690

3. ICEXEC Control Program.. 691

4. ICPERMIT License Program. 691

C. Command-line Conventions. 692

1. Switches. 692

2. Conventions for Defining Syntax. 692

3. Filename Case (upper or lower). 692

D. Common Switches. 692

1. Overall. 692

2. Audit Switch. 693

3. Quiet Switch. 693

4. Help Switch.. 694

E. Filename Extensions. 694

F. Exit Codes. 696

G. Common Environment Variables.. 696

1. Overall. 696

2. ICROOT. 696

3. ICTMPDIR. 697

4. Executable-Name Environment Variable. 697

5. TZ (W indows only). 697

XI. COMPILER (ICOBOL). 699

A. Overview. 699

B. Syntax. 699

1. Rules. 701

2. Environment Variables. 702

C. Switches. 702

1. Overview. 702

2. Byte Alignment Switch (-B 1|2|4). 703

3. COPY Sourcedir Switch (-c). 703

4. COPY Path Switch (-C copydir). 703

5. Dialect Switch (-D ic|vx|85). 703

6. Error File Switch (-e | -E erdir). 703

7. Format Switch (-F c|f). 704

8. General Switch (-G {6|a|b|d|e|g|h|i|k|n|p|q|s}...). 704

9. Hard Error Limit Switch (-H cnt). 705

10. Information Switch (-i). 705

11. Include listing options Switch (-I {g|m|p|x}...). 705

12. Listing File Switch (-l | -L lsdir).. 705

13. Make ICODBC Data Definition Files Switch (-M dddir). 706

14. No Switch (-N {h|p|s|u}...). 706

15. OEM Version Switch (-o | -O rev). 706

16. Program Output File Switch (-P cxdir).. 707

17. Revision Switch (-R 1|2|3|4). 707

18. Statistics Switch (-s). 707

19. Warnings Switch (-w). 707

20. ICODBC Options Switch (-X “string”). 707

21. Debug Switch (-Z sydir). 709

D. Messages. 709

1. Overview.. 709

1.1 Format. 709

1.2 Examples. 711

2. Error Messages. 711

Table of Contents

17

3. Warning Messages.. 712

4. Information Messages. 713

E. Example Output.. 715

F. Cross Reference Output. 716

G. ICODBC Support. 717

XII. DEBUGGING . 721

A. Introduction. 721

B. Invocation. 721

C. Usage. 722

D. Commands. 726

1. Overview. 726

2. AUDIT. 727

3. BREAK. 727

4. COMMAND. 730

5. DUMP. 731

6. ERROR RESET. 731

7. EXECUTE. 732

8. FIND. 732

9. GO. 732

10. HELP.. 733

11. INFO. 733

12. LIST. 734

13. MOVE. 735

14. QUIT. 735

15. RERUN. 735

16. RUN. 736

17. STEP.. 736

18. TYPE.. 737

19. VIEW .. 737

20. ZOOM. 738

E. Performance Considerations. 738

F. Quick Reference. 739

XIII. ICREVSET. 741

A. Introduction. 741

B. Syntax. 741

C. General Rules. 741

XIV. ICDUMP. 743

A. Introduction. 743

B. Syntax. 743

C. Rules. 743

D. Example. 743

XV. RUNTIME (ICRUN). 747

A. Introduction. 747

B. Printer Control Utility. 747

C. Program Termination. 748

1. Two Types of Termination.. 748

1.1 Return to LOGON as Inactive. 748

1.2 Return to Parent Process. 748

D. Device Support. 748

1. Overview.. 748

2. General Rules. 749

3. Parallel Printer Ports . 750

4. Serial Ports. 750

E. Filenaming Conventions. 751

Interactive COBOL Language Reference & Developer’s Guide

18

1. Internal Filenames. 751

2. External Filenames.. 751

2.1 Rules. 752

2.2 Program names. 753

2.3 Sequential and ICISAM Filenames. 755

F. Extended OPEN options. 756

1. Overview.. 756

2. Extended Sequential Open. 757

3. Extended Relative Open (ANSI 74 and ANSI 85). 759

4. Extended Indexed Open.. 760

G. ICISAM Information. 761

1. Overview.. 761

2. ICISAM Versions. 761

3. ICISAM Reliability. 762

4. ICISAM Key Ordering. 762

H. Notes and Warnings. 763

I. UNIX Pipe Opens. 764

J. BTRIEVE Support. 765

1. Overview.. 765

2. Runtime. 765

3. ICREORG.. 766

4. ICNETD. 766

K. C-ISAM Support. 767

1. Overview.. 767

2. Runtime. 767

3. ICREORG.. 767

4. ICNETD. 767

L. HOT KEYS. 767

1. Introduction.. 767

2. Construction. 768

3. Restrictions.. 768

3. Example. 769

XVI. ICODBC Driver. 771

A. Introduction. 771

B. General Information.. 771

C. Using the Driver.. 771

D. Creating .XDB and XDT Files. 772

E. Managing Data Sources (On W indows). 779

F. Managing Data Sources (On UNIX). 780

G. Data Types Supported.. 784

H. Driver Limitations.. 786

I. SQL Grammar Supported. 786

J. Usage Notes. 789

K. Debugging. 791

L. SYWARE. 791

XVII. ICIDE. 793

A. Introduction. 793

B. Use. 793

C. Changing .CO or .SR file associations. 794

XVIII. GLOSSARY. 797

A. Introduction. 797

B. Definitions. 797

APPENDICES. 815

A. IMPLEMENTATION LIMITS. 817

Table of Contents

19

B. ESCAPE KEY TABLE. 819

C. ANSI 74 FILE STATUS CODES. 821

D. ANSI 85 FILE STATUS CODES. 823

E. VXCOBOL FILE STATUS CODES. 825

F. ANSI 74 and ANSI 85 EXCEPTION STATUS CODES. 827

G. VXCOBOL EXCEPTION STATUS CODES.. 835

H. UNIX Errno. 843

I. ASCII CODES. 844

J. EBCDIC CODES. 846

K. COBOL RESERVED W ORDS. 847

L. SYSTEM CALLS. 851

INDEX.. 865

Support Information Request (SIR). 879

Enhancement/Suggestion Request. 881

CUSTOMER DOCUMENTATION COMMENT FORM .. 883

Interactive COBOL Language Reference & Developer’s Guide

20

LIST OF EXAMPLES

EXAMPLE 1. Identifying parameters passed by a calling program.. 56

EXAMPLE 2. Using a Program Switch. 80

EXAMPLE 3. Modifying the collating sequence for a program. 80

EXAMPLE 4. Changing 1 character in the collating sequence . 80

EXAMPLE 5. Making multiple characters the same in the collating sequence. 81

EXAMPLE 6. Reversing collating sequence for digits, uppercase alphabet. 81

EXAMPLE 7. Definition for a one-dimensional table. 121

EXAMPLE 8. Another one-dimensional table. 121

EXAMPLE 9. Three one-dimensional tables without group names. 121

EXAMPLE 10. Definition for a two-dimensional table. 122

EXAMPLE 11. Referencing single- and multi-dimensional table elements. 122

EXAMPLE 12. Referencing elements in 1-, 2-, and 3-dimensional tables.. 124

EXAMPLE 13. Referencing an intrinsic function with and without arguments. 129

EXAMPLE 14. Abbreviated combined and negated combined relation conditions.. 241

EXAMPLE 15. MOVE CORRESPONDING and ADD CORRESPONDING. 248

EXAMPLE 16. MOVE CORRESPONDING. 249

EXAMPLE 17. CALL the Bourne shell from a COBOL program (UNIX). 302

EXAMPLE 18. CALL the shell, have it execute “ls” and return (UNIX). 302

EXAMPLE 19. CALL the “ls” command directly and return (UNIX).. 302

EXAMPLE 20. CALL the command processor (Windows).. 302

EXAMPLE 21. CALL the command processor and execute the DIR command (Windows).. 302

EXAMPLE 22. EVALUATE. 350

EXAMPLE 23. INSPECT TALLYING, REPLACING. 384

EXAMPLE 24. INSPECT TALLYING, REPLACING. 385

EXAMPLE 25. INSPECT TALLYING, REPLACING. 385

EXAMPLE 26. INSPECT TALLYING, REPLACING. 386

EXAMPLE 27. INSPECT CONVERTING. 386

EXAMPLE 28. Using Declaratives. 481

EXAMPLE 29. ABS function. 584

EXAMPLE 30. ACOS function. 585

EXAMPLE 31. ANNUITY function. 587

EXAMPLE 32. ASIN function.. 588

EXAMPLE 33. ATAN function. 589

EXAMPLE 34. BYTE-LENGTH function. 591

EXAMPLE 35. CHAR function. 592

EXAMPLE 36. COS function. 593

EXAMPLE 37. CURRENT-DATE function. 595

EXAMPLE 38. DATE-OF-INTEGER function. 596

EXAMPLE 39. DATE-TO-YYYYMMDD function. 598

EXAMPLE 40. DAY-OF-INTEGER function. 599

EXAMPLE 41. DAY-TO-YYYYDDD function. 601

EXAMPLE 42. E function. 602

EXAMPLE 43. EXP function. 603

EXAMPLE 44. EXP10 function. 604

EXAMPLE 45. FACTORIAL function. 605

EXAMPLE 46. FRACTION-PART function. 606

EXAMPLE 47. HIGHEST-ALGEBRAIC function. 607

EXAMPLE 48. INTEGER function. 608

EXAMPLE 49. INTEGER-OF-DATE function. 609

EXAMPLE 50. INTEGER-OF-DAY function. 610

EXAMPLE 51. INTEGER-PART function. 611

EXAMPLE 52. LENGTH function. 613

EXAMPLE 53. LOG function. 614

EXAMPLE 54. LOG10 function. 615

EXAMPLE 55. LOWER-CASE function. 616

Table of Contents

21

EXAMPLE 56. LOWEST-ALGEBRAIC function. 617

EXAMPLE 57. MAX function.. 619

EXAMPLE 58. MEAN function. 621

EXAMPLE 59. MEDIAN function. 623

EXAMPLE 60. MIDRANGE function. 625

EXAMPLE 61. MIN function. 627

EXAMPLE 62. MOD function.. 629

EXAMPLE 63. NUMVAL function. 631

EXAMPLE 64. NUMVAL-C function. 633

EXAMPLE 65. NUMVAL-F function. 634

EXAMPLE 66. ORD function. 635

EXAMPLE 67. ORD-MAX function. 636

EXAMPLE 68. ORD-MIN function. 637

EXAMPLE 69. PI function. 638

EXAMPLE 70. PRESENT-VALUE function. 640

EXAMPLE 71. RANDOM function. 641

EXAMPLE 72. RANGE function. 642

EXAMPLE 73. REM function. 643

EXAMPLE 74. REVERSE function. 644

EXAMPLE 75. SIGN function.. 645

EXAMPLE 76. SIN function. 646

EXAMPLE 77. SQRT function. 647

EXAMPLE 78. STANDARD-DEVIATION function. 648

EXAMPLE 79. SUM function. 649

EXAMPLE 80. TAN function. 650

EXAMPLE 81. TEST-DATE-YYYYMMDD function. 652

EXAMPLE 82. TEST-DAY-YYYYDDD function. 654

EXAMPLE 83. TEST-NUMVAL function.. 656

EXAMPLE 84. TEST-NUMVAL-C function.. 658

EXAMPLE 85. TEST-NUMVAL-F function. 660

EXAMPLE 86. UPPER-CASE function. 661

EXAMPLE 87. VARIANCE function . 663

EXAMPLE 88. WHEN-COMPILED function. 665

EXAMPLE 89. YEAR-TO-YYYY function. 667

EXAMPLE 90. ICDUMP of the Header (default). 744

EXAMPLE 91. ICDUMP of the Program Code (using the -c switch). 744

EXAMPLE 92. ICDUMP of the Reference Table (using the -r switch). 745

EXAMPLE 93. ICDUMP of the Data (using the -d switch). 745

LIST OF FIGURES

FIGURE 1. Evaluation of condition-1 AND condition-2 AND ... condition-n.. 242

FIGURE 2. Evaluation of condition-1 OR condition-2 OR ... condition-n. 243

FIGURE 3. Evaluation of condition-1 OR condition-2 AND condition-3. 244

FIGURE 4. Evaluation of (condition-1 OR NOT condition-2) AND condition-3 AND condition-4. 245

FIGURE 5. PERFORM [TEST BEFORE] VARYING with one condition. 409

FIGURE 6. PERFORM [TEST BEFORE] VARYING with two conditions. 410

FIGURE 7. Valid PERFORM constructs. 411

FIGURE 8. Format 1 SEARCH statement having two WHEN phrases. 442

FIGURE 9. ICOBOL Directory Structure (UNIX). 690

FIGURE 10. ICOBOL Directory Structure (Windows). 691

Interactive COBOL Language Reference & Developer’s Guide

22

LIST OF SCREENS

SCREEN 1. Default Debugging SCREEN. 722

SCREEN 2. Debugging SCREEN (all views enabled).. 722

SCREEN 3. Debugging SCREEN (no symbol file). 723

SCREEN 4. Debugging SCREEN (symbols but no source). 723

LIST OF TABLES

TABLE 1. Default External Filenames for Sequential Files. 100

TABLE 2. Relationship of the Class and Categories of Data Items. 118

TABLE 3. File Description Clauses by ICOBOL dialect and file type. 143

TABLE 4. PICTURE Editing. 179

TABLE 5. Sign Control in Fixed PICTURE Editing. 180

TABLE 6. Sign Control in Floating PICTURE Editing. 181

TABLE 7. PICTURE Precedence Rules. 182

TABLE 8. SIGN Overpunch Characters. 187

TABLE 9. BINARY & COMPUTATIONAL Storage Allocation. 190

TABLE 10. COMPUTATIONAL-5 Storage Allocation. 191

TABLE 11. INTERVAL Field Maximum Precision (ISQL). 194

TABLE 12. BACKGROUND-COLOR and FOREGROUND-COLOR. 211

TABLE 13. LINE and COLUMN relationship.. 221

TABLE 14. INTERVAL Field Maximum Precision (ISQL). 227

TABLE 15. Combination of Symbols in Arithmetic Expressions. 231

TABLE 16. Relational Operators. 234

TABLE 17. Combinations of Conditions, Logical Operators, and Parentheses. 240

TABLE 18. Variable Origin for DISPLAY and ACCEPT. 284

TABLE 19. Function Key Escape Codes. 294

TABLE 20. Common Error Conditions for a CALL Statement. 301

TABLE 21. Common Error Conditions for a CALL PROGRAM Statement. 304

TABLE 22. How Program Switches are evaluated.. 305

TABLE 23. CALL and CALL PROGRAM Compared. 306

TABLE 24. Combination of operands in the EVALUATE statement. 348

TABLE 25. Legality of Types of MOVE Statements. 395

TABLE 26. Availability of a File (ANSI 74). 400

TABLE 27. Availability of a File (ANSI 85). 400

TABLE 28. Availability of a File (VXCOBOL). 401

TABLE 29. Permissible Statements. 401

TABLE 30. Validity of Operand Combinations in Format 1 SET Statements. 445

TABLE 31. ANSI 74 and ANSI 85 ADVANCING Definitions.. 487

TABLE 32. VXCOBOL ADVANCING Definitions.. 488

TABLE 33. VXCOBOL CHANNEL ADVANCING Definitions.. 488

TABLE 34. List of BUILTINS. 493

TABLE 35. IC_GET_KEY values returned. 523

TABLE 36. Summary of Intrinsic Functions. 583

TABLE 37. Summary of Screen Handler Calls. 670

TABLE 38. Common Command-line Syntax Conventions. 692

TABLE 39. Common Filename Extensions used by ICOBOL. 695

TABLE 40. Cross Reference Symbol Types.. 717

TABLE 41. ICOBOL Data Types to ODBC Data Types. 719

TABLE 42. Device Mappings. 749

TABLE 43. Legal characters in a filename.. 751

TABLE 44. Illegal Characters in a Filename. 752

TABLE 45. Characters Allowed in a Filename, in Certain Contexts. 752

TABLE 46. Three Categories of Extended Open for Sequential Files. 757

TABLE 47. BTRIEVE-specific Exception Status Codes. 766

Table of Contents

23

TABLE 48. ICODBC Data Types to ODBC SQL Data Types. 785

Interactive COBOL Language Reference & Developer’s Guide

24

Table of Contents

25

PREFACE

Scope

This manual defines the COBOL language supported by Interactive COBOL. This COBOL language is based on the

ANSI COBOL standard X3.23-1985. The manual is intended for programmers already familiar with the COBOL

language in general.

The complete documentation for Interactive COBOL includes the following manuals:

Installing and Configuring Interactive COBOL on UNIX (011-00402)

Installing and Configuring Interactive COBOL on Windows (011-00403)

Each manual provides the appropriate sections necessary to properly install and configure Interactive

COBOL in the given environment.

Interactive COBOL Utilities Manual (011-00300)

Provides a simple guide to all the user visible utilities.

Interactive COBOL Language Reference & Developer’s Guide (011-00100)

Contains two parts:

A) Interactive COBOL Language Reference: The complete COBOL syntax supported by all dialects of

ICOBOL. Included are ICOBOL builtins, intrinsic functions, and screen calls.

B) Interactive COBOL Developer’s Guide: Explains how to use the development tools including the

compiler, debugger, ICREVSET, and ICDUMP. It also explains how the ICOBOL runtime works

including how to program across the multiple environments supported by ICOBOL.

COBOL sp2 User Interface Development Manual

How to use the ICSP2 Panel Editor to define GUI screens.

COBOL FormPrint

How to use the ICQPRW FormPrint Editor to setup printers.

Interactive COBOL Language Reference & Developer’s Guide

26

TERMS

This document uses several terms as generic names to describe the following products.

ANSI 74, ANSI 85, and VXCOBOL are the three dialects supported by Interactive COBOL and are used to

describe differences.

AOS/VS refers to both AOS/VS II and AOS/VS (Classic) unless specifically stated..

ICOBOL refers to all dialects of the Interactive COBOL product unless otherwise stated.

INFOS refers to either AOS/VS INFOS II or U/FOS. INFOS II or U/FOS are explicitly used when needed.

VXCOBOL refers to all models of the VXCOBOL products unless otherwise stated.

UNIX refers to all supported dialects of UNIX (AIX , HP-UX, etc.) including Linux unless specifically stated.™

Windows refers to all supported Microsoft Windows products (Windows 2000, Windows XP, Windows Server

2003, Windows Vista, etc.) unless otherwise stated.

Enhancements

27

ENHANCEMENTS (Language area)

Interactive COBOL 3.60 added support for the following:

- Enhanced builtins: IC_WINDOWS_MSG_BOX, IC_WINDOWS_SHOW_CONSOLE,

IC_WINDOW_TITLE

Interactive COBOL 3.57 added support for the following:

- Enhanced builtin: IC_SEND_MAIL

Interactive COBOL 3.56 added support for the following:

- Enhanced builtin: IC_WINDOWS_SETFONT

- Filenames can now contain “(“ and “)”

Interactive COBOL 3.50 added support for the following:

- New builtin: IC_SEND_MAIL

Interactive COBOL 3.40 added support for the following:

- Integrated SQL (ISQL) added that provides a simple way of using popular relational databases directly from

within your COBOL programs. ISQL provides many of the embedded SQL features but in an integrated

fashion without the added complexity of pre-processors or call-level interface. Most of the SQL data types

have been added to the base language set. At runtime, ISQL makes use of standard ODBC calls to access

any data manager available to ODBC.

New literal types include: DATE, TIME, TIMESTAMP, and INTERVALS.

New data types include: CHARACTER, CHARACTER VARYING, DATE, INDICATOR, INTEGER,

INTERVAL, NUMERIC, SMALLINT, TIME, and TIMESTAMP.

New statements include: COMMIT, CONNECT, DEALLOCATE, DISCONNECT, EXECUTE,

EXECUTE IMMEDIATE, FETCH, GET DIAGNOSTICS, PREPARE, ROLLBACK, and

SET CONNECTION. (These statements require an additional ICSQL runtime license).

New identifier: SQLSTATE

Enhancements to other statements to support the new literal and data types.

These features are made available with the new General switch (-G q) on the compiler.

Debugger support for the above.

- Special Register LENGTH OF

- VXCOBOL dialect will allow CONTINUE, GOBACK, reference modification, and intrinsic functions

- Use of reference modification in the SCREEN SECTION

Interactive COBOL Language Reference & Developer’s Guide

28

Interactive COBOL 3.35 added support for the following:

- Enhanced builtin: IC_SYS_INFO

Interactive COBOL 3.34 added support for the following:

- Enhanced builtin: IC_WINDOWS_SETFONT

- New builtin: IC_TRIM.

Interactive COBOL 3.30 added support for the following:

- ACCEPT FROM ENVIRONMENT updated to give the minimum and maximum screen column sizes and the

computer name.

- New builtins: IC_COMPRESS_ON and IC_COMPRESS_OFF to support compress mode on screens.

- GOBACK statement added

- Inline comment (*>) added

Interactive COBOL 3.22 added support for the following:

- Enhanced builtin: IC_SYS_INFO to accept an optional argument.

- New builtin: IC_GET_FILE_IND returns header information about a particular ICISAM indexed file.

Interactive COBOL 3.20 added support for the following:

- Enhancements to the Screen Section, including OCCURS, LINE PLUS/MINUS variable, relative positioning

after absolute positioning, identifier for FOREGROUND-COLOR and BACKGROUND-COLOR,

CONVERTING UP/DOWN, and compatibility enhancements for the ERASE, BLANK, attribute control

clauses.

- Introduction of screen control clauses such as line and column positioning and attribute control, etc. for

non-screen ACCEPT and DISPLAY statements

Interactive COBOL 3.13 added support for the following:

- New builtins: IC_SET_ENV and IC_WINDOWS_SETFONT.

- New compiler switch (-c).

- ICIDE enhancements.

- Runtime support to write to the audit file. (DISPLAY UPON)

Interactive COBOL 3.12 added support for the following:

- Enhanced builtin: IC_SEND_MSG.

Enhancements

29

Interactive COBOL 3.11 added support for the following:

- New builtin: IC_WINDOWS_SHELLEXECUTE.

- On Windows, ICRUNW can now set its font and size at startup.

Interactive COBOL 3.10 added support for the following:

- New reserved words for the ANSI 74 and ANSI 85 dialects: CONVERT, CURSOR, HIGH, LOW, PROMPT,

and TAB.

- Removed the debugger (ICDEB) as a separate executable and made an integral part of the runtime.

- On Windows, added an integrated development environment (ICIDE) allowing projects to be defined, edited,

and compiled in one place.

Interactive COBOL 3.03 added support for the following:

- New reserved words for the ANSI 74 and ANSI 85 dialects: BACKGROUND, BEEP, FOREGROUND, and

MINUS.

Interactive COBOL 3.01 added support for the following:

- New builtins: IC_QUEUE_LIST and IC_QUEUE_OPERATION.

Interactive COBOL 3.00 was a major release which added support for the following:

- Code and data space increased to 16MB each

- Multicharacter switches

- Nested COPY files

- Expressions in subscripts

- Reference modification (ANSI 74/85 only)

- ACCEPT FROM DATE YYYYMMDD

- ACCEPT FROM DAY YYYYDDD

- ACCEPT FROM EXCEPTION STATUS WITH ERROR IN xx

- CALL by CONTENT

- CODE-SET

- COPY REPLACING

- OCCURS DEPENDING ON

- EVALUATE statement (ANSI 74/85 only)

- EXTERNAL data and files

- INITIALIZE statement (ANSI 74/85 only)

- Enhanced INSPECT (multiple TALLYING, CONVERTING clause)

- LINAGE support

- SECURE NO ECHO

- QUEUE IS added to SELECT

- RECORD DELIMITER added to SELECT

- START is available for sequential files

- STOP RUN literal

- Varying length records for all file types

- IS INITIAL PROGRAM

- 61 INTRINSIC FUNCTIONS added (ABS, ACOS, ANNUITY, ...) (ANSI 74/85 only)

Interactive COBOL Language Reference & Developer’s Guide

30

- New Builtins: IC_HANGUP, IC_LOGON, IC_QUEUE_STATUS, IC_SHUTDOWN,

IC_INFOS_STATUS_TEXT, IC_PID_EXISTS, IC_HEX_TO_NUM, IC_NUM_TO_HEX, CLI,

?CBSYS, ?CBADDR, and ?CBBADDR

- Supports a VXCOBOL dialect (Data General AOS/VS COBOL compatible)

31

PART ONE - LANGUAGE REFERENCE

Interactive COBOL Language Reference & Developer’s Guide - Part One

32

Conventions (General Format)

33

I. CONVENTIONS USED IN THIS MANUAL

A. Definition of a General Format

A general format is the specific arrangement of the elements of a clause or a statement.

A clause or a statement consists of elements as defined below. Throughout this document a format is shown

adjacent to information defining the clause or statement. When more than one specific arrangement is permitted, the

general format is separated into numbered or named formats. Clauses must be written in the sequence given in the

general formats. (If they are used, optional clauses must appear in the sequence shown.) In certain cases, stated

explicitly in the rules associated with a given format, clauses may appear in sequences other than that shown.

Applications, requirements, or restrictions concerning a format, are shown as rules.

A.1. Elements

Elements that make up a clause or a statement consist of uppercase words, lowercase words, level-numbers, brackets,

braces, connectives, and special characters.

A.2. Words

UNDERLINED UPPERCASE WORDS represent keywords and are required whenever the functions of which they

are a part are used. An error will be reported by the compiler if a keyword is absent or incorrectly spelled.

UPPERCASE WORDS that are not underlined are optional; they are used only for readability.

Lowercase words, in a general format, are generic terms used to represent COBOL words, literals, PICTURE

character-strings, comment-entries, or a complete syntactical entry that must be supplied by the user. Where generic

terms are repeated in a general format, a number or letter appended to the term serves to identify that term for

explanation or discussion.

A.3. Level-Numbers

When specific level-numbers appear in data description entry formats, those specific level-numbers are required

when such entries are used in a COBOL program. In this document, the form 01, 02, ... , 09 is used to indicate

level-numbers 1 through 9.

A.4. Brackets and Braces

Brackets, [], enclose optional items.

Braces, { }, enclose a set of alternatives, one of which is required; it must be selected explicitly or implicitly. If one

of the options contains only reserved words which are not keywords, that option is the default if no option is

explicitly specified.

Options are indicated in a general format or a portion of a general format by vertically stacking the set of

alternatives, by a series of brackets or braces or by a combination of both. An option is selected by specifying one of

the alternatives or by specifying a unique combination of possibilities from a series of brackets or braces.

A.5. Ellipsis (...)

In text, other than general formats, the ellipsis shows omission of a word or words when such omission does not

impair comprehension. This is the conventional meaning of the ellipsis, and the use becomes apparent in context.

Interactive COBOL Language Reference & Developer’s Guide - Part One

34

In the general format, the ellipsis represents indefinite repetition of the last item. The portion of the format that may

be repeated is determined as follows:

Given ... (the ellipsis) in a format, scanning right to left, determine the] (right bracket) or } (right brace)

delimiter immediately to the left of the ... (ellipsis); continue scanning right to left and determine the

logically matching [(left bracket) or { (left brace) delimiter; the ... (ellipsis) applies to the portion of the

format between the determined pair of delimiters. Thus a []... indicates there can be zero or more

occurrences of this item while a { }... indicates there can be one or more occurrences of this item.

A.6. Format Punctuation

The separators comma and semicolon may be used anywhere the separator space is used in the formats. In the

source program, these separators are interchangeable.

The separator period, when used in the formats, has the status of a required word. It must be followed by a space.

A.7. Use of Special Character Words in Formats

The special character words `+', `-', `>', `<', `=', `>=', `<=', and ‘<>’ when appearing in formats, although not

underlined, are required when such portions of the formats are used.

A.8. Documentation Only

d Lines with the symbol “d” in the left margin indicate that this phrase is used for documentation only; it does not in

any way affect how the ICOBOL compiler syntaxes the source or generates executable code..d

B. Rules

B.1. Syntax Rules

Syntax rules define or clarify the order in which words or elements must be arranged to form larger elements such as

phrases, clauses, or statements. Syntax rules may also either impose restrictions on individual words or elements or

relax restrictions implied by words or elements.

B.2. General Rules

General rules define or clarify the meaning or relationship of meanings of an element or set of elements. They are

used to define or clarify the semantics of the statement and the effect that it has on either compilation or execution.

Conventions (ICOBOL Dialects)

35

C. ICOBOL Dialects and Feature-Sets

The ICOBOL product described by this document is a COBOL language product that can be customized at compile-

time to mimic one of several popular COBOL implementations, or dialects. The selection of a given dialect

automatically affects a number of different language attributes, such as the set of reserved words, the syntax for

particular statements, the storage format for data, and even run-time behavior.

In addition, the product implements a number of language enhancements that are selectable independently of the

dialect selected. These enhancements are bundled in various combinations to form a feature-set.

C.1. Description of ICOBOL Dialects

Each dialect is selectable via a compiler switch. (See the Compiler Chapter of the Developer’s Guide Section starting

on page 699, for a description of compiler options.) Each dialect is named and described individually below. Note

that whenever the term ICOBOL is used in this manual, it refers collectively to all of the supported dialects.

Whenever the individual dialect name is used, it refers specifically to that dialect. The supported dialects are:

• ANSI 74

This is the fundamental dialect. It is consistent with traditional Interactive COBOL. It uses ANSI-74 file

status codes and file handling semantics.

• ANSI 85

This is the stricter ANSI-85 dialect. It is consistent with ICOBOL 2 code compiled with the -M 85 option.

It uses ANSI-85 file status codes and file handling semantics.

• VXCOBOL

This dialect is consistent with the syntax and semantics used by Data General’s AOS/VS COBOL and by

Envyr Corporation’s VXCOBOL product.

C.2. Notation of Dialect Differences

(1) Many language features and runtime behavior are common to all dialects. In that case, no dialect notation is

necessary, and support with all dialects is assumed. The term “ICOBOL” refers to the product as a whole and

includes all dialects, except where explicitly noted.

(2) Where there are differences, they are noted in the documentation with flags to note those exceptions. Most

differences are between the following sets of dialects, and these are the most common flags you will see in the

documentation. For example,

• (ANSI 74 and ANSI 85)

• (VXCOBOL)

Less frequently, differences will be noted with the following flags:

• (ANSI 74)

• (ANSI 85)

(3) Some features and behavior are found only in one dialect and are so marked. For example in the DATA

DIVISION:

Interactive COBOL Language Reference & Developer’s Guide - Part One

36

FEEDBACK Clause (VXCOBOL)

and

RECORD Clause (ANSI 74 and ANSI 85)

ANSI 74 and ANSI 85:

(4) During the execution of an ACCEPT statement for a screen item that contains

SECURE NO ECHO, any characters entered by the user will not be echoed, and the cursor will

not move as the characters are entered.

VXCOBOL:

(5) During the execution of an ACCEPT statement, any characters entered by the user

will not be echoed. Additionally, the cursor will not move as the characters are entered.

(4) Differences are flagged at the highest level appropriate. A COBOL statement may be supported in one

dialect but not another; in that case, the notation will appear at the highest level for the statement, indicating which

dialect(s) support the statement. Most COBOL statements are common to all dialects but have minor differences

among dialects, as, for example in the following documentation excerpt from ACCEPT statement in the

PROCEDURE DIVISION:

C.3. Description of Feature-sets

A feature-set is an enhancement or a set of enhancements that can be enabled independently of the specific dialect

that is selected. In a manner similar to the dialect, however, a feature-set may affect the set of reserved words, that

syntax for existing language features, additional syntax that is specific to the feature-set, and even run-time behavior.

Each feature-set is denoted by a feature-set name and an optional level indicator. The naming reflects this scheme.

The feature-sets are as follows:

• ISQL-1

This is Integrated SQL level 1. This level includes integrated support for a number of the SQL data types

and operators, as well as basic support for dynamic queries using PREPARE and EXECUTE.

• ISQL-2

This is integrated SQL level 2. This level is not yet implemented. It will extend the integrated support of

the SQL language with a much larger set of supported SQL statements. Additional statements will include

CREATE, DROP, SELECT, INSERT, and DELETE.

Conventions (ICOBOL Dialects)

37

C.4. Notation of Feature-set Differences

Where there are differences created by the presence of a feature-set, they are noted in the documentation with flags

to note those exceptions. When the differences are the same for all levels of a feature-set, they are denoted by using

just the base feature-set name. For example,

• (ISQL) Applies to all levels of the ISQL feature-set

• (ISQL-1) Applies only to level-1 features within the ISQL feature-set

• (ISQL-2) Applies only to level-2 features within the ISQL feature-set

Interactive COBOL Language Reference & Developer’s Guide - Part One

38

COBOL Source Program (Concepts)

39

II. COBOL SOURCE PROGRAM

A. General Description

A COBOL source program is a syntactically correct set of COBOL statements.

B. Concepts

B.1. Character Set

The most basic and indivisible unit of the language is the character. The set of characters used to form COBOL

character-strings and separators includes the letters of the alphabet, digits, and special characters. This character set

consists of the characters as defined under COBOL Character Set in the glossary. In the case of nonnumeric literals,

comment-entries, and comment lines, the character set is expanded to include the computer's entire character set.

The characters allowable in each type of character-string and as separators are defined in the section below.

B.2. Language Structure

The individual characters of the language are concatenated to form character-strings and separators. A separator

may be concatenated with another separator or with a character-string. A character-string may only be concatenated

with a separator. The concatenation of character-strings and separators forms the text of a source program.

B.2.1 Separators

A separator is a character or two contiguous characters formed according to the following rules:

(1) Space. The punctuation character space is a separator. Anywhere a space is used as a separator or as part of

a separator, more than one space may be used. All spaces immediately following the separators comma, semicolon,

or period are considered part of that separator and are not considered to be the separator space.

(2) Comma and semicolon. Except when the comma is used in a PICTURE character-string, the punctuation

characters comma and semicolon, immediately followed by a space, are separators that may be used anywhere the

separator space is used. They may be used to improve program readability.

(3) Period. The punctuation character period, when followed by a space is a separator. It must be used only to

indicate the end of a sentence, or as shown in formats.

(4) Parentheses. The punctuation characters right and left parentheses are separators. Parentheses may appear

only in balanced pairs of left and right parentheses delimiting subscripts, reference modifiers, arithmetic expressions,

or conditions.

(5) Quotation mark. The punctuation character quotation mark is a separator. An opening quotation mark must

be immediately preceded by a space or left parenthesis; a closing quotation mark, when paired with an opening

quotation mark, must be immediately followed by one of the separators space, comma, semicolon, period, or right

parenthesis.

(6) Colon. The punctuation character colon is a separator and is required when shown in the general formats.

Interactive COBOL Language Reference & Developer’s Guide - Part One

40

(7) The separator space may optionally immediately precede all separators except:

a. As specified by reference format rules.

b. The separator closing quotation mark. In this case, a preceding space is considered as part of the

nonnumeric literal and not as a separator.

(8) The separator space may optionally immediately follow any separator except the opening quotation mark.

In this case, a following space is considered as part of the nonnumeric literal and not as a separator.

(9) Pseudo-text delimiters. Pseudo-text delimiters are separators. An opening pseudo-text delimiter must be

immediately preceded by a space. A closing pseudo-text delimiter must be immediately followed by one of the

separators space, comma, semi-colon, or period. Pseudo-text delimiters may appear only in balanced pairs

delimiting pseudo-text.

Any punctuation character which appears as part of the specification of a PICTURE character-string or numeric

literal is not considered as a punctuation character, but rather as a symbol used in the specification of that PICTURE

character-string or numeric literal. PICTURE character-strings are delimited only by the separators space, comma,

semicolon, or period.

The rules established for the formation of separators do not apply to the characters which comprise the contents of

nonnumeric literals, comment-entries, or comment lines.

B.2.2 Character-Strings

A character-string is a character or a sequence of contiguous characters which forms a COBOL word, a literal, a

PICTURE character-string, or a comment-entry. A character-string is delimited by separators.

B.2.2.1 COBOL Words

A COBOL word is a character-string of not more than 30 characters which forms a user-defined word, a

system-name, or a reserved word. Each character of a COBOL word is selected from the set of letters, digits, and the

hyphen. The hyphen may not appear as the first or last character. Each lowercase letter is considered to be

equivalent to its corresponding uppercase letter. Within a source program, reserved words and user-defined words

form disjoint sets; reserved words and system-names form disjoint sets; system-names and defined words form

intersecting sets. The same COBOL word may be used as a system-name and as a user-defined word within a source

program; and the class of a specific occurrence of this COBOL word is determined by the context of the clause or

phrase in which it occurs.

NOTE: ANSI standard COBOL required that COBOL words be no more than 30 characters. The

VXCOBOL dialect will issue an info message at compile time if a word exceeds 30 characters, but

otherwise will allow up to 50 characters in a word.

B.2.2.1.1 User-Defined Words

A user-defined word is a COBOL word that must be supplied by the user to satisfy the format of a clause or

statement. Each character of a user-defined word is selected from the set of characters `A', `B', `C', ... , `Z', `a', `b',

`c', ... , `z', `0', ... , `9', and `-' except that the `-' may not appear as the first or last character.

(ISQL-2) A user-defined word of type sql-column-name, sql-table-name, or sql-name is selected from the set of

characters `A', `B', `C', ... , `Z', `a', `b', `c', ... , `z', `0', ... , `9', and `_' (underscore). Additionally, it must begin with

an alphabetic character, it may not have two or more contiguous underscores, and it may not have an underscore as

the last character.

COBOL Source Program (Concepts)

41

The types of user-defined words are:

1. alphabet-name

2. class-name *

3. condition-name

4. data-name

5. file-name

6. index-name

7. level-number

8. mnemonic-name

9. paragraph-name

10. program-name

11. record-name

12. screen-name

13. section-name

14. sql-column-name**

15. sql-table-name**

16. sql-name**

17. symbolic-character *

18. text-name

* this type is not used in VXCOBOL

** this type is only used with ISQL-2

Within a given source program, the defined words are grouped into the following disjoint sets:

1. alphabet-names

2. class-name *

3. condition-names, data-names,

record-names, and screen-name

4. file-names

5. index-names

6. mnemonic-names

7. paragraph-names

8. program-names

9. section-names

10. symbolic-characters *

11. text-names

12. sql-table-names &

sql-column-names**

13. sql-names**

* this type is not used in VXCOBOL

** this type is only used with ISQL-2

All user-defined words, except level-numbers, can belong to one and only one of these disjoint sets. Further, all

user-defined words within a given disjoint set must be unique, except as specified in the rules for uniqueness of

reference.

With the exception of section-names, paragraph-names, and level-numbers, all user-defined words must contain at

least one alphabetic character. Level-numbers need not be unique; a given specification of a level-number may be

identical to any other level-number.

B.2.2.1.1.1 Condition-Name

A condition-name is a name which is assigned to a specific value, set of values, or range of values, within a complete

set of values that a data item may assume. The data item itself is called a conditional variable.

Condition-names may be defined in the Data Division or in the SPECIAL-NAMES paragraph within the

Environment Division where a condition-name must be assigned to the on status or off status, or both, of

user-defined switches.

A condition-name is used in conditions as an abbreviation for the relation condition; this relation condition posits

that the associated conditional variable is equal to one of the set of values to which that condition-name is assigned.

A condition-name is also used in a SET statement, indicating that the associated value is to be moved to the

conditional variable.

B.2.2.1.1.2 Mnemonic-Name

A mnemonic-name assigns a user-defined word to a user-defined-switch. These associations are established in the

SPECIAL-NAMES paragraph of the Environment Division (see The SPECIAL-NAMES Paragraph, page 74).

Interactive COBOL Language Reference & Developer’s Guide - Part One

42

B.2.2.1.1.3 Paragraph-Name

A paragraph-name is a word which names a paragraph in the Procedure Division. Paragraph-names are equivalent if,

and only if, they are composed of the same sequence of the same number of digits and/or characters.

B.2.2.1.1.4 Section-Name

A section-name is a word which names a section in the Procedure Division. Section-names are equivalent if, and

only if, they are composed of the same sequence of the same number of digits and/or characters.

B.2.2.1.1.5 Other User-Defined Names

All other types of user-defined words are defined in the glossary.

B.2.2.1.2 System-Names

A system-name is a COBOL word which is used to communicate with the operating environment. Each character

used in the formation of a system-name must be selected from the set of characters `A', `B', `C', ... , `Z', `0', ... , `9',

and `-' except that the `-' may not appear as the first or last character.

B.2.2.1.3 Reserved Words

A reserved word is a COBOL word that is one of a specified list of words which may be used in COBOL source

programs, but which must not appear in the program as user-defined words or system-names. Reserved words can

only be used as specified in the general formats. The reserved word table can be found in APPENDIX K on page

847.

Reserved words satisfy the following conditions:

(1) Reserved words do not begin with the characters `0', ... , `9', `X', `Y', or `Z' except for the reserved words

YYYYMMDD, YYYYDDD, ZERO, ZEROES, ZEROS, and ZONE (ISQL).

(2) Reserved words do not contain only one alphabetic character.

(3) Reserved words do not start with 1 or 2 characters followed by `-' except for the reserved words I-O,

I-O-CONTROL, and reserved words which begin with `B-' or `DB-'.

(4) Reserved words do not contain two or more contiguous hyphens.

(5) Reserved words are always shown as uppercase, although they may be written in mixed or lowercase with

each lowercase letter being equivalent to the corresponding uppercase letter.

There are three types of reserved words:

1. required words 2. optional words 3. special purpose words

COBOL Source Program (Concepts)

43

B.2.2.1.3.1 Required Words

A required word is a word whose presence is required when the format in which the word appears is used in a source

program.

Required words are of two types:

(1) Keywords. Within each format, such words are uppercase and underlined.

(2) Special character words. These are the arithmetic operators and relation characters.

B.2.2.1.3.2 Optional Words

Within each format, uppercase words that are not underlined are called optional words and may be specified at the

user's option with no effect on the semantics of the format.

B.2.2.1.3.3 Special Purpose Words

There are two types of special purpose words:

1. figurative constants

2. special registers

B.2.2.1.3.3.1 Figurative Constants

Certain reserved words are used to name and reference specific constant values. These reserved words are specified

under Figurative Constant Values on page 46.

B.2.2.1.3.3.2 Special Registers

Certain reserved words are used to name and reference special registers. Special registers are certain compiler-

generated storage areas whose primary use is to store information produced in conjunction with the use of specific

COBOL features. Unless specified otherwise in these specifications, one special register of each type is allocated for

each program. In the general formats of this specification, a special register may be used, unless otherwise restricted,

wherever data-name or identifier is specified provided that the special register is the same category as the data-name

or identifier. If qualification is allowed, special registers may be qualified as necessary to provide uniqueness. See

page 124 Qualification.

Special registers include: ADDRESS OF, LENGTH OF, LINAGE-COUNTER, and SQLSTATE (ISQL).

B.2.2.2 Literals

A literal is a character-string whose value is implied by an ordered set of characters of which the literal is composed,

by specification of a reserved word which references a figurative constant, or (ISQL) by specification of a reserved

word (or words) in combination with a non-numeric literal value. Every literal belongs to one of the following types:

(1) nonnumeric

(2) numeric

(3) date-time (ISQL)

(4) interval (ISQL)

Interactive COBOL Language Reference & Developer’s Guide - Part One

44

NOTE: For simplicity in the formats that follow, the literals that make use of quotation marks or apostrophes as

delimiters are only shown using quotation marks. Simply remember that the closing delimiter must match

the opening delimiter.

B.2.2.2 .1 Nonnumeric Literals

A nonnumeric literal is a character-string enclosed in either quotation marks or apostrophes. The length of a

nonnumeric literal applies to its representation in the object program.

B.2.2.2.1.1 General Format

"{character-1}... "

B.2.2.2.1.2 Syntax Rules

(1) Character-1 may be any character in the computer's character set.

(2) If character-1 is to represent the quotation mark, two contiguous quotation mark characters must be used to

represent a single occurrence of that character, or the delimiting characters must be apostrophes.

(3) If character-1 is to represent the apostrophe, two contiguous apostrophes characters must be used to

represent a single occurrence of that character, or the delimiting characters must be quotations.

(4) (ISQL) There may be zero occurrences of character-1.

B.2.2.2.1.3 General Rules

(1) The value of a nonnumeric literal in the object program is the value represented by character-1.

(2) The separator quotation mark or apostrophe that delimits the nonnumeric literal is not part of the value of

the nonnumeric literal.

(3) All nonnumeric literals are of category alphanumeric.

(4) With the -G n compiler switch, a single character may be represented by enclosing a value in angle brackets.

For example, "<014>" represents the formfeed character, since octal 14 is the ASCII code for formfeed. See page

704 for complete details on the General switch to the compiler.

(5) (ISQL) When there are zero occurrences of character-1 in the literal, it is known as the null string and it is

a literal of zero length. When the value is moved to a an item of usage Character Varying, it results in the data item

also having zero length. When used with items without the Varying attribute, normal padding rules apply.

COBOL Source Program (Concepts)

45

B.2.2.2 .2 Nonnumeric Hexadecimal Literals

A nonnumeric hexadecimal literal is a special type of nonnumeric literal. It is a character string of one or more

hexadecimal digits which is delimited at the beginning by the uppercase character 'X' followed immediately by a

quotation mark or apostrophe and delimited at the end by a matching quotation mark or apostrophe. The length of a

nonnumeric hexadecimal literal applies to its representation in the object program. Odd digit counts assume a

leading zero to ensure an even number of bytes.

B.2.2.2.2.1 General Format

X"{character-1}... " or X ‘{character-1}...‘

B.2.2.2.2.2 Syntax Rules

(1) Character-1 may be the digits '0' through '9', the characters 'A' through 'F' or the characters 'a' through 'f'.

The uppercase and lowercase characters are considered equivalent.

(2) Character-1 may occur from one to 160 times. If character-1 occurs an odd number of times, a '0' is

assumed to immediately follow the opening quotation mark or apostrophe so that there are an even number of

occurrences.

B.2.2.2.2.3 General Rules

(1) The value of a nonnumeric hexadecimal literal in the object program is the ASCII character represented by

each pair of occurrences of character-1. (Each ASCII character is represented as a pair of hexadecimal digits.)

(2) The leading 'X' and quotation marks or apostrophes that delimit the nonnumeric hexadecimal literal are not

part of the value of the literal.

(3) Nonnumeric hexadecimal literals are category alphanumeric.

(4) Nonnumeric hexadecimal literals may be used anywhere that a nonnumeric literal may be used.

B.2.2.2 .3 Numeric Literals

A numeric literal is a character-string whose characters are selected from the digits `0' through `9', the plus sign, the

minus sign, and the decimal point. Numeric literals can be from 1 through 18 digits in length. The rules for the

formation of numeric literals are as follows:

(1) A literal must contain at least one digit.

(2) A literal must not contain more than one sign character. If a sign is used, it must appear as the left-most

character of the literal. If the literal is unsigned, the literal is nonnegative.

(3) A literal must not contain more than one decimal point. The decimal point is treated as an assumed decimal

point, and may appear anywhere within the literal except as the right-most character. If the literal contains no

decimal point, the literal is an integer.

(4) If a literal conforms to the rules for the formation of numeric literals but is enclosed in quotation marks, it is

a nonnumeric literal and is treated as such by the compiler.

Interactive COBOL Language Reference & Developer’s Guide - Part One

46

(5) The value of a numeric literal is the algebraic quantity represented by the characters in the numeric literal.

Every numeric literal is category numeric. The size of a numeric literal in standard data format characters is equal to

the number of digits in the string of characters as specified by the user.

B.2.2.2 .4 Numeric Hexadecimal Literals

A numeric hexadecimal literal is a special type of numeric literal. It is a character string of one or more hexadecimal

digits which is delimited at the beginning by the uppercase character 'H' followed immediately by a quotation mark

or apostrophe and delimited at the end by a matching quotation mark or apostrophe. The length of a numeric

hexadecimal literal applies to its representation in the object program.

B.2.2.2.4.1 General Format

H"{character-1}... "

B.2.2.2.4.2 Syntax Rules

(1) Character-1 may be the digits '0' through '9', the characters 'A' through 'F' or the characters 'a' through 'f'.

The uppercase and lowercase characters are considered equivalent.

(2) Character-1 may occur from one to 8 times.

B.2.2.2.4.3 General Rules

(1) The value of a numeric hexadecimal literal is the algebraic quantity represented by the characters within the

quotes interpreted as a non-negative hexadecimal integer.

(2) The leading 'H' and quotation marks that delimit the numeric hexadecimal literal are not part of the value of

the literal.

(3) The size of a numeric hexadecimal literal is the size of an equivalent decimal representation of the same

algebraic quantity.

(4) Numeric hexadecimal literals are category numeric.

(5) Numeric hexadecimal literals may be used anywhere in the source program that a numeric literal may be

used.

B.2.2.2 .5 Figurative Constant Values

Figurative constant values are generated by the compiler and referenced through the use of the reserved words given

below. These words must not be bounded by quotation marks when used as figurative constants. The singular and

plural forms of figurative constants are equivalent and may be used interchangeably.

The figurative constant values and the reserved words used to reference them are as follows:

(1) [ALL] ZERO, [ALL] ZEROS, [ALL] ZEROES - Represents the numeric value `0', or one or more of the

character `0' from the computer's character set.

(2) [ALL] SPACE, [ALL] SPACES - Represents one or more of the character space from the computer's

character set.

COBOL Source Program (Concepts)

47

(3) [ALL] HIGH-VALUE, [ALL] HIGH-VALUES - Except in the SPECIAL-NAMES paragraph, represents

one or more of the character that has the highest ordinal position in the program collating sequence.

(4) [ALL] LOW-VALUE, [ALL] LOW-VALUES - Except in the SPECIAL-NAMES paragraph, represents one

or more of the character that has the lowest ordinal position in the program collating sequence.

(5) [ALL] QUOTE, [ALL] QUOTES - Represents one or more of the character ` " '. The word QUOTE or

QUOTES cannot be used in place of a quotation mark in a source program to bound a nonnumeric literal. Thus

QUOTE ABD QUOTE is incorrect as a way of stating the nonnumeric literal "ABD".

(6) ALL literal - Represents all or part of the string generated by successive concatenations of the characters

comprising the literal. The literal must be a nonnumeric literal. The literal must not be a figurative constant.

NOTE: The following is supported in the ANSI 74 and ANSI 85 dialects and not the VXCOBOL dialect.

(7) [ALL] symbolic-character - Represents one or more of the character specified as the value of this

symbolic-character in the SYMBOLIC CHARACTERS clause of the SPECIAL-NAMES paragraph.

NOTE: The following is supported in the VXCOBOL dialect and not the ANSI 74 and ANSI 85 dialects.

(8) [ALL] CR - Represents one or more NEW LINE characters.

When a figurative constant represents a string of one or more characters, the length of the string is determined by the

compiler from context according to the following rules:

(1) When a figurative constant is specified in a VALUE clause, or when a figurative constant is associated with

another data item (e.g., when the figurative constant is moved to or compared with another data item), the string of

characters specified by the figurative constant is repeated character by character on the right until the size of the

resultant string is greater than or equal to the number of character positions in the associated data item, This resultant

string is then truncated from the right until it is equal to the number of character positions in the associated data item.

This is done prior to and independent of the application of any JUSTIFIED clause that may be associated with the

data item.

(2) When a figurative constant, other than ALL literal, is not associated with another data item as when the

figurative constant appears in a DISPLAY, STOP, STRING, or UNSTRING statement, the length of the string is one

character.

(3) When the figurative constant ALL literal is not associated with another data item, the length of the string is

the length of the literal.

A figurative constant may be used whenever `literal' appears in a format with the following exceptions:

(1) If the literal is restricted to a numeric literal, the only figurative constant permitted is ZERO (ZEROS,

ZEROES). ICOBOL also allows HIGH-VALUES and LOW-VALUES, although the compiler generates a warning.

(2) Associating the figurative constant ALL literal, where the length of the literal is greater than one, with a data

item that is numeric or numeric edited is an obsolete feature in Standard COBOL. This obsolete feature is to be

deleted from the next revision of Standard COBOL.

(3) When a figurative constant other than ALL literal is used, the word ALL is redundant and is used for

readability only.

In all ICOBOL dialects, HIGH-VALUES are hex FF, and LOW-VALUES are hex 00.

Each reserved word that is used to reference a figurative constant value is a distinct character-string with the

exception of the constructs using the word ALL, such as ALL literal, ALL SPACES, etc., which are composed of

two distinct character-strings.

Interactive COBOL Language Reference & Developer’s Guide - Part One

48

B.2.2.2 .6 Date Literals (ISQL)

A date literal specifies an SQL date value.

B.2.2.2.6.1 General Format

DATE "YYYY-MM-DD"

B.2.2.2.6.2 Syntax Rules

(1) YYYY specifies a numeric year field of exactly four digits.

(2) MM specifies a numeric month field of exactly two digits.

(3) DD specifies a numeric day field of exactly two digits.

B.2.2.2.6.3 General Rules

(1) The date literal is class date-time and category date.

(2) The value of year field may range from 0001 to 9999.

(3) The values of month and day fields must fulfill the rules for valid values within the Gregorian calendar.

(4) A date literal may appear anywhere the general formats allow an item of category date to appear and where

the item is a sending (value) operand.

B.2.2.2 .7 Time Literals (ISQL)

A time literal specifies an SQL time value.

B.2.2.2.7.1 General Format

TIME "hh:mm:ss[.ffffff]”

B.2.2.2.7.2 Syntax Rules

(1) The brackets that appear in the format above are not part of the literal, but have their usual meaning of

showing optional parts.

(2) hh specifies a numeric hours field of exactly two digits.

(3) mm specifies a numeric minutes field of exactly two digits.

(4) ss specifies a numeric seconds field of exactly two digits.

(5) .ffffff specifies a numeric fraction field of one to six digits, which is optional.

COBOL Source Program (Concepts)

49

B.2.2.2.7.3 General Rules

(1) The time literal is of class date-time and category time.

(2) The value of hour field may range from 00 to 23.

(3) The values of minutes and seconds fields may range from 00 to 59.

(4) The value of the fraction field may range from .000000 to .999999.

(5) A time literal may appear anywhere the general formats allow an item of category time to appear and where

the item is a sending (value) operand.

B.2.2.2 .8 Timestamp Literals (ISQL)

A timestamp literal specifies an SQL timestamp value, which is the combination of an SQL date value and an SQL

time value separated by a single space.

B.2.2.2.8.1 General Format

TIMESTAMP "YYYY-MM-DD hh:mm:ss[.ffffff]”

B.2.2.2.8.2 Syntax Rules

(1) The brackets that appear in the format above are not part of the literal, but have their usual meaning of

showing optional parts.

(2) The rules for the various fields are found in the preceding sections entitled Date Literals and Time Literals.

(3) The date part of the literal is separated from the time part of the literal by exactly one space.

B.2.2.2.8.3 General Rules

(1) The timestamp literal is of class date-time and category timestamp.

(2) The rules for the values of the various fields are found in the preceding sections that describe the general

rules for date literals and time literals.

(3) A timestamp literal may appear anywhere the general formats allow an item of category timestamp to appear

and where the item is a sending (value) operand.

B.2.2.2 .9 Interval Literals (ISQL)

An interval literal specifies an SQL interval value. Each interval has a start specification and an optional end

specification. The start and end specifications may be used in various combinations to create different interval

ranges. An SQL interval is one of two disjoint kinds: the year-month interval and the day-time interval. In order to

help simplify the formats, we have divided the rules according to these two kinds. For the year-month interval, the

start and end specifications are from the set YEAR and MONTH. For the day-time interval, the start and end

specifications are from the set DAY, HOUR, MINUTE, and SECOND.

Interactive COBOL Language Reference & Developer’s Guide - Part One

50

B.2.2.2 .9.1 Year-Month Interval Literals (ISQL)

Within the year-month literals, there are three combinations of the start and end specifications.

B.2.2.2.9.1.1 General Format

INTERVAL "[+/-][Y...]Y-[M]M" YEAR TO MONTH

INTERVAL "[+/-][Y...]Y” YEAR

INTERVAL "[+/-][M...]M" MONTH

B.2.2.2.9.1.2 Syntax Rules

(1) The brackets and ellipses in the format above are not part of the literal, but have their usual meaning of

showing optional items and repeated items.

(2) [+/-] specifies an optional sign.

(3) [Y...]Y specifies a numeric number-of-years field of one to four digits.

(4) [M]M specifies a numeric number-of-months field of one or two digits.

(5) [M...]M specifies a numeric number-of-months field of one to six digits.

(6) There are no intervening spaces between the sign and the year or month field.

(7) The year and month fields are separated by a single intervening hyphen with no spaces.

B.2.2.2.9.1.3 General Rules

(1) The year-month literal is of class interval and category year-to-month.

(2) The value of number-of-years field may range from 0 to 9999.

(3) The value of number-of-months field may range from 0 to 11 when participating in a year-to-month interval,

and from 0 to 999999 when participating in a month interval.

(4) The month field in a YEAR TO MONTH interval literal is always considered to have 2 digits of precision,

even if it is specified with only a single digit in the source text.

(5) Leading zeros are allowed in the leftmost field and participate in determining the precision of that field, just

as they do numeric literals. When used in comparisons, the algebraic value of the field is used. Thus, both

INTERVAL “0023-01" YEAR TO MONTH and INTERVAL “23-1" YEAR TO MONTH represent the interval of

23 years and 1 month, but one has a precision of 4 and the other a precision of 2 for the year field.

(6) A year-month interval literal may appear anywhere the general formats allow an item of class interval and

category year-month and the item is a sending (value) operand. In some cases, the general formats will allow an

interval item and the general rules will define any restrictions on the category of the item.

COBOL Source Program (Concepts)

51

B.2.2.2 .9.2 Day-Time Interval Literals (ISQL)

Within the day-time literals, there are multiple combinations of the start and end specifications.

B.2.2.2.9.2.1 General Format

INTERVAL "[+/-][D...]D" DAY

INTERVAL "[+/-][D...]D [h]h" DAY TO HOUR

INTERVAL "[+/-][D...]D [h]h:mm" DAY TO MINUTE

INTERVAL "[+/-][D...]D [h]h:mm:ss[.ff...]" DAY TO SECOND

INTERVAL "[+/-][h...]h" HOUR

INTERVAL "[+/-][h...]h:mm" HOUR TO MINUTE

INTERVAL "[+/-][h...]h:mm:ss[.ff...]" HOUR TO SECOND

INTERVAL "[+/-][m...]m" MINUTE

INTERVAL "[+/-][m...]m:ss[.ff...]" MINUTE TO SECOND

INTERVAL "[+/-][s...]s[.ff...]" SECOND

B.2.2.2.9.2.2 Syntax Rules

(1) The brackets and ellipses in the format above are not part of the literal, but have their usual meaning of

showing optional items and repeated items.

(2) [+/-] specifies an optional sign.

(3) [D...]D specifies a numeric number-of-days field of one to seven digits.

(4) [h]h specifies a numeric number-of-hours field of one or two digits.

(5) [m...]m specifies a numeric number-of-minutes field of one to ten digits.

(6) mm specifies a numeric number-of-minutes field of exactly two digits.

(7) [s...]s specifies a numeric number-of-seconds field of one to twelve digits.

(8) ss specifies a numeric number-of-seconds field of exactly two digits.

(9) [.ff...]s specifies a numeric fractional seconds field of one to six digits.

(10) The day and hour fields are separated by a single intervening space.

(11) The hour, minute and second fields are separated by a single colon.

B.2.2.2.9.2.3 General Rules

(1) The day-time literal is of class interval and category day-to-time.

(2) When the field corresponds to the start specification for the interval (the leftmost, or most significant field),

the value is bounded by the number of available digits as specified in the syntax rules of the field.

(3) Leading zeros are allowed in the leftmost field and participate in determining the precision of that field, just

as they do in numeric literals. When used in comparisons, the algebraic value of the field is used.

Interactive COBOL Language Reference & Developer’s Guide - Part One

52

(4) When the hours field is not the most significant field, it must range in value from 0 to 23.

(5) When the hours field is not the most significant field, it is assumed to have a precision of two digits, even if

it is written with only a single digit.

(6) When the minutes field is not the most significant field, it must range in value from 0 to 59.

(7) When the seconds field is not the most significant field, it must range in value from 0 to 59.

(8) The fractional seconds field is limited to six digits, yielding a range from 0 to .999999. If the decimal point

is specified, at least one fractional digit must be specified.

(9) A day-time interval literal may appear anywhere the general formats allow an item of class interval to

appear and where the interval variable is a sending (value) operand. In some cases, the general formats will allow an

interval item and the general rules will define any restrictions on the category of the item.

B.2.2.3 LINAGE-COUNTER

The reserved word LINAGE-COUNTER is a name for a line counter generated by the presence of a LINAGE clause

in a file description entry. The implicit description is that of an unsigned integer whose size is equal to integer-1 or

the data item referenced by data-name-1 in the LINAGE clause. LINAGE-COUNTER may be referenced only in

Procedure Division statements; however only the input-output control system may change the value of

LINAGE-COUNTER.

If you have more than one print-file, you can qualify LINAGE-COUNTER with the filename in the Procedure

Division so that the compiler knows the output record you are using with LINAGE-COUNTER.

B.2.2.4 PICTURE Character-Strings

A PICTURE character-string consists of certain symbols which are composed of the currency symbol and certain

combinations of characters in the COBOL character set. An explanation of the PICTURE character-string and the

rules that govern its use are given under the PICTURE clause section, which begins on page 176.

Any punctuation character which appears as part of the specification of a PICTURE character-string is not

considered as a punctuation character, but rather as a symbol used in the specification of that PICTURE

character-string.

B.2.2.5 Comment-Entries

A comment-entry is an entry in the Identification Division that may be any combination of characters from the

computer's character set. Comment-entry is an obsolete element in Standard COBOL because it is to be deleted from

the next revision of Standard COBOL. A comment-entry is delimited by the next character-string that begins in

Area A.

B.3. Program and Run Unit Organization and Communication

Complete data processing problems are frequently solved by developing a set of separately compilable but logically

coordinated programs which at some time prior to execution may be compiled and assembled into a complete

problem solution. The organization of COBOL programs and run units supports this approach of dividing large

problem solutions into small, more manageable, portions which may be programmed and validated independently.

COBOL Source Program (Concepts)

53

B.3.1 Program and Run Unit Organization

There are two levels of computer programs in a COBOL environment. These are the source level and the object

level.

At the source level, the most inclusive unit of a computer program is a source program. A source program is a

syntactically correct set of COBOL statements as specified in this document and consists of an Identification

Division followed optionally by an Environment Division and/or a Data Division and/or a Procedure Division. A

source program can be converted by the COBOL compiler into an object program that either alone, or together with

other object programs, is capable of being executed.

The Procedure Division of a source program is organized into a sequence of procedures of two types. Declarative

procedures, normally termed declaratives, are procedures which will be executed only when special conditions occur

during the execution of a program. Nondeclarative procedures are procedures which will be executed according to

the normal flow of control within a program. Declaratives may contain nondeclarative procedures but these will be

executed only during the execution of the declarative which contains them. Nondeclarative procedures may contain

other nondeclarative procedures but must not contain a declarative. Neither declaratives nor nondeclarative

procedures can contain programs. In other words, in COBOL the terms `procedure' and `program' are not synonyms.

At the object level the most inclusive unit of organization of computer programs is the run unit. A run unit is a

complete problem solution consisting of an object program or of several inter-communicating object programs. A

run unit is an independent entity that can be executed without communicating with, or being coordinated with, any

other run unit except that it may process data files or set and test switches that were written or will be read by other

run units.

When a program is called, parameters upon which it is to operate may be passed to it by the program which calls it.

As any separately compiled program may be the first program executed in a run unit, the first executed program of a

run unit may receive parameters.

B.3.2 Accessing Data and Files

Some data items have associated with them a storage concept determining where data item values and other

attributes of data items are represented with respect to the programs of a run unit. Likewise, file connectors have

associated with them a storage concept determining where information concerning the positioning and status of a file

and other attributes of file processing are represented with respect to the programs of a run unit.

B.3.2.1 Names

A data-name names a data item. A file-name names a file connector.

A name may be used only to refer to the object with which it is associated from within the program in which the

name is declared.

B.3.2.2 Objects

Accessible data items usually require that certain representations of data be stored. File connectors usually require

that certain information concerning files be stored.

Interactive COBOL Language Reference & Developer’s Guide - Part One

54

B.3.2.2.1 Object Types

B.3.2.2.1.1 Working Storage Records

Working storage records are allocations of sufficient storage to satisfy the record description entries in that section.

Each record description entry in a program declares a different object. Renaming and redefining do not declare new

objects; they provide alternate groupings or descriptions for objects which have already been declared.

B.3.2.2.1.2 File Connectors

File connectors are storage areas which contain information about a file and are used as the linkage between a

file-name and a physical file and between a file-name and its associated record area.

B.3.2.2.1.3 Record Areas for Files

No particular record description entry in the File Section is considered to declare the storage area for the record.

Rather, the Storage area is the maximum required to satisfy associated record description entries. These entries may

describe fixed or variable length records. In this discussion, record description entries are said to be associated in

two cases. First, when record description entries are subordinate to the same file description entry, they are always

associated. Second, when record description entries are subordinate to different file description entries and these file

description entries are referenced in the same SAME RECORD AREA clause, they are associated. All associated

record description entries are redefinitions of the same storage area.

B.3.2.2.1.4 Other Objects

Examples of other information declared in COBOL programs are the description entries and control information

used by programs in a run unit as they communicate with each other.

B.3.2.2.2 The EXTERNAL Attribute of an Object

A data item or file connector is external if the storage associated with that object is associated with the run unit rather

than with any particular program within the run unit. An external object may be referenced by any program which

describes the object. References to an external object from different programs using separate descriptions of the

object are always to the same object.

An object is internal if the storage associated with that object is associated only with the program which describes the

object.

B.3.2.2.2.1 Working Storage Records

A data record described in the Working-Storage Section is given the external attribute by the presence of the

EXTERNAL clause in its data description entry. Any data item described by a data description entry subordinate to

an entry describing an external record also attains the external attribute. If a record or data item does not have the

external attribute, it is part of the internal data of the program in which it is described.

B.3.2.2.2.2 File Connectors

A file connector is given the external attribute by the presence of the EXTERNAL clause in the associated file

description entry. If the file connector does not have the external attribute, it is internal to the program in which the

associated file-name is described.

COBOL Source Program (Concepts)

55

B.3.2.2.2.3 Record Areas for Files

The data records described subordinate to a file description entry which does not contain the EXTERNAL clause or

a sort-merge file description entry, as well as any data items described subordinate to the data description entries for

such records, are always internal to the program describing the file-name. If the EXTERNAL clause is included in

the file description entry, the data records and the data items attain the external attribute.

B.3.2.2.2.4 Other Objects

Data records, subordinate data items, and various associated control information described in the Linkage section of

a program are always considered internal to the program describing that data.

B.3.2.2.2.5 Program Classes

All programs which form part of a run unit may optionally possess the initial attribute.

An initial program is one whose program state is initializes when the program is called. Thus, whenever an initial

program is called, its program state is the same as when the program was first called in that run unit. During the

process of initializing an initial program, that program’s internal data is initialized; thus an item of the program’s

internal data whose description contains a VALUE clause is initialized to that defined value, but an item whose

description does not contain a VALUE clause is initialized to an undefined value. Files with internal file connectors

associated with the program are not in the open mode. The control mechanisms for all PERFORM statements

contained in the program are set to their initial states. The initial attribute is attained by specifying the INITIAL

phrase in the programs Identification Division.

B.3.3 Inter-program Communication

When the complete solution to a data processing problem is subdivided into more than one program, the programs

that make up the run unit must be able to communicate with each other. This communication has two pieces: the

transfer of control and the passing of parameters. The need for inter-program communication arises when the

programs in a run unit are separately compiled.

B.3.3.1 Transfer of Control

The CALL statement provides the means whereby control may be transferred from one program to another program

within a run unit. A called program may itself contain CALL statements.

When control is transferred to a called program, execution proceeds from statement to statement beginning with the

first nondeclarative statement. If control reaches a STOP RUN statement, this signals the logical end of the run unit.

If control reaches an EXIT PROGRAM statement, this signals the logical end of the called program only, and

control then reverts to the next executable statement following the CALL statement in the calling program. Thus the

EXIT PROGRAM statement terminates only the execution of the program in which it occurs, while the STOP RUN

statement terminates the execution of a run unit.

In order to call a program, a CALL statement specifies the program's name. The names assigned to each of the

separately compiled programs which constitute a run unit must be unique.

Any calling program may call any separately compiled program in the run unit.

A CALL statement may be used to call programs not written in COBOL, such as builtins or user-defined subroutines

added via the ICOBOL Link Kit.

Interactive COBOL Language Reference & Developer’s Guide - Part One

56

B.3.3.2 Passing Parameters to Programs

A program calls another program in order to have the called program perform, on behalf of the calling program,

some defined part of the solution of a data processing problem. In many cases it is necessary for the calling program

to define to the called program the precise part of the problem solution to be executed by making certain data values,

which the called program requires, available to the called program. One method for ensuring the availability of these

data values is by passing parameters to a program, as is described in this paragraph. Another method is to share the

data. The data values passed as parameters also may identify some data to be shared; hence, the two methods are not

mutually independent.

B.3.3.2.1 Identifying Parameters

Data passed as parameters by a program calling another program must be accessible to the calling program, and the

data items receiving the data must be declared in the Data Division’s Linkage Section in the called program. In the

called program, the parameters are identified by listing the names in the Procedure Division header, in the USING

phrase, as well as declaring them in linkage Section entries. In the calling program, the parameters to be passed by

the calling program are identified by listing them in the USING phrase of the CALL statement.

Position in the list of parameters in the USING phrase, not name, is what establishes the correspondence between the

parameters, as they are known to the calling and called programs. That is, the first parameter on one list corresponds

to the first parameter on the other, the second to the second, etc.

Thus, a program which may be called by another program may include:

PROGRAM-ID. EXAMPLE.
PROCEDURE DIVISION USING NUM, PCODE, COST.

and may be called by executing:

CALL "EXAMPLE" USING NBR, PTYPE, PRICE.

thereby establishing the following correspondence:

Called program Calling
 (EXAMPLE) program
 NUM NBR
 PCODE PTYPE
 COST PRICE

EXAMPLE 1. Identifying parameters passed by a calling program

In addition, parameter count mismatch and parameter size mismatch are flagged only at runtime, with an

EXCEPTION STATUS code. That is, the number of parameters and the size of each parameter must be identical in

the calling and called programs.

B.3.3.2.2 Values of parameters

The individual parameters in the CALL statement's USING phrase are passed in one of two ways:

(1) BY REFERENCE. A called program is allowed to access and modify the value of the data referenced in the

calling program’s CALL statement. Both programs operate on the same data.

(2) BY CONTENT. This means that the values of the parameters are copied from the calling program to the

called program. Values in the calling program remain unchanged, even if modified in the called program. Storage is

not shared between calling and called programs.

COBOL Source Program (Structure)

57

The parameters referenced in a called program’s Procedure Division header must be described in the Linkage

Section of that program’s Data Division.

B.3.4 Intra-program Communication

The procedures which constitute the Procedure Division of a program communicate with one another by transferring

control or by referring to common data.

B.3.4.1 Transfer of Control

There are four methods of transferring control within a program:

(1) A GO TO statement.

(2) A PERFORM statement.

(3) A declarative procedure which is activated whenever certain conditions, including errors and exceptions,

occur.

(4) An input procedure associated with a SORT statement, or an output procedure associated with either a

SORT or MERGE statement.

An input-output procedure can be considered as an implicit PERFORM statement which is executed in conjunction

with a SORT or MERGE statement; and for this reason, the restrictions on the PERFORM statement apply equally to

input-output procedures.

Stricter restrictions than those for the PERFORM statement apply to declarative procedures.

B.3.4.2 Shared Data

All the data declared in a program's Data Division may be referenced by statements in the procedures and

declaratives which constitute that program.

C. Organization

With the exception of the COPY statement, the statements, entries, paragraphs, and sections of a COBOL source

program are grouped into four divisions, in the following order:

1. The Identification Division

2. The Environment Division

3. The Data Division

4. The Procedure Division

The end of a COBOL source program is indicated by the absence of additional source program lines.

Interactive COBOL Language Reference & Developer’s Guide - Part One

58

D. Structure

The following gives the general format and order of presentation of the entries and statements which constitute a

COBOL source program.

D.1. General Format

identification-division

[environment-division]

[data-division]

 procedure-division

D.2 Syntax Rules

(1) The generic terms identification-division, environment-division, data-division, and procedure-division

represent a COBOL Identification Division, a COBOL Environment Division, a COBOL Data Division, and a

COBOL Procedure Division, respectively.

D.3 General Rules

(1) The beginning of a division in a program is indicated by the appropriate division header. The end of a

division is indicated by one of the following:

a. The division header of a succeeding division in that program.

b. That physical position after which no more source program lines occur.

E. Divisions

The Identification Division identifies the program. In addition, the user may include the date the program is written,

the date the compilation of the source program is accomplished and such other information as desired under the

paragraphs in the general format shown below.

The Environment Division specifies a standard method of expressing those aspects of a data processing problem that

are dependent upon the physical characteristics of a specific computer. This division allows specification of the

configuration of the compiling computer and the object computer. In addition, information relative to input-output

control, special hardware characteristics, and control techniques can be given.

The Data Division describes the data that the object program is to accept as input, to manipulate, to create, or to

produce as output.

The Procedure Division may contain declarative and nondeclarative procedures.

Execution begins with the first statement of the Procedure Division, excluding declaratives. Statements are then

executed in the order in which they are presented for compilation, except where the rules indicate some other order.

COBOL Source Program (COPY Statement)

59

F. Reference Format (Source)

F.1. General Description

The reference (source) format, which provides a standard method of describing COBOL source programs and

COBOL library text, is described in terms of character positions in a line on an input-output medium. Within these

definitions, each compiler accepts source programs written in reference format and produces an output listing of the

source program in reference format.

The rules for spacing given in the discussion of the reference format take precedence over all other rules for spacing.

The divisions of a COBOL source program must be ordered as follows: the Identification Division, then the

Environment Division, then the Data Division, then the Procedure Division. Each division must be written according

to the rules for the reference format.

The ICOBOL compiler supports two types of reference or source formats. These are ANSI Card Format and

Free-Form Format also known as CRT format. The Format switch (-F c) must be given for ANSI Card format

source to be accepted by the compiler. The ICOBOL compiler supports source lines up to 255 characters in length

in either format.

F.2. ANSI Card Format

In ANSI Card Format, the reference format for a line is represented as follows:

Margin Margin Margin Margin Margin
L C A B R
| 1 | ... | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ... | 72 | 73 | ... | 255|
 Sequence ** 8 **Area A***** ****Area B**** ***Comment***
 Number Area * Area
 Indicator Area

Margin L is immediately to the left of the left-most character position of a line.

Margin C is between the 6th and 7th character positions of a line.

Margin A is between the 7th and 8th character positions of a line.

Margin B is between the 11th and 12th character positions of a line.

Margin R is immediately to the right of the 72nd character position of a line.

The sequence number occupies six character positions (1-6), and is between margin L and margin C. Characters in

this area are placed in the listing, but are not further processed by the compiler.

The indicator area is the 7th character position of a line.

Area A occupies character positions 8, 9, 10, and 11, and is between margin A and B.

Area B occupies character positions 12 through 72. It begins immediately to the right of margin B and terminates

immediately to the left of margin R.

The comment area occupies character positions 73 through 255. Characters in this area are placed in the listing but

are not further processed by the compiler.

If a line is shorter than 73 characters, there is no comment area and Margin R is to the right of the last character.

If tabs are used, the following rules apply:

Interactive COBOL Language Reference & Developer’s Guide - Part One

60

(ANSI 74 and ANSI 85) A tab character in the sequence area indicates that the remainder of the line is to be

treated like a Free-Form line (see Free-Form Format below).

(VXCOBOL) A tab character in the sequence area indicates that the next character begins Area A and Area B

begins 4 characters to the right.

A tab in the indicator area is flagged with a warning and treated as a space.

A tab in Area A is treated as a space, and it indicates that Area B is to begin with the next character.

A tab in Area B is treated as a space.

F.3. Free-Form Format (CRT)

In Free-Form format (CRT), there are no sequence number or comment areas. The only restrictions imposed are the

contents of areas A and B and the use of indicator characters. The compiler reads characters until it finds a line

terminator or until it has read 255 characters, whichever comes first. A line longer than 255 characters will produce

an error.

In Free-Form Format the reference format for a line is represented as one of the following:

Margin Margin Margin
C A B R
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | ... | 255 |
 8 ****Area A***** ****Area B********** ...
Indicator Area

Margin Margin Margin
A B R
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | ... | 255 |
 ****Area A***** ****Area B********** ...

If the first character is a "-", "*", "/", "d", or "D", position 1 is the indicator area, Area A is positions 2 through 5,

and Area B is in positions 6 to the end of the line. Otherwise, there is no indicator area and Area A is in

positions 1 through 4 and Area B is in positions 5 to the end of the line.

Margin C is immediately to the left of the left-most character position of a line.

Margin A is between the 1st and 2nd character positions of a line with an Indicator area or immediately to the left of

the left-most character of a line.

Margin B is between the 5th and 6th character positions of a line with an indicator area and between the 4th or 5th

character positions otherwise.

Margin R is immediately to the right of the right-most character position of a line.

The indicator area is the 1st character position of a line.

Area A occupies character positions 2 through 5 with an indicator area and positions 1 through 4 otherwise. It is

between margin A and margin B.

Area B begins immediately to the right of margin B and terminates immediately to the left of margin R.

If tabs are used in the source, the following rules apply:

A tab in Area A is treated as a space, and it indicates that Area B is to begin with the next character.

A tab in Area B is treated as a space.

COBOL Source Program (COPY Statement)

61

F.4. Sequence Numbers (ANSI Card Format)

The sequence number area may be used to label a source program line. The content of the sequence number area is

defined by the user and may consist of any character in the computer's character set. There is no requirement that the

content of the sequence number area appears in any particular sequence or be unique.

F.5. Continuation of Lines

Any sentence, entry, phrase, or clause may be continued by starting subsequent line(s) in area B. These subsequent

lines are called the continuation line(s). The line being continued is called the continued line. Any word, literal, or

PICTURE character-string may be broken in such a way that part of it appears on a continuation line.

A hyphen in the indicator area of a line indicates that the first nonspace character in area B of the current line is the

successor of the last nonspace character of the preceding line, excluding intervening comment lines or blank lines,

without any intervening space. However, if the continued line contains a nonnumeric literal without closing

quotation mark, the first nonblank character in area B of the continuation line must be a quotation mark, and the

continuation starts with the character immediately after that quotation mark. All spaces at the end of the continued

line are considered part of the literal. Area A of a continuation line must be blank.

If there is no hyphen in the indicator area of a line, it is assumed that the first nonspace character in the line is

preceded by a space.

For the purposes of line continuation, numeric and nonnumeric hexadecimal literals are handled in the same manner

as nonnumeric literals.

F.6. Blank Lines

A blank line is one that is blank from margin C to margin R, inclusive. A blank line can appear anywhere in the

source program.

F.7. Comments

A comment consists of a comment indicator followed by comment-text. Any combination of characters from the

compile-time computer's coded character set may be included in comment-text.

Comments serve only as documentation and have no effect on the meaning of the compilation group. A comment

may be a comment line or an inline comment.

F.7.1 Comment lines

A comment line is identified by either a fixed comment indicator (an asterisk or slant) or a floating comment

indicator(*>). All characters following the comment indicator up to margin R are comment-text. A comment line

may be written as any line of a compilation group.

If a source listing is being produced, a comment line identified by the fixed comment indicator slant (/) causes page

ejection followed by printing of the comment line; comments identified by the fixed comment indicator asterisk (*)

are printed at the next available line position of the listing.

F.7.2 Inline comments

A floating comment indicator (*>) preceded by one or more character-strings in the program-text area identifies an

inline comment. All characters following the floating comment indicator up to margin R are comment-text. An

Interactive COBOL Language Reference & Developer’s Guide - Part One

62

inline comment may be written on any line of a compilation group except on a line that contains a floating literal

continuation indicator.

F.8. Debugging Lines

A debugging line is any line with a `d' or `D' in the indicator area of the line. When in Free-Form format the `d' or

`D' must be followed by a space or tab. Any debugging line that consists solely of spaces from margin A to margin R

is considered the same as a blank line.

The content of a debugging line must be such that a syntactically correct program is formed with or without the

debugging lines being considered as comment lines.

After all COPY statements have been processed, a debugging line will be considered to have all the characteristics of

a comment line, if the -G d compiler switch is not specified, and is treated as a regular source line if the -G d (with

Debug) compiler switch is specified.

Successive debug lines are allowed.

A debugging line is only permitted in the separately-compiled program after the OBJECT-COMPUTER paragraph.

F.9. Division, Section, and Paragraph Formats

F.9.1 Division Header

The division header must start in area A.

F.9.2 Section Header

The section header must start in area A.

A section consists of zero, one, or more paragraphs in the Environment Division or Procedure Division or zero, one,

or more entries in the Data Division.

F.9.3 Paragraph Header, Paragraph-Name, and Paragraph

A paragraph consists of a paragraph-name followed by the separator period and by zero, one, or more sentences, or a

paragraph header followed by one or more entries.

The paragraph header or paragraph-name starts in area A of any line following the first line of a division or a section.

The first sentence or entry in a paragraph begins either on the same line as the paragraph header or paragraph-name

or in area B of the next nonblank line that is not a comment line. Successive sentences or entries either begin in area

B of the same line as the preceding sentence or entry or in area B of the next nonblank line that is not a comment

line.

When the sentences or entries of a paragraph require more than one line, they may be continued on a subsequent line

or lines.

COBOL Source Program (COPY Statement)

63

F.10. DATA DIVISION Entries

Each Data Division entry begins with a level indicator or a level-number, followed by a space, followed by the name

of the subject of entry, if specified, followed by a sequence of independent clauses describing the item. The last

clause is always terminated by a separator period.

There are two types of such entries: those which begin with a level indicator and those which begin with a

level-number.

In the Data Division, a level indicator is an FD or SD.

In those entries that begin with a level indicator, the level indicator begins in area A, followed by at least one space,

and then followed with the name of the subject of entry and appropriate descriptive information.

Those entries that begin with level-numbers are called data description entries.

A level-number has a value taken from the set of values 01, 02, ... , 49, 66, 77, 88. Level-numbers in the range 01,

02, ... , 09 may be written either as a single digit or as a zero followed by a significant digit. At least one space must

separate a level-number from the word following the level-number.

In those data description entries that begin with a level-number 01 or 77, the level-number begins in area A, followed

by at least one space, and then followed with its associated record-name or item-name, if specified, and appropriate

descriptive information.

Data description entries may be indented. Any indentation is with respect to margin A. Each new data description

entry may begin any number of positions to the right of margin A, except data description entries that begin with

level-number 01 or 77 must begin in area A. The extent of indentation is determined only by the width of the

physical medium. The entries on the output listing need be indented only if the input is indented. Indentation does

not affect the magnitude of a level-number.

F.11. DECLARATIVES

The DECLARATIVES and the pair of keywords END DECLARATIVES that precede and follow, respectively, the

declaratives portion of the Procedure Division must each appear on a line by itself. Each must begin in area A and

be followed by the separator period.

Interactive COBOL Language Reference & Developer’s Guide - Part One

64

G. COPY Statement

G.1. Function

The COPY statement incorporates text into a COBOL source program.

G.2. General Format

COPY

G.3. Syntax Rules

 (1) If more than one COBOL library is available during compilation, text-name-1 must be qualified by

text-name-2 identifying the COBOL library in which the text associated with text-name-1 resides. Within one

COBOL library, text-name-1 must be unique.

(2) The COPY statement must be preceded by a space and terminated by the separator period.

(3) Pseudo-text-1 must contain one or more text words.

(4) Pseudo-text-2 must contain zero, one or more text words.

(5) Character-strings within pseudo-text-1 and pseudo-text-2 may be continued.

(6) Word-1 or word-2 may be any single COBOL word except 'COPY'.

(7) A COPY statement may be specified in the source program anywhere a character-string or a separator, other

than the closing quotation mark, may occur except that a COPY statement must not occur within a COPY statement.

(8) Pseudo-text-1 must not consist entirely of a separator comma or a separator semicolon.

(9) If the word COPY appears in a comment-entry or in the place where a comment-entry may appear, it is

considered part of the comment entry.

G.4 General Rules

(1) The compilation of a source program containing COPY statements is logically equivalent to processing all

COPY statements prior to the processing of the resulting source program.

(2) The effect of processing a COPY statement is that the library text associated with text-name-1 or literal-1 is

copied into the source program, logically replacing the entire COPY statement, beginning with the reserved word

COPY and ending with the punctuation character period, inclusive. If the IN/OF clause is specified, text-name-2 or

literal-2 represents the name of the directory containing text-name-1 or literal-1.

(3) If the REPLACING phrase is not specified, the library text is copied unchanged. If the REPLACING

phrase is specified. the library text is copied and each properly matched occurrence of pseudo-text-1, identifier-1,

COBOL Source Program (COPY Statement)

65

word-1, and literal-3 in the library text is replaced by the corresponding pseudo-text-2, identifier-2, word-2, or

literal-4.

(4) For purposes of matching, identifier-1, word-1, and literal-3 are treated as pseudo-text containing only

identifier-1, word-1, or literal-3, respectively.

(5) The comparison operation to determine text replacement occurs in the following manner:

a. The leftmost library text word which is not a separator comma or a separator semicolon is the first text

word used for comparison. Any text word or space preceding this text word is copied into the source program.

starting with the first text word for comparison and first pseudo-text-1, identifier-1, word-1, or literal-3 that was

specified in the REPLACING phrase, the entire REPLACING phrase operand that precedes the reserved word BY is

compared to an equivalent number of contiguous library text words.

b. Pseudo-text-1, identifier-1, word-1, or literal-3 match the library text if, and only if, the ordered

sequence of text words that forms pseudo-text-1, identifier-1, word-1, or literal-3 is equal, character for character, to

the ordered sequence of library text words. For purposes of matching, each occurrence of a separator comma,

semicolon, or space in pseudo-text-1 or in the library text is considered to be a single space.

c. If no match occurs, the comparison is repeated with each next successive pseudo-text-1, identifier-1,

word-1, or literal-3, if any, in the REPLACING phrase until either a match is found or there is no next successive

REPLACING operand.

d. When all the REPLACING phrase operands have been compared and no match has occurred, the

leftmost library text word is copied into the source program. The next successive library text word is then

considered as the leftmost library text word, and the comparison cycle starts again with the first pseudo-text-1,

identifier-1, word-1, or literal-3.

e. Whenever a match occurs between pseudo-text-1, identifier-1, word-1, or literal-3 and the library text,

the corresponding pseudo-text-2, identifier-2, word-2, or literal-4 is placed into the source program. The library text

word immediately following the rightmost text word that participated in the match is then considered as the leftmost

text word. The comparison cycle starts again with the first pseudo-text-1, literal-1, word-1, or literal-3 specified in

the REPLACING phrase.

f. The comparison operation continues until the rightmost text word in the library text has either

participated in a match or has been considered as a leftmost library text word and participated in a complete

comparison cycle.

(6) Comment lines or blank lines occurring in the library text and in pseudo-text-1 are ignored for purposes of

matching; and the sequence of text words in the library text, if any, and in pseudo-text-1 is determined by the rules

for the reference format. (Reference Format is described on Page 59.) Comment lines or blank lines appearing in

pseudo-text-2 are copied into the resultant program unchanged whenever pseudo-text-2 is placed into the source

program as a result of text replacement. Comment lines or blank lines appearing in library text are copied into the

resultant source program unchanged with the following exception: a comment line or blank line in library text is not

copied if that comment line or blank line appears within the sequence of text words that match pseudo-text-1.

(7) Debugging lines are permitted within library text and pseudo-text. Text words within a debugging line

participate in the matching rules as if the 'D' or 'd' did not appear in the indicator area. A debugging line is specified

within pseudo-text if the debugging line begins in the source program after the opening pseudo-text-delimiter, but

before the matching closing pseudo-text-delimiter.

(8) The syntactic correctness of the library text cannot be independently determined. Except for COPY

statements, the syntactic correctness of the entire COBOL program cannot be determined until all COPY statements

have been completely processed.

(9) Each text word copied from the library but not replaced is copied so as to start in the same area of the line in

the resultant program as it begins in the line within the library. However, if a text word copied from the library

Interactive COBOL Language Reference & Developer’s Guide - Part One

66

begins in Area A but follows another text word which also begins in Area A of the same line, and if replacement of a

preceding text word in the line by replacement text of greater length occurs, the following text word begins in Area B

if it cannot begin in Area A. Each text word in pseudo-text-2 that is to be placed into the resultant program begins in

the same area of the resultant program as it appears in pseudo-text-2. Each identifier-2, literal-4, and word-2 that is

to be placed in the resultant program begins in the same area of the resultant program as the leftmost library text

word that participated in the match would appear if it had not been replaced.

Library text must conform to the rules of the COBOL reference format and be in the same format as the

source program.

If additional lines are introduced into the source program as a result of a COPY statement, each text word

introduced appears on a debugging line if the COPY statement begins on a debugging line or if the text word being

introduced appears on a debugging line in library text. When a text word in the preceding cases, only those text

words that are specified on debugging lines where the debugging line is within pseudo-text-2 appear on debugging

lines in the resultant program. If any literal specified as literal-4 or within pseudo-text-2 or library text is of too

great length to be accommodated on a single line without continuation to another line in the resultant program and

the literal is not being placed on a debugging line, additional continuation lines are introduced with contain the

remainder of the literal. If replacement requires that the continued literal be continued on a debugging line, the

program is in error.

(10) For purposes of compilation, text words after replacement are placed in the source program according to

the rules for reference format. When copying text words of pseudo-text-2 into the source program, additional spaces

may be introduced only between text words where there already exists a space (including assumed space between

source lines).

(11) If any additional lines are introduced into the source program as a result of the processing of COPY

statements, the indicator area of the introduced line contains the same character as the line on which the text being

replaced begins, unless the line contains a hyphen, in which case the introduced line contains a space. In the case

where a literal is continued onto an introduced line which is not a debugging line, a hyphen is placed into the

indicator area.

(12) If the REPLACING phrase is specified, the library text shall not contain a COPY statement and the source

text that results from processing the REPLACING phrase shall not contain a COPY statement.

(13) If the REPLACING phrase is not specified, the library text may contain a COPY statement that does not

include a REPLACING phrase. ICOBOL supports 10 levels of nesting, including the first COPY statement in the

sequence. Recursive copying of library text is not permitted; that is, the library text being copied shall not cause the

processing of a COPY statement that directly or indirectly copies itself.

IDENTIFICATION DIVISION (PROGRAM-ID)

67

III. IDENTIFICATION DIVISION

A. General Description

The Identification Division identifies the program. The Identification Division is required in a COBOL source

program. In addition, the user may include the date the program is written and such other information as desired

under the paragraphs in the general format shown below.

B. Organization

Paragraph headers identify the type of information contained in the paragraph. The name of the program must be

given in the first paragraph, which is the PROGRAM-ID paragraph. The other paragraphs are optional and may be

included in this division at the user's choice, in order of presentation shown by the general format below.

The AUTHOR, INSTALLATION, DATE-WRITTEN, DATE-COMPILED and SECURITY paragraphs are

obsolete elements in Standard COBOL because they are to be deleted from the next revision of Standard COBOL.

We suggest that you convert them to comment lines.

B.1. Structure

The following is the general format of the paragraphs in the Identification Division, and it defines the order of

presentation in the source program. Sections C and D on the following pages define the PROGRAM-ID and the

DATE-COMPILED paragraphs. While the other paragraphs are not defined, each general format is formed in the

same manner.

B.1.1 General Format

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name [IS INITIAL PROGRAM] .

[AUTHOR. [comment-entry]...]d

d [INSTALLATION. [comment-entry]...]

d [DATE-W RITTEN. [comment-entry]...]

d [DATE-COMPILED. [comment-entry]...]

d [SECURITY. [comment-entry]...]

B.1.2 Syntax Rules

(1) The comment-entry may be any combination of characters from the computer's character set. The

continuation of the comment-entry by the use of the hyphen in the indicator area is not permitted; however, the

comment-entry may be contained on one or more lines.

(2) A comment-entry is terminated by the next word in Area A.

(3) The optional phrases can be specified in any order.

Interactive COBOL Language Reference & Developer’s Guide - Part One

68

IDENTIFICATION DIVISION (PROGRAM-ID)

69

C. PROGRAM-ID Paragraph

C.1. Function

The PROGRAM-ID paragraph specifies the name by which a program is identified and optionally assigns the

INITIAL attribute to that program..

C.2. General Format

PROGRAM-ID. program-name [IS INITIAL PROGRAM] .

C.3. Syntax Rules

(1) The program-name must conform to the rules for formation of a user-defined word.

C.4. General Rules

(1) The program-name is currently used for documentation purposes only. The name identifying the object

program and all listings is determined from the source file name and/or specific compile-time options.

(2) Although the ANSI COBOL 85 Standard requires that all CALL's use the program-name as specified in the

PROGRAM-ID when performing CALL's, this is not enforced by ICOBOL.

(3) The INITIAL clause specifies that the program is initial. When an initial program is activated, the data items

and file connectors contained in it are set to their initial states: VALUE clauses are applied, PERFORM controls are

reset, files are put in the closed mode. See page 55 Program Classes for more information.

(4) External data is always in the last-used state except when the run unit is activated and it is in the initial state.

D. DATE-COMPILED Paragraph

D.1. Function

The DATE-COMPILED paragraph provides the compilation date in the Identification Division source program

listing. The DATE-COMPILED paragraph is an obsolete element in Standard COBOL because it is to be deleted

from the next revision of Standard COBOL.

D.2. General Format

DATE-COMPILED. [comment-entry]...

D.3. Syntax Rules

(1) The comment-entry may be any combination of the characters from the computer's character set. The

continuation of the comment-entry by the use of the hyphen in the indicator area is not permitted; however, the

comment-entry may be contained on one or more lines.

(2) A comment-entry is terminated by the next word in Area A.

Interactive COBOL Language Reference & Developer’s Guide - Part One

70

D.4. General Rules

(1) The paragraph-name DATE-COMPILED causes the current date to be inserted in the program listing during

program compilation. If a DATE-COMPILED paragraph is present, it is replaced during compilation with a

paragraph of the form:

DATE-COMPILED. current date.

ENVIRONMENT DIVISION (Concepts)

71

IV. ENVIRONMENT DIVISION

A. General Description

The Environment Division specifies a standard method of expressing those aspects of a data processing problem that

are dependent upon the physical characteristics of a specific computer. The Environment Division is optional in a

COBOL source program.

B. Concepts

B.1. External Switch

An external switch is a software device, which is used to indicate that one of two alternate states exists. These

alternate states are referred to as the on status and the off status of the associated external switch.

The status of an external switch may be interrogated by testing condition-names associated with that switch. The

association of a condition-name with an external switch and the association of a user-specified mnemonic-name with

the literal that names an external switch is established in the SPECIAL-NAMES paragraph of the Environment

Division.

The scope of an external switch is the run unit and each literal that names such an external switch refers to one and

only one such switch, the status of which is available to each object program functioning within that run unit.

An external switch may be altered by the SET statement, except in the VXCOBOL dialect.

C. Organization

Two sections make up the Environment Division: the Configuration Section and the Input-Output Section.

The Configuration Section deals with the characteristics of the source computer and the object computer. This

section is divided into three paragraphs: the SOURCE-COMPUTER paragraph, which describes the computer

configuration on which the source program is compiled; the OBJECT-COMPUTER paragraph, which describes the

computer configuration on which the object program produced by the compiler is to be run; and the

SPECIAL-NAMES paragraph, which provides a means for specifying the currency sign, choosing the decimal point,

specifying symbolic-characters, relating switch literals to user-specified mnemonic-names, relating alphabet-names

to character sets or collating sequences, and relating class-names to sets of characters.

The Input-Output Section deals with the information needed to control transmission and handling of data between

external media and the object program. This section is divided into two paragraphs: the FILE-CONTROL paragraph

which names and associates the files with external media; and the I-O-CONTROL paragraph which defines special

control techniques to be used in the object program.

The following is the general format of the sections and paragraphs in the Environment Division, and defines the

order of presentation in the source program.

Interactive COBOL Language Reference & Developer’s Guide - Part One

72

ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.

[SOURCE-COMPUTER. [source-computer-entry]]

[OBJECT-COMPUTER. [object-computer-entry]]

[SPECIAL-NAMES. [special-names-entry]]]

[INPUT-OUTPUT SECTION.

FILE-CONTROL.

{ file-control-entry }...

[I-O-CONTROL.

[RERUN [ON file-name] EVERY]... (Not in VXCOBOL)d

[SAME AREA FOR file-name { file-name }...]...

d [MULTIPLE FILE TAPE CONTAINS { file-name [POSITION integer] }...]...

.]]

ENVIRONMENT DIVISION (CONFIGURATION SECTION)

73

D. CONFIGURATION SECTION

The Configuration Section is located in the Environment Division of a source program. The Configuration Section

deals with the characteristics of the source computer and the object computer. This section also provides a means for

specifying the currency sign; choosing the decimal point; specifying symbolic-characters; relating switch-names to

user-specified mnemonic-names; relating alphabet-names to character sets or collating sequences; and relating

class-names to sets of characters. The Configuration Section is optional in the Environment Division of a COBOL

source program.

The general format of the Configuration Section is shown below.

CONFIGURATION SECTION.

d [SOURCE-COMPUTER. [source-computer-entry]]

[OBJECT-COMPUTER. [object-computer-entry]]

[SPECIAL-NAMES. [special-names-entry]]

D.1. SOURCE-COMPUTER Paragraph

D.1.1 Function

The SOURCE-COMPUTER paragraph provides a means of describing the computer upon which the program is to

be compiled.

D.1.2 General Format

SOURCE-COMPUTER. [computer-name [W ITH DEBUGGING MODE] .] d

D.1.3 Syntax Rules

(1) Computer-name is a user-defined word.

D.1.4 General Rules

(1) The WITH DEBUGGING MODE clause is ignored. All debugging lines are compiled as if they were

comment lines. This behavior may be changed by using the -G d compiler switch.

(2) The SOURCE-COMPUTER computer-name is used for documentation purposes only.

Interactive COBOL Language Reference & Developer’s Guide - Part One

74

D.2. OBJECT-COMPUTER Paragraph

D.2.1 Function

The OBJECT-COMPUTER paragraph provides a means of describing the computer on which the program is to be

executed. The MEMORY SIZE clause is an obsolete element in Standard COBOL because it is to be deleted from

the next revision of Standard COBOL.

D.2.2 General Format (ANSI 74 and ANSI 85)

d OBJECT-COMPUTER. [computer-name [MEMORY SIZE integer]

[PROGRAM COLLATING SEQUENCE IS alphabet-name] .]d

D.2.3 General Format (VXCOBOL)

OBJECT-COMPUTER.

d [computer-name [MEMORY SIZE integer]

d [PROGRAM COLLATING SEQUENCE IS]

d [SEGMENT-LIMIT IS integer]] .

D.2.4 Syntax Rules

(1) Computer-name is a user-defined word.

D.2.5 General Rules

(1) The OBJECT-COMPUTER paragraph is used for documentation purposes only.

D.3. SPECIAL-NAMES Paragraph

D.3.1 Function

The SPECIAL-NAMES paragraph provides a means for specifying the currency sign, choosing the decimal point,

relating switches to user-specified mnemonic-names and relating alphabet-names to character sets or collating

sequences. ANSI 74 and ANSI 85 provide a way to specify symbolic characters and to relate class-names to sets of

characters.

ENVIRONMENT DIVISION (CONFIGURATION SECTION)

75

D.3.2 General Format (ANSI 74 and ANSI 85)

SPECIAL-NAMES.

d [literal-1 IS mnemonic-1]...

["@AUDIT" IS mnemonic-1]

[SW ITCH literal-2 [IS mnemonic-name] [STATUS IS condition-name]...]...

d [alphabet-name-1 IS]...

d [ALPHABET alphabet-name-1 IS]...

[SYMBOLIC CHARACTERS { { { symbolic-character-1 }... { integer-1 }... }...

[IN alphabet-name-2] }]...

[CLASS class-name-1 IS { literal-4 [literal-5] }...]...

[CURRENCY SIGN IS literal-6] [DECIMAL-POINT IS COMMA] .]

D.3.3 General Format (VXCOBOL)

SPECIAL-NAMES.

d [literal-1 IS mnemonic-name-1]...

[CHANNEL integer-1 IS identifier]...

[SW ITCH literal-2 [IS mnemonic-name-2] [STATUS IS condition-name]...]...

[alphabet-name-1 IS]...

[CURRENCY SIGN IS literal-6]

[DECIMAL-POINT IS COMMA] .]

D.3.4 Syntax Rules (ANSI 74 and ANSI 85)

(0) Literal-1 is an alphanumeric literal that specifies the name of a system I/O device or file.

(1) Literal-2 must be a nonnumeric literal that is either a single or multiple character alphanumeric literal.

Mnemonic-name may be specified only in the SET statement.

(2) If the literal phrase of the ALPHABET clause is specified, a given character must not be specified more

than once in that clause.

(3) The literals specified in the literal phrase of the ALPHABET clause:

Interactive COBOL Language Reference & Developer’s Guide - Part One

76

a. If numeric, must be unsigned integers and have a value within the range of one through the maximum

 number of characters in the native character set (256).

b. If nonnumeric and associated with a THROUGH or ALSO phrase, must each be one character in length.

(4) Literal-1, literal-2, literal-3, literal-4, and literal-5 must not specify a symbolic-character figurative

constant.

(5) The words THRU and THROUGH are equivalent.

(6) The same symbolic-character-1 must appear only once in a SYMBOLIC CHARACTERS clause.

(7) The relationship between each symbolic-character-1 and the corresponding integer-1 is by position in the

SYMBOLIC CHARACTERS clause. The first symbolic-character-1 is paired with the first integer-1; the second

symbolic-character-1 is paired with the second integer-1; and so on.

(8) There must be a one-to-one correspondence between occurrences of symbolic-character-1 and integer-1.

(9) The ordinal position specified by integer-1 must exist in the native character set. If the IN phrase is

specified, the ordinal position must exist in the character set named by alphabet-name-2.

(10) The literals specified in the literal-4 phrase:

a. If numeric, must be unsigned integers and must have a value within the range of one through the

maximum number of characters in the native character set (256).

b. If nonnumeric and associated with a THROUGH phrase, must each be one character in length.

(11) Literal-6 must not specify a figurative constant.

(12) The ALPHABET phrase that does not have the ALPHABET keyword is an ANSI 74 format that is

supported for compatibility purposes only. A warning will be issued when it is used.

(13) @AUDIT must be all upper-case.

D.3.5 Syntax Rules (VXCOBOL)

(1) Literal-1 is an alphanumeric literal that specifies the name of a system I/O device or file.

(2) Mnemonic-name-1 is a mnemonic-name used in the program to refer to literal-1.

(3) Integer-1 is an integer literal that specifies a channel number with a value from 1 through 12.

(4) Literal-2 must be a nonnumeric literal that is either a single or multiple character alphanumeric literal.

(5) If the literal phrase of the alphabet clause is specified, a given character must not be specified more than

once in that clause.

(6) The literals specified in the literal phrase of the alphabet clause:

a. If numeric, must be unsigned integers and have a value within the range of one through the maximum

number of characters in the native character set (256).

b. If nonnumeric and associated with a THROUGH or ALSO phrase, must each be one character in length.

(7) The words THRU and THROUGH are equivalent.

ENVIRONMENT DIVISION (CONFIGURATION SECTION)

77

(8) Literal-6 must not specify a figurative constant.

D.3.6 General Rules (ANSI 74 and ANSI 85)

(0) The “literal-1 IS mnemonic-1" clause is for documentation purposes only.

(1) The on status and/or off status of a switch literal may be associated with condition-names. The status of that

switch may be interrogated by testing these condition-names.

(2) The status of a switch may be altered by execution of a Format 3 SET statement which specifies as its

operand the mnemonic-name associated with that switch. See the SET Statement.

(3) The ALPHABET clause provides a means for relating a name to a specified character code set and/or

collating sequence. When alphabet-name-1 is referenced in the SYMBOLIC CHARACTERS clause, the

ALPHABET clause specifies a character code set.

a. If the STANDARD-1 phrase is specified, the character code set or collating sequence identified is that

defined in the ANSI X3.4-1977, Code for Information Interchange. If the STANDARD-2 phrase is specified, the

character code set identified is the International Reference Version of the ISO 7-bit code defined in International

Standard 646, 7-bit Coded Character Set for Information Processing Interchange. Each character of the standard

character set is associated with its corresponding character of the native character set.

b. If the NATIVE phrase is specified, the native character code set or collating sequence is used.

c. If the literal phrase is specified, the alphabet-name may not be referenced in a CODE-SET clause. The

collating sequence identified is that defined according to the following rules:

1) The value of each literal specifies:

a) The ordinal number of a character within the native character set, if the literal is numeric. This

value must not exceed the value which represents the number of characters in the native character set (256).

b) The actual character within the native character set, if the literal is nonnumeric. If the value of

the nonnumeric literal contains multiple characters, each character in the literal, starting with the leftmost character,

is assigned successive ascending positions in the collating sequence being specified.

2) The order in which literals appear in the ALPHABET clause specifies, in ascending sequence, the

ordinal number of the character within the collating sequence being specified.

3) Any characters within the native collating sequence, which are not explicitly specified in the literal

phrase, assume a position, in the collating sequence being specified, greater than any of the explicitly specified

characters. The relative order within the set of these unspecified characters is unchanged from the native collating

sequence.

4) If the THROUGH phrase is specified, the set of contiguous characters in the native character set

beginning with the character specified by the value of literal-1, and ending with the characters specified by the value

of literal-2, is assigned a successive ascending position in the collating sequence being specified. In addition, the set

of contiguous characters specified by a given THROUGH phrase may specify characters of the native character set in

either ascending or descending sequence.

5) If the ALSO phrase is specified, the characters of the native character set specified by the value of

literal-1 and literal-3 are assigned to the same ordinal position in the collating sequence being specified or in the

character code set that is used to represent the data, and if alphabet-name-1 is referenced in a SYMBOLIC

CHARACTERS clause, only literal-1 is used to represent the character in the native character set.

Interactive COBOL Language Reference & Developer’s Guide - Part One

78

(4) When specified as literals in the SPECIAL-NAMES paragraph, the figurative constants HIGH-VALUE and

LOW-VALUE are associated with those characters having the highest and lowest positions, respectively, in the

native collating sequence.

(5) If the IN phrase is not specified, symbolic-character-1 represents the character whose ordinal position in the

native character set is specified by integer-1. If the IN phrase is specified, integer-1 specifies the ordinal position of

the character that is represented in the character set name by alphabet-name-2.

(6) The internal representation of symbolic-character-1 is the internal representation of the character that is

represented in the native character set.

(7) The CLASS clause provides a means for relating a name to the specified set of characters listed in that

clause. Class-name can be referenced only in a class-condition. The characters specified by the values of the literals

in this clause define the exclusive set of characters of which this class-name consists.

The value of each literal specifies:

a. The ordinal number of a character within the native character set, if the literal is numeric. This value

must not exceed the value which represents the number of characters in the native character set.

b. The actual character within the native character set, if the literal is nonnumeric. If the value of the

nonnumeric literal contains multiple characters, each character in the literal is included in the set of characters

identified by class-name-1.

If the THROUGH phrase is specified, the contiguous characters in the native character set beginning with

the character specified by the value literal-4, and ending with the character specified by the value of literal-5, are

included in the set of characters identified by class-name-1. In addition, the contiguous characters specified by a

given THROUGH phrase may specify characters of the native character set in either ascending or descending

sequence.

(8) Literal-6 which appears in the CURRENCY SIGN clause is used in the PICTURE clause to represent the

currency symbol. The literal must be nonnumeric and is limited to a single character. It may be any character from

the computer's character set except one of the following:

a. digits 0 through 9;

b. alphabetic characters consisting of the uppercase letters A, B, C, D, P, R, S, V, X, Z; the lowercase

letters a through z; or the space;

c. Special characters * + - , . ; () " = /

If this clause is not present, only the currency sign defined in the COBOL character set ($) may be used as

the currency symbol in the PICTURE clause.

(9) The clause DECIMAL-POINT IS COMMA means that the functions of comma and period are exchanged in

the character-string of the PICTURE clause and in numeric literals.

D.3.7 General Rules (VXCOBOL)

(1) The DEVICE clause (literal-1 IS mnemonic-name-1) is for documentation purposes only.

(2) The CHANNEL clause declares a line printer control channel. You can use channel names in the

ADVANCING clause of a WRITE statement to format printed forms.

(3) The on status and/or off status of a switch literal may be associated with condition-names. The status of that

switch may be interrogated by testing these condition-names.

ENVIRONMENT DIVISION (CONFIGURATION SECTION)

79

(4) The ALPHABET clause provides a means for relating a name to a specified character code set and/or

collating sequence.

a. If the ASCII, NATIVE, or STANDARD-1 phrase is specified, the character code set or collating

sequence identified is that defined in the ANSI X3.4-1977, Code for Information Interchange. Each character of the

standard character set is associated with its corresponding character of the native character set. APPENDIX I, on

page 844, provides a copy of the ASCII character set.

b. If the EBCDIC phrase is specified, the EBCDIC character code set or collating sequence is used.

APPENDIX J, on page 846, provides a copy of the EBCDIC character set.

c. The collating sequence identified is that defined according to the following rules:

1) The value of each literal specifies:

a) The ordinal number of a character within the native character set, if the literal is numeric. This

value must not exceed the value which represents the number of characters in the native character set.

b) The actual character within the native character set, if the literal is nonnumeric. If the value of

the nonnumeric literal contains multiple characters, each character in the literal, starting with the leftmost character,

is assigned successive ascending positions in the collating sequence being specified.

2) The order in which literals appear in the ALPHABET clause specifies, in ascending sequence, the

ordinal number of the character within the collating sequence being specified.

3) Any characters within the native collating sequence, which are not explicitly specified in the literal

phrase, assume a position, in the collating sequence being specified, greater than any of the explicitly specified

characters. The relative order within the set of these unspecified characters is unchanged from the native collating

sequence.

4) If the THROUGH phrase is specified, the set of contiguous characters in the native character set

beginning with the character specified by the value of literal-3, and ending with the characters specified by the value

of literal-4, is assigned a successive ascending position in the collating sequence being specified. In addition, the set

of contiguous characters specified by a given THROUGH phrase may specify characters of the native character set in

either ascending or descending sequence.

5) If the ALSO phrase is specified, the characters of the native character set specified by the value of

literal-3 and literal-5 are assigned to the same ordinal position in the collating sequence being specified or in the

character code set that is used to represent the data.

(5) When specified as literals in the SPECIAL-NAMES paragraph, the figurative constants HIGH-VALUE and

LOW-VALUE are associated with those characters having the highest and lowest positions, respectively, in the

native collating sequence.

(6) Literal-6, which appears in the CURRENCY SIGN clause, is used in the PICTURE clause to represent the

currency symbol. The literal must be nonnumeric and is limited to a single character. It may be any character from

the computer's character set except one of the following:

a. digits 0 through 9;

b. alphabetic characters consisting of the uppercase letters A, B, C, D, P, R, S, V, X, Z; the lowercase

letters a through z; or the space;

c. Special characters * + - , . ; () " = /

If this clause is not present, only the currency sign defined in the COBOL character set ($) may be used as

the currency symbol in the PICTURE clause.

Interactive COBOL Language Reference & Developer’s Guide - Part One

80

SPECIAL-NAMES.
SWITCH "MGR" ON STATUS IS MANAGER-JOB.

CHECK-SECURITY.
IF MANAGER-JOB MOVE 9 TO WS-SECURITY-CODE.

ANSI 74 and ANSI 85:

SPECIAL-NAMES.
 ALPHABET NEW-SEQ IS " ", "1" THRU "9", "a" THRU "z".

VXCOBOL:

SPECIAL-NAMES.
 NEW-SEQ IS " ", "1" THRU "9", "a" THRU "z".

ANSI 74 and ANSI 85:

SPECIAL-NAMES.
 ALPHABET NEW-SEQ IS 1 THRU 94, 96 THRU 126, 95.

VXCOBOL:

SPECIAL-NAMES.
 NEW-SEQ IS 1 THRU 94, 96 THRU 126, 95.

(7) The DECIMAL-POINT IS COMMA clause means that the functions of comma and period are exchanged in

the character-string of the PICTURE clause and in numeric literals.

D.3.8 Examples

(1) This example shows how a program switch is defined in the SPECIAL-NAMES paragraph in the

ENVIRONMENT DIVISION, and then illustrates how it is used it in the procedure division paragraph, CHECK-

SECURITY.

EXAMPLE 2. Using a Program Switch

The next several examples show how to modify the collating sequence from the native order, for the current

program.

(2) The following will cause characters to collate in the order: <space>, 1-9, a-z, null, |, ', #, ... All characters

not explicitly defined will follow in their native order.

EXAMPLE 3. Modifying the collating sequence for a program

(3) The following leaves the native system intact, with the exception of making the underscore (95) the highest

character.

EXAMPLE 4. Changing 1 character in the collating sequence

ENVIRONMENT DIVISION (CONFIGURATION SECTION)

81

ANSI 74 and ANSI 85:

SPECIAL-NAMES.
 ALPHABET NEW-SEQ IS " " ALSO "0".

VXCOBOL:

SPECIAL-NAMES.
 NEW-SEQ IS " " ALSO "0", "a" ALSO "A".

ANSI 74 and ANSI 85:

SPECIAL-NAMES.
 ALPHABET REVERSE-SEQ IS "9" THRU "0", "Z" THRU "A".

VXCOBOL:

SPECIAL-NAMES.
 REVERSE-SEQ IS "9" THRU "0", "Z" THRU "A".

(4) The following equates the space with zero, giving them the same ordinal position in the collating sequence.

EXAMPLE 5. Making multiple characters the same in the collating sequence

 (5) The following reverses the typical collating sequence for digits and uppercase alphabet characters. Note,

however, that all other characters not explicitly defined will follow in their usual order.

EXAMPLE 6. Reversing collating sequence for digits, uppercase alphabet

Interactive COBOL Language Reference & Developer’s Guide - Part One

82

ENVIRONMENT DIVISION (INPUT-OUTPUT SECTION)

83

E. INPUT-OUTPUT SECTION

The Input-Output Section is located in the Environment Division of a source program. The Input-Output Section

deals with the information needed to control transmission and handling of data between external media and the

object program. The Input-Output Section is optional in the Environment Division of a COBOL source program.

ANSI 74 and ANSI 85:

INPUT-OUTPUT SECTION.

FILE-CONTROL.

 { file-control-entry }...

[I-O-CONTROL.

[RERUN [ON file-name-1] EVERY]...d

[SAME AREA FOR file-name-3 { file-name-4 }...]...

d [MULTIPLE FILE TAPE CONTAINS { file-name-5 [POSITION integer-3] }...]...

.]

VXCOBOL

INPUT-OUTPUT SECTION.

FILE-CONTROL.

 { file-control-entry }...

[I-O-CONTROL.

[SAME AREA FOR file-name-1 { file-name-2 }...]...

d [MULTIPLE FILE TAPE CONTAINS { file-name-3 [POSITION integer] }...]...

.]

E.1. FILE-CONTROL Paragraph

E.1.1 Function

The FILE-CONTROL paragraph allows specification of file-related information.

E.1.2 General Format

FILE-CONTROL.

{ file-control-entry }...

Interactive COBOL Language Reference & Developer’s Guide - Part One

84

E.2. File Control Entry

E.2.1 Function

The file control entry declares the relevant physical attributes of a sequential, relative, indexed, sort, or merge file.

E.2.2 General Format

The clauses for each SELECT are given in alphabetical order since they are order independent.

Sequential File (ANSI 74 and ANSI 85):

SELECT [OPTIONAL] file-name

[ACCESS MODE IS SEQUENTIAL]

[ASSIGN TO]

d [DATA SIZE is integer-1]

[FILE STATUS IS data-name]

[[ORGANIZATION IS] SEQUENTIAL]

[QUEUE IS]

[RECORD DELIMITER IS].

Sequential File (VXCOBOL):

SELECT [OPTIONAL] file-name

[ACCESS MODE IS SEQUENTIAL]

ASSIGN TO

[FILE STATUS IS data-name]

[INFOS STATUS IS data-name]

[[ORGANIZATION IS] SEQUENTIAL]

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (File Control Entry)

85

d [PARITY IS]

d [RESERVE integer] .

Relative File (ANSI 74 and ANSI 85):

SELECT [OPTIONAL] file-name

[ACCESS MODE IS]

[ASSIGN TO]

d [DATA SIZE IS integer]

d [INDEX SIZE IS integer]

[DELETE IS]

[FILE STATUS IS data-name]

[ORGANIZATION IS] RELATIVE .

Relative File (VXCOBOL):

SELECT file-name

[ACCESS MODE IS]

ASSIGN TO

[FILE STATUS IS data-name]

[INFOS STATUS IS data-name]

[ORGANIZATION IS] RELATIVE

d [RESERVE integer] .

Indexed File (ANSI 74 and ANSI 85):

SELECT [OPTIONAL] file-name

[ACCESS MODE IS]

[ALTERNATE RECORD KEY IS id-1 [= id-2]

[ORDER BY ALPHABETIC-UPPER]

[SUPPRESS W HEN literal]

Interactive COBOL Language Reference & Developer’s Guide - Part One

86

 [VALUES ARE]

[W ITH DUPLICATES]]...

[ASSIGN TO]

d [DATA SIZE IS integer]

d [INDEX SIZE IS integer]

[DELETE IS]

[FILE STATUS IS data-name]

[ORGANIZATION IS] INDEXED

RECORD KEY IS id-1 [= id-2 PLUS { id-3 }...]

[ORDER BY ALPHABETIC-UPPER]

[VALUES ARE] .

Indexed File (VXCOBOL):

 SELECT file-name

[ACCESS MODE IS]

[ALTERNATE RECORD data-name

[KEY LENGTH IS integer]

[W ITH DUPLICATES]]...

ASSIGN INDEX TO

d [ROOT MERIT IS integer]

d [SPACE MANAGEMENT]

d [TEMPORARY]

d

d

d [DATA SIZE IS integer]

d [INDEX SIZE IS integer]

[FILE STATUS IS data-name]

[INFOS STATUS IS data-name]

[ORGANIZATION IS] INDEXED

RECORD data-name

[KEY LENGTH IS integer]

d [RESERVE integer INDEX]

d [RESERVE integer DATA] .

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (File Control Entry)

87

Sort-Merge File (ANSI 74 and ANSI 85):

SELECT file-name [ASSIGN TO] .

Sort-Merge File (VXCOBOL):

SELECT file-name ASSIGN TO [[ORGANIZATION IS] SEQUENTIAL].

INFOS Files (VXCOBOL):

 SELECT file-name

[ACCESS MODE IS]

[ALLOW SUB-INDEX

[LEVELS IS integer]]

ASSIGN INDEX TO { [MERIT integer] [VOLUME SIZE IS integer [CONTIGUOUS

d [[NO] INITIALIZATION]]] }...

d [TEMPORARY]

[SPACE MANAGEMENT]

[ROOT MERIT IS integer]

d

[ASSIGN DATA TO { [MERIT integer]

d [VOLUME SIZE IS integer [CONTIGUOUS [[NO] INITIALIZATION]]] }...

[SPACE MANAGEMENT]]

d [DATA SIZE IS integer]

d [INDEX SIZE IS integer]

[FILE STATUS IS data-name]

[INFOS STATUS IS data-name]

[ORGANIZATION IS] INDEXED

RECORD { data-name

[KEY LENGTH IS]

[W ITH DUPLICATES [OCCURRENCE IS identifier]] }...

d [RESERVE integer INDEX]

d [RESERVE integer DATA] .

Interactive COBOL Language Reference & Developer’s Guide - Part One

88

E.2.3 Syntax Rules:

(1) The SELECT clause must be specified first in the file control entry. The clauses which follow the SELECT

clause may appear in any order.

(2) Each file-name in the Data Division must be specified only once in the FILE-CONTROL paragraph. Each

file-name specified in the SELECT clause must have a file description entry in the Data Division of the same

program.

(3) Literal must be a nonnumeric literal and must not be a figurative constant.

(4) Each sort or merge file in the Data Division must be specified only once in the FILE-CONTROL paragraph.

Each sort or merge file specified in the SELECT clause must have a sort-merge file description entry in the Data

Division of the same program.

(5) For Sort-Merge Entry. Since file-name represents a sort or merge file, only the ASSIGN clause is permitted

to follow file-name in the FILE-CONTROL paragraph.

(6) The OPTIONAL phrase is only allowed for ANSI 85 and VXCOBOL.

For ANSI 74 and ANSI 85.

(7) The ORDER BY ALPHABETIC-UPPER phrase applies only to version 7 or greater ICISAM indexed files.

(8) The DELETE clause applies only to version 7 or greater ICISAM files.

(9) The RECORD DELIMITER clause can only be specified on SEQUENTIAL files with the RECORD IS

VARYING clause in the FD. If the RECORD DELIMITER clause is absent and RECORD IS VARYING is

specified, the length of the record written is determined by the DEPENDING ON variable or implied by the record

definitions.

E.2.4 General Rules

(1) For ANSI 85, the OPTIONAL phrase applies only to files opened in input, I-O, or extend mode. Its

specification is required for files that are not necessarily present each time the object program is executed. See

OPEN for more information.

For VXCOBOL, the OPTIONAL phrase applies only to sequential files opened in input mode. Its

specification is required for files that are not necessarily present each time the object program is executed. If you

specify this clause and the file is not present, the first READ statement for the file signals an end-of-file condition.

(2) For VXCOBOL, the PARITY, DATA SIZE, INDEX SIZE, INITIALIZATION, TEMPORARY,

HIERARCHICAL/LRU, RESERVE, RESERVE INDEX, and RESERVE DATA clauses are used for documentation

purposes only.

For relative, indexed, and INFOS files:

(3) The native character set is assumed for data on the external media.

(4) For an indexed file or INFOS, the collating sequence associated with the native character set is assumed.

This is the sequence of values of a given key of reference used to process the file sequentially.

(5) The ASSIGN clause specifies the association of the file referenced by file-name to a storage medium

referenced by the specified name or literal.

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (File Control Entry)

89

(6) For ANSI 74 and ANSI 85, the INDEX SIZE and DATA SIZE clauses are used for documentation

purposes only.

Interactive COBOL Language Reference & Developer’s Guide - Part One

90

E 3. ACCESS MODE Clause

E.3.1 Function

The ACCESS MODE clause specifies the order in which records are to be accessed in the file.

E.3.2 General Format

Sequential File:

ACCESS MODE IS SEQUENTIAL

Relative File:

ACCESS MODE IS

Indexed File (all ICOBOL dialects) and INFOS File (VXCOBOL):

ACCESS MODE IS

E.3.3 Syntax Rules:

(1) ACCESS MODE is DYNAMIC or RANDOM can only be used for relative, indexed, or INFOS files.

For relative files:

(1) Data-name-1 may be qualified.

(2) Data-name-1 must reference an unsigned integer data item whose description does not contain the

PICTURE symbol `P'.

(3) If a relative file is referenced by a START statement, the RELATIVE KEY phrase within the ACCESS

MODE clause must be specified for that file.

(4) For ANSI 74 and ANSI 85, data-name-1 must not be defined in a record description entry associated with

that file-name.

E.3.4 General Rules

(1) If the ACCESS MODE clause is not specified, sequential access is assumed.

(2) Records in the file are accessed in the sequence dictated by the file organization. For sequential files, this

sequence is specified by predecessor-successor record relationships established by the execution of WRITE

statements when the file is created or extended. For relative files, this sequence is ascending relative record number

of existing records in the file. For indexed or INFOS files, this sequence is ascending within a given key of reference

according to the collating sequence of the file.

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (ACCESS MODE)

91

For relative files:

(3) If the access mode is random, the value of the relative key data item for relative files indicates the record to

be accessed.

(4) If the access mode is dynamic, records in the file may be accessed sequentially and/or randomly.

(5) All records stored in a relative file are uniquely identified by relative record numbers. The relative record

number of a given record specifies the record's logical ordinal position in the file. The first logical record has a

relative record number of 1, and subsequent logical records have relative record numbers 2, 3,

(6) The data item specified by data-name-1 is used to communicate a relative record number between the user

and the file system.

(7) The relative key data item associated with the execution of an input-output statement is the data item

referenced by data-name-1 in the ACCESS MODE clause.

For indexed files:

(8) If the access mode is random, the value of a record key data item for indexed files indicates the record to be

accessed.

For INFOS files (VXCOBOL):

(9) If the access mode is random, the value of a series of record key data items (with their associated occurrence

values, if any) and a relative motion specifier indicates the record to be accessed.

(10) If the access mode is sequential, the sequence of access is in ascending order by keys within a given index

or subindex. The subindex may be changed with a relative motion specifier.

Interactive COBOL Language Reference & Developer’s Guide - Part One

92

E.4. ALLOW SUB-INDEX and LEVELS Clauses (VXCOBOL)

E.4.1 Function

The ALLOW SUB-INDEX and LEVELS clauses must be used to define the maximum number of subindex levels

permitted in an INFOS file.

E.4.2 General Format

ALLOW SUB-INDEX [LEVELS IS integer]

E.4.3 Syntax Rules

(1) Integer is a positive integer between 1 and 8 that specifies the maximum number of index and subindex

levels the file can have.

E.4.4 General Rules

(1) ALLOW SUB-INDEX must be specified for any file that already has subindexing or will allow

subindexing.

(2) The LEVELS clause indicates the expected maximum number of index and subindex levels that the file will

have. If you do not specify this clause on file creation, the maximum number of levels will default to the number of

keys in the RECORD KEY clause.

(3) The maximum number of levels for a U/FOS file is 8.

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (ALTERNATE RECORD KEY)

93

E.5. ALTERNATE RECORD KEY Clause (ANSI 74 and ANSI 85)

E.5.1 Function

The ALTERNATE RECORD KEY clause specifies an alternate record key access path to the records in an indexed

file. The ALSO, ORDER BY ALPHABETIC-UPPER, PLUS, SUPPRESS, and VALUES phrases are extensions to

ANSI COBOL.

E.5.2 General Format

ALTERNATE RECORD KEY IS id-1 [= id-2]

[ORDER BY ALPHABETIC-UPPER]

[SUPPRESS W HEN literal]

[VALUES ARE]

[W ITH DUPLICATES]

E.5.3 Syntax Rules

(0) The ALTERNATE RECORD KEY clause may occur at most 16 times for version 7 or greater ICISAM

files and at most 4 times for versions less than 7.

(1) The phrases following the ALTERNATE RECORD KEY clauses (ORDER BY, SUPPRESS WHEN,

VALUES ARE, and WITH DUPLICATES) may be specified in any order.

(2) id-1 must not reference an item whose left-most character position corresponds to the left-most character

position of the primary record key or of any other alternate record key associated with this file. NOT ENFORCED

BY ICOBOL.

(3) If id-2 is not specified, id-1 may be qualified and must reference a data-item of category alphanumeric

within a record description entry associated with the file-name to which the ALTERNATE RECORD KEY is

subordinate. Id-1 must not reference a group item containing a variable occurrence data-item.

If id-2 is specified, id-1 must be a unique word within the program and is not defined elsewhere. Id-1 may be

referenced only in the KEY IS phrases of the READ or START statements.

(4) Each instance of id-2 or id-3 must reference a data-item of category alphanumeric within a record

description entry associated with the file-name to which the ALTERNATE RECORD KEY is subordinate. No

instance of id-2 or id-3 may reference a group item which contains a variable occurrence data-item

(5) If the ALSO phrase is specified, id-3 may be specified up to six times. If the ALSO phrase is not specified

(i.e., the PLUS case), id-3 may be specified up to three times.

(6) If id-2 is not specified, the length of id-1 may not exceed 255 bytes for version 7 or greater ICISAM files

and may not exceed 100 bytes for indexed files with versions less than 7.

If id-2 is specified, each instance of id-2 and id-3 must have a length that does not exceed 255 bytes. If the

ALSO phrase is specified, each id-3 must have the same length as id-2. If the ALSO phrase is not specified, the sum

of the lengths of id-2 and each id-3 must not exceed 255 bytes.

(7) If the OCCURS phrase is specified, integer must be in the range from 1 to 31. id-2 and each id-3 must each

be in the same record definition. Additionally, they must be subordinate to a common OCCURS phrase which is

defined as occurring integer times. Each of the identifiers must be specified without a subscript.

Interactive COBOL Language Reference & Developer’s Guide - Part One

94

If the OCCURS phrase is not specified, none of the identifiers may have an OCCURS phrase in their description

or be subordinate to an item which has an OCCURS phrase its definition.

(8) Within the record definition the byte positions of id-2 and each id-3 must be disjoint, i.e., they may not

overlap.

(9) If the SUPPRESS WHEN phrase is specified, lit may be either a single character alphanumeric literal or a

figurative constant.

(10) If the index files contains variable length records, each alternate record key must be contained within the

first x character positions of the record where x equals the minimum record size for the file.

E.5.4 General Rules

(1) The ALTERNATE RECORD KEY clause specifies an alternate record key for the file with which this

clause is associated. It may specify that one or more key values to be entered into the associated index for each

record.

The alternate key may consist of a single data-item (id-1 with no additional phrases). It may also be a composite

key (identified by the key name id-1) defined as a root key (id-2) plus one or more key suffixes (id-3). The value of

a composite alternate key is determined by appending the values of the root key and each key suffix together in the

order in which they appear in the ALTERNATE RECORD KEY clause.

Multiple key values (inversions) may be entered into the index for a given alternate key in two ways:

a. The ALSO phrase may be specified. In this case, the key-name id-1 represents an alternate record key

which supports multiple key values. A value is entered into the index for id-2 and each instance of id-3. This

allows for scattered fields in the record to be entered into the index as key values.

b. The OCCURS phrase may be specified. In this case, the key-name id-1 represents an alternate record

key which supports multiple key values in a tabularized form. For each occurrence of id-2 in the record definition,

optionally suffixed by occurrences of id-3, a key value is entered into the index.

(2) The data description and relative location within a record of id-1 (if it is used alone) and of id-2 and each

id-3 must be the same as that used when the file was created.

(3) If the file has more than one record description entry, id-1 (if it is used alone) or id-2 and each id-3 need

only be described in one of these record description entries except when the OCCURS phrase is present. If the

OCCURS phrase is present id-2 and each id-3 must be in the same record description entry. In all cases, the

identical character positions referenced by id-1 (if it is used alone), id-2, and each id-3 that appear in one record

description are implicitly referenced as keys for all other record description entries of that file.

(4) The ORDER BY ALPHABETIC-UPPER phrase applies to version 7 or greater ICISAM files. It specifies

that all values for this alternate key are entered into the index as uppercase only. Lookups for this key path will be

performed in uppercase. The effect is that the keys on this key path are processed in a case insensitive manner. If

ORDER BY ALPHABETIC-UPPER is not present, then key values are entered and looked up as they appear in the

record.

(5) The SUPPRESS WHEN lit phrase specifies that when all characters of a key value are equal to the character

specified by lit, that key value should not be entered into the index. This phrase applies to version 7 or greater

ICISAM files.

(6) The VALUES ARE phrase is used to specify the order in which key values are entered into the index. If the

ASCENDING phrase is specified, key values are entered in ascending order. That is, key values appear with

increasing values. If the DESCENDING phrase is specified, key values are entered in descending order. That is,

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (ALTERNATE RECORD KEY)

95

key values appear with decreasing values -- in reverse sequential order. If the VALUES ARE phrase is not present,

VALUES ARE ASCENDING is implied. This phrase applies to version 7 or greater ICISAM files.

(7) The WITH DUPLICATES phrase specifies that the value or values of the associated ALTERNATE

RECORD KEY may be duplicated within any of the records in the file and within the record itself if multiple key

values are specified. If the WITH DUPLICATES phrase is not specified, the value or values of the associated

alternate key must not be duplicated among any of the records in the file or within the record itself if multiple key

values are specified. If the phrase is not present, duplicate key values are not allowed. When using versions 5 or 6

indexed files, the duplicates option must be set or a runtime error (9A) will occur. Version 7 indexed files observe

the duplicates option correctly.

(8) Alternate record keys are sorted based on the following criteria:

a. ascending root segment position of id-1 (if it is a data-item) or by id-2 if it is present.

b. ascending root segment length of id-1 (if it is a data-item) or by id-2 if it is present.

c. absence of ALSO keys and, if present, ascending number of ALSO and ascending ALSO’s position.

d. absence of suffixes and, if present, ascending number of suffixes, ascending suffix position, and

ascending suffix length.

e. absence of OCCURS and, if present, ascending number of OCCURS and ascending occurs span.

f. absence of duplicates allowed.

g. absence of descending order.

h. absence of uppercase conversion.

i. absence of SUPPRESS when value and, if present, ascending suppress when value.

(9) If the associated file connector is an external file connector, every file control entry in the run unit which is

associated with that file connector must specify the same data description entry for data-name-1, the same relative

location within the associated record, the same number of alternate record keys, and the same DUPLICATES

phrase.

Interactive COBOL Language Reference & Developer’s Guide - Part One

96

E.6. ALTERNATE RECORD KEY Clause (VXCOBOL)

E.6.1 Function

The ALTERNATE RECORD KEY clause specifies an alternate record key access path to the records in an indexed

file.

E.6.2 General Format

ALTERNATE RECORD data-name

[KEY LENGTH IS integer]

[W ITH DUPLICATES]

E.6.3 Syntax Rules

(1) Data-name may be qualified.

(2) Data-name must be defined as a data item of the category alphanumeric within a record description entry

associated with the file-name to which the ALTERNATE RECORD KEY clause is subordinate. Data-name must

not reference a group item that contains a variable occurrence data-item.

(3) Data-name must not reference an item whose left-most character position corresponds to the left-most

character position of the primary record key or of any other alternate record key associated with this file. NOT

ENFORCED BY ICOBOL.

(4) integer must be exactly the length of the item referenced by data-name.

(5) If the index file contains variable length records, data-name must be contained within the maximum record

size number of characters. If data-name is not contained within the specified minimum record size, the minimum

record size will be adjusted upward to contain data-name.

E.6.4 General Rules

(1) An ALTERNATE RECORD KEY clause specifies an alternate record key for the file with which this clause

is associated. The ALTERNATE RECORD KEY clause may be specified no more than 16 times.

(2) The data description of data-name as well as its relative location within a record must be the same as that

used when the file was created. The number of alternate record keys for the file must also be the same as that used

when the file was created.

(3) The DUPLICATES phrase specifies that the value of the associated alternate record key may be duplicated

within any of the records in the file. If the DUPLICATES phrase is not specified, the value of the associated

alternate record key must not be duplicated among any of the records in the file.

(4) If the file has more than one record description entry, data-name need only be described in one of these

record description entries. The identical character positions referenced by data-name in any one record description

entry are implicitly referenced in keys for all other record description entries of that file.

(5) Alternate keys are sorted by their leftmost character position. Under ICOBOL, if multiple alternate keys

start at the same position, they are sorted in ascending order by length (smallest to largest).

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (ALTERNATE RECORD KEY)

97

(6) If the associated file connector is an external file connector, every file control entry in the run unit which is

associated with that file connector must specify the same data description entry for data-name, the same relative

location within the associated record, the same number of alternate record keys, and the same DUPLICATES

phrase.

Interactive COBOL Language Reference & Developer’s Guide - Part One

98

E.7. ASSIGN Clause

E.7.1 Function

The ASSIGN clause specifies the association of the file referenced to a defined storage medium.

E.7.2 General Format (ANSI 74 and ANSI 85)

Sequential File:

ASSIGN TO

Relative, Indexed, and Sort-M erge Files:

ASSIGN TO

E.7.3 General Format (VXCOBOL)

Sequential:

ASSIGN TO

Relative:

ASSIGN TO

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (ASSIGN)

99

Indexed:

ASSIGN INDEX TO

d [ROOT MERIT IS integer] [SPACE MANAGEMENT] [TEMPORARY]

d

Sort-Merge File:

ASSIGN TO

INFOS Files:

ASSIGN INDEX TO { [MERIT integer] [VOLUME SIZE IS integer [CONTIGUOUS

d [[NO] INITIALIZATION]]] }...

d [TEMPORARY]

[SPACE MANAGEMENT]

[ROOT MERIT IS integer]

d

[ASSIGN DATA TO { [MERIT integer]

d [VOLUME SIZE IS integer [CONTIGUOUS [[NO] INITIALIZATION]]] }...

[SPACE MANAGEMENT]]

E.7.4 Syntax Rules

(1) Only one storage medium (PRINTER, PRINTER-1, DISPLAY, KEYBOARD, DISK, INPUT,

INPUT-OUTPUT, OUTPUT, or RANDOM) may be specified.

(2) Only one external filename specifier (identifier-1 or literal-1) may be specified except for INFOS files.

For VXCOBOL:

(3) Integer-1 and integer-4 are positive integer literals between 1 and 32 that specify the merit factor of a

volume. If not specified the merit factor is 1.

(4) Integer-2 and integer-5 are positive integer literals that specify a number of 512-byte blocks.

(5) Integer-3 is a positive integer literal between 1 and 32 that specifies which volume priority has the highest

level root node.

Interactive COBOL Language Reference & Developer’s Guide - Part One

100

E.7.5 General Rules

(1) If no storage medium is specified DISK is assumed.

(2) If no identifier-1 or literal-1 is specified, the default external filename is defined below for sequential files.

 Device Default Filename VXCOBOL Default Filename ANSI 74/85

PRINTER @LPT $LPT

PRINTER-1 @LPT1 $LPT1

DISPLAY @CONSOLE $TTO

KEYBOARD @CONSOLE $TTI

DISK, INPUT,
INPUT-OUTPUT,
OUTPUT, RANDOM

Characters of the internal
filename with $ replacing -

First ten character of the
internal filename with $
replacing -.

TABLE 1. Default External Filenames for Sequential Files

NOTE: The -N h compiler switch will suppress the translation of “-“ to “$” in the generation of default filenames.

(3) For VXCOBOL, relative, indexed, and INFOS files have no default external filename. For ANSI 74 and

ANSI 85, an external filename is generated from the internal name by selecting the first 10 characters of the internal

name and replacing - with $.

(4) Only sequential files may be ASSIGN'ed to PRINTER, PRINTER-1, KEYBOARD, DISPLAY, INPUT,

INPUT-OUTPUT, or OUTPUT.

(5) For INFOS files, VOLUME SIZE sets the maximum volume size. It is ignored on sequential, relative, and

indexed files.

(6) For sequential files, RANDOM is equivalent to DISK.

(7) When INPUT is specified, the assigned storage medium is DISK and the compiler restricts the file usage to

only those operations that are compatible with an input-only usage: OPEN INPUT, READ, and as a USING file in a

SORT-MERGE operation.

(8) When OUTPUT is specified, the assigned storage medium is DISK, and the compiler restricts the file usage

to only those operations that are compatible with an output-only usage: OPEN OUTPUT or EXTEND, WRITE, and

as a GIVING file in a SORT-MERGE operation.

(9) When INPUT-OUTPUT is specified, the assigned storage medium is DISK with no further restrictions.

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (COMPRESSION)

101

E.8. COMPRESSION Clauses (VXCOBOL)

E.8.1 Function

The COMPRESSION clauses enable INFOS space saving.

E.8.2 General Format

E.8.3 General Rules

(1) KEY COMPRESSION enables space saving in an INFOS indexed file.

(2) DATA COMPRESSION enables space saving in an INFOS data file.

(3) COMPRESSION enables both KEY COMPRESSION and DATA COMPRESSION.

(4) U/FOS ignores the KEY COMPRESSION clause and the implied key compression in the COMPRESSION

clause.

Interactive COBOL Language Reference & Developer’s Guide - Part One

102

E.9. DELETE LOGICAL/PHYSICAL Clause (ANSI 74 and ANSI 85)

E.9.1 Function

The DELETE LOGICAL/PHYSICAL clause specifies whether DELETE record operations should be either logical

(thus allowing the record to be UNDELETE'd) or physical (allowing reuse of the record area for a new record and

thus NOT allowing an UNDELETE). DELETE LOGICAL/PHYSICAL is an extension to ANSI COBOL.

E.9.2 General Format

DELETE IS

E.9.3 Syntax Rules

(1) The DELETE clause applies to version 7 or greater ICISAM (relative and indexed) files.

E.9.4 General Rules

(1) The DELETE clause specifies the value of the "delete-is-physical" attribute in version 7 ICISAM files and

controls the default behavior for record deletions. If the DELETE IS LOGICAL clause is specified, a deleted record

is retained in the file and is simply flagged as being deleted. It may be undeleted. If DELETE IS PHYSICAL is

specified, the space used by the deleted record is made available for reuse. The record may not be undeleted. The

default behavior may be overridden by including the LOGICAL or PHYSICAL phrases on the DELETE statement.

(2) If this clause is specified and an existing version 7 file is opened, the value of the specification must agree

with the value of the file's "delete-is-physical" attribute.

(3) If this clause is omitted and a version 7 file is created, the default is DELETE IS LOGICAL.

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (FILE STATUS)

103

E.10. FILE STATUS Clause

E.10.1 Function

The FILE STATUS clause specifies a data item which contains the status of an input-output operation.

E.10.2 General Format

FILE STATUS IS data-name

E.10.3 Syntax Rules

(1) Data-name may be qualified.

(2) Data-name must be defined in the Data Division as a two-character data item of the category alphanumeric

and must not be defined in the File Section.

E.10.4 General Rules

(1) If the FILE STATUS clause is specified, the data item referenced by data-name is always updated to

contain the value of the I-O status whenever the I-O status is updated. This value indicates the status of execution of

the statement. See I-O Status, page 237 or the APPENDIX on FILE STATUS codes for the values.

(2) The data item referenced by data-name which is updated during the execution of an input-output statement

is the one specified in the file control entry associated with that statement.

For VXCOBOL

(3) If either FILE STATUS or INFOS STATUS clause is specified for a file, then even if there is no

declaratives to trap an exception, the program proceeds. Only if there is neither a FILE STATUS nor INFOS

STATUS nor a declaratives entry will the program abort with a Fatal Error.

(4) FILE STATUS and INFOS STATUS are updated at the same time.

(5) INFOS STATUS values are either an octal number representing an INFOS or AOS/VS compatible error

code or a string beginning with an ‘X’ followed by a decimal number representing an exception status code.

Interactive COBOL Language Reference & Developer’s Guide - Part One

104

E.11. INDEX SIZE, DATA SIZE Clauses

E.11.1 Function

These clauses are comment fields. They allow older programs with these clauses to compile without errors. INDEX

SIZE and DATA SIZE are extensions to ANSI COBOL.

E.11.2 General Format

DATA SIZE is integer

INDEX SIZE is integer

E.11.3 General Rules

(1) The INDEX clause can only be used for relative, indexed, and INFOS files.

(2) The DATA SIZE and INDEX SIZE clauses are used for documentation purposes only.

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (INFOS STATUS)

105

E.12. INFOS STATUS Clause (VXCOBOL)

E.12.1 Function

The INFOS STATUS clause specifies a data item which contains the INFOS status of an input-output operation.

E.12.2 General Format

INFOS STATUS IS data-name

E.12.3 Syntax Rules

(1) Data-name may be qualified.

(2) Data-name must be defined in the Data Division as a four-character to eleven-character data item of the

category alphanumeric and must not be defined in the File Section.

E.12.4 General Rules

(1) If the INFOS STATUS clause is specified, the data item referenced by data-name is always updated to

contain the value of the INFOS STATUS whenever the status is updated. This value indicates the status of execution

of the statement.

(2) The data item referenced by data-name which is updated during the execution of an input-output statement

is the one specified in the file control entry associated with that statement.

(3) If either a FILE STATUS or INFOS STATUS clause is specified for a file, then even if there is no

declaratives to trap an exception, the program proceeds. Only if there is neither a FILE STATUS nor INFOS

STATUS nor a declaratives entry will the program abort with a Fatal Error.

(4) FILE STATUS and INFOS STATUS are updated are the same time.

(5) INFOS STATUS values are either an octal number representing an INFOS or AOS/VS compatible error

code or a string beginning with an 'X' followed by a decimal number representing an exception status code.

Interactive COBOL Language Reference & Developer’s Guide - Part One

106

E.13. ORGANIZATION Clause

E.13.1 Function

The ORGANIZATION clause specifies the type (sequential, relative, or indexed) of organization as the logical

structure of a file and, for sequential files, may also imply information about the record format.

E.13.2 General Format

E.7.2 General Format ()

ANSI 74 and ANSI 85 Sequential File:

[ORGANIZATION IS] SEQUENTIAL

Others:

[ORGANIZATION IS]

E.13.3 General Rules

(1) The ORGANIZATION IS SEQUENTIAL clause specifies sequential organization as the logical structure of

a file. The file organization is established at the time a file is created and cannot subsequently be changed.

(2) Sequential organization is a permanent logical file structure in which a record is identified by a

predecessor-successor relationship established when the record is placed into the file.

(3) The ORGANIZATION IS LINE SEQUENTIAL clause specifies sequential organization and it specifies

that the record format is data sensitive. If the ORGANIZATION IS LINE SEQUENTIAL clause is specified, the

RECORDING MODE clause of the file’s FD may not be specified.

(4) The ORGANIZATION IS BINARY SEQUENTIAL clause specifies sequential organization and it specifies

that the record format is binary and not data-sensitive. If the ORGANIZATION IS BINARY SEQUENTIAL clause

is specified, the RECORDING MODE clause of the file’s FD may not be specified.

(5) When the ORGANIZATION clause is not specified, sequential organization is implied (without the optional

LINE or BINARY option).

(6) The ORGANIZATION IS RELATIVE clause specifies relative organization as the logical structure of a

file. The file organization is established at the time a file is created and cannot subsequently be changed.

(7) Relative organization is a permanent logical file structure in which each record is uniquely identified by an

integer value greater than zero, which specifies the record's logical ordinal position in the file.

(8) The ORGANIZATION IS INDEXED clause specifies indexed organization as the logical structure of a file.

The file organization is established at the time a file is created and cannot subsequently be changed. For

VXCOBOL, the file may be either an indexed file or INFOS file.

(9) Indexed organization is a permanent logical file structure in which each record is identified by the value of

one or more keys within that record.

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (QUEUE)

107

E.14. QUEUE Clause (ANSI 74 and ANSI 85)

E.14.1 Function

The QUEUE clause allows the specification of a destination printer control queue for the sequential file.

E.14.2 General Format

QUEUE IS

E.14.3 Syntax Rules

(1) integer must be in the range 0 through 2047 inclusive. (Was 127 in pre-3.30 versions).

(2) identifier may be qualified, but may not be subscripted.

(3) identifier must be defined in the Data Division as an integer data-item and must not be defined in the File

Section.

E.14.4 General Rules

(1) If identifier is specified, its value must be in the range 0 through 2047 inclusive.

(2) The value specified in identifier us used to represent a particular printer control queue (PCQ). Zero

identifies @PCQ0, one identifies @PCQ1, two identifies @PCQ2, etc. The name of the specified file will be

entered into that queue.

(3) At runtime, the selected queue should correspond to a queue which is available.

Interactive COBOL Language Reference & Developer’s Guide - Part One

108

E.15. RECORD DELIMITER Clause (ANSI 74 and ANSI 85)

E.15.1 Function

The RECORD DELIMITER clause indicates the method of determining the length of a variable-length record on the

external medium.

E.15.2 General Format

RECORD DELIMITER IS

E.15.3 Syntax Rules

(1) The RECORD DELIMITER clause may be specified only for sequential files that have variable-length

records. Such a file contains the RECORD IS VARYING clause in the FD.

(2) If the RECORD DELIMITER clause is absent and RECORD IS VARYING is specified, the implied

RECORD DELIMITER for a file with LINE SEQUENTIAL organization is DATA-SENSITIVE, and for others is

BINARY LENGTH.

(3) If the RECORD DELIMITER clause is specified, the RECORDING MODE clause of the file’s FD may not

be specified.

(4) identifier-1 must be a 2-byte alphanumeric data-item, not defined in the FILE Section.

(5) identifier-2 must be a 1-byte alphanumeric data-item not defined in the FILE Section.

E.15.4 General Rules

(1) The RECORD DELIMITER options are described below:

a. STANDARD-1 is for documentation purposes only and is processed in the same manner as SIZE.

b. BINARY LENGTH indicates the presence of a record header with the length of the record stored as a

2-byte big-endian unsigned binary value. This is the traditional ICOBOL format. The stored length does not

include the length of the header. The BINARY LENGTH option may not be specified if the organization is LINE

SEQUENTIAL.

c. ASCII LENGTH indicates the presence of a record header with the length of the record stored as 4

ASCII digits. This is the traditional VXCOBOL and AOS/VS format. The stored length includes the 4 bytes

occupied by the header. The ASCII LENGTH option may not be specified if the organization is LINE

SEQUENTIAL.

d. SIZE indicates that the size of the record is determined completely by the record length requested. The

file itself has no underlying structure and is simply a stream of bytes. If RECORD DELIMITER IS SIZE is

specified, then the RECORD IS VARYING clause must include a DEPENDING ON id from which the record's size

is obtained for both read and write operations. The SIZE option may not be specified if the organization is LINE

SEQUENTIAL.

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (RECORD DELIMITER)

109

e. DATA-SENSITIVE indicates that the size of the record is determined by the presence of a delimiter

from the set NL, CR, FF, NUL and the CR-NL pair. On WRITE operations, the length of the record is the minimum

of that which is explicitly specified in the RECORD IS VARYING clause and the size determined due to the

presence of a delimiter within the record itself. If a delimiter is in the record, it is emitted on the WRITE.

Otherwise, the standard delimiter for the operating system is emitted, i.e. NL on UNIX and the CR-NL pair on

Windows. For READ operations with the ASSIGN TO KEYBOARD phrase, the delimiter is included in the record

area. If the DELIMITER INTO phrase is present, the delimiter is stored in the identifier. (The delimiter will be

stored with a LOW-VALUE as its second character if it is any delimiter other than the CR-NL pair.) The

DATA-SENSITIVE option may not be specified if the organization is BINARY SEQUENTIAL.

f. Literal is an alphanumeric literal in which each character serves as a record delimiter. On WRITE

operations, the length of the record is the minimum of that which is explicitly specified in the RECORD IS

VARYING clause and the size determined due to the presence of a delimiter within the record itself. If a delimiter is

in the record it is emitted on the WRITE. Otherwise, the character from the literal with the lowest ASCII value is

emitted as the record delimiter. For READ operations with the ASSIGN TO KEYBOARD phrase, the delimiter is

included in the record area in other cases it is not. If the DELIMITER INTO phrase is present, the delimiter is

stored in the identifier. The Literal option may not be specified if the organization is BINARY SEQUENTIAL.

(2) At the time of a successful execution of an OPEN statement, the record delimiter is the one specified in the

RECORD DELIMITER clause in the file control entry associated with the file-name specified in the OPEN

statement.

Interactive COBOL Language Reference & Developer’s Guide - Part One

110

E.16. RECORD KEY Clause

E.16.1 Function

The RECORD KEY clause specifies the primary record key access path to the records in an indexed file. For an

INFOS file, it specifies the valid indexes for this file. The ORDER BY ALPHABETIC-UPPER, PLUS, VALUES

ARE, KEY LENGTH, and OCCURRENCE phrases are extensions to ANSI COBOL.

E.16.2 General Format (ANSI 74 and ANSI 85)

RECORD KEY IS id-1 [= id-2 PLUS { id-3 }...]

[ORDER BY ALPHABETIC-UPPER]

[VALUES ARE]

E.16.3 General Format (VXCOBOL)

Indexed:

RECORD data-name-1 [KEY LENGTH IS literal-1]

INFOS:

RECORD { data-name-1 [KEY LENGTH IS]

[W ITH DUPLICATES [OCCURRENCE IS identifier-2]] }...

E.16.4 Syntax Rules (ANSI 74 and ANSI 85)

(1) The phrases following the RECORD KEY clause (ORDER BY and VALUES ARE) may be specified in

any order.

(2) If id-2 is not specified, id-1 may be qualified and must reference a data-item of category alphanumeric

within a record description entry associated with the file-name to which the RECORD KEY is subordinate. Id-1

must not reference a group item which contains a variable occurrence data item.

If id-2 is specified, id-1 must be a unique word within the program and is not defined elsewhere. Id-1 may be

referenced only in the KEY IS phrases of the READ or START statements.

(3) Each instance of id-2 or id-3 must reference a data-item of category alphanumeric within a record

description entry associated with the file-name to which the RECORD KEY is subordinate. No occurrence of id-2 or

id-3 may reference a group item which contains a variable occurrence data item.

(4) If id-2 is not specified, the length of id-1 may not exceed 255 bytes for version 7 indexed files and may not

exceed 100 bytes for indexed files with versions less than 7.

If id-2 is specified, each instance of id-2 and id-3 must have a length that does not exceed 255 bytes. The sum

of the lengths of id-2 and each id-3 must not exceed 255 bytes.

(5) Within the record definition the byte positions of id-2 and each id-3 must be disjoint, i.e., they may not

overlap.

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (RECORD KEY)

111

(6) id-3 may be specified at most three(3) times.

(7) If the indexed file contains variable length records, id-1 or all occurrences of id-2 and id-3 must be

contained in the first x character positions of the record where x equals the minimum record size specified for the

file.

E.16.5 Syntax Rules (VXCOBOL)

(1) Data-name-1 may be qualified.

(2) For indexed files, data-name-1 must reference a data item of the category alphanumeric within a record

description entry associated with the file-name to which the RECORD KEY clause is subordinate. Data-name-1

must not reference a group item that contains a variable occurrence data item.

(3) Identifier-1 or literal-1 specifies the length of the associated key. Identifier-1 must be an unsigned integer

data item and literal-1 must be a positive integer literal. If neither is specified, the key length defaults to be the

length of the item referenced by data-name-1. When used with an indexed file, literal-1 must be exactly equal to the

length of the item referenced by data-name-1.

(4) Identifier-2 is an unsigned integer or alphanumeric data item that receives an occurrence number. It can

hold up to 10 digits (PIC 9(10)). It must be defined in Working-Storage.

(5) If the indexed file contains variable length records, data-name-1 must be contained within the maximum

record size number of characters. If data-name-1 is not contained within the specified minimum record size, the

minimum record size will be adjusted upward to contain data-name-1.

E.16.5 General Rules (ANSI 74 and ANSI 85)

(1) The RECORD KEY clause specifies the primary key record key for the file with which this clause is

associated. The values of the primary key must be unique among all records of the file. The record key may consist

of a single data-item (id-1 with no additional phrases). It may also be a composite key (identified by the key name

id-1) defined as a root key (id-2) plus one or more key suffixes (id-3). The value of a composite primary key is

determined by appending the values of the root key and each key suffix together in the order in which they appear in

the RECORD KEY clause.

(2) The data description and relative location within a record of id-1 (if it is used alone) and of id-2 and each

id-3 must be the same as that used when the file was created.

(3) If the file has more than one record description entry, id-1 (if it is used alone) or id-2 and each id-3 need

only be described in one of these record description entries. In all cases, the identical character positions referenced

by id-1 (if it is used alone), id-2, and each id-3 that appear in one record description are implicitly referenced as keys

for all other record description entries of that file.

(4) The ORDER BY ALPHABETIC-UPPER phrase applies to version 7 or greater ICISAM files. It specifies

that all values for this alternate key are entered into the index as uppercase only. Lookups for this key path will be

performed in uppercase. The effect is that the keys on this key path are processed in a case insensitive manner. If

ORDER BY ALPHABETIC-UPPER is not present, then key values are entered and looked up as they appear in the

record.

(5) The VALUES ARE phrase is used to specify the order in which key values are entered into the index. If the

ASCENDING phrase is specified, key values are entered in ascending order. That is, key values appear with

increasing values. If the DESCENDING phrase is specified, key values are entered in descending order. That is,

key values appear with decreasing values -- in reverse sequential order. If the VALUES ARE phrase is not present,

VALUES ARE ASCENDING is implied. This phrase applies to version 7 or greater ICISAM files.

Interactive COBOL Language Reference & Developer’s Guide - Part One

112

(6) If the associated file connector is an external file connector, all file description entries in the run unit which

are associated with that file connector must specify the same data description entry for data-name-1 with the same

relative location within the associated record.

E.16.7 General Rules (VXCOBOL)

(1) For indexed, the RECORD KEY clause specifies the primary record key for the file with which this clause

is associated. The values of the primary record key must be unique among records of the file. For INFOS, the

RECORD KEY clause specifies a list of data-items which may be used as keys. These items may occur in any order

and there may be more or less keys specified that subindex levels in the file.

(2) For indexed, the data description of data-name-1 as well as its relative location within a record must be the

same as that used when the file was created.

(3) For indexed, if the file has more than one record description entry, data-name-1 need only be described in

one of these record description entries. The identical character positions referenced by data-name-1 in any one

record description entry are implicitly referenced as keys for all other record description entries of that file.

(4) For INFOS, if identifier-1 or literal-1 is given, then on an open of a file for output, that value is the

maximum key length for the main level, on a WRITE statement the value represents the number of characters in

data-name-1 that will be stored as the value of that record's index, and when you specify a READ with a GENERIC

clause, the value represents the number of characters in data-name-1 that must be matched in order to access a given

record.

(5) If you use the OCCURRENCE clause, an occurrence number is assigned for each duplicate key. With

INFOS II, occurrence numbers are only unique within a subindex. With U/FOS, occurrence numbers are unique

through the entire database.

(6) The occurrence number and length of a key can be obtained by issuing a RETRIEVE KEY statement.

(7) After a WRITE or a RETRIEVE statement, the occurrence number associated with the first key named in

the SELECT is updated.

(8) If the associated file connector is an external file connector, all file description entries in the run unit which

are associated with that file connector must specify the same data description entry for data-name-1 with the same

relative location within the associated record.

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (RESERVE)

113

E.17. RESERVE Clause (VXCOBOL)

E.17.1 Function

The RESERVE clause allows the user to specify the number of input-output areas allocated.

E.17.2 General Format

Sequential and Relative:

d RESERVE integer

Indexed and INFOS:

d RESERVE integer DATA

d RESERVE integer INDEX

E.17.3 General Rules

(1) Under ICOBOL, the RESERVE clause is used for documentation only. ICOBOL buffers sequential disk

files as part of its implementation.

Interactive COBOL Language Reference & Developer’s Guide - Part One

114

E.18. I-O-CONTROL Paragraph

E.18.1 Function

The I-O-CONTROL paragraph specifies the memory area which is to be shared by different files.

E.18.2 General Format (ANSI 74 and ANSI 85)

I-O-CONTROL.

[RERUN [ON file-name-1] EVERY]...d

[SAME AREA FOR file-name-1 { file-name-2 }...]...

d [MULTIPLE FILE TAPE CONTAINS { file-name-5 [POSITION integer-3] }...]...

.

E.18.3 General Format (VXCOBOL)

I-O-CONTROL.

[SAME AREA FOR file-name-1 { file-name-2 }...]...

d [MULTIPLE FILE TAPE CONTAINS { file-name-5 [POSITION integer-3] }...]...

.

E.18.4 Syntax Rules

(1) The order of appearance of the clauses is immaterial.

(2) The RERUN and MULTIPLE FILE TAPE clauses are used for documentation purposes only. Both clauses

are obsolete elements in Standard COBOL are to be deleted from the next revision of the standard.

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (SAME)

115

E.19. SAME Clause

E.19.1 Function

The SAME clause specifies the memory area which is to be shared by different files.

E.19.2 General Format

SAME AREA FOR file-name-1 { file-name-2 }...

E.19.3 Syntax Rules

(1) File-name-1 and file-name-2 must be specified in the FILE-CONTROL paragraph of the same program.

(2) More than one SAME clause may be included in the program, subject to the following restrictions:

a. A file-name must not appear in more than one SAME AREA clause.

b. A file-name must not appear in more than one SAME RECORD AREA clause.

(3) The files referenced in the SAME AREA or SAME RECORD AREA clause need not all have the same

organization or access.

(4) SORT and SORT-MERGE are equivalent.

(5) A file-name that represents a sort or merge file must not appear in the SAME clause unless the SORT,

SORT-MERGE, or RECORD phrase is used, i.e. it may not appear in a SAME AREA clause.

(6) filename-1 and filename-2 may not reference external file connectors.

E.19.4 General Rules

(1) The SAME AREA clause is for documentation purposes only. We recommend that you remove them or

make them comment lines.

(2) The SAME RECORD AREA clause specifies that two or more files referenced by file-name-1, file-name-2

are to use the same memory area for processing of the current logical record. All of these files may be in the open

mode at the same time. A logical record in the SAME RECORD AREA is considered as a logical record of each file

open in the output mode whose file-name appears in this SAME RECORD AREA clause and of the most recently

read file open in the input mode whose file-name appears an this SAME RECORD AREA clause. This is equivalent

to an implicit redefinition of the area, i.e., records are aligned on the left-most character position.

(3) If the SAME SORT AREA or SAME SORT-MERGE AREA is used, at least one of the file-names must

represent a sort or merge file. The SAME SORT AREA and SAME SORT-MERGE AREA clause is for

documentation purposes only. We recommend that you remove them or make them comment lines.

Interactive COBOL Language Reference & Developer’s Guide - Part One

116

DATA DIVISION (Concepts)

117

V. DATA DIVISION

A. General Description

The Data Division describes the data that is to be processed by the object program. The Data Division is optional in

a COBOL source program.

B. Concepts

To make data as computer-independent as possible, the characteristics or properties of the data are described in

relation to a standard data format rather than an equipment-oriented format. This standard data format is oriented to

general data processing applications and uses the decimal system to represent numbers (regardless of the radix used

by the computer) and all characters of the COBOL character set to describe nonnumeric data items.

B.1. Logical Record Concept

In order to separate the logical characteristics of data from the physical characteristics of the data storage media,

separate clauses or phrases are used. The following paragraphs discuss the characteristics of files.

B.1.1 Physical Aspects of a File

The physical aspects of a file describe the data as it appears on the input or output media and includes the means by

which the file can be identified.

B.1.2 Conceptual Characteristics of a File

The conceptual characteristics of a file are the explicit definition of each logical entity within the file itself. In a

COBOL program, the input or output statements refer to one logical record.

A COBOL logical record is a group of related information, uniquely identifiable, and treated as a unit,

In this document, references to records mean references to logical records.

The concept of a logical record is not restricted to file data but is carried over into the definition or working storage.

Thus, working storage is grouped into logical records and defined by a series of record description entries.

B.1.3 Record Concepts

The record description consists of a set of data description entries which describe the characteristics of a particular

record. Each data description entry consists of a level-number followed by a data-name, if required, followed by a

series of independent clauses, as required.

B.2. Concept of Levels

A level concept is inherent in the structure of a logical record. This concept arises from the need to specify

subdivision of a record for the purpose of data reference. Once a subdivision has been specified, it may be further

subdivided to permit more detailed data referral.

The most basic subdivisions of a record, that is, those not further subdivided, are called elementary items;

consequently, a record is said to consist of a sequence of elementary items, or the record itself may be an elementary

item.

Interactive COBOL Language Reference & Developer’s Guide - Part One

118

In order to refer to a set of elementary items, the elementary items ate combined into groups. Each group consists of

a named sequence of one or more elementary items. Groups, in turn, may be combined into groups of two or more

groups, etc. Thus, an elementary item may belong to more than one group.

B.2.1 Level-Numbers

A system of level-numbers shows the organization of elementary items and group items. Since records are the most

inclusive data items, level-numbers for records start at 01. Less inclusive data items are assigned higher (not

necessarily successive) level-numbers not greater in value than 49. There are special level-numbers, 66, 77, and 88,

which are exceptions to this rule (see below). Separate entries are written in the source program for each

level-number used.

A group includes all group and elementary items following it until a level-number less than or equal to the

level-number of that group is encountered. All items which are immediately subordinate to a given group item must

be described using identical level-numbers greater than the level-number used to describe that group item.

Three types of entries exist for which there is no true concept of level. These are:

(1) Entries that specify elementary items or groups introduced by a RENAMES clause. Entries describing items

by means of RENAMES clauses for the purpose of re-grouping data items have been assigned the special

level-number 66.

(2) Entries that specify noncontiguous working storage and linkage data items. Entries that specify

noncontiguous data items, which are not subdivisions of other items, and are not, themselves, subdivided, have been

assigned the special level-number 77.

(3) Entries that specify condition-names. Entries that specify condition-names, to be associated with particular

values of a conditional variable, have been assigned the special level-number 88.

B.3. Concept of Class and Category of Data

Every elementary data item, every literal, and every identifier has a class and a category. The class and category of a

data item are defined by its picture character-string, by the BLANK WHEN ZERO clause, or by its usage. The class

and category of an identifier are the class and category of the unique data item referenced by that identifier, as

defined in the section on identifiers on page 127. The class and category of a literal are defined in the section on

literals beginning on page 43. The following table depicts the relationship of the class and categories of data items.

The class and category of a group item is alphanumeric.

(ISQL) The class and category of an item with usage CHARACTER is alphanumeric; and the class and category of

an item with usage INTEGER, SMALLINT, or NUMERIC is numeric.

LEVEL OF ITEM CLASS CATEGORY

Elementary Alphabetic
 Numeric
 Alphanumeric
 "
 "
 Index
 Date-Time**
 "
 "
 Interval**
 "
 Indicator**

 Alphabetic
 Numeric
 Numeric edited
 Alphanumeric edited
 Alphanumeric
 Index
 Date**
 Time**
 Timestamp**
 Year-to-Month**
 Day-to-Time**
 Indicator**

Nonelementary
(group)

 Alphanumeric Alphanumeric

** ISQL only ** ISQL only

TABLE 2. Relationship of the Class and Categories of Data Items

DATA DIVISION - Concepts (Character Representation)

119

B.4. Selection of Character Representation and Radix

The value of a numeric item may be represented in either binary or decimal form depending on the equipment. In

addition there are several ways of expressing decimal. Since these representations are actually combinations of bits,

they are commonly called binary-coded decimal forms. The selection of radix is generally dependent upon the

arithmetic capability of the computer. If more than one arithmetic radix is provided, the selection is dependent upon

the specification of the USAGE clause.

The size of an elementary data item or a group item is the number of characters in standard data format of the item.

Synchronization and usage may cause a difference between this size and that required for internal representation.

B.5. Algebraic Signs

Algebraic signs fall into two categories: operational signs, which are associated with signed numeric data items and

signed numeric literals to indicate their algebraic properties; and editing signs, which appear, for example on edited

reports to identify the sign of the item.

The SIGN clause permits the programmer to state explicitly the location of the operational sign. This clause is

optional; if it is not used, operational signs will be represented as defined by ICOBOL. See The USAGE clause,

page 189, 192, 226.

Editing signs are inserted into a data item through the use of the sign control symbols of the PICTURE clause.

B.6. Standard Alignment Rules

The standard rules for positioning data within an elementary item depend on the category of the receiving item.

These rules are:

(1) If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved to the receiving digit positions with zero fill or

truncation on either end as required.

b. When an assumed decimal point is not explicitly specified, the data item is treated as if it has an assumed

decimal point immediately following its right-most digit and is aligned as in paragraph 1a.

(2) If the receiving data item is a numeric edited data item, the data moved to the edited data item is aligned by

decimal point with zero fill or truncation at either end as required within the receiving character positions of the data

item, except where editing requirements cause replacement of the leading zeros.

(3) If the receiving data item is alphanumeric (other than a numeric edited data item), alphanumeric edited, or

alphabetic, the sending data is moved to the receiving character positions and aligned at the left-most character

position in the data item with space fill or truncation to the right, as required.

If the JUSTIFIED clause is specified for the receiving item, these standard rules are modified.

(4) (ISQL) If the receiving data item is an interval, the data is aligned by the fields that compose the interval

with re-computation of high-order fields or truncation of low order fields as necessary. With regard to fractional

seconds, the seconds and fractional seconds are treated as a standard numeric data item with regard to alignment.

For example, moving INTERVAL “48:12:13.1234" HOUR TO SECOND interval to INTERVAL DAY TO

MINUTE will result in the value INTERVAL “2 0:12" DAY TO MINUTE, where the high-order is re-computed and

the low-order is truncated.

Interactive COBOL Language Reference & Developer’s Guide - Part One

120

B.7. Item Alignment for Increased Object-Code Efficiency

Some computer memories are organized in such a way that there are natural addressing boundaries in the computer

memory (e.g., word boundaries, half-word boundaries, byte boundaries). The way in which data is stored is

determined by the object program, and need not respect these natural boundaries.

However, certain uses of data (e.g., in arithmetic operations or in subscripting) may be facilitated if the data is stored

so as to be aligned on these natural boundaries. Specifically, additional machine operations in the object program

may be required for the accessing and storage of data if portions of two or more data items appear between adjacent

natural boundaries, or if certain natural boundaries bifurcate a single data item.

Data items which are aligned on these natural boundaries in such a way as to avoid such additional machine

operations are defined to be synchronized.

Synchronization can be accomplished in two ways:

(1) By use of the SYNCHRONIZED clause.

(2) By recognizing the appropriate natural boundaries and organizing the data suitably without the use of the

SYNCHRONIZED clause.

ICOBOL treats the SYNCHRONIZED clause as documentation. However, it aligns each 77 and 01 level item on an

even byte address. (This default alignment can be altered with the -B compiler switch to select 1, 2, or 4 byte

alignment.)

B.8. Table Handling

Tables of data are common components of business data processing problems. Although the repeating items that

make up a table could be otherwise described by a series of separate data description entries all having the same

level-number and all subordinate to the same group item, there are two reasons why this approach is not satisfactory.

First, from a documentation standpoint, the underlying homogeneity of the items would not be readily apparent; and

second, the problem of making available an individual element of such a table would be severe when there is a

decision as to which element is to be made available at object time.

Tables of data items are defined in COBOL by including the OCCURS clause in their data description entries. This

clause specifies that the item is to be repeated as many times as stated. The item is considered to be a table element

and its name and description apply to each repetition or occurrence. Since each occurrence of a table element does

not have assigned to it a unique data-name, reference to a desired occurrence may be made only by specifying the

data-name of the table element together with the occurrence number of the desired table element. The occurrence

number is known as a subscript.

The number of occurrences of a table element may be specified to be fixed or variable.

(ISQL) An SQL table is very similar to a simple two-dimensional data table in COBOL. It can be defined quite

simply as one or more columns and zero or more rows with each row containing one elementary value for each

column.

DATA DIVISION - Concepts (Table Handling)

121

01 TABLE-1.
02 TABLE-ELEMENT OCCURS 20 TIMES.

03 DOG...
03 FOX...

02 TABLE-1.
 03 TABLE-ELEMENT OCCURS 20 TIMES.
 04 DOG OCCURS 5 TIMES.

 05 EASY...
 05 FOX...

Example 9A:

01 ABLE.
 02 BAKER...
 02 CHARLIE OCCURS 20 TIMES...
 02 DOG...

Example 9B:

01 ABLE.
 02 BAKER OCCURS 20 TIMES...
 02 CHARLIE...
 02 DOG OCCURS 5 TIMES...

B.8.1 Table Definition

To define a one-dimensional table, the programmer uses an OCCURS clause as part of the data description of the

table element, but the OCCURS clause must not appear in the description of group items which contain the table

element. The following example shows a one-dimensional table defined by the item TABLE-ELEMENT.

EXAMPLE 7. Definition for a one-dimensional table

In the next example, TABLE-ELEMENT defines a one-dimensional table, but DOG does not since there is an

OCCURS clause in the description of the group item (TABLE-ELEMENT) which contains DOG.

EXAMPLE 8. Another one-dimensional table

In both of the two previous examples, the complete set of occurrences of TABLE-ELEMENT has been assigned the

name TABLE-1. However, it is not necessary to give a group name to the table unless it is desired to refer to the

complete table as a group item.

None of the three one-dimensional tables which appear in the following two examples has a group name.

EXAMPLE 9. Three one-dimensional tables without group names

Defining a one-dimensional table within each occurrence of an element of another one-dimensional table gives rise

to a two-dimensional table. To define a two-dimensional table, then, an OCCURS clause must appear in the data

description of the element of the table, and in the description of only one group item which contains that table

element. Thus, in the next example, DOG is an element of a two-dimensional table; it occurs 5 times within each

element of the item BAKER which itself occurs 20 times. BAKER is an element of a one dimensional table.

Interactive COBOL Language Reference & Developer’s Guide - Part One

122

01 ABLE.
 02 BAKER OCCURS 20 TIMES...

03 CHARLIE...
03 DOG OCCURS 5 TIMES...

01 ABLE.
 02 BAKER OCCURS 20 TIMES...

03 CHARLIE...
03 DOG OCCURS 5 TIMES...

Invalid (DOG needs 2 subscripts):

DISPLAY BAKER(4) CHARLIE(4) DOG(4).

Valid:
DISPLAY BAKER(4) CHARLIE(4) DOG(5,4).

EXAMPLE 10. Definition for a two-dimensional table

In the general case, to define an n-dimensional table, the OCCURS clause should appear in the data description of

the element of the table and in the descriptions of (n - 1) group items which contain the element.

B.8.2 Initial Values of Tables

In the Working-Storage Section, initial values of elements within tables are specified in one of the following ways:

(1) The table may be described as a series of separate data description entries all subordinate to the same group

item, each of which specifies the value of an element, or part of an element, of the table. In defining the record and

its elements, any data description clause (USAGE, PICTURE, etc.) may be used to complete the definition, where

required. The hierarchical structure of the table is then shown by use of the REDEFINES entry and its associated

subordinate entries. The subordinate entries, following the REDEFINES entry, which are repeated due to OCCURS

clauses, must not contain VALUE clauses.

(2) All the dimensions of a table may be initialized by associating the VALUE clause with the description of the

entry defining the entire table. The lower level entries will show the hierarchical structure of the table; lower level

entries must not contain VALUE clauses.

(3) The value of selected table elements may be specified using VALUE clauses.

B.8.3 References to Table Items

Whenever the user references a table element or a condition-name associated with a table element, the reference

must indicate which occurrence of the element is intended. For access to a one-dimensional table the occurrence

number of the desired element provides complete information. For tables of more than one dimension, an

occurrence number must be supplied for each dimension of the table. In the previous example, then, a reference to

the fourth BAKER or the fourth CHARLIE would be complete, whereas a reference to the fourth DOG would not.

To reference DOG, which is an element of a two-dimensional table, the user must reference, for example, the fourth

DOG in the fifth BAKER.

EXAMPLE 11. Referencing single- and multi-dimensional table elements

DATA DIVISION - Concepts (Table Handling)

123

B.8.4 Subscripting

Occurrence numbers are specified by appending one or more subscripts to the data-name.

The subscript can be represented either by an integer, a data-name which references an integer numeric elementary

item, or an index-name associated with the table. A data-name or index-name may be followed by either the operator

+ or the operator - and an integer, which is used as an increment or decrement, respectively. It is permissible to mix

integers, data-names, and index-names. In addition to these standard subscripting options, ICOBOL allows any

arithmetic expression which evaluates to a positive integer to be used as a subscript.

The subscripts, enclosed in parentheses, are written immediately following any qualification for the name of the table

element. The number of subscripts in such a reference must equal the number of dimensions in the table whose

element is being referenced. That is, there must be a subscript for each OCCURS clause in the hierarchy containing

the data-name including the data-name itself.

When more than one subscript is required, they are written in the order of successively less inclusive dimensions of

the data organization. If a multi-dimensional table is thought of as a series of nested tables and the most inclusive or

outermost table in the nest is considered to be the major table with the innermost or least inclusive table being the

minor table, the subscripts are written from left to right in the order major, intermediate, and minor.

A reference to an item must not be subscripted if the item is not a table element or an item or condition-name within

a table element.

The lowest permissible occurrence number is 1. The highest permissible occurrence number in any particular case is

the maximum number of occurrences of the item as specified in the OCCURS clause.

B.8.4.1 Subscripting Using Integers or Data-Names

When an integer or data-name is used to represent a subscript, it may be used to reference items within different

tables. These tables need not have elements of the same size. The same integer or data-name may appear as the only

subscript with one item and as one of two or more subscripts with another item.

B.8.4.2 Subscripting Using Index-Names

In order to facilitate such operations as table searching and manipulating specific items, a technique called indexing

is available. To use this technique, the programmer assigns one or more index-names to an item whose data

description entry contains an OCCURS clause. An index associated with an index-name acts as a subscript, and its

value corresponds to an occurrence number for the item to which the index-name is associated.

The INDEXED BY phrase, by which the index-name is identified and associated with its table, is an optional part of

the OCCURS clause. There is no separate entry to describe the index associated with index-name since its definition

is completely hardware oriented. At object time the contents of the index correspond to an occurrence number for

that specific dimension of the table with which the index is associated. The initial value of an index at object time is

undefined, and the index must be initialized before use. The initial value of an index is assigned with the PERFORM

statement with the VARYING phrase, the SEARCH statement with the ALL phrase, or the SET statement.

The use of an arithmetic-expression or data-name as a subscript referencing a table element or an item within a table

element does not cause the alteration of any index associated with that table.

An index-name can be used to reference only the table to which it is associated via the INDEXED BY phrase.

Relative indexing is an additional option for making references to a table element or to an item within a table

element. When the name of a table element is followed by a subscript of the form (index-name + or - integer), the

occurrence number required to complete the reference is the same as if index-name were set up or down by integer

via the SET statement before the reference. The use of relative indexing does not cause the object program to alter

the value of the index.

Interactive COBOL Language Reference & Developer’s Guide - Part One

124

Consider the following data definition:

02 XCOUNTER...

02 BAKER OCCURS 20 TIMES INDEXED BY BAKER-INDEX...
 03 CHARLIE...
 03 DOG OCCURS 5 TIMES...

04 EASY
88 MAX VALUE IS...
04 FOX...
 05 GEORGE OCCURS 10 TIMES...

06 HARRY...
06 JIM...

The number of subscripts required to reference various table
elements is as follows, with an example for each:

1 subscript: BAKER(20)
CHARLIE(12)

2 subscripts: DOG(20,5)
EASY(5,5)
MAX(11,3)
FOX(5,1)

3 subscripts: GEORGE(20,5,10)
HARRY(5,5,5)
JIM(12,1,1)

The value of an index can be made accessible to an object program by storing the value in an index data item. Index

data items are described in the program by a data description entry containing a USAGE IS INDEX clause. The

index value is moved to the index data item by the execution of a SET statement.

The following example illustrates the subscripts needed for various elements in an example table.

EXAMPLE 12. Referencing elements in 1-, 2-, and 3-dimensional tables

B.9. Uniqueness of Reference

The purpose of every user-defined name in a COBOL program is to name a resource that is to be used in solving a

data processing problem. (See User-defined words, on Page 40.) In order to use a resource, a statement in a

COBOL program must contain a reference that uniquely identifies the resource. In order to ensure uniqueness of

reference, a user-defined name may be qualified, subscripted , or reference modified, as described in the following

paragraphs.

When the same name has been assigned in separate programs to two or more occurrences of a resource of a given

type, and when qualification by itself does not allow the reference in one of those programs to differentiate between

the two identically named resources, then certain conventions which limit the scope of names apply. These

conventions ensure that the resource identified is that described in the program containing the reference.

Unless otherwise specified by the rules for a statement, any subscripting and reference modification are evaluated

only once as the first operation of the execution of that statement.

B.9.1 Qualification

Every user-defined name explicitly referenced in a COBOL source program must be uniquely referenced because

either:

(1) No other name has the identical spelling and hyphenation.

(2) It is unique within the context of a REDEFINES clause.

DATA DIVISION - Concepts (Uniqueness of Reference)

125

(3) The name exists within a hierarchy of names such that reference to the name can be made unique by

mentioning one or more of the higher level names in the hierarchy.

These higher level names are called qualifiers and this process that specifies uniqueness is called qualification.

Identical user-defined names may appear in a source program; however, uniqueness must then be established through

qualification for each user-defined name explicitly referenced, except in the case of redefinition. All available

qualifiers need not be specified so long as uniqueness is established. The LINAGE-COUNTER identifier requires

qualification to provide uniqueness of reference whenever a source program would result in more than one

occurrence of the identifier.

Regardless of the above, the same data-name must not be used as the name of an external record and as the name of

any other external data item described in any program contained within or containing the program which describes

that external data record.

The general formats for qualification are:

Format 1:

Format 2:

paragraph-name section-name

Format 3:

LINAGE-COUNTER file-name

The rules for qualification are as follows:

(1) For each non-unique user-defined name that is explicitly referenced, uniqueness must be established through

a sequence of qualifiers which precludes any ambiguity of reference.

(2) A name can be qualified even though it does not need qualification; if there is more than one combination of

qualifiers that ensures uniqueness, then any such set can be used.

(3) IN and OF are logically equivalent.

(4) In Format 1, each qualifier must be the name associated with a level indicator, the name of a group item to

which the item being qualified is subordinate, or the name of the conditional variable with which the condition-name

being qualified is associated. Qualifiers are specified in the order of successively more inclusive levels in the

hierarchy.

(5) In Format 1, data-name-1 or data-name-2 may be a record-name.

(6) If explicitly referenced, a paragraph-name must not be duplicated within a section. When a

paragraph-name is qualified by a section-name, the word SECTION must not appear. A paragraph-name need not

be qualified when referred to from within the same section.

(7) LINAGE-COUNTER must be qualified each time it is referenced if more than one file description entry

containing a LINAGE clause has been specified in the source program.

Interactive COBOL Language Reference & Developer’s Guide - Part One

126

B.9.2 Subscripting

B.9.2.1 Function

Subscripts are used when reference is made to an individual element within a table of like elements that have not

been assigned individual data-names.

B.9.2.2 General Format

B.9.2.3 Syntax Rules

(1) The data description entry containing data-name-1 or the data-name associated with condition-name must

contain an OCCURS clause or must be subordinate to a data description entry which contains an OCCURS clause.

(2) Except as defined in syntax rule 4, when a reference is made to a table element, the number of subscripts

must equal the number of OCCURS clauses in the description of the table element being referenced. When more

than one subscript is required, the subscripts are written in the order of successively less inclusive dimensions of the

table.

(3) Index-name must correspond to a data description entry in the hierarchy of the table being referenced which

contains an INDEXED BY phrase specifying that index-name.

(4) Each table element reference must be subscripted except when such reference appears:

a) in a REDEFINES clause.

b) as subject of a SEARCH statement,

c) in the KEY IS phrase of an OCCURS clause.

(5) Data-name-2 may be qualified and must be a numeric elementary item representing an integer.

(6) Integer-1 may be signed and, if signed, it must be positive.

(7) Arithmetic-expression is any arithmetic expression that evaluates to a positive integer not more than the

number of occurrences specified in the OCCURS clause(s) associated with the table element being referenced.

(Note that all other forms are special cases of the arithmetic expression and are presented only for clarity.)

B.9.2.4 General Rules

(1) The value of the subscript must be a positive integer. The lowest possible occurrence number represented

by a subscript is 1. The first element of any given dimension of a table is referenced by an occurrence number of 1.

Each successive element within that dimension of the table is referenced by occurrence numbers of 2, 3, The

highest permissible occurrence number for any given dimension of the table is the maximum number of occurrences

of the item as specified in the associated OCCURS clause.

(2) The value of the index referenced by index-name corresponds to the occurrence number of an element in the

associated table.

DATA DIVISION - Concepts (Uniqueness of Reference)

127

(3) The value of the index referenced by index-name must be initialized before it is used as a subscript. An

index may be given an initial value by either a PERFORM statement with the VARYING phrase, or a SET

statement. An index may be modified only by the PERFORM and SET statements.

(4) If integer-2 is specified, the value of the subscript is determined by incrementing by the value of integer-2

(when the operator + is used) or by decrementing by the value of integer-2 (when the operator - is used) either the

occurrence number represented by the value of the index referenced by index-name or the value of the data item

referenced by data-name-2.

(5) If arithmetic-expression is specified, the value of the subscript is determined by evaluating the expression

and using this result to specify the occurrence number. This value must evaluate to a positive integer between 1 and

the specified maximum for the associated OCCURS clause.

B.9.3 Identifiers

B.9.3.1 Identifier

An identifier is a sequence of character-strings and separators used to reference a data item uniquely.

B.9.3.1.1 General format

Format 1 (function-identifier):

function-identifier-1

Format 2 (qualified-data-name-with-subscripts):

qualified-data-name-with-subscripts-1

Format 3 (reference-modification):

identifier-1 reference-modifier-1

Format 4 (predefined-address):

NULL

Format 5 (address-identifier):

ADDRESS OF identifier-1

Format 6 (qualified-linage-counter):

LINAGE-COUNTER filename-1

Format 7 (sqlstate-identifier):

SQLSTATE

Interactive COBOL Language Reference & Developer’s Guide - Part One

128

Format 8 (length-identifier):

LENGTH OF identifier-1

B.9.3.1.2 Syntax rules

All Formats

(1) Identifier is defined recursively: whenever the format for an identifier allows another identifier to be

specified, that other identifier may be any of the formats for an identifier, including the one being defined provided

the rules for each format are followed.

Format 1

(2) Function-identifier is defined on page 129.

Format 2

(3) Qualified-data-name-with-subscripts is defined on page 126, under Subscripting.

Format 3

(4) Reference-modification is defined on page 130.

Format 4

(5) Predefined-address is defined on page 131. This format is not available under VXCOBOL.

Format 5

(6) Address-identifier is defined on page 132. This format is not available under VXCOBOL.

Format 6

(7) Qualified-linage-counter is defined on page 133.

Format 7

(8) (ISQL) Sqlstate-identifier is defined on page 133.

Format 8

(9) Length-identifier is defined on page 132.

B.9.3.1.3 General rules

(1) The order in which the various components of an identifier are applied is as follows, with the first to be

applied listed first:

a. a qualified-data-name-with-subscript; a function-identifier without arguments; a qualified-linage-

counter, a sqlstate-identifier or a predefined address are atomic identifiers

b. an address-identifier or length-identifier applies to an identifier on the right

c. a function-identifier with arguments applies the function-name on the left to a list of arguments enclosed

DATA DIVISION - Concepts (Uniqueness of Reference)

129

in parentheses on the right

d. a reference-modifier applies to the identifier on the left.

B.9.3.2 Function-identifier

A function-identifier references the unique data item that results from the evaluation of a function.

B.9.3.2.1 General format

FUNCTION { intrinsic-function-name-1 } [([argument-1]...)]

B.9.3.2.2 Syntax rules

(1) A function-identifier shall not be specified as a receiving operand.

(2) The word FUNCTION is required.

(3) If a function's definition permits arguments and a left parenthesis immediately follows intrinsic-function-

name-1, the left parenthesis is always treated as the left parenthesis of that function's arguments.

NOTE — For a function that may be referenced either with or without
arguments, such as the RANDOM function, careful coding is necessary to
ensure correct interpretation.

For example, in the following

FUNCTION MAX (FUNCTION RANDOM (A) B)

'A' is treated as an argument to the RANDOM function. If 'A' is instead
meant to be a second argument to the MAX function, different coding is
necessary - either:

FUNCTION MAX ((FUNCTION RANDOM) (A) B)
or

FUNCTION MAX (FUNCTION RANDOM () A B)
or

FUNCTION MAX (FUNCTION RANDOM A B).

EXAMPLE 13. Referencing an intrinsic function with and without arguments

(4) Argument-1 shall be an identifier, a literal, or an arithmetic expression. Specific rules governing the

number, class, and category of argument-1 are given for intrinsic functions in the definition of that intrinsic function.

(5) A numeric function shall not be specified where an integer operand is required, even though a particular

reference of the numeric function might yield an integer value.

(6) An integer function other than the integer form of the ABS function shall not be specified where an

unsigned integer is required.

B.9.3.2.3 General rules

(1) A function-identifier references a temporary data item whose value is determined when the function is

referenced at runtime.

Interactive COBOL Language Reference & Developer’s Guide - Part One

130

If intrinsic-function-name-1 is specified, the temporary data item is an elementary data item whose description and

category are specified by the definition of that intrinsic function. The Intrinsic Functions section begins on Page

579.

(2) At the time reference is made to a function, its arguments are evaluated individually in the order specified in

the list of arguments, from left to right. An argument being evaluated may itself be a function-identifier or may be an

expression containing function-identifiers. There is no restriction preventing the function referenced in evaluating an

argument from being the same function as that for which the argument is specified. Additional rules for intrinsic

functions are given in the definitions for each intrinsic function, beginning on Page 579.

(3) If a required argument is omitted, the ICOBOL compiler gives an error. There is no runtime error for a

missing argument.

(4) Evaluation of the function-identifier proceeds as follows:

a. Each argument-1 is evaluated at the beginning of the evaluation of the function-identifier. If an

exception condition exists, no function is activated. If an exception condition does not exist, the values of argument-

1 are made available to the activated function at the time control is transferred to that function.

b. he function specified by the function-identifier is made available for execution and control is transferred

to the activated function in a manner consistent with the call convention for the function.

c. After control is returned from the activated function, any exception condition (e.g. SIZE ERROR) is

propagated from the function and execution continues.

B.9.3.3 Reference-modifier

Reference modification defines a unique data item by specifying an identifier, a leftmost position, and a length.

B.9.3.3.1 General format

identifier-1 (leftmost-position : [length])

B.9.3.3.2 Syntax rules

(1) Identifier-1 shall reference a data item that is an alphanumeric, elementary item, a group item, or a numeric

item with USAGE DISPLAY..

(2) If identifier-1 is a function-identifier, it shall reference an alphanumeric function.

(3) Identifier-1 shall not be a reference-modification format identifier.

(4) Leftmost-position and length shall be arithmetic expressions.

(5) Unless otherwise specified, reference modification is allowed anywhere an identifier referencing a data item

of class alphanumeric is permitted.

B.9.3.3.3 General rules

(1) Leftmost-position shall represent an alphanumeric position.

(2) If the data item referenced by identifier-1 is explicitly or implicitly described as usage DISPLAY and its

category is other than alphanumeric, it shall be operated upon for purposes of reference modification as if it were

DATA DIVISION - Concepts (Uniqueness of Reference)

131

redefined as a data item of class and category alphanumeric of the same size as the data item referenced by identifier-

1.

(3) Each position of the data item referenced by identifier-1 is assigned an ordinal number incrementing by one

from the leftmost position to the rightmost position. The leftmost position is assigned the ordinal number one. If the

data description entry for identifier-1 contains a SIGN IS SEPARATE clause, the sign position is assigned an ordinal

number within that data item.

(4) Reference modification creates a unique data item that is a subset of the data item referenced by identifier-1.

This unique data item is defined as follows:

a. Positions used in evaluation are character positions.

b. The evaluation of leftmost-position specifies the ordinal position of the leftmost character of the unique

data item in relation to the leftmost character of the data item referenced by identifier-1. Evaluation of leftmost-

position shall result in a positive nonzero integer less than or equal to the number of positions in the data item

referenced by identifier-1.

c. The evaluation of length specifies the number of character positions of the data item to be used in the

operation. The evaluation of length shall result in a positive nonzero integer. The sum of leftmost-position and length

minus the value one shall be less than or equal to the number of positions in the data item referenced by identifier-1.

If length is not specified, the unique data item extends from and includes the position identified by leftmost-position

up to and including the rightmost position of the data item referenced by identifier-1.

If the evaluation of leftmost-position or length results in a non-integer value or a value that references a position

outside the area of identifier-1, the ICOBOL runtime system will halt the program executing with an appropriate

error.

(5) The unique data item is considered to be an elementary data item without the JUSTIFIED clause. The

unique data item has the same class, category, and usage as that defined for identifier-1, except that the categories

numeric, numeric-edited, and alphanumeric-edited are considered class and category alphanumeric.

B.9.3.4 Predefined-address

NULL is a predefined address of class pointer.

B.9.3.4.1 General Format

NULL

B.9.3.4.2 Syntax Rules

(1) This format may be used only as a sending operand in a SET statement, in the VALUE clause of an item

with usage POINTER, or in a data-pointer relation-condition.

B.9.3.4.3 General Rules

(1) The predefined address NULL references a data item of category data-pointer that contains the null address;

i.e., it does not represent the address of any data item.

Interactive COBOL Language Reference & Developer’s Guide - Part One

132

B.9.3.5 Data-address-identifier

A data-address-identifier references the unique data item that contains the address of a data item.

B.9.3.5.1 General Format

ADDRESS OF identifier-1

B.9.3.5.2 Syntax Rules

(1) Identifier-1 shall reference a data item defined in the file section, working-storage section, or linkage

section.

(2) This identifier format shall not be specified as a receiving operand in a SET statement or in a data-pointer

relation condition.

B.9.3.5.3 General Rules

(1) Data-address-identifier creates a unique data item of class pointer and category data-pointer that contains

the address of identifier-1.

B.9.3.6 Length-identifier

A length-identifier references the unique data item that contains the length of a data item.

B.9.3.6.1 General Format

LENGTH OF identifier-1

B.9.3.6.2 Syntax Rules

(1) Identifier-1 shall reference a data item defined in the file section, working-storage section, or linkage

section.

(2) This identifier format shall not be specified as a receiving operand in a SET statement or in a data-pointer

relation condition.

B.9.3.6.3 General Rules

(1) LENGTH OF references a temporary unsigned integer data item of class and category numeric whose size is

equal to the number of character positions in identifier-1.

DATA DIVISION - Concepts (Uniqueness of Reference)

133

B.9.3.7 LINAGE-COUNTER

The LINAGE-COUNTER identifier is generated by the presence of a LINAGE clause in a file description entry.

B.9.3.7.1 General format

LINAGE-COUNTER filename-1

B.9.3.7.2 Syntax rules

(1) LINAGE-COUNTER shall only be referenced in procedure division statements.

(2) The LINAGE-COUNTER identifier shall not be referenced as a receiving operand or as an operand in the

USING list of a CALL or CALL PROGRAM statement..

(3) Qualification requirements for LINAGE-COUNTER are defined on Page 124, under Qualification.

B.9.3.7.3 General rules

(1) LINAGE-COUNTER references a temporary unsigned integer data item of class and category numeric

whose size is equal to the page size specified in the LINAGE clause.

(2) The semantics of the LINAGE-COUNTER identifier is described on Page 153, under the LINAGE clause

General Rules.

B.9.3.8 SQLSTATE (ISQL)

The SQLSTATE identifier is generated by the presence of an ISQL feature-set. Conceptually it is similar to a

FILE STATUS item.

B.9.3.8.1 General format

SQLSTATE

B.9.3.8.2 Syntax rules

(1) SQLSTATE shall only be referenced in procedure division statements.

(2) The SQLSTATE identifier shall not be referenced as a receiving operand or as an operand in the USING list

of a CALL or CALL PROGRAM statement.

(3) The SQLSTATE identifier shall not be subscripted, but it may be reference modified.

B.9.3.8.3 General rules

(1) SQLSTATE references a predefined data item of class and category alphanumeric whose size is exactly five

characters and whose scope is the run unit.

(2) The value of the SQLSTATE data item is initialized to “00000" when the run unit is initialized.

Interactive COBOL Language Reference & Developer’s Guide - Part One

134

(3) The value of the SQLSTATE data item is modified by the execution of the following ISQL-1 statements:

CONNECT, DISCONNECT, EXECUTE, FETCH, PREPARE, and SET CONNECTION.

(4) The value of the SQLSTATE data item is defined to be composed of a two-character class field followed by

a three-character subclass field. Some common class field values are:

00 - Successful completion

01 - Warning

02 - Data not found

07 - Dynamic SQL error

08 - Connection error

0A - Feature not supported

21 - Cardinality violation

22 - Data exception

23 - Constraint violation

24 - Invalid cursor

25 - Invalid transaction state

26 - Invalid SQL identifier

40 - Rollback

42 - Syntax or access error

44 - Check option violation

HY -

IC - Generated by ICOBOL ISQL driver

IM - Generated by ODBC Driver Manager

(5) Some common values and their meaning:

00000 “Success”

From runtime/ISQL:

01000 “General Warning: The statement identifier does not exist"

01503 “The number of result columns is larger than the number of INTO items

02000 “No data was affected by the operation"

07001 “More data is needed"

07001 “The number of USING items is not the same as the number of parameter markers"

07004 “The USING clause is required for dynamic parameters"

07006 “Restricted data type attribute violation"

07500 “Numeric parameter conversion error"

07501 “Date parameter conversion error"

07502 “Time parameter conversion error"

07503 “Timestamp parameter conversion error"

07504 “Interval parameter conversion error"

08001 "Client unable to establish connection"

08002 "Connection name in use"

08003 "Connection does not exist"

08004 "Server rejected connection"

08S01 "Communication link failure"

22002 “Indicator variable required but not supplied"

22003 “Numeric value out of range"

22007 “Invalid datetime format"

22015 “Interval field overflow"

22018 “Invalid character value for cast specification"

24000 “Invalid cursor state"

26501 “The statement identifier does not exist"

28000 "Invalid authorization"

28001 “Authorization failure: ICSQL License could not be opened"

DATA DIVISION - Concepts (Uniqueness of Reference)

135

HY000 "General error"

HY001 "Memory allocation error"

HY004 “Invalid SQL type"

HY009 "Invalid use of null pointer"

HY010 "Invalud sequence error"

HY013 "Memory management error"

 HY090 "Invalid string or buffer length"

IC001 “General error: SQL is not loaded"

IC002 “Unable to load ODBC"

IC003 “Unable to load ODBC symbols"

IC004 “The ISQL subsystem is not properly initialized”

IC005 “Get Diagnostics exception number is out of range"

IC006 “Unable to allocate ODBC environment”

IC007 “Memory allocation error"

IC008 “Internal error"

IC009 “Unexpected Error from ODBC"

IC010 “Invalid Handle error from ODBC"

From driver/driver manager:

01001 “Cursor operation conflict”

01002 “Disconnect error”

01003 “NULL value eliminated in set function”

01004 “String data right truncated”

07002 “COUNT field incorrect”

08001 "Client unable to establish connection"

08002 "Connection name in use"

08003 "Connection does not exist"

08004 "Server rejected connection"

08S01 "Communication link failure"

23000 “Integrity constraint violation”

24000 "Invalid cursor"

25000 “Invalid transaction state”

28000 "Invalid authorization"

42000 “Syntax error or access violation”

HY000 "General error"

HY001 "Memory allocation error"

HY009 "Invalid use of null pointer"

HY010 "Invalud sequence error"

HY013 "Memory management error"

HY090 "Invalid string or buffer length"

HYC00 "Optional feature not implemented"

HYT00 "Timeout expired before the connection was made"

HYT01 "Connection timeout expired before the data source responded"

IM001 "Driver does not support this function"

IM002 “Database not found”

IM003 "Specified driver could not be connected to"

IM004 "Allocate on Environment failed"

IM005 "Allocate on DBC failed"

IM009 "Unable to load translation DLL"

IM010 "Data source name too long"

These are only some messages. The Driver Manager and/or Driver may have many more. Use the GET

DIAGNOSTICS statement to retrieve the text of the messages.

Interactive COBOL Language Reference & Developer’s Guide - Part One

136

B.9.4. Condition-Name

A condition-name identifies a specific value, set of values, or range of values, within a complete set of values that a

data item may assume. The data item itself is called a conditional variable.

Condition-names may be defined in the data division or in the SPECIAL-NAMES paragraph within the environment

division where a condition-name shall be assigned to the on or off status, or both of implementor-defined switches.

A condition-name is used in conditions as an abbreviation for the relation condition; this relation condition posits

that the associated conditional variable is equal to one of the set of values to which that condition-name is assigned.

A condition-name is also used in a SET statement, indicating either that a value is moved to the associated

conditional variable that make the condition-name either ‘true’ or ‘false’, depending on the format of the SET

statement, or that an implementor-defined switch is set to ‘on’ or ‘off’ status.

If explicitly referenced, a condition-name must be unique or be made unique through qualification and/or

subscripting except when the scope of the names conventions by themselves ensure uniqueness of reference.

If qualification is used to make a condition-name unique, the associated conditional variable may be used as the first

qualifier. If qualification is used, the hierarchy of names associated with the conditional variable itself must be used

to make the condition-name unique.

If references to a conditional variable require subscripting, reference to any of its condition-names also requires the

same combination of subscripting.

The format and restrictions on the combined use of qualification and subscripting of condition-names is exactly that

of a Format 2 `identifier' . See page 126 under Subscripting.

In the general format of the chapters that follow, `condition-name' refers to a condition-name qualified or

subscripted, as necessary.

DATA DIVISION (Organization)

137

C. Organization

The Data Division is subdivided into sections. These are the File, Working-Storage, Linkage, and Screen sections.

With the VXCOBOL dialect, there is an additional section: Virtual-Storage.

C.1.1 Function

The File Section defines the structure of data files. Each file is defined by a file description entry and one or more

record description entries, or by a file description entry and one or more report description entries. Record

description entries are written immediately following the file description entry.

The Virtual-Storage Section (VXCOBOL) and the Working-Storage Section describe records and subordinate data

items which are not part of external data files but are developed and processed internally. Also described in these

sections are data items whose values are assigned in the source program and whose values do not change during the

execution of the object program.

The Linkage Section appears in the called program and describes data items that are to be referred to by the calling

program and the called program. Its structure is the same as the Working-Storage Section.

The Screen Section describes various input and output structures called screens that can be used by the ACCEPT and

DISPLAY verbs to present and/or get entire screen of data including literal fields.

C.1.2 General Format

The following gives the general format of the sections in the Data Division, and defines the order of their

presentation in the source program. The VIRTUAL-STORAGE section is available only with the VXCOBOL

dialect.

DATA DIVISION.

[FILE SECTION.

[W ORKING-STORAGE SECTION.

]

[VIRTUAL-STORAGE SECTION. (VXCOBOL only)

]

[LINKAGE SECTION.

]

[SCREEN SECTION.

 [screen-description-entry]...]

Interactive COBOL Language Reference & Developer’s Guide - Part One

138

D. FILE SECTION

The File Section is located in the Data Division of a source program. The File Section defines the structure of data

files and sort files and merge files. Each data file is defined by a file description entry and one or more record

description entries. Each sort or merge file is defined by a sort-merge file description entry and one or more record

description entries. Record description entries are written immediately following the file description entry.

The general format of the File Section is shown below.

FILE SECTION.

D.1. File Description Entry/Sort-Merge Description Entry

In a COBOL program the file description entry (FD entry) represents the highest level of organization in the File

Section. The File Section header is followed by a file description entry consisting of a level indicator (FD), a

file-name, and a series of independent clauses. The clauses of a file description entry (FD entry) specify a number of

attributes of the file. The entry itself is terminated by a period.

In a COBOL program the sort-merge file description entry (SD entry) represents the highest level of organization in

the File Section. The File Section header is followed by a sort-merge file description entry consisting of a level

indicator (SD), a file-name, and a series of independent clauses. The clauses of a sort-merge file description entry

(SD entry) specify the size and the names of the data records associated with a sort file or a merge file. There are no

label procedures which the user can control, and the rules for blocking and internal storage are peculiar to the SORT

and MERGE statements. The entry itself is terminated by a period.

D.1.1 Function

The file description entry furnishes information concerning the physical structure, identification, and record-names

pertaining to a file.

The sort-merge file description entry furnishes information concerning the physical structure and record-names

pertaining to a sort or merge file.

DATA DIVISION - FILE SECTION (FD and SD entry)

139

D.1.2. General Format

Below is the general format with each phrase in alphabetical order since they are order independent.

Sequential File: (ANSI 74 and ANSI 85)

FD file-name [IS EXTERNAL]

d [BLOCK CONTAINS integer [TO integer]]

[CODE-SET IS]

[DATA { data-name }...]d

d [LABEL]

[[LINAGE IS LINES [W ITH FOOTING AT] [LINES AT TOP]

[LINES AT BOTTOM]]

[RECORDING MODE IS] .

Interactive COBOL Language Reference & Developer’s Guide - Part One

140

Sequential File: (VXCOBOL)

FD file-name [IS EXTERNAL]

d [BLOCK CONTAINS integer [TO integer]]

[CODE-SET [IS]]

d [DATA { data-name }...]

d [LABEL]

[[LINAGE IS LINES [W ITH FOOTING AT] [LINES AT TOP]

[LINES AT BOTTOM]]

d [MULTIPLE I-O PROCEDURES]

d [PAD CHARACTER IS]

d [RECORD CONTAINS integer [TO integer] CHARACTERS]

[RECORDING MODE IS

]

d [VALUE OF [OW NER IS identifier] [EXPIRATION DATE IS identifier]

d [SEQUENCE NUMBER IS identifier] [GENERATION NUMBER IS identifier]

d [ACCESSIBILITY IS identifier] [OFFSET IS identifier]

d [VOLUME STATUS IS identifier] [USER VOLUME identifier, ...]

d [USER HEADER identifier, ...]

d [USER TRAILER identifier, ...]] .

DATA DIVISION - FILE SECTION (FD and SD entry)

141

Relative File & Indexed File: (ANSI 74 and ANSI 85)

FD file-name [IS EXTERNAL]

d [BLOCK CONTAINS integer [TO integer]]

d [DATA { data-name }...]

d [LABEL]

Relative File: (VXCOBOL)

FD file-name [IS EXTERNAL]

d [BLOCK CONTAINS integer [TO integer]]

d [DATA { data-name }...]

d [LABEL]

d [PAD CHARACTER IS]

d [RECORD CONTAINS integer [TO integer] CHARACTERS]

[RECORDING MODE IS FIXED] .

Indexed File: (VXCOBOL)

FD file-name [IS EXTERNAL]

d [DATA BLOCK CONTAINS integer [TO integer]]

d [DATA { data-name }...]

d [FEEDBACK IS identifier]

d [MERIT IS identifier]

d [INDEX BLOCK CONTAINS [integer TO] integer CHARACTERS]

d [INDEX NODE SIZE IS integer CHARACTERS]

d [LABEL]

d [RECORD CONTAINS integer [TO integer] CHARACTERS]

[RECORDING MODE IS] .

Interactive COBOL Language Reference & Developer’s Guide - Part One

142

INFOS File: (VXCOBOL)

FD file-name [IS EXTERNAL]

[DATA BLOCK CONTAINS [integer TO] integer]

d [DATA { data-name }...]

[FEEDBACK IS identifier]

d [MERIT IS identifier]

[INDEX BLOCK CONTAINS [integer TO] integer CHARACTERS]

d [INDEX NODE SIZE IS integer CHARACTERS]

d [LABEL]

[PARTIAL RECORD IS identifier]

d [RECORD CONTAINS integer [TO integer] CHARACTERS]

[RECORDING MODE IS VARIABLE [RECORD LENGTH IS identifier]] .

Sort-Merge File: (ANSI 74 and ANSI 85)

SD file-name

d [DATA { data-name }...]

[RECORD CONTAINS integer [TO integer] CHARACTERS] .

Sort-Merge File: (VXCOBOL)

SD file-name

d [BLOCK CONTAINS integer [TO integer]]

d [RECORDING MODE IS FIXED]

d [DATA { data-name }...]

d [RECORD CONTAINS integer [TO integer] CHARACTERS] .

D.1.3 Syntax Rules

(1) The level indicator FD identifies the beginning of a file description entry and must precede file-name.

(2) The level indicator SD identifies the beginning of a sort-merge file description entry and must precede

file-name.

(3) The clauses which follow file-name may appear in any order.

(4) One or more record description entries must follow the file description entry.

(5) One or more record description entries must follow the sort-merge file description entry; however no input-

output statements may be executed for this sort or merge file.

DATA DIVISION - FILE SECTION (Record Description)

143

D.1.4 General Rules

(1) A file description entry associates file-name with a file connector.

(2) The following chart lists the file description clauses for all of the ICOBOL dialects, by file type. It also

indicates which ones are for documentation purposes only. The clauses are presented on the following pages in

alphabetical order, with one exception: INDEX BLOCK is described with DATA BLOCK. Of the “documentation

only” clauses, only BLOCK CONTAINS, DATA RECORD and LABEL RECORD, are included.

File
Description

Clause

ANSI 74 & 85 VXCOBOL

BLOCK CONTAINS Sequential (doc only)
Relative & Indexed (doc only)

Sequential (doc only)
Relative & Indexed (doc only)

CODE-SET Sequential Sequential

DATA BLOCK N/A Indexed (doc only)
INFOS files

DATA RECORD Sequential (doc only)
Relative & Indexed (doc only)

Sequential (doc only)
Relative & Indexed (doc only)

EXTERNAL Sequential
Relative & Indexed

Sequential
Relative & Indexed
INFOS

FEEDBACK N/A Indexed (doc only)
INFOS (doc only)

INDEX BLOCK N/A Indexed (doc only)
INFOS

INDEX NODE N/A Indexed (doc only)
INFOS (doc only)

LABEL RECORD Sequential (doc only)
Relative & Indexed (doc only)

Sequential (doc only)
Relative & Indexed (doc only)
INFOS (doc only)

LINAGE Sequential Sequential

MERIT N/A Indexed & INFOS (doc only)

MULTIPLE N/A Sequential (doc only)

PAD CHARACTER N/A Sequential (doc only)
Relative (doc only)

PARTIAL RECORD N/A INFOS

RECORD Sequential
Relative & Indexed

Sequential (doc only)
Relative & Indexed (doc only)
INFOS (doc only)

RECORDING MODE Sequential Sequential
Relative & Indexed
INFOS

VALUE OF N/A Sequential (doc only)

TABLE 3. File Description Clauses by ICOBOL dialect and file type, noting which are documentation only

D.2. Record Description Structure

A record description consists of a set of data description entries which describe the characteristics of a particular

record. Each data description entry consists of a level-number followed by the data-name or FILLER clause, if

specified, followed by a series of independent clauses as required. A record description may have a hierarchical

structure and therefore the clauses used with an entry may vary considerably, depending upon whether or not it is

followed by subordinate entries. The structure of a record description and the elements allowed in a record

description entry are explained under Concept of Levels on Page 117 and under Data Description Entry on Page 166.

D.3. Initial Values

The initial value of a data item in the File Section is undefined.

Interactive COBOL Language Reference & Developer’s Guide - Part One

144

D.4. BLOCK CONTAINS Clause

D.4.1 Function

The BLOCK CONTAINS clause specifies the size of a physical record.

It is used for documentation purposes only.

D.4.2 General Format

d BLOCK CONTAINS integer-1 [TO integer-2]

D.4.3 General Rules

(1) The BLOCK CONTAINS clause is used for documentation purposes only, although the compiler does make

some simple consistency checks on the values of integer-1 and integer-2.

DATA DIVISION - FILE SECTION (CODE-SET)

145

D.5. CODE-SET Clause

D.5.1 Function

The CODE-SET clause specifies the character code convention used to represent data on the external media.

D.5.2 General Format

CODE-SET [IS]

D.5.3 Syntax Rules

(1) If the CODE-SET clause is specified for a file, all data in that file must be described as USAGE IS

DISPLAY and any signed numeric data must be described with the SIGN IS SEPARATE clause.

(2) The alphabet-name clause referenced by the CODE-SET clause must not specify the literal phrase.

(3) If specified, each id-1 must not be subscripted.

(4) id-1 must appear in a record-description for the associated file-connector, and if more than one id-1 is

specified all must appear within the same record-description.

(5) No two occurrences of id-1 may reference all or part of the same storage area.

D.5.4 General Rules

(1) ASCII, STANDARD-1, and NATIVE are equivalent and all represent the native character set of the

computer. For ICOBOL, this is ASCII. EBCDIC represents the EBCDIC character set.

(2) If the CODE-SET clause is specified:

a. Upon successful execution of an OPEN statement, the character set used to represent the data on the

external media is the one referenced by alphabet-name in the file-description entry associated with the file-name

specified in the OPEN statement.

b. It specifies the algorithm for converting the character set on the external media from/to the native

character set during the execution of an input or output operation. In particular, data is translated from the specified

character to the native character set upon execution of a READ statement, and from the native character set to the

specified character set upon execution of a WRITE or REWRITE statement. Note also that these translations also

occur as part of SORT and MERGE statements when records are read or written pursuant to processing the USING

or GIVING clauses.

c. If the FIELD IS/FIELDS ARE clause appears, the representation and conversion of data is restricted to

the fields referenced by each id-1. Otherwise, the entire data record is affected.

(3) If the CODE-SET is not specified, the native character set is assumed for data on the external media.

(4) If the associated file-connector is an external file connector, all CODE-SET clauses in the run unit which are

associated with that file connector must have the same character set. In addition, if the FIELD IS/FIELDS ARE

Interactive COBOL Language Reference & Developer’s Guide - Part One

146

clause is specified, the number of occurrences and the offset and length of each id-1 within the data record must be

the same for each file-connector in the run unit that is associated with the external file-connector.

(5) If the associated file-connector is specified with RECORD DELIMITER IS DATA-SENSITIVE or literal

(ANSI 74 and ANSI 85) or with RECORDING MODE IS DATA-SENSITIVE (VXCOBOL), any delimiter

characters specified are assumed to be in the native character set and are translated to the character set specified by

the CODE-SET clause.

(6) If the associated file-connector is specified with RECORD DELIMITER IS ASCII LENGTH (ANSI 74 and

ANSI 85) or with RECORDING MODE IS VARIABLE (VXCOBOL), only the data contained within the record is

translated. The record header, which contains the length, is assumed to be in the native character set and is not

translated.

(7) If the associated file-connector is specified with ASSIGN TO PRINTER or ASSIGN TO DISPLAY, only

the data contained within the record is translated. All carriage control is assumed to be in the native character set

and is not translated.

(8) The record area accessible to the program is always specified in the native character set.

DATA DIVISION - FILE SECTION (DATA BLOCK , INDEX BLOCK)

147

D.6. DATA BLOCK and INDEX BLOCK Clauses (VXCOBOL)

D.6.1 Function

The DATA BLOCK and INDEX BLOCK clauses specifies the page sizes used when creating an INFOS file.

D.6.2 General Format

DATA BLOCK CONTAINS [integer-1 TO] integer-2]

INDEX BLOCK CONTAINS [integer-3 TO] integer-4] CHARACTERS

D.6.3 Syntax Rules

(1) Integer-1 and integer-3 are ignored.

(2) Integer-2 is a positive integer literal that specifies the maximum number of characters or records that a

logical block in a data file can contain.

(3) Integer-4 is a positive integer literal that specifies the maximum number of characters that a logical block in

an indexed file can contain.

(4) Both clauses are ignored if specified for an indexed file.

D.6.4 General Rules

(1) DATA BLOCK and INDEX BLOCK clauses are used to specify the page sizes used when an INFOS file is

created. Only two page sizes are allowed: 2048 characters and 4096 characters. Any value less than or equal to

2048 will be treated as 2048, and any value greater that 2048 will be treated as 4096. If the RECORDS keyword is

specified in the DATA BLOCK CONTAINS clause, then integer-2 is multiplied by the record size and the result is

used to select either a 2048 or 4096 characters page.

(2) If DATA BLOCK or INDEX BLOCK is not specified 2048 is used.

(3) Note: U/FOS also supports page sizes of 512, 1024, and 8192 if the file is created with the ufos_create

utility. These may be specified in these clauses, but will result in runtime errors if a program attempts to create a file

using any of these three values.

Interactive COBOL Language Reference & Developer’s Guide - Part One

148

D.7. DATA RECORDS Clause

D.7.1 Function

The DATA RECORDS clause serves as documentation for the names of data records within their associated file.

The DATA RECORDS clause is an obsolete element in Standard COBOL because it is to be deleted from the next

revision of Standard COBOL. We suggest that you remove it from your source or change it to be a comment line.

D.7.2 General Format

DATA { data-name }...

D.7.3 Syntax Rules

(1) Data-name is the name of a data record and must have an 01 level-number record description, with the same

name, associated with it.

D.7.4 General Rules

(1) The DATA RECORDS clause is used for documentation purposes only, although the compiler checks that

the specified names do occur as record descriptors.

(2) The presence of more than one data-name indicates that the file contains more than one type of data record.

These records may be of differing sizes, different formats, etc. The order in which they are listed is not significant.

(3) Conceptually, all data records within a file share the same area. This is in no way altered by the presence of

more than one type of data record within the file.

DATA DIVISION - FILE SECTION (EXTERNAL)

149

D.8. EXTERNAL Clause

D.8.1 Function

The EXTERNAL clause specifies that a file connector is external. The file and constituent data records are available

in a run unit to all programs that describe the file as external.

D.8.2 General Format

IS EXTERNAL

D.8.3 Syntax Rules

(1) If you define data items in the FD or SELECT statement of an EXTERNAL file, you must specify them as

EXTERNAL. For example, INFOS STATUS (VXCOBOL), FILE STATUS, RECORD LENGTH, etc. must be

EXTERNAL if the file is external. The compiler will flag these items with a warning if they are not EXTERNAL

but the file is EXTERNAL.

D.8 .4 General Rules

(1) The file connector associated with thsi file description entry is an external file connector.

(2) The data contained in all record description entries subordinate to that file description entry are external and

may be accessed by any runtime element in the run unit that describesthe same file and records as external, subject to

the following rules.

(3) Any LINAGE-COUNTER data item associated with the file is external.

(4) An EXTERNAL file uses the declaratives of the program which it is currently running. To ensure that the

same action is taken for all exceptions, a COPY file for the declaratives should be used in all programs that reference

this file.

(5) An EXTERNAL file can only be opened once. An error will occur if you attempt to open the file again

(either in the main program or a subprogram) without first explicitly closing the file.

(6) If record keys are declared for a file with the EXTERNAL clause, then the record keys must also be

declared EXTERNAL if there are not implicitly external by being in the data record, and in the same order in each

subprogram which references the file.

(7) At runtime, if any of the file's characteristics do not match those of a previously referenced external file,

ICOBOL will generate an exception status 1296 "External item in called program does not match existing item" on

the call of a subprogram that contains an external file.

Interactive COBOL Language Reference & Developer’s Guide - Part One

150

D.9. FEEDBACK Clause (VXCOBOL)

D.9.1 Function

The FEEDBACK clause contains the location of records for an INFOS file.

D.9.2 General Format

FEEDBACK IS identifier

D.9.3 Syntax Rules

(1) Identifier is a 4-byte data item in Working-Storage that receives feedback information about the location of

records in INFOS files.

(2) This clause is ignored for an indexed file.

D.9.4 General Rules

(1) If you specify FEEDBACK for a file, each time you read, write, or rewrite a record in the file, the

FEEDBACK data item is updated with the location of the record you just accessed. A WRITE INVERTED uses the

FEEDBACK data item to obtain the location of the record to which another key is already pointing.

(2) READ, REWRITE, and WRITE update the FEEDBACK data items if specified.

(3) FEEDBACK can not be used to READ a particular record.

DATA DIVISION - FILE SECTION (INDEX NODE)

151

D.10. INDEX NODE Clause (VXCOBOL)

D.10.1 Function

The INDEX NODE clause specifies the size, in characters, of an index node in an INFOS file.

D.10.2 General Format

INDEX NODE SIZE IS integer CHARACTERS

D.10.3 Syntax Rules

(1) Integer is a positive integer literal that specifies the number of characters in an index node.

(2) This clause is ignored for an indexed file.

D.10.4 General Rules

(1) The node size must be large enough to hold three keys. If you omit this option, the system calculates the

size according to the maximum key length, the partial record length, and whether or not subindexing is allowed.

Interactive COBOL Language Reference & Developer’s Guide - Part One

152

D.11. LABEL RECORD Clause

D.11.1 Function

The LABEL RECORD clause specifies whether labels are present. The LABEL RECORD clause is an obsolete

element in Standard COBOL because it is to be deleted from the next revision of Standard COBOL.

D.11.2 General Format

ANSI 74 and ANSI 85

d LABEL

VXCOBOL

d LABEL

D.11.3 Syntax Rules

(1) int-1 is a positive integer literal indicating the level number of the tape; it may be either 1 or 3.

(2) int-2 is a positive integer literal indicating the level number of the tape; it may be either 1 or 2.

D.11.4 General Rules

(1) The LABEL RECORD clause is used for documentation purposes only.

(2) OMITTED specifies that no explicit labels exist for the file or the device to which the file is assigned.

(3) STANDARD specifies that labels exist for the file or the device to which the file is assigned and the labels

conform to the label specifications.

(4) For VXCOBOL, EBCDIC indicates IBM format labels. If int-2 is not specified it is assumed to be 2.

ASCII is equivalent to STANDARD. NATIVE refers to Data General Format. If int-1 is not specified it is assumed

to be 3.

DATA DIVISION - FILE SECTION (LINAGE)

153

D.12. LINAGE Clause

D.12.1 Function

The LINAGE clause provides a means for specifying the depth of a logical page in terms of number of lines. It also

provides for specifying the size of the top and bottom margins on the logical page, and the line number, within the

page body, at which the footing area begins.

D.12.2 General Format

LINAGE IS LINES [W ITH FOOTING AT]

[LINES AT TOP] [LINES AT BOTTOM]

D.12.3 Syntax Rules

(1) Data-name-1, data-name-2, data-name-3, and data-name-4 must reference elementary unsigned numeric

data items.

(2) Data-name-1, data-name-2, data-name-3, and data-name-4 may be qualified.

(3) Integer-2 must not be greater than integer-1.

(4) Integer-3 and integer-4 may be zero.

D.12.4 General Rules

(0) The associated file must have been specified with PRINTER or PRINTER-1 in the ASSIGN Clause of the

SELECT statement. If no device or DISK is specified and the LINAGE clause is present, the file will be treated as if

PRINTER was specified in the ASSIGN clause.

(1) The LINAGE clause provides a means for specifying the size of a logical page in terms of number of lines.

The logical page size is the sum of the values referenced by each phrase except the FOOTING phrase. If the LINES

AT TOP or LINES AT BOTTOM phrases are not specified, the values of these items are zero. If the FOOTING

phrase is not specified, no end-of-page condition independent of the page overflow condition exists.

There is not necessarily any relationship between the size of the logical page and the size of a physical page.

(2) Integer-1 or the value of the data item referenced by data-name-1 specifies the number of lines that can be

written and/or spaced on the logical page. The value must be greater than zero. That part of the logical page in

which these lines can be written and/or spaced is called the page body.

(3) Integer-2 or the value of the data item referenced by data-name-2 specifies the line number within the page

body at which the footing begins. The value must be greater than zero and not greater than integer-1 or the value of

the data item referenced by data-name-1.

The footing area comprises the area of the page body between the line represented by integer-2 or the value

of the data item referenced by data-name-2 and the line represented by integer-1 or the value of the data item

referenced by data-name-1, inclusive.

(4) Integer-3 or the value of the data item referenced by data-name-3 specifies the number of lines that

comprise the top margin on the logical page. The value may be zero.

Interactive COBOL Language Reference & Developer’s Guide - Part One

154

(5) Integer-4 or the value of the data item referenced by data-name-4 specifies the number of lines that

comprise the bottom margin on the logical page. The value may be zero.

(6) Integer-1, integer-3, and integer-4, if specified, are used at the time the file is opened by the execution of an

OPEN statement with the OUTPUT phrase, to specify the number of lines that comprise each of the indicated

sections of a logical page. Integer-2, if specified, is used at that time to define the footing area. These values are

used for all logical pages written for that file during a given execution of the program.

(7) The values of the data items referenced by data-name-1, data-name-3, and data-name-4, if specified, are

used as follows:

a. The values of the data items, at the time an OPEN statement with the OUTPUT phrase is executed for the

file, are used to specify the number of lines that are to comprise each of the indicated sections for the first logical

page.

b. The values of the data items, at the time a WRITE statement with the ADVANCING PAGE phrase is

executed or a page overflow condition occurs, are used to specify the number of lines that are to comprise each of

the indicated sections for the next logical page. (See the WRITE Statement.)

(8) The value of the data item referenced by data-name-2, if specified, at the time an OPEN statement with the

OUTPUT phrase is executed for the file, is used to define the footing area for the first logical page. At the time a

WRITE statement with the ADVANCING PAGE phrase is executed or a page overflow condition occurs, it is used

to define the footing area for the next logical page.

(9) A LINAGE-COUNTER is generated by the presence of a LINAGE clause. The value in the

LINAGE-COUNTER at any given time represents the line number at which the device is positioned within the

current page body. The rules governing the LINAGE-COUNTER are as follows:

a. A separate LINAGE-COUNTER is supplied for each file described in the File Section whose file

description entry contains a LINAGE clause.

b. LINAGE-COUNTER may be referenced only in Procedure Division statements; however, only the

input-output control system may change the value of LINAGE-COUNTER. Since more than one

LINAGE-COUNTER may exist in a program, the user must qualify LINAGE-COUNTER by file-name when

necessary.

c. LINAGE-COUNTER is automatically modified, according to the following rules, during the execution of

a WRITE statement to an associated file:

1) When the ADVANCING PAGE phrase of the WRITE statement is specified, the

LINAGE-COUNTER is automatically reset to one. During the resetting of LINAGE-COUNTER to the value one,

the value of LINAGE-COUNTER is implicitly incremented to exceed the value specified by integer-1 or the data

item referenced by data-name-1.

2) When the ADVANCING identifier-2 or integer-1 phrase of the WRITE statement is specified, the

LINAGE-COUNTER is incremented by integer-1 or the value of the data item referenced by identifier-2.

3) When the ADVANCING phrase of the WRITE statement is not specified, the LINAGE-COUNTER

is incremented by the value one. (See the WRITE Statement.)

4) The value of LINAGE-COUNTER is automatically reset to one when the device is repositioned to

the first line that can be written on for each of the succeeding logical pages. (See the WRITE Statement.)

d. The value of LINAGE-COUNTER is automatically set to one at the time an OPEN statement with the

OUTPUT phrase is executed for the associated file. An OPEN with the EXTEND phrase leaves the value of

LINAGE-COUNTER undefined.

DATA DIVISION - FILE SECTION (LINAGE)

155

(10) Each logical page is contiguous to the next with no additional spacing provided.

(11) If the file connector associated with this file description entry is an external file connector, all file

description entries in the run unit which are associated with this file connector must have:

a. A LINAGE clause, if any file description entry has a LINAGE clause.

b. The same corresponding values for integer-1, integer-2, integer-3, and integer-4, if specified.

c. The same corresponding external data items referenced by data-name-1, data-name-2, data-name-3, and

data-name-4.

Interactive COBOL Language Reference & Developer’s Guide - Part One

156

D.13. MERIT Clause (VXCOBOL)

D.13.1 Function

The MERIT clause allows record distribution to be optimized in an INFOS file.

D.13.2 General Format

MERIT IS identifier

D.13.3 Syntax Rules

(1) Identifier is an integer data item that specifies a merit factor from 1 to 32. Two volumes can have the same

merit factor.

D.13.4 General Rules

(1) If a merit factor is given for a record, INFOS places the record on the first volume that has both available

space and a merit factor equal to or less than the record's merit factor. If the system cannot find a volume that

satisfies these criteria, it places the record on the volume with the lowest merit factor that is higher than the one

specified.

(2) This clause is ignored.

DATA DIVISION - FILE SECTION (PARTIAL RECORD)

157

D.14. PARTIAL RECORD Clause (VXCOBOL)

D.14.1 Function

The PARTIAL RECORD clause allows a frequently used portion of the record to be accessed with a key.

D.14.2 General Format

PARTIAL RECORD IS identifier

D.14.3 Syntax Rules

(1) Identifier is an alphanumeric data item that receives the partial record data. It receives the partial record on

every operation that accesses a data record (unless the partial record is suppressed.)

D.14.4 General Rules

(1) The size of the data item specified by identifier determines the length that the partial record can have. This

length cannot be larger than the maximum size of the partial record set at index or subindex creation time (up to

255). When a data record for this file is accessed, the partial record is returned to identifier.

(2) With INFOS II, the partial record is stored in the index with the key. With U/FOS, the partial record is

stored as a second data record.

Interactive COBOL Language Reference & Developer’s Guide - Part One

158

D.15. RECORD Clause (ANSI 74 and ANSI 85)

D.15.1 Function

The RECORD clause specifies the number of character positions in a fixed length record, or specifies the range of

character positions in a variable length record. If the number of character positions does vary, the clause specifies

the minimum and maximum number of character positions.

D.15.2 General Format

Format 1 (fixed-length):

RECORD CONTAINS integer-1 CHARACTERS

Format 2 (variable-length):

RECORD IS VARYING IN SIZE [[FROM integer-2] [TO integer-3] CHARACTERS]

[DEPENDING ON data-name-1]

Format 3 (fixed or variable length):

RECORD CONTAINS integer-4 TO integer-5 CHARACTERS

D.15.3 Syntax Rules

Format 1:

(1) No record description entry for the file may specify a number of character positions greater than integer-1.

(2) For VXCOBOL, this format is for documentation purposes only.

Format 2:

(3) This format is not supported under VXCOBOL.

(4) No record description entry for the file may specify a number of character positions less than integer-2 or

greater than integer-3.

(5) Integer-3 shall be greater than integer-2.

(6) Data-name-1 shall describe an elementary unsigned integer in working storage or linkage section.

(7) Integer-2 shall be greater than zero.

(8) This format may not be specified if the RECORDING MODE clause is specified.

Format 3:

(9) For VXCOBOL, this format is for documentation purposes only.

(10) Integer-4 shall be greater than zero.

(11) Integer-5 shall be greater than integer-4.

DATA DIVISION - FILE SECTION (RECORD)

159

D.15.4 General Rules

All Formats:

(1) Each integer in a RECORD clause specifies a record size in terms of alphanumeric character positions.

(2) The implicit or explicit RECORD clause specifies the size of the records in the record area. The size of

records on physical storage media may be different due to control information required by the operating

environment.

(3) The size of each data record is specified in terms of the number of alphanumeric character positions

required to store the logical record, regardless of the types of characters used to represent the items within the logical

record. The size of the record is determined by the sum of the number of alphanumeric character positions in all

fixed length elementary items plus the sum of the maximum number of alphanumeric character positions in any

variable-length data item subordinate to the record.

(4) If the RECORD clause is not specified, an implicit format 1 or format 2 RECORD clause is assumed to be

specified. This implicit RECORD clause is defined with the following characteristics:

a. Format 1 is implied when RECORDING MODE clause is absent or FIXED. Integer-1 shall be the

record size of the largest record description entry in this file description entry.

b. Format 2 is implied when the RECORDING MODE IS VARIABLE. Integer-2 shall be the record size

of the smallest record description entry in this file description entry, and integer-3 shall be the largest record

description entry in this file description entry. The DEPENDING ON phrase is assumed to be omitted.

Format 1:

(5) Format 1 is used to specify fixed length records. Integer-1 specifies the number of character positions

contained in each record in the file.

Format 2:

(6) Format 2 is used to specify variable-length records. Integer-2 specifies the minimum number of

alphanumeric character positions to be contained in any record of the file. Integer-3 specifies the maximum number

of alphanumeric character positions in any record of the file.

(7) The number of alphanumeric character positions associated with a record description is determined by the

sum of the number of alphanumeric character positions in all elementary data items excluding redefinitions and

renamings, plus any implicit FILLER due to synchronization. If a table is specified:

a. The minimum number of table elements described in the record is used in the summation above to

determine the minimum number of alphanumeric character positions associated with the record description.

b. The maximum number of table elements described in the record is used in the summation above to

determine the maximum number of alphanumeric character positions associated with the record description.

(8) If integer-2 is not specified, the minimum number of alphanumeric character positions to be contained in

any record of the file is equal to the least number of alphanumeric character positions described for a record in that

file.

(9) If integer-3 is not specified, the maximum number of alphanumeric character positions to be contained in

any record of the file is equal to the greatest number of alphanumeric character positions described for a record in

that file.

Interactive COBOL Language Reference & Developer’s Guide - Part One

160

(10) If data-name-1 is specified, the number of alphanumeric character positions in the record shall be placed

into the data item referenced by data-name-1 before any RELEASE, REWRITE, or WRITE statement is executed

for the file.

(11) If data-name-1 is specified, the execution of a DELETE, RELEASE, REWRITE, START, or WRITE

statement or the unsuccessful execution of a READ or RETURN statement does not alter the content of the data item

referenced by data-name-1.

(12) During the execution of a RELEASE, REWRITE, or WRITE statement, the number of alphanumeric

character positions in the record is determined by the following conditions:

a. If data-name-1 is specified, by the content of the data item referenced by data-name-1.

b. If data-name-1 is not specified and the record does not contain a variable-occurrence data item, by the

number of alphanumeric character positions in the record.

c. If data-name-1 is not specified and the record does contain a variable-occurrence data item, by the sum

of the fixed portion and that portion of the table described by the number of occurrences at the time of execution of

the output statement.

d. If the file had been specified with a RECORD DELIMITER IS DATA-SENSITIVE or RECORD

DELIMITER IS literal, by the first occurrence of a delimiter character or as determined by rules a) - c) if that

number of alphanumeric character positions is less.

(13) If the number of alphanumeric character positions in the record to be written is less than integer-2 or

greater than integer-3, then if a RELEASE, REWRITE, or WRITE statement is being executed, exception 185

condition is set to exist, and the execution of the RELEASE, REWRITE, or WRITE statement is unsuccessful with i-

o status 92 (ANSI 74) or i-o status 44 (ANSI 85).

(14) If data-name-1 is specified, after the successful execution of a READ or RETURN statement for the file,

the contents of the data item referenced by data-name-1 will indicate the number of alphanumeric character positions

in the record just read.

(15) If the INTO phrase is specified in the READ or RETURN statement, the number of alphanumeric

character positions in the current record that participate as the sending operands in the implicit MOVE statement is

determined by the following conditions:

a. If data-name-1 is specified, by the content of the data item referenced by data-name-1.

b. If data-name-1 is not specified, by the value that would have been moved into the data item referenced

by data-name-1 had data-name-1 been specified.

If the number of alphanumeric character positions determined as above is zero, the record is a zero-length

item.

(16) INDEXED and RELATIVE files are varying length within a fixed allocation and must be ICISAM version

7 files. SEQUENTIAL files are written with a varying length and format based on the RECORD DELIMITER

clause of the SELECT statement.

Format 3

(17) Format 3 of the RECORD clause produces fixed-length records if the RECORDING MODE clause is

absent or FIXED. Format 3 produces variable-length records if the RECORDING MODE is VARIABLE.

.

(18) When format 3 of the RECORD clause is used, integer-4 and integer-5 refer to the minimum number of

alphanumeric characters in the smallest size data record and the maximum number of alphanumeric characters in the

DATA DIVISION - FILE SECTION (RECORD)

161

largest size data record, respectively. However, in this case, the size of each data record is completely defined in the

record description entry.

(19) If the number of alphanumeric character positions in the logical record to be written is less than integer-4

or greater than integer-5, then if a RELEASE, REWRITE, or WRITE statement is being executed, the exception 185

is set to exist and the execution of the RELEASE, REWRITE, or WRITE statement is unsuccessful with I-O status

92 (ANSI 74) or 44 (ANSI 85).

Interactive COBOL Language Reference & Developer’s Guide - Part One

162

D.16. RECORDING MODE Clause (ANSI 74 and ANSI 85)

D.16.1 Function

The RECORDING MODE clause specifies whether a sequential disk file is have a fixed length record or a variable

length record based on the specified record. This clause is obsolete; variable sequential files may be obtained with

the RECORD DELIMITER IS BINARY LENGTH and RECORD IS VARYING clauses. The RECORDING

MODE clause is an extension to ANSI COBOL.

D.16.2 General Format

RECORDING MODE IS .

D.16.3 Syntax Rules

(1) RECORDING MODE is only allowed for sequential disk files.

(2) This clause may not be specified with the RECORD IS VARYING clause.

D.16.4 General Rules

(1) If this clause is not specified, RECORDING MODE IS FIXED is assumed.

DATA DIVISION ((FILE) RECORDING MODE)

163

D.17. RECORDING MODE Clause (VXCOBOL)

D.17.1 Function

The RECORDING MODE clause specifies the record format used in the file. The RECORDING MODE clause is

an extension to ANSI COBOL.

D.17.2 General Format

RECORDING MODE IS

D.17.3 Syntax Rules

(1) Identifier-1 is an integer data item that either specifies or receives a number of characters.

(2) Literal-1 is a numeric literal specifying a character that delimits the end of a record, replacing the default

delimiter.

(3) RECORDING MODE IS FIXED is the only format allowed for relative files.

(4) RECORDING MODE IS VARIABLE is the only format allowed for INFOS files.

(5) RECORDING MODE IS FIXED and RECORDING MODE IS VARIABLE are allowed for indexed files.

D.17.4 General Rules

(1) If this clause is not specified, RECORDING MODE IS FIXED is assumed for sequential and relative.

RECORD MODE IS VARIABLE is assumed for indexed and INFOS files.

(2) If FIXED is specified, all records have the same number of characters, the length of which is determined by

the size of the file's record area.

(3) If VARIABLE is specified, the maximum length for records can be specified in the RECORD LENGTH

clause. No two records in the file need to be the same length. However, they cannot exceed the maximum length

and they must never be 1. If a RECORD LENGTH clause is not used, the number of characters in a record

determines the maximum length for that record. For an index file, the record length must always be large enough to

include the RECORD key and all the ALTERNATE keys.

(4) If DYNAMIC is specified, the value of the data item specified in the RECORD LENGTH clause is used as

the length of the record. Therefore the RECORD LENGTH clause must be specified when using DYNAMIC.

(5) If DATA-SENSITIVE is specified, the length of the record is determined by the occurrence of a special

character (literal-1). If a delimiter character is not specified, carriage-return, form feed, null, or newline is used.

The RECORD LENGTH clause can also be used to set a maximum length for a data-sensitive record. The delimiter

should be counted as part of the record. DATA-SENSITIVE is ignored for printer files unless you use the

DELIMITER IS clause to specify the delimiters.

Interactive COBOL Language Reference & Developer’s Guide - Part One

164

(6) If undefined is specified, the file is read only as a sequence of binary bytes rather than a sequence of

records.

(7) If all cases, if RECORD LENGTH is omitted, a record cannot be more than the length of the file's record

area. If RECORD LENGTH is specified, the number of characters read from a record is returned. On output in

variable record format, identifier will specify the number of characters to write.

DATA DIVISION - WORKING-STORAGE SECTION (General Format)

165

E. WORKING-STORAGE SECTION

The Working-Storage Section is located in the Data Division of a source program. The Working-Storage Section

describes records and subordinate data items which are not part of data files.

The Working-Storage Section is composed of the section header, followed by record description entries and/or data

description entries for noncontiguous data items.

The general format of the Working-Storage Section is shown below.

W ORKING-STORAGE SECTION.

E.1. Noncontiguous Working Storage

Items and constants in working storage which bear no hierarchical relationship to one another need not be grouped

into records, provided they do not need to be further subdivided. Instead, they are classified and defined as

noncontiguous elementary items. Each of these items is defined in a separate data description entry which begins

with the special level-number, 77.

The following data clauses are required in each data description entry:

1. level-number 77

2. data-name

3. the PICTURE clause, the USAGE IS INDEX clause, or the USAGE IS POINTER (ANSI 74and ANSI 85)

clause

Other data description clauses are optional and can be used to complete the description of the item if necessary.

E.2. Working Storage Records

Data elements in working storage which bear a definite hierarchical relationship to one another must be grouped into

records according to the rules for formation of record descriptions. Data elements in the Working-Storage Section

which bear no hierarchical relationship to any other data item may be described as records which are single

elementary items. All clauses which are used in record descriptions in the File Section can be used in record

descriptions in the Working-Storage Section.

E.3. Record Description Structure

A record description consists of a set of data description entries which describe the characteristics of a particular

record. Each data description entry consists of a level-number followed by the data-name or FILLER clause, if

specified, followed by a series of independent clauses as required. A record description may have a hierarchical

structure and therefore the clauses used within an entry may vary considerably, depending upon whether or not it is

followed by subordinate entries. The structure of a record description and the elements allowed in a record

description entry are explained in Concept of Levels and in The Data Description Entry.

E.4. Initial Values

The initial value of any data item in the Working-Storage Section except an index data item is specified by

associating the VALUE clause with the data item. The initial value of any index data item or any data item not

associated with a VALUE clause is undefined.

Interactive COBOL Language Reference & Developer’s Guide - Part One

166

E.5. Data Description Entry

E.5.1 Function

A data description entry specifies the characteristics of a particular item of data.

E.5.2 General Format

Format 1:

level-number [IS EXTERNAL]

[BLANK W HEN ZERO]

[RIGHT]

[OCCURS]

[INDEXED BY { index-name }...]]

[IS character-string]

[REDEFINES data-name-2]

[[SIGN IS] [SEPARATE CHARACTER]]

d []

[usage-clause]

[VALUE IS] .

Where usage-clause is:

For ANSI 74 and ANSI 85:

 [USAGE IS]

DATA DIVISION - WORKING-STORAGE SECTION (Data Description Entry)

167

For VXCOBOL:

 [USAGE IS]

For ISQL: add the following selections:

 [USAGE IS]

Format 2:

66 data-name-1 RENAMES data-name-2 [data-name-3] .

Format 3:

88 condition-name .

Interactive COBOL Language Reference & Developer’s Guide - Part One

168

E.5.3 Syntax Rules

(1) Level number in Format 1 may be any number from 01 through 49 or 77.

(2) In Format 1, the data-name-1 or FILLER clause, if specified, must immediately follow the level number.

The REDEFINES clause, if specified, must immediately follow the data-name-1 or FILLER clause if either is

specified; otherwise, it must immediately follow the level-number. The remaining clauses may be written in any

order.

(3) The EXTERNAL clause and the REDEFINES clause must not be specified in the same data description

entry.

(4) Data-name-1 must be specified for an entry containing the EXTERNAL clause or for record descriptions

associated with a file description entry which contains the EXTERNAL clause.

(5) The PICTURE clause must be specified for every elementary item except an index or pointer data item in

which case use of this clause is prohibited.

(6) The words THRU and THROUGH are equivalent.

(7) (ISQL) The words CHAR and CHARACTER are equivalent.

(8) (ISQL) The words INT and INTEGER are equivalent.

(9) The EXTERNAL clause may be specified only in data description entries in the Working-Storage Section

whose level-number is 01 or 77.

E.5.4 General Rules

(1) The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO must not be specified

except for an elementary item.

(2) Format 3 is used for each condition-name. Each condition-name requires a separate entry with

level-number 88. Format 3 contains the name of the condition and the value, values, or range of values associated

with the condition-name. The condition-name entries for a particular conditional variable must immediately follow

the entry describing the item with which the condition-name is associated. A condition-name can be associated with

any data description entry which contains a level-number except the following:

a. Another condition-name.

b. A level 66 item.

c. A group containing items with descriptions including JUSTIFIED, SYNCHRONIZED, or USAGE

(other than USAGE IS DISPLAY).

d. An index or pointer data item.

(3) Multiple level 01 entries subordinate to any given level indicator (i.e., FD or SD) represent implicit

redefinitions of the same area.

DATA DIVISION - WORKING-STORAGE SECTION (BLANK WHEN ZERO)

169

E.6. BLANK WHEN ZERO Clause

E.6.1 Function

The BLANK WHEN ZERO clause permits the blanking of an item when its value is zero.

E.6.2 General Format

BLANK W HEN ZERO

E.6.3 Syntax Rules

(1) The BLANK WHEN ZERO clause can be specified only for an elementary item whose PICTURE is

specified as numeric or numeric edited.

(2) The numeric or numeric edited data description entry to which the BLANK WHEN ZERO clause applies

must be described, either implicitly or explicitly, as USAGE IS DISPLAY.

E.6.4 General Rules

(1) When the BLANK WHEN ZERO clause is used, the item will contain nothing but spaces if the value of the

item is zero.

(2) When the BLANK WHEN ZERO clause is used for an item whose PICTURE is numeric, the category of

the item is considered to be numeric edited.

Interactive COBOL Language Reference & Developer’s Guide - Part One

170

E.7. Data-Name or FILLER Clause

E.7.1 Function

A data-name specifies the name of the data item being described. The keyword FILLER may be used to specify a

data item which is not referenced explicitly.

E.7.2 General Format

E.7.3 Syntax Rules

(1) In the File, Working-Storage, and Linkage Sections, data-name-1 or the keyword FILLER, if either is

specified, must be the first word following the level-number in each data description entry.

E.7.4 General Rules

(1) If this clause is omitted, the data item being described is treated as though FILLER had been specified.

(2) The keyword FILLER may be used to name a data item. Under no circumstances can a FILLER item be

referred to explicitly. However, the keyword FILLER may be used to name a conditional variable because such use

does not require explicit reference to the data item itself, but only to the value contained therein.

DATA DIVISION - WORKING-STORAGE SECTION (EXTERNAL)

171

E.8. EXTERNAL Clause

E.8.1 Function

The EXTERNAL clause specifies that a data item is external. A data item is external if the storage associated with

that object is associated with the run unit rather than with any particular program within the run unit. The constituent

data items and group data items of an external data record are available to every program in the run unit which

describes that record.

E.8.2 General Format

IS EXTERNAL

E.8.3 Syntax Rules

(1) The EXTERNAL clause may be specified only in data description entries in the Working-Storage Section

whose level number is 01 or 77. For VXCOBOL, the EXTERNAL clause may be specified on a data description in

the FILE SECTION as long as it is also specified on the FD of the file.

(2) In the same program, the data-name specified as the subject of the entry whose level-number is 01 or 77 that

includes the EXTERNAL clause must not be the same data-name specified for any other data description entry

which includes the EXTERNAL clause.

(3) The EXTERNAL clause shall not be specified for a data item of class pointer.

E.8.4 General Rules

(1) The data contained in the data description entry named by the data-name clause is external and may be

accessed and processed by any program in the run unit which describes and optionally, redefines it subject to the

following general rules.

(2) Within a run unit, if two or more programs describe the same external data record or elementary item, each

record-name or data-name of the associated data description entries must be the same and the data descriptions must

define the same number of standard format characters. The items must be of the same type. However, a program

which describes an external record may contain a data description entry including the REDEFINES clause which

redefines the complete external record, and this complete redefinition need not occur identically in other programs in

the run unit.

(3) If the VALUE clause is specified for a data description entry with the EXTERNAL clause or subordinate to

a data description entry with an EXTERNAL clause, then every program describing that external item must specify

an identical VALUE clause on its declaration of the external item.

(4) On the call of a subprogram that contains the declaration of an EXTERNAL item, if any of the external data

item's characteristics fail to match those of a previously loaded external item of the same name, ICOBOL will

generate an exception status 1296 "External item in called program does not match existing item" and the call will

fail.

Interactive COBOL Language Reference & Developer’s Guide - Part One

172

E.9. JUSTIFIED Clause

E.9.1 Function

The JUSTIFIED clause permits alternate positioning of data within a receiving data item, specifically right

justification.

E.9.2 General Format

 RIGHT

E.9.3 Syntax Rules

(1) The JUSTIFIED clause can be specified only at the elementary item level.

(2) JUST is an abbreviation for JUSTIFIED.

(3) The JUSTIFIED clause cannot be specified for any data item described as numeric or for which editing is

specified. (i.e., it can only be used with an unedited alphabetic or alphanumeric data item.)

(4) The JUSTIFIED clause must not be specified for an index data item.

E.9.4 General Rules

(1) When the receiving data item is described with the JUSTIFIED clause and the sending data item is larger

than the receiving data item, the left-most characters are truncated. When the receiving data item is described with

the JUSTIFIED clause and it is larger than the sending data item, the data is aligned at the right-most character

position in the data item with space fill for the left-most character positions.

(2) When the JUSTIFIED clause is omitted, the standard rules for aligning data within an elementary item

apply.

DATA DIVISION - WORKING-STORAGE SECTION (Level-Number)

173

E.10. Level-Number

E.10.1 Function

The level-number indicates the position of a data item within the hierarchical structure of a logical record. In

addition, it is used to identify entries for working storage items, linkage items, condition-names and the RENAMES

clause.

E.10.2 General Format

level-number

E.10.3 Syntax Rules

(1) A level-number is required as the first element in each data description entry.

(2) Data description entries subordinate to a FD or SD entry must have level-numbers with the values 01

through 49, 66, or 88.

(3) Data description entries in the Working-Storage Section and Linkage Section must have level-numbers 01

through 49, 66, 77, or 88.

(4) Data description entries in the Screen Section must have level-numbers 01 through 49.

(5) A level number in the range 01 through 09 may be specified as 1 through 9.

E.10.4 General Rules

(1) The level-number 01 identifies the first entry in each record description.

(2) Special level-numbers have been assigned to certain entries where there is no real concept of hierarchy:

a. Level-number 77 is assigned to identify noncontiguous working storage data items, noncontiguous

linkage data items, and can be used only as described by Format 1 of the data description entry.

b. Level-number 66 is assigned to identify RENAMES entries and can be used only as described by Format

2 of the data description entry.

c. Level-number 88 is assigned to entries which define condition-names associated with a conditional

variable and can be used only as described by Format 3 of the data description entry.

(3) Multiple level 01 entries subordinate to any given level indicator (i.e., FD or SD) represent implicit

redefinitions of the same area.

Interactive COBOL Language Reference & Developer’s Guide - Part One

174

E.11. OCCURS Clause

E.11.1 Function

The OCCURS clause eliminates the need for separate entries for repeated data items and supplies information

required for the application of subscripts.

E.11.2 General Format

OCCURS

 [INDEXED BY { index-name-1 }...]

E.11.3 Syntax Rules

(1) The OCCURS clause must not be specified in a data description entry that has a level-number of 01, 66, 77,

88, or which has a variable occurrence data-item subordinate to it. For VXCOBOL, the occurs clause may occur on

a data description entry that has a level number or 01.

(2) Data-name-1 and data-name-2 may be qualified.

(3) The first specification of data-name-2 must be the name of either the entry containing the OCCURS clause

or an entry subordinate to the entry containing the OCCURS clause. Subsequent specification of data-name-2 must

be subordinate to the entry containing the OCCURS clause.

(4) Data-name-2 must be specified without the subscripting that is normally required.

(5) Integer-2 must be greater than zero.

(6) If integer-1 is given it must be greater than or equal to zero, and integer-2 must be greater than integer-1 but

less than or equal to 16,777,216.

(7) Data-name-1 must describe an integer and its picture must not include the character P. The data item

described by data-name-1 must not occupy a character position within the range of the first character position

defined by the data description entry containing the OCCURS clause and the last character position defined by the

record description entry containing that OCCURS clause.

(8) If the OCCURS clause is specified in a data description entry included in a record description entry

containing the EXTERNAL clause, data-name if specified, must reference a data item possessing the external

attribute which is described in the same Data Division.

(9) A data description entry that contains a DEPENDING ON may only be followed, within that record

description, by data description entries which are subordinate to it.

(10) The data item identified by data-name-2 must not contain an OCCURS clause except when data-name-2 is

the subject of the entry.

(11) There must not be an entry that contains an OCCURS clause between the descriptions of the data items

identified by data-names in the KEY IS phrase and the subject of the entry.

(12) An INDEXED BY phrase is required if the subject of this entry, or an entry subordinate to this entry, is to

be referenced by indexing. The index-name-1 identified by this phrase is not defined elsewhere since its allocation

and format are dependent on the hardware and, not being data, cannot be associated with any data hierarchy.

DATA DIVISION - WORKING-STORAGE SECTION (OCCURS)

175

(13) Index-name-1 must be a unique word within the program.

E.11.4 General Rules

(1) Except for the OCCURS clause itself, all data description clauses associated with an item whose description

includes an OCCURS clause apply to each occurrence of the item described.

(2) If the DEPENDING ON phrase is not given, the value of integer-2 represents the exact number of

occurrences of the subject entry. If the DEPENDING ON phrase is given, the number of occurrences of the subject

entry is defined to be the value of the data item referenced by data-name-1. In this case the subject of the entry has a

variable number of occurrences. The value of integer-2 represents the maximum number of occurrences and the

value of integer-1 represents the minimum number of occurrences. This does not imply that the length of the subject

entry is variable, but that the number of occurrences is variable.

At the time the subject entry is referenced or any data item subordinate or superordinate to the subject of

entry is referenced, the value of the data item referenced by identifier must fall within the range of integer-1 through

integer-2. The contents of the data items whose occurrence numbers exceed the value of the data item referenced by

data-name-1 are undefined. ICOBOL will raise an "Index out of range" error in this case.

(3) When a group data item, having subordinate to it an entry that specifies a DEPENDING ON, is referenced,

the part of the table area used in the operation is determined as follows:

a. If the data item referenced by data-name-1 is outside the group, only that part of the table area that is

specified by the value of the data item referenced by data-name-1 at the start of the operation will be used.

b. If the data item referenced by data-name-1 is included in the same group and the group data item is

referenced as a sending item, only that part of the table area that is specified by the value of the data item referenced

by data-name-1 at the start of the operation will be used in the operation. If the group is a receiving item, the

maximum length of the group will be used. (This last sentence is different than how AOS/VS COBOL behaves.)

(4) When the KEY IS phrase is specified, the repeated data must be arranged in ascending or descending order

according to the values contained in data-name-3. The ascending or descending order is determined according to

the rules for the comparison of operands. The data-names are listed in their descending order of significance.

(5) At most ten (10) KEY IS phrases may be specified.

(6) If the OCCURS WITH DEPENDING is specified in a record description entry and the associated file

description or sort-merge description entry contains the VARYING phrase of the RECORD clause, the records are

variable length. If the DEPENDING ON phrase of the RECORD clause is not specified, the content of the data item

referenced by data-name-1 of the OCCURS clause must be set to the number of occurrences to be written before the

execution of any RELEASE, REWRITE, or WRITE statement.

Interactive COBOL Language Reference & Developer’s Guide - Part One

176

E.12. PICTURE Clause

E.12.1 Function

The PICTURE clause describes the general characteristics and editing requirements of an elementary item.

E.12.2 General Format

 IS character-string

E.12.3 Syntax Rules

(1) The PICTURE clause can be specified only at the elementary item level.

(2) A character-string consists of certain allowable combinations of characters in the COBOL character set

used as symbols. The allowable combinations determine the category of the elementary item.

(3) The lowercase letters corresponding to the uppercase letters representing the PICTURE symbols A, B, P, S,

V, X, Z, CR, and DB are equivalent to their uppercase representations in a PICTURE character-string. All other

lowercase letters are not equivalent to their corresponding uppercase representations.

(4) The maximum number of characters allowed in the character-string is 30.

(5) The PICTURE clause must be specified for every elementary item except an index data item. In that case

the use of this clause is prohibited.

(6) PIC is an abbreviation for PICTURE.

(7) The asterisk, when used as the zero suppression symbol, and the clause BLANK WHEN ZERO may not

appear in the same entry.

(8) In the Screen section, unless the SIGN IS phrase is specified, the S PICTURE character is ignored by the

compiler to be consistent with older versions of Interactive COBOL.

(9) In the Screen section, the PICTURE symbols P, V, CR, and DB can only be used with output (FROM)

fields.

E.12.4 General Rules

(1) There are five categories of data that can be described with a PICTURE clause: alphabetic, numeric,

alphanumeric, alphanumeric edited, and numeric edited.

(2) To define an item as alphabetic:

a. Its PICTURE character-string can contain only the symbol `A'; and

b. Its content, when represented in standard data format, must be one or more alphabetic characters.

DATA DIVISION - WORKING-STORAGE SECTION (PICTURE)

177

(3) To define an item as numeric:

a. Its PICTURE character-string can contain only the symbols `9', `P', `S', and `V'. The number of digit

positions that can be described by the PICTURE character-string must range from 1 to 18 inclusive; and

b. If unsigned, its content when represented in standard data format must be one or more numeric

characters; if signed, the item may also contain a `+', `-', or other representation of an operational sign.

(4) To define an item as alphanumeric:

a. Its PICTURE character-string is restricted to certain combinations of the symbols `A', `X', `9', and the

item is treated as if the character-string contained all `X's. A PICTURE character-string which contains all `A's or all

`9's does not define an alphanumeric item, and;

b. Its content, when represented in standard data format, must be one or more characters in the computer's

character set.

(5) To define an item as alphanumeric edited:

a. Its PICTURE character-string is restricted to certain combinations of the following symbols: `A', `X', `9',

`B', `0', and `/'; and must contain at least one `A' or `X' and must contain at least one `B' or `0' (zero) or `/' (slant).

b. Its content when represented in standard data format must be two or more characters in the computer's

character set.

(6) To define an item as numeric edited:

a. Its PICTURE character-string is restricted to certain combinations of the symbols `B', `/', `P', `V', `Z', `0',

`9', `,', `.', `*', `+', `-', `CR', `DB', and the currency symbol. The allowable combinations are determined from the

order of precedence of symbols and the editing rules; and

1) The number of digit positions that can be represented in the PICTURE character-string must range

from 1 to 18 inclusive; and

2) The character-string must contain at least one `0', `B', `/', `Z', `*', `+', `,', `.', `-', `CR', `DB', or the

currency symbol.

b. The content of each of the character positions must be consistent with the corresponding PICTURE

symbol.

(7) The size of an elementary item, where size means the number of character positions occupied by the

elementary item in standard data format, is determined by the number of allowable symbols that represent character

positions. An unsigned nonzero integer which is enclosed in parentheses following the symbols `A', `,', `X', `9', `P',

`Z', `*,' `B', `/', `0', `+', `-', or the currency symbol indicates the number of consecutive occurrences of the symbol.

The following symbols may appear only once in a given PICTURE: `S', `V', `.', `CR', and `DB'.

(8) The functions of the symbols, used to describe an elementary item are explain as follows:

A Each `A' in the character-string represents a character position which can contain only an alphabetic

character and is counted in the size of the item.

B Each `B' in the character-string represents a character position into which the space character will be

inserted and is counted in the size of the item.

P Each `P' in the character-string indicates an assumed decimal scaling position and is used to specify the

location of an assumed decimal point when the point is not within the number that appears in the data item. The

scaling position character `P' is not counted in the size of the data item. Scaling position characters are counted in

Interactive COBOL Language Reference & Developer’s Guide - Part One

178

determining the maximum number of digit positions (18) in numeric edited items or numeric items. The scaling

position character. `P' can appear only as a continuous string of `P's in the left-most or right-most digit positions

within a PICTURE character-string; since the scaling position character `P' implies an assumed decimal point (to the

left of `P's if `P's are left-most PICTURE symbols and to the right if `P's are right-most PICTURE symbols), the

assumed decimal point symbol `V' is redundant as either the left-most or right-most character within such a

PICTURE description. The symbol `P' and the insertion symbol ` .' (period) cannot both occur in the same

PICTURE character-string.

In certain operations that reference a data item whose PICTURE character-string contains the symbol `P',

the algebraic value of the data item is used rather than the actual character representation of the data item. This

algebraic value assumes the decimal point in the prescribed location and zero in place of the digit position specified

by the symbol `P'. The size of the value is the number of digit positions represented by the PICTURE

character-string. These operations are any of the following:

a. Any operation requiring a numeric sending operand.

b. A MOVE statement where the sending operand is numeric and its PICTURE character-string contains

the symbol `P'.

c. A MOVE statement where the sending operand is numeric edited and its PICTURE character-string

contains the symbol `P' and the receiving operand is numeric or numeric edited.

d. A comparison operation where both operands are numeric.

In all other operations the digit positions specified with the symbol `P' are ignored and are not counted in the size of

the operand.

S The `S' is used in a character-string to indicate the presence, but neither the representation nor,

necessarily, the position of an operational sign; it must be written as the left-most character in the PICTURE. The `S'

is not counted in determining the size (in terms of standard data format characters) of the elementary item unless the

entry is subject to a SIGN clause which specifies the optional SEPARATE CHARACTER phrase.

V The `V' is used in a character-string to indicate the location of the assumed decimal point and may only

appear once in a character-string. The `V' does not represent a character position and therefore is not counted in the

size of the elementary item. When the assumed decimal point is to the right of the right-most symbol in the string

representing a digit position or scaling position, the `V' is redundant.

X Each `X' in the character-string is used to represent a character position which contains any allowable

character from the computer's character set and is counted in the size of the item.

Z Each `Z' in a character-string may only be used to represent the left-most leading numeric character

positions which will be replaced by a space character when the content of that character position is a leading zero.

Each `Z' is counted in the size of the item.

9 Each `9' in the character-string represents a digit position which contains a numeric character and is

counted in the size of the item.

0 Each `0' (zero) in the character-string represents a character position into which the character zero will be

inserted. The `0' is counted in the size of the item.

/ Each `/' (slant) in the character-string represents a character position into which the slant character will be

inserted. The `/' is counted in the size of the item.

, Each `,' (comma) in the character-string represents a character position into which the character `,' will be

inserted. This character position is counted in the size of the item.

DATA DIVISION - WORKING-STORAGE SECTION (PICTURE)

179

. When the symbol `.' (period) appears in the character-string it is an editing symbol which represents the

decimal point for alignment purposes and, in addition, represents a character position into which the character `.' will

be inserted. The character `.' is counted in the size of the item. For a given program the functions of the period and

comma are exchanged if the clause DECIMAL-POINT IS COMMA is stated in the SPECIAL-NAMES paragraph.

In this exchange the rules for the period apply to the comma and the rules for the comma apply to the period

wherever they appear in a PICTURE clause.

+ - CR DB These symbols are used as editing sign control symbols. When used, they represent the

character position into which the editing sign control symbol will be placed. The symbols are mutually exclusive in

any one character-string and each character used in the symbol is counted in determining the size of the data item.

* Each `*' (asterisk) in the character-string represents a leading numeric character position into which an

asterisk will be placed when the content of that position is a leading zero. Each `*' is counted in the size of the item.

cs The currency symbol in the character-string represents a character position into which a currency symbol

is to be placed. The currency symbol in a character-string is represented by either the currency sign ($) or by the

single character specified in the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph. The currency

symbol is counted in the size of the item.

E.12.5 Editing Rules

(1) There are two general methods of performing editing in the PICTURE clause, either by insertion or by

suppression and replacement. There are four types of insertion editing available. They are:

a. Simple insertion

b. Special insertion

c. Fixed insertion

d. Floating insertion

There are two types of suppression and replacement editing:

a. Zero suppression and replacement with spaces

b. Zero suppression and replacement with asterisks

(2) The type of editing which may be performed upon an item is dependent upon the category to which the item

belongs. The following table specifies which type of editing may be performed upon a given category:

CATEGORY TYPE OF EDITING

 Alphabetic None

 Numeric None

 Alphanumeric None

 Alphanumeric edited Simple insertion `0', `B', and `/'

 Numeric edited All, subject to rule 3 below

TABLE 4. PICTURE Editing

(3) Floating insertion editing and editing by zero suppression and replacement are mutually exclusive in a

PICTURE clause. Only one type of replacement may be used with zero suppression in a PICTURE clause.

(4) Simple insertion editing. The `,' (comma), `B' (space), `0' (zero), and `/' (slant) are used as the insertion

characters. The insertion characters are counted in the size of the item and represent the position in the item into

which the character will be inserted. If the insertion character `,' (comma) is the last symbol in the PICTURE

character-string, the PICTURE clause must be the last clause of the data description entry and must be immediately

followed by the separator period. This results in the combination of `,.' appearing in the data description entry, or, if

the DECIMAL POINT IS COMMA clause is used, in two consecutive periods.

(5) Special insertion editing. The `.' (period) is used as the insertion character. In addition to being an insertion

character it also represents the decimal point for alignment purposes. The insertion character used for the actual

Interactive COBOL Language Reference & Developer’s Guide - Part One

180

decimal point is counted in the size of the item. The use of the assumed decimal point, represented by the symbol

`V' and the actual decimal point, represented by the insertion character, in the same PICTURE character-string is

disallowed. If the insertion character is the last symbol in the PICTURE character-string, the PICTURE clause must

be the last clause of that data description entry and must be immediately followed by the separator period. This

results in two consecutive periods appearing in the data description entry, or in the combination of `,.' if the

DECIMAL-POINT IS COMMA clause is used. The result of special insertion editing is the appearance of the

insertion character in the item in the same position as shown in the character-string.

(6) Fixed insertion editing. The currency symbol and the editing sign control symbols `+', `-', `CR', and `DB'

are the insertion characters. Only one currency symbol and only one of the editing sign control symbols can be used

in a given PICTURE character-string. When the symbols `CR' or `DB' are used they represent two character

positions in determining the size of the item and they must represent the right-most character positions that are

counted in the size of the item. If these character positions contain the symbols `CR' or `DB', the uppercase letters

are the insertion characters. The symbol `+' or `-' when used, must be either the left-most or right-most character

position to be counted in the size of the item. The currency symbol must be the left-most character position to be

counted in the size of the item except that it can be preceded by either a `+' or a `-' symbol. Fixed insertion editing

results in the insertion character occupying the same character position in the edited item as it occupied in the

PICTURE character-string. Editing sign control symbols produce the following results depending upon the value of

the data item:

EDITING SYMBOL IN PICTURE
CHARACTER-STRING

RESULT

DATA ITEM
POSITIVE OR

ZERO

DATA ITEM
NEGATIVE

+ + -

- space -

CR 2 spaces CR

DB 2 spaces DB

TABLE 5. Sign Control in Fixed PICTURE Editing

(7) Floating insertion editing. The currency symbol and editing sign control symbols `+' and `-' are the floating

insertion characters and as such are mutually exclusive in a given PICTURE character-string.

Floating insertion editing is indicated in a PICTURE character-string by using a string of at least two of the

floating insertion characters. This string of floating insertion characters may contain any of the simple insertion

characters or have simple insertion characters immediately to the right of this string. These simple insertion charac-

ters are part of the floating string. When the floating insertion character is the currency symbol, this string of floating

insertion characters may have the fixed insertion characters `CR' and `DB' immediately to the right of this string.

The left-most character of the floating insertion string represents the left-most limit of the floating symbols

in the data item. The right-most character of the floating string represents the right-most limit of the floating symbols

in the data item.

The second floating character from the left represents the left-most limit of the numeric data that can be

stored in the data item. Nonzero numeric data may replace all the characters at or to the right of this limit.

In a PICTURE character-string, there are only two ways of representing floating insertion editing. One way

is to represent any or all of the leading numeric character positions on the left of the decimal point by the insertion

character. The other way is to represent all of the numeric character positions in the PICTURE character-string by

the insertion character.

If the insertion character positions are only to the left of the decimal point in the PICTURE character-string,

the result is that a single floating insertion character will be placed into the character position immediately preceding

either the decimal point or the first nonzero digit in the data represented by the insertion symbol string, whichever is

farther to the left in the PICTURE character-string. The character positions preceding the insertion character are

replaced with spaces.

DATA DIVISION - WORKING-STORAGE SECTION (PICTURE)

181

If all numeric character positions in the PICTURE character-string are represented by the insertion

character, at least one of the insertion characters must be to the left of the decimal point.

When the floating insertion character is the editing control symbol `+' or `-' the character inserted depends

upon the value of the data item:

EDITING SYMBOL IN PICTURE
CHARACTER-STRING

RESULT

DATA ITEM
POSITIVE OR

ZERO

DATA ITEM
NEGATIVE

+ + -

- space -

TABLE 6. Sign Control in Floating PICTURE Editing

If all numeric character positions in the PICTURE character-string are represented by the insertion

character, the result depends upon the value of the data. If the value is zero the entire data item will contain spaces.

If the value is not zero, the result is the same as when the insertion character is only to the left of the decimal point.

To avoid truncation, the minimum size of the PICTURE character-string for the receiving data item must be

the number of characters in the sending data item, plus the number of nonfloating insertion characters being edited

into the receiving data item, plus one for the floating insertion character. If truncation does occur, the value of the

data that is used for editing is the value after truncation.

(8) Zero suppression editing. The suppression of leading zeros in numeric character positions is indicated by

the use of the alphabetic character `Z' or the character `*' (asterisk) as suppression symbols in a PICTURE

character-string. These symbols are mutually exclusive in a given PICTURE character-string. Each suppression

symbol is counted in determining the size of the item. If `Z' is used the replacement character will be the space and if

the asterisk is used, the replacement character will be `*'.

Zero suppression and replacement is indicated in a PICTURE character-string by using a string of one or

more of the allowable symbols to represent leading numeric character positions which are to be replaced when the

associated character position in the data contains a leading zero. Any of the simple insertion characters embedded in

the string of symbols or to the immediate right of this string are part of the string.

In a PICTURE character-string, there are only two ways of representing zero suppression. One way is to

represent any or all of the leading numeric character positions to the left of the decimal point by suppression

symbols. The other way is to represent all of the numeric character positions in the PICTURE character-string by

suppression symbols.

If the suppression symbols appear only to the left of the decimal point, any leading zero in the data which

corresponds to a symbol in the string is replaced by the replacement character. Suppression terminates at the first

nonzero digit in the data represented by the suppression symbol string or at the decimal point, whichever is

encountered first.

If all numeric character positions in the PICTURE character-string are represented by suppression symbols

and the value of the data is not zero the result is the same as if the suppression characters were only to the left of the

decimal point. If the value is zero and the suppression symbol is `Z', the entire data item, including any editing

characters, is spaces. If the value is zero and the suppression symbol is `*' the entire data item, including any

insertion editing symbols except the actual decimal point, will be `*'. In this case, the actual decimal point will

appear in the data item.

(9) The symbols `+', `-', `*', `Z', and the currency symbol, when used as floating replacement characters, are

mutually exclusive within a given character-string.

Interactive COBOL Language Reference & Developer’s Guide - Part One

182

Note: When two of the same symbols appear twice in the chart, the left-most column and
upper-most row symbol represents its use to the left of the decimal point position.
The second appearance of the symbol in the chart represents its use to the right of
the decimal point position.

E.12.6 Precedence Rules

The following table shows the order of precedence when using characters as symbols in a character-string. An `X' at

an intersection indicates that the symbol(s) at the top of the column may precede (but not necessarily immediately),

in a given character-string, the symbol(s) at the left of the row. Two arguments appearing together indicate that the

symbols are mutually exclusive. The currency symbol is indicated by the symbol `cs'.

At least one of the symbols `A', `X', `Z', `9', or `*', or at least two occurrences of one of the symbols `+', `-', or `cs'

must be present in a PICTURE character-string.

Nonfloating insertion symbols `+' and `-', floating insertion symbols `Z', `*', `+', `-', and `cs', and other symbol `P'

appear twice in the PICTURE character precedence chart in the table. The left-most column and upper-most row for

each symbol represents its use to the left of the decimal point position. The second appearance of the symbol in the

chart represents its use to the right of the decimal point position.

First Symbol
Non-floating Insertion

Symbols
Floating
Insertion
Symbols

Other Symbols

Second
Symbol

B O / , . +
-

+
-

CR
DB

cs Z
*

Z
*

+
-

+
-

cs cs 9 A
X

S V P P

Non-
floating
Insertion
Symbols

B x x x x x x x x x x x x x x x x x

0 x x x x x x x x x x x x x x x x x

/ x x x x x x x x x x x x x x x x x

, x x x x x x x x x x x x x x x x

. x x x x x x x x x x

+
-

+
-

x x x x x x x x x x x x x x

CR
DB

x x x x x x x x x x x x x x

cs x

Floating
Insertion
Symbols

Z
*

x x x x x x x

Z
*

x x x x x x x x x x x

+
-

x x x x x x

+
-

x x x x x x x x x x

cs x x x x x x

cs x x x x x x x x x x

Other
Symbols

9 x x x x x x x x x x x x x x x

A
X

x x x x x

S

V x x x x x x x x x x x x

P x x x x x x x x x x x x

P x x x x x

TABLE 7. PICTURE Precedence Rules

DATA DIVISION - WORKING-STORAGE SECTION (REDEFINES)

183

Note: Level-number, data-name-1, and FILLER are shown in the above format to improve clarity. Level-number, data-name-1, and
FILLER are not part of the REDEFINES clause.

E.13. REDEFINES Clause

E.13.1 Function

The REDEFINES clause allows the same computer storage area to be described by different data description entries.

E.13.2 General Format

level-number [REDEFINES data-name-2]

E.13.3 Syntax Rules

(1) The REDEFINES clause, when specified, must immediately follow the subject of the entry.

(2) The level-numbers of data-name-2 and the subject of the entry must be identical, but must not be 66 or 88.

(3) This clause must not be used in level 01 entries in the File Section.

(4) The data description entry for data-name-2 cannot contain an OCCURS clause. However, data-name-2

may be subordinate to an item whose data description entry contains an OCCURS clause. In this case, the reference

to data-name-2 in the REDEFINES clause may not be subscripted. Neither the original definition nor the

redefinition can include a variable occurrence item.

(5) Data-name-2 must not be qualified even if it is not unique; no ambiguity of reference exists in this case

because of the required placement of the REDEFINES clause within the source program.

(6) Multiple redefinitions of the same character positions are permitted. Multiple redefinitions of the same

character positions must all use the data-name of the entry that originally defined the area.

(7) The entries giving the new description of the character positions must not contain any VALUE clauses,

except in condition-name entries.

(8) No entry having a level-number numerically lower than the level-number of data-name-2 and the subject of

the entry may occur between the data description entries of data-name-2 and the subject of the entry.

(9) The entries giving the new descriptions of the character positions must follow the entries defining the area

of data-name-2, without intervening entries that define new character positions.

(10) Data-name-2 may be subordinate to an entry which contains a REDEFINES clause.

(11) If the data item referenced by data-name-2 is either declared to be an external data record or is specified

with a level-number other than 01, the number of character positions it contains must be equal to the number of

character positions in the data item referenced by the subject of this entry. If the data-name referenced by

data-name-2 is specified with a level-number of 01 and is not declared to be an external data record, there is no such

constraint.

Interactive COBOL Language Reference & Developer’s Guide - Part One

184

E.13.4 General Rules

(1) Storage allocation starts at data-name-2 and continues over a storage area sufficient to contain the number

of character positions in the data item referenced by the data-name-1 or FILLER clause.

(2) When the same character position is defined by more than one data description entry, the data-name

associated with any of those data description entries can be used to reference that character position.

DATA DIVISION - WORKING-STORAGE SECTION (RENAMES)

185

Note: Level-number 66 and data-name-1 are shown in the above format to improve clarity. Level-number 66 and data-name-1 are
not part of the RENAMES clause.

E.14. RENAMES Clause

E.14.1 Function

The RENAMES clause permits alternative, possibly overlapping, groupings of elementary items.

E.14.2 General Format

66 data-name-1 RENAMES data-name-2 [data-name-3] .

E.14.3 Syntax Rules

(1) Any number of RENAMES entries may be written for a logical record.

(2) All RENAMES entries referring to data items within a given logical record must immediately follow the last

data description entry of the associated record description entry.

(3) Data-name-1 cannot be used as a qualifier, and can only be qualified by the names of the associated level

01, FD, or SD entries. Neither data-name-2 nor data-name-3 may have an OCCURS clause in its data description

entry nor be subordinate to an item that has an OCCURS clause in its data description entry.

(4) Data-name-2 and data-name-3 must be names of elementary items or groups of elementary items in the

same logical record, and cannot be the same data-name. A 66 level entry cannot rename another 66 level entry nor

can it at rename a 77, 88, or 01 level entry.

(5) Data-name-2 and data-name-3 may be qualified.

(6) None of the items within the range, including data-name-2 and data-name-3, if specified, can be variable

occurrence data items.

(7) The words THROUGH and THRU are equivalent.

(8) The beginning of the area described by data-name-3 must not be to the left of the beginning of the area

described by data-name-2. The end of the area described by data-name-3 must be to the right of the end of the area

described by data-name-2. Data-name-3, therefore, cannot be subordinate to data-name-2.

E.14.4 General Rules

(1) When data-name-3 is specified, data-name-1 is a group item which includes all elementary items starting

with data-name-2 (if data-name-2 is an elementary item) or the first elementary item in data-name-2 (if

data-name-2 is a group item), and concluding with data-name-3 (if data-name-3 is an elementary item) or the last

elementary item in data-name-3 (if data-name-3 is a group item).

(2) When data-name-3 is not specified, all of the data attributes of data-name-2 become the data attributes for

data-name-1.

Interactive COBOL Language Reference & Developer’s Guide - Part One

186

E.15. SIGN Clause

E.15.1 Function

The SIGN clause specifies the position and the mode of representation of the operational sign when it is necessary to

describe these properties explicitly.

E.15.2 General Format

[SIGN IS] [SEPARATE CHARACTER]

E.15.3 Syntax Rules

(1) The SIGN clause may be specified only for a numeric data description entry whose PICTURE contains the

character `S'.

(2) The numeric data description entries to which the SIGN clause applies must be described, implicitly or

explicitly, as USAGE IS DISPLAY.

(3) If the CODE-SET clause is specified in a file description entry, any signed numeric data description entries

associated with that file description entry must be described with the SIGN IS SEPARATE clause.

E.15.4 General Rules

(1) The optional SIGN clause, if present, specifies the position and the mode of representation of the

operational sign for the numeric data description entry to which it applies, or for each numeric data description entry

subordinate to the group to which it applies. The SIGN clause applies only to numeric data description entries

whose PICTURE contains the character `S'; the `S' indicates the presence of, but neither the representation nor,

necessarily, the position of the operational sign.

(2) If a SIGN clause is specified in a group item subordinate to a group item for which a SIGN clause is

specified, the SIGN clause specified in the subordinate group item takes precedence for that subordinate group item.

(3) If a SIGN clause is specified in an elementary numeric data description entry subordinate to a group item for

which a SIGN clause is specified, the SIGN clause specified in the subordinate elementary numeric data description

entry takes precedence for that elementary numeric data item.

(4) A numeric data description entry whose PICTURE contains the character `S', but to which no optional

SIGN clause applies, has an operational sign, but neither the representation, nor, necessarily, the position of the

operational sign is specified by the character `S'. For items whose USAGE IS DISPLAY, the default operational

sign is the same as SIGN IS TRAILING. For items whose USAGE IS COMPUTATION, the operational sign is

inherent in the binary representation of the value. General rules 5 through 7 do not apply to such default signed

numeric data items.

(5) If the optional SEPARATE CHARACTER phrase is not present, then:

a. The operational sign will be presumed to be associated with the leading (or, respectively, trailing) digit

position of the elementary numeric data item, more commonly called over punched.

b. The letter `S' in a PICTURE character-string is not counted in determining the size of the item (in terms

of standard data format characters).

DATA DIVISION - WORKING-STORAGE SECTION (SIGN)

187

c. The table below defines the valid sign(s) for data items.

Digit Positive Negative

0 { <173> } <175>

1 A <101> J <112>

2 B <102> K <113>

3 C <103> L <114>

4 D <104> M <115>

5 E <105> N <116>

6 F <106> O <117>

7 G <107> P <120>

8 H <110> Q <121>

9 I <111> R <122>

TABLE 8. SIGN Overpunch Characters

(6) If the optional SEPARATE CHARACTER phrase is present, then:

a. The operational sign will be presumed to be the leading (or, respectively, trailing) character position of

the elementary numeric data item; this character position is not a digit position.

b. The letter `S' in a PICTURE character-string is counted in determining the size of the item (in terms of

standard data format characters).

c. The operational signs for positive and negative are the standard data format characters `+' and `-'

respectively.

(7) Every numeric data description entry whose PICTURE contains the character `S' is a signed numeric data

description entry. If a SIGN clause applies to such an entry and conversion is necessary for purposes of computation

or comparisons, conversion takes place automatically.

Interactive COBOL Language Reference & Developer’s Guide - Part One

188

E.16. SYNCHRONIZED Clause

E.16.1 Function

The SYNCHRONIZED clause specifies the alignment of an elementary item on the natural boundaries of the

computer memory.

E.16.2 General Format

E.16.3 Syntax Rules

(1) This clause may only appear with an elementary item.

(2) SYNC is an abbreviation for SYNCHRONIZED.

E.16.4 General Rules

(1) The SYNCHRONIZED clause is used for documentation only. All data items within a record are aligned

on the next available byte in storage.

(2) All 01 and 77 level items are aligned on an even byte boundary. This default alignment may be overridden

with the -B compiler switch.

DATA DIVISION - WORKING-STORAGE SECTION (USAGE)

189

E.17. USAGE Clause

E.17.1 Function

The USAGE clause specifies the format of a data item in the computer storage.

E.17.2 General Format (ANSI 74 and ANSI 85)

[USAGE IS]

E.17.3 General Format (VXCOBOL)

[USAGE IS]

E.17.4 Syntax Rules

(1) A USAGE clause specifying BINARY, COMPUTATION-5, PACKED-DECIMAL, or POINTER may not

be used with the VXCOBOL dialect.

(2) The USAGE clause may be written in any data description entry with a level-number other than 66 or 88.

(3) If the USAGE clause is written in the data description entry for a group item, it may also be written in the

data description entry for any subordinate elementary item or group item, but the same usage must be specified in

both entries.

(4) An elementary data item whose declaration contains, or an elementary data item subordinate to a group item

whose declaration contains, a USAGE clause specifying BINARY, COMPUTATIONAL, COMPUTATIONAL-3,

COMPUTATIONAL-5, or PACKED-DECIMAL, must be declared with a PICTURE character-string that describes

a numeric item, i.e., a PICTURE character-string that contains only the symbols `P', `S', `V', and `9'.

(5) COMP is an abbreviation for COMPUTATIONAL.

(6) COMP-3 is an abbreviation for COMPUTATIONAL-3.

(7) COMP-5 is an abbreviation for COMPUTATIONAL-5.

(8) An index data item can be referenced explicitly only in a SET statement, a relation condition, the USING

phrase of a Procedure Division header, or the USING phrase of a CALL statement.

(9) The BLANK WHEN ZERO, JUSTIFIED, PICTURE, SIGN, SYNCHRONIZED, and VALUE clauses must

not be specified for data items whose usage is INDEX.

Interactive COBOL Language Reference & Developer’s Guide - Part One

190

(10) An elementary data item described with a USAGE IS INDEX or USAGE IS POINTER clause must not be

a conditional variable.

(11) An elementary data item described with a USAGE IS POINTER must contain no other data description

clauses other than VALUE IS NULL.

E.17.5 General Rules

(1) If the USAGE clause is written at a group level, it applies to each elementary item in the group.

(2) The USAGE clause specifies the manner in which a data item is represented in the storage of a computer. It

may affect the use of the data item, and the specifications for some statements in the Procedure Division may restrict

the USAGE clause of the operands referred to. The USAGE clause may affect the radix or type of character

representation of the item.

(3) The USAGE IS BINARY or COMPUTATIONAL clause specifies a twos-complement big-endian binary

representation of the numeric item in the storage of the computer. The table below lists the bytes required to store

BINARY and COMPUTATIONAL items.

VXCOBOL ANSI 74 and ANSI 85

Number of Decimal Digits Number of Decimal Digits
Bytes Required

Unsigned Signed

1-2 1-2 1-2 1

3-4 3-4 3-4 2

5-6 5-7 5-6 3

7-9 8-9 7-9 4

10-11 10-12 10-11 5

12-14 13-14 12-14 6

15-16 15-16 15-16 7

17-18 17-18 17-18 8

TABLE 9. BINARY & COMPUTATIONAL Storage Allocation

(4) The USAGE IS DISPLAY clause (whether specified explicitly or implicitly) specifies that a standard data

format is used to represent a data item in the storage of the computer, and that the data item is aligned on a character

boundary. The data is stored as ASCII characters in bytes.

(5) If the USAGE clause is not specified for an elementary item, or for any group to which the item belongs, the

usage is implicitly DISPLAY.

(6) The USAGE IS COMPUTATIONAL-3 and PACKED-DECIMAL clauses specify that a radix of 10

(packed decimal) is used to represent a numeric item in the storage of the computer. Furthermore, this clause

specifies that each digit position must occupy the minimum possible configuration in computer storage.

COMPUTATIONAL-3 and PACKED-DECIMAL items are stored most significant digit first as a string of 4-bit

half-bytes (nibbles). Each nibble except the rightmost, contains a hexadecimal digit of 0 through 9; the remaining

nibble contains a hexadecimal C if the data is positive or unsigned or D if the data is negative. The sign nibble is

always present as the last nibble. Because there must be an even number of nibbles (i.e., you cannot store a half-

byte) and a sign nibble is always stored, the number of digits stored is always rounded up to an odd number. Thus a

PIC 99 is stored the same as a PIC 999.

(7) The usage is COMPUTATIONAL-5 clause specifies a twos-complement binary representation of the

numeric item in the storage of the computer. The format of a COMPUTATIONAL-5 item differs from that of a

COMPUTATIONAL item in that in is stored in an order that is natural to the host computer. On "big-endian"

machines, data is stored with high-order bytes at the lowest addresses and successively lower-order bytes at

successively higher addresses. On "little-endian" machines, data is stored in the reverse order, i.e., the lower the

address the lower the significance of the byte. For example, a computational item with a four byte hexadecimal

DATA DIVISION - WORKING-STORAGE SECTION (USAGE)

191

value of 12 34 56 78 would be stored as 12 34 56 78 on a “big-endian” machine and as 78 56 34 12 on a “little-

endian” machine. Most RISC processors are “big-endian” and most Intel processors are “little-endian”.

NOTE: Data stored in a COMPUTATIONAL-5 field may not be transportable to a different machine since

different machines have different byte orderings.

The number of bytes required to store COMPUTATIONAL-5 items is described in the following table. Storage does

not differ between signed and unsigned items.

Number of Decimal Digits Bytes Required

1-2 1

3-4 2

5-9 4

10-18 8

TABLE 10. COMPUTATIONAL-5 Storage Allocation

(8) The USAGE IS INDEX clause specifies that a data item is an index data item and contains a value which

must correspond to an occurrence number of a table element. INDEX items are represented internally as 4-byte

unsigned items.

(9) The USAGE IS POINTER clause specifies a data-item in which the address of a data item can be stored. A

pointer item requires 4 bytes. The format of the item is machine dependent. USAGE IS POINTER data items have

their values assigned by the SET or INITIALIZE statements and may appear in relational conditions for equality and

inequality.

(10) When a MOVE statement or an input-output statement that references a group item that contains an index

data item or a pointer data item is executed, no conversion of the data item takes place.

(11) The ON SIZE condition is processed as follows for the various usages:

a. For a BINARY item, the number of digits used in the check is based on the picture specified.

b. For a COMPUTATIONAL item, the check is based on the picture specified except for ANSI 74 where it

is based on storage size rather than the picture. (The -G p and -G b compiler switches allow COMPUTATIONAL

items to be size checked based on picture and storage respectively thus allowing the default behavior to be

overridden.)

c. For a PACKED-DECIMAL item, the number of digits used in the check is based on the picture

specified.

d. For a COMPUTATIONAL-3 item, the check is based on storage size rather than the picture; i.e., it uses

the rounded-up digit count as explained in rule 8.

e. For a COMPUTATIONAL-5 item, the check is based on storage size rather than picture.

Interactive COBOL Language Reference & Developer’s Guide - Part One

192

E.18. USAGE Clause (ISQL)

E.18.1 Function

This USAGE clause specifies the format of a data item in the computer storage when used with the ISQL feature set..

E.18.2 General Format

 [USAGE IS]

E.18.3 Syntax Rules

(1) A USAGE clause specifying CHARACTER, DATE, INDICATOR, INTEGER, INTERVAL, NUMERIC,

SMALLINT, TIME, or TIMESTAMP is available only when the ISQL feature-set is enabled and appear as USAGE

options that are in addition to certain dialect-specific options.

(2) The USAGE clause may be written in any data description entry with a level-number other than 66 or 88.

(3) A USAGE clause specifying CHARACTER, DATE, INDICATOR, INTEGER, INTERVAL, NUMERIC,

SMALLINT, TIME, or TIMESTAMP must not be specified at the group level.

(4) If the USAGE clause is written in the data description entry for a group item, it may also be written in the

data description entry for any subordinate elementary item or group item, but the same usage must be specified in

both entries.

(5) CHAR is an abbreviation for CHARACTER.

(6) INT is an abbreviation for INTEGER.

(7) The BLANK WHEN ZERO, JUSTIFIED, PICTURE, SIGN, and SYNCHRONIZED clauses must not be

specified for data items whose usage is CHARACTER, DATE, INDICATOR, INTEGER, INTERVAL, NUMERIC,

SMALLINT, TIME, or TIMESTAMP.

(8) The value of integer-1 must be greater than zero and less than or equal to 65535. If integer-1 is omitted it is

assumed to have a value of one.

DATA DIVISION - WORKING-STORAGE SECTION (USAGE (ISQL))

193

01 TOP-LEVEL.

02 VARYING-ITEM CHARACTER VARYING (20).

02 VARYING-RED REDEFINES VARYING-ITEM.

03 RED-LENGTH PIC 9(4) COMPUTATIONAL.

03 RED-ITEM PIC X(20).

(9) The value of integer-2 must be greater than zero and less than the values specified in the general rules

below.

(10) The value of integer-3 must be greater than zero and less than or equal to six.

(11) The value of integer-4 must be greater than zero and less than or equal to 18.

(12) The value of integer-5 must be greater than or equal to zero and less than or equal to the value of

integer-4. If integer-5 is omitted it is assumed to have a value of zero.

E.18.4 General Rules

(1) If the USAGE clause is written at a group level, it applies to each elementary item in the group.

(2) The USAGE clause specifies the manner in which a data item is represented in the storage of a computer. It

may affect the use of the data item, and the specifications for some statements in the Procedure Division may restrict

the USAGE clause of the operands referred to. The USAGE clause may affect the radix or type of character

representation of the item.

(3) The USAGE IS CHARACTER clause specifies a data-item which can store an SQL character string value.

The value of integer-1 specifies the number of characters that can be stored in the item. If integer-1 is omitted, it is

assumed to have a value of one. The maximum value for integer-1 is 65535.

If the VARYING phrase is specified, the data item may vary in length from zero characters to the number of

characters specified by integer-1. The format of an elementary item in storage has a two-byte binary current-length

field (equivalent to a 2-byte unsigned COMPUTATIONAL field) followed by the alphanumeric data field. The

format is equivalent to the following data redefinition:

When the data item is referenced at execution, the value of the length field is implicitly referenced to determine the

effective length of the data field. Only the data positions encompassed by the current length are referenced.

(4) The USAGE IS DATE clause specifies a data item which can store an SQL date value. The value is stored

as a sequence of 8 ASCII decimal digits (yyyymmdd), with the leftmost four-digits specifying the year field, the next

two-digits specifying the month field, and the final two digits specifying the day of the month field. The values or

the various fields must meet the rules for valid month and day values in the Gregorian calendar. The size of a DATE

data item is 8 bytes.

(5) The USAGE IS INTEGER clause specifies a data item which can store an SQL integer value. It has the

same storage format and runtime behavior as a signed 4-byte COMPUTATIONAL-5 data item.

(6) The USAGE IS INDICATOR clause specifies a data item which can store the value that indicates whether

an item has no value (is NULL), has a valid value (is VALID), or has a truncated value (is OVERFLOW). The value

can be set by using the SET statement or by specifying the data-item in the INDICATOR clause in the parameter list

of an SQL statement.

(7) The USAGE IS INTERVAL clause specifies a data item which can store an SQL interval value. The value

is stored as a sign, containing an ASCII ‘+’ or ‘-‘ character, followed by a sequence of ASCII decimal digits

Interactive COBOL Language Reference & Developer’s Guide - Part One

194

expressing the interval value in units of the rightmost field. Thus “10:08" MINUTE TO SECOND is stored as

+0608. The number of digits in the leftmost field can be set by specifying integer-2. The maximum and default

values for integer-2 depend on the type of the leftmost field specifier and are specified in the following table. The

size is 1 byte plus the sum of the sizes of the individual fields in the range, except for the DAY TO SECOND

interval, which is one less (just the sum of the sizes of the individual fields.) This yields a minimum size of 2 bytes

(sign plus a single field of precision 1) and a maximum size of 19 bytes.

Field Maximum Precision

as Leftmost Field

Default Precision

YEAR 4 4

MONTH 6 2

DAY 7 2

HOUR 8 2

MINUTE 10 2

SECOND 12 2

TABLE 11. INTERVAL Field Maximum Precision (ISQL)

(8) The USAGE IS SMALLINT clause specifies a data item which can store an SQL small integer value. It has

the same storage format and runtime behavior as a signed 2-byte COMPUTATIONAL-5 data item.

(9) The USAGE IS TIME clause specifies a data item which can store an SQL time value. The value is stored

as a sequence of 6 (hhmmss) plus integer-3 ASCII decimal digits, with the leftmost two-digits specifying the hours

field, the next two-digits specifying the minutes field, the next two-digits specifying the seconds field, and the final

integer-3 digits specifying the fractional seconds field. If integer-3 is omitted, it is assumed to be zero. The value of

integer-3 must be less than or equal to 6. The values for the various fields must meet the rules for time keeping

using a 24 hour clock, i.e., 00-23 for hours and 00-59 for minutes and seconds. Thus size of a TIME item is 6 plus

integer-3 bytes, with a maximum of 12 bytes.

(10) The USAGE IS TIMESTAMP clause specifies a data item which can store an SQL timestamp value. The

value is stored as a DATE data item directly followed by a TIME data item with integer-3 fraction digits. The size

of a TIMESTAMP data item is 14 plus integer-3 bytes.

(11) When a MOVE statement or an input-output statement that references a group item that contains an

indicator data item is executed, no conversion of the data item takes place.

(12) The ON SIZE condition is processed as follows for the various usages:

a. For an INTEGER or SMALLINT item, the check is based on storage size rather than picture.

b. For a NUMERIC item, the check is based on the declared precision.

(13) Uninitialized DATE and TIME items can cause exceptions if used before a valid value is stored.

DATA DIVISION - WORKING-STORAGE SECTION (VALUE)

195

E.19. VALUE Clause

E.19.1 Function

The VALUE clause defines the initial value of Working-Storage data items and the values associated with

condition-names.

E.19.2 General Format

Format 1:

VALUE IS

Format 2:

E.19.3 Syntax Rules

(1) The words THROUGH and THRU are equivalent.

(2) A signed numeric literal must have associated with it a signed numeric PICTURE character-string or a

usage that represents a signed numeric item.

(3) All numeric literals in a VALUE clause of an item must have a value which is within the range of values

indicated by the PICTURE clause, and must not have a value which would require truncation of nonzero digits.

Items whose USAGE enables size checking by storage must have a value which will fit in the storage allocated.

(4) Nonnumeric literals in a VALUE clause of an item must not exceed the size indicated by the PICTURE

clause.

(5) The word NULL may only be specified for an item with usage POINTER or (ISQL) INDICATOR.

(6) (ISQL) The words VALID and OVERFLOW may only be specified for an item of usage INDICATOR.

(7) (ISQL) If the class of the item is date-time or interval, the literals in the VALUE clause must be of the

same category and must not have a value which would require the truncation of nonzero digits.

(8) Literal-1 may not be specified for an item with usage POINTER or (ISQL) usage INDICATOR.

E.19.4 General Rules

(1) The VALUE clause must not conflict with other clauses in the data description of the item or in the data

description within the hierarchy of the item.

(2) If the category of the item is numeric, all literals in the VALUE clause must be numeric. If the literal

defines the value of a working storage item, the literal is aligned in the data item according to the standard alignment

rules.

Interactive COBOL Language Reference & Developer’s Guide - Part One

196

(3) If the category of the item is alphabetic, alphanumeric, alphanumeric edited, or numeric edited, all literals in

the VALUE clause must be nonnumeric literals. The literal is aligned in the data item as if the data item had been

described as alphanumeric. Editing characters in the PICTURE clause are included in determining the size of the

data item but have no effect on initialization of the data item. Therefore, the VALUE for an edited item must be

specified in an edited form.

(4) Initialization is not affected by any BLANK WHEN ZERO or JUSTIFIED clause that may be specified.

(5) (ISQL) If the category of the item is date, time, or timestamp the literals in the VALUE clause must be of

the same category. If the literal defines the value of a working-storage item, the literal may also be a simple

nonnumeric literal whose content matches the content of a literal of the same category as the item.

(6) (ISQL) If the category of the item is year-to-month or day-to-time, the literals in the VALUE clause must be

of the same category and have the same range of field specifiers. If the literal defines the value of a working-storage

item, the literal may also be a simple nonnumeric literal whose content matches the content of a literal of the same

category and with the same range of field specifiers as the item.

E.19.5 Condition-Name Rules

(1) In a condition-name entry, the VALUE clause is required. The VALUE clause and the condition-name

itself are the only two clauses permitted in the entry. The characteristics of a condition-name are implicitly those of

its conditional variable.

(2) Format 2 can be used only in conjunction with condition-names. Whenever the THRU phrase is used,

literal-2 must be less than literal-3.

(3) A condition-name entry may not be used if the conditional variable is defined with usage POINTER, usage

INDEX or (ISQL) usage INDICATOR.

E.19.6 Data Description Entries Other Than Condition-Names

(1) Rules governing the use of the VALUE clause differ with the respective sections of the Data Division:

a. In the File Section, the VALUE clause may be used only in condition-name entries; therefore, the initial

value of the data item in the File Section is undefined.

b. In the Linkage Section, the VALUE clause may only be used in condition-name entries.

c. In the Working-Storage Section, the VALUE clause must be used in condition-name entries. VALUE

clauses in the Working-Storage Section of a program take effect only when the program is placed into its initial state.

If the VALUE clause is used in the description of the data item, the data item is initialized to the defined value. If

the VALUE clause is not associated with a data item, the initial value of that data item is undefined.

d. In the Screen Section a figurative constant cannot be used.

(2) The VALUE clause must not be stated in a data description entry that contains a REDEFINES clause, or in

an entry that is subordinate to an entry containing a REDEFINES clause. This rule does not apply to condition-name

entries.

(3) If the VALUE clause is used in an entry at the group level, the literal must be a figurative constant or a

nonnumeric literal, and the group area is initialized without consideration for the individual elementary or group

items contained within this group. The VALUE clause cannot be stated at the subordinate levels within this group.

(4) The VALUE clause must not be specified for a group item containing items subordinate to it with

descriptions including JUSTIFIED, SYNCHRONIZED, or USAGE (other than USAGE IS DISPLAY).

DATA DIVISION - WORKING-STORAGE SECTION (VALUE)

197

(5) A Format 1 VALUE clause specified in a data description entry that contains an OCCURS clause or in a

entry that is subordinate to an OCCURS clause causes every occurrence of the associated data item to be assigned

the specified value.

(6) If a VALUE clause is specified in a data description entry of a data item which is associated with a variable

occurrence data item, the initialization of the data item behaves as if the value of the data item referenced by the

DEPENDING ON phrase in the OCCURS clause specified for that variable occurrence data item is set to the

maximum number of occurrences as specified by the OCCURS clause. A data item is associated with a variable

occurrence data item in any of the following cases:

a. It is a group data item containing a variable occurrence data item.

b. It is a variable occurrence data item.

c. It is subordinate to a variable occurrence data item.

If a VALUE clause is associated with the data item referenced by a DEPENDING ON phrase, that value is

considered to be placed in the data item after the variable occurrence data item has been initialized.

(7) (ISQL) If the VALUE clause is specified in a data description entry that contains the VARYING phrase, the

current length of the data item is also initialized to the length of the literal item specified in the VALUE clause. If

the literal item is a figurative constant, the length is the length of a single occurrence of the constant.

Interactive COBOL Language Reference & Developer’s Guide - Part One

198

F. VIRTUAL-STORAGE SECTION (VXCOBOL)

The Virtual-Storage Section is located in the Data Division of a source program. The Virtual-Storage Section is

treated as an extension of the Working-Storage Section.

The general format of the Virtual-Storage Section is the same as that shown for the Working-Storage Section.

All rules that apply to the Working-Storage Section apply equally to the Virtual-Storage Section.

DATA DIVISION - LINKAGE SECTION

199

G. LINKAGE SECTION

The Linkage Section is located in the Data Division of a source program. The Linkage Section appears in the called

program and describes data items that are to be referred to by the calling program and the called program.

The Linkage Section in a program is meaningful if and only if the object program is to function under the control of

a CALL statement, and the CALL statement in the calling program contains a USING phrase or if the program was

passed data from another program with a CALL PROGRAM statement that contained a USING phrase or the

program was started with data passed in when the runtime system was initially started.

The Linkage Section is used for describing data that is available through the calling program but is to be referred to

in both the calling and the called program. The mechanism by which a correspondence is established between the

data items described in the Linkage Section of a called program and data items described in the calling program is

described elsewhere in these specifications. In the case of index-names, no such correspondence is established and

index-names in the called and calling programs always refer to separate indices.

The structure of the Linkage Section is the same as that previously described for the Working-Storage Section,

beginning with a section header, followed by noncontiguous data items and/or record description entries.

The general format of the Linkage Section is shown below.

LINKAGE SECTION.

If a data item in the Linkage Section is accessed in a program which is not a called program, the effect is undefined.

G.1. Noncontiguous Linkage Storage

Items in the Linkage Section that bear no hierarchical relationship to one another need not be grouped into records

and are classified and defined as noncontiguous elementary items. Each of these items is defined in a separate data

description entry which begins with the special level-number 77.

The following data clauses are required in each data description entry:

1. level-number 77

2. data-name

3. the PICTURE clause or a USAGE clause that precludes the use of a PICTURE clause.

Other data description clauses are optional and can be used to complete the description of the item if necessary.

G.2. Linkage Records

Data elements in the Linkage Section which bear a definite hierarchical relationship to one another must be grouped

into records according to the rules for formation of record descriptions. Data elements in the Linkage Section which

bear no hierarchical relationship to any other data item may be described as records which are single elementary

items.

G.3. Initial Values

The VALUE clause must not be specified in the Linkage Section except in condition-name entries (level-number

88).

Interactive COBOL Language Reference & Developer’s Guide - Part One

200

H. SCREEN SECTION

The Screen Section is located in the Data Division of a source program. The Screen Section defines the attributes of

screens to be used in interactive screen I/O. Screen section entries are referenced in the procedure Division with the

ACCEPT and DISPLAY verbs. The Screen Section is an extension to ANSI COBOL.

The Screen Section is composed of the section header, followed by screen description entries.

The general format of the Screen Section is shown below.

SCREEN SECTION.

[screen-description-entry]...

H.1. Screen Description

A screen description consists of a set of screen description entries which describe the characteristics of a particular

screen. Each screen description entry consists of a level-number followed by the screen-name, if specified, followed

by a series of independent clauses as required. A screen description may have a hierarchical structure and therefore

the clauses used within an entry may vary considerably, depending upon whether or not it is followed by subordinate

entries.

In its simplest form, the screen description consists of a single, named 01 level item that can be a screen-literal or

screen-data format entry. In its more complex form, the screen description consists of a named 01 level item that is a

screen-group format item. The screen description consists of the 01 level item and all items subordinate to it. It can

have the same type of hierarchical structure as a record description.

The screen description entry and the allowable elements are explained in the next section.

H.2. Screen Description Entry

H.2.1 Function

A screen description entry specifies the characteristics of a particular item in a screen.

Screen data description entries can be screen-literal, screen-data, or screen-group format items. Screen-literal format

is used to display constant information, such as prompts. Screen-data format is used to perform input/output

operations and transfer data between the screen-data and data items in the File, Working-Storage, and Linkage

sections. Screen-group format is used to organize multiple screen-literal and screen-data items into logical groups

for input/output operations as well as to specify attributes that apply to several screen-data items.

Screen description entries consist of a level number, an optional screen-name, and optional clauses that specify the

position of a field, along with various attributes.

DATA DIVISION - SCREEN SECTION (General Format)

201

H.2.2 General Format

Screen-Literal Format: (ANSI 74 and ANSI 85)

level-number []

[BLANK]

[ERASE]

[BLINK]

[]

[]

[]

[[VALUE IS] literal] .

Interactive COBOL Language Reference & Developer’s Guide - Part One

202

Screen-Literal Format: (VXCOBOL)

[BELL]

[BLANK]

[BLINK]

[BOLD]

[[VALUE IS] literal] .

DATA DIVISION - SCREEN SECTION (General Format)

203

Screen-Data Format: (ANSI 74 and ANSI 85)

level-number []

[BLANK]

[ERASE]

[BLINK]

[]

[]

[OCCURS integer TIMES]

[AUTO]

[BLANK W HEN ZERO]

[CONVERTING]

[FULL]

[RIGHT]

 IS character-string

[REQUIRED]

Interactive COBOL Language Reference & Developer’s Guide - Part One

204

[SECURE]

[[SIGN IS] SEPARATE CHARACTER]

d [[USAGE IS] DISPLAY]

.

For ISQL Add:

[[USAGE IS]]

DATA DIVISION - SCREEN SECTION (General Format)

205

Screen-Data Format: (VXCOBOL)

[AUTO]

[BELL]

[BLANK]

[BLANK W HEN ZERO]

[BLINK]

[BOLD]

[FULL]

[RIGHT]

 IS character-string

[REQUIRED]

[SECURE]

[[SIGN IS] SEPARATE CHARACTER]

d [[USAGE IS] DISPLAY]

.

For ISQL Add:

[[USAGE IS]]

Interactive COBOL Language Reference & Developer’s Guide - Part One

206

Screen-Group Format: (ANSI 74 and ANSI 85)

level-number []

[BLANK SCREEN]

[]

[]

[]

[]

[OCCURS integer TIMES]

[AUTO]

[FULL]

[REQUIRED]

[SECURE]

d [[USAGE IS] DISPLAY]

[[SIGN IS] SEPARATE CHARACTER] .

DATA DIVISION - SCREEN SECTION (General Format)

207

Screen-Group Format: (VXCOBOL)

[AUTO]

[BLANK SCREEN]

[BELL]

[BOLD]

[FULL]

[REQUIRED]

[SECURE]

Interactive COBOL Language Reference & Developer’s Guide - Part One

208

H.2.3 Syntax Rules

(1) Level-number may be any number from 01 through 49.

(2) Screen-name is required for level 01.

(3) In all formats, if screen-name is present it must immediately follow the level number.

(4) The literal in the VALUE clause must be a nonnumeric literal and it cannot be a figurative constant.

(5) Unnamed items cannot be referenced individually, but only indirectly by referencing a containing named

screen-group item.

(6) A screen-literal format item cannot specify a PICTURE clause.

(7) A screen-data format item cannot specify a VALUE clause.

(8) A screen-data format item must include a PICTURE clause as well as one of the following combinations of

the TO, FROM, and USING clauses:

a. a FROM clause,

b. a TO clause,

c. a FROM clause and a TO clause, or

d. a USING clause.

(9) The JUSTIFIED and BLANK WHEN ZERO clauses may only be specified for a screen-data format item

and are subject to the same PICTURE compatibility restrictions as apply to a data item in Working Storage.

(10) If more than one clause is specified for an entry, the clauses may occur in any order. Since at execution

time a specific order is followed, it is useful to follow this same order in the source program.

The order of execution for a DISPLAY statement is as follows:

For ANSI 74 and ANSI 85:

BACKGROUND-COLOR & FOREGROUND-COLOR

BLANK SCREEN

COLUMN and LINE positioning

BLANK LINE/ERASE EOL, ERASE EOS, ERASE LINE

BELL

display literal or data with appropriate attributes

For VXCOBOL:

BLANK SCREEN

COLUMN and LINE positioning

BLANK LINE

BELL

display literal or data with appropriate attributes

DATA DIVISION - SCREEN SECTION (General Format)

209

Notes:

1. The default appearance for literal and output fields is DIM.

2. The default appearance for input, input-output, and update fields is BOLD.

The order of execution for an ACCEPT statement is as follows:

For ANSI 74 and ANSI 85:

BACKGROUND-COLOR & FOREGROUND-COLOR

COLUMN and LINE positioning

accept data with appropriate attributes

For VXCOBOL:

COLUMN and LINE positioning

accept data with appropriate attributes

(11) USAGE IS DISPLAY is for documentation purposes only as USAGE IS DISPLAY is the default.

Additional Syntax Rule for VXCOBOL:

(12) The VIRTUAL clause is used for documentation only, but may only be specified for an 01 level entry.

H.2.4 General Rules

(1) The PICTURE, JUSTIFIED, and BLANK WHEN ZERO clauses have the same meaning for screen-data

items as for data items in Working Storage. The other clauses are described more fully in the sections that follow.

(2) A screen-data item with a FROM clause and no TO clause is described as an output field.

(3) A screen-data item with a TO clause and no FROM clause is described as an input field.

(4) A screen-data item with both a FROM clause and a TO clause is described as an input-output field.

(5) A screen-data item with a USING clause is described as an update field.

(6) The relationship of the level numbers in a screen description are used to differentiate between the

screen-group format items and the elementary format items, which are screen-literal and screen-data.

(7) For the two elementary format items, the presence of a PICTURE clause is used to differentiate between a

screen-data format item and a screen-literal format item.

Interactive COBOL Language Reference & Developer’s Guide - Part One

210

Note: A non-blank update field will always satisfy this requirement.

H.3. AUTO, FULL, REQUIRED Clauses

H.3.1 Function

The clauses AUTO, FULL, and REQUIRED affect the behavior of data entry to input, input-output, and update

fields during the execution of an ACCEPT statement.

H.3.2 General Format

AUTO

FULL

REQUIRED

H.3.3 Syntax Rules

(1) These clauses can only be used with input, input-output, or update screen-data items or with screen-group

items.

H.3.4 General Rules

(1) If one of these clauses is written at a screen-group level, it applies to each elementary input, input-output,

and update item in the screen-group.

(2) These clauses have no effect during the execution of a DISPLAY statement.

(3) The AUTO clause causes data entry for the field to automatically terminate when data is entered into the last

character position in the field. If this field is the last field in the screen the ACCEPT is terminated as if a normal

terminator (any key with an ESCAPE KEY value of 00) had been entered.

(4) The FULL clause requires that a character or space must be entered in every position of a field, if any

character is entered. USING fields are initially always full.

(5) The REQUIRED clause requires that there must be at least one non-blank character in the data entry field

before data entry for the field can be terminated.

DATA DIVISION - SCREEN SECTION (COLOR)

211

H.4. BACKGROUND-COLOR, FOREGROUND-COLOR Clauses (ANSI 74 and ANSI 85)

H.4.1 Function

The BACKGROUND-COLOR and FOREGROUND-COLOR clauses set the background and foreground color for a

screen item.

H.4.2 General Format

H.4.3 Syntax Rules

(1) BACKGROUND-COLOR and BACKGROUND are synonyms.

(2) FOREGROUND-COLOR and FOREGROUND are synonyms.

H.4.4 General Rules

(1) The BACKGROUND-COLOR clause determines the background color for a screen item.

(2) The FOREGROUND-COLOR clause determines the foreground color for a screen item.

(3) These clauses are effective only with color screens.

(4) The color is specified by entering an integer from 0 to 7, the appropriate color-name, or and integer whose

value ranges from 0 to 7. The color-names with their integer values are shown in the chart below.

Color BLACK BLUE GREEN CYAN RED MAGENTA BROWN WHITE

Integer 0 1 2 3 4 5 6 7

TABLE 12. BACKGROUND-COLOR and FOREGROUND-COLOR

(5) If the value of identifier falls outside of the range 0 through 7, then the associated BACKGROUND-

COLOR or FOREGROUND-COLOR clause is ignored.

(6) When used at the screen-group level, these clauses apply to all subordinate screen items. If no colors are

specified, the terminal uses its default background and foreground colors.

Interactive COBOL Language Reference & Developer’s Guide - Part One

212

H.5. BELL Clause

H.5.1 Function

The BELL clause sounds the tone on the user's display device.

H.5.2 General Format

H.5.3 Syntax Rules

(1) The words BELL and BEEP are synonyms.

H.5.4 General Rules

(1) The BELL clause is effective only during the execution of a DISPLAY statement.

(2) If BELL is specified on a screen-group format item, the tone is only sounded when the screen-group item is

processed, not when each item subordinate to the screen-group item is processed.

DATA DIVISION - SCREEN SECTION (BLANK, ERASE)

213

H.6. BLANK Clause

H.6.1 Function

The BLANK clause is used to erase part or all of the user's display device during the execution of a DISPLAY

statement.

H.6.2 General Format

BLANK

H.6.3 General Rules

(1) The BLANK LINE, BLANK SCREEN, and BLANK REMAINDER clauses are effective only during the

execution of a DISPLAY statement.

(2) BLANK SCREEN erases the entire screen and positions the cursor to line 1 column 1.

(3) BLANK SCREEN is processed before any LINE and COLUMN positioning clauses because it has an

implicit positioning of the cursor.

(4) BLANK LINE erases the current line from the cursor position to the end of the line without changing the

cursor position.

(5) BLANK REMAINDER erases the screen starting at the cursor position to the end of the screen. The cursor

is not affected.

(6) BLANK LINE and BLANK REMAINDER are processed after the LINE and COLUMN positioning clauses

and before any screen-literal or screen-data items so that they can be used to clear data previously displayed on the

screen before displaying new data at the same position.

NOTE: If the compiler’s ISO screen behavior option (-G e) is specified, the BLANK LINE clause will erase the

entire line starting in column 1 rather than starting at the specified or implied column position.

Interactive COBOL Language Reference & Developer’s Guide - Part One

214

H.7. BLINK, BOLD/BRIGHT/HIGHLIGHT/DIM/LOWLIGHT, REVERSE/REVERSED/REVERSED-VIDEO,

UNDERLINE/UNDERLINED Clauses

H.7.1 Function

These clauses are used to control the appearance of data that is displayed on the user's display device.

H.7.2 General Format (ANSI 74 and ANSI 85)

BLINK

H.7.3 General Format (VXCOBOL)

BLINK

BOLD

H.7.4 Syntax Rules

(1) These clauses can be specified for a screen-literal format item, a screen-data format item, or a screen-group

format item.

H.7.5 General Rules

(1) These clauses apply to both ACCEPT and DISPLAY.

(2) The BLINK clause causes the field to blink.

(3) The BOLD, BRIGHT, or HIGHLIGHT clauses cause the field to be displayed at high intensity.

(4) The DIM, LOWLIGHT, or NO HIGHLIGHT clauses cause the field to be displayed at low intensity.

(5) The REVERSE, REVERSED, or REVERSE-VIDEO clauses cause the field to be displayed in reverse-

video.

(6) The UNDERLINE or UNDERLINED clauses cause a field to be displayed underlined.

(7) The clauses can be combined to provide combined effects, such as bold and underlined. However, not all

video display devices are capable of displaying all of the combinations.

DATA DIVISION - SCREEN SECTION (BLINK, BOLD, REVERSE, UNDERLINE)

215

Notes:

1. The default appearance for literal and output fields is DIM.

2. The default appearance for input, input-output, and update fields is BOLD.

Interactive COBOL Language Reference & Developer’s Guide - Part One

216

H.8. CONVERTING Clause

H.8.1 Function

The CONVERTING clause is used to insure that accepted data is in a consistent case.

H.8.2 General Format

CONVERTING

H.8.3 Syntax Rules

(1) The CONVERTING clause may only be specified in a screen description which includes either the TO or

USING clauses.

H.8.4 General Rules

(1) The CONVERTING clause is effective only during the execution of an ACCEPT statement.

(2) If CONVERTING UP is specified character data entered during an ACCEPT is echoed to the screen and

stored in uppercase. In particular characters between ‘a’ and ‘z’ inclusive are converted to the corresponding

character between ‘A’ and ‘Z’.

(3) If CONVERTING DOWN is specified character data entered during an ACCEPT is echoed to the screen

and stored in lowercase. In particular characters between ‘A’ and ‘Z’ inclusive are converted to the corresponding

character between ‘a’ and ‘z.

DATA DIVISION - SCREEN SECTION (BLANK, ERASE)

217

H.9. ERASE Clause

H.9.1 Function

The ERASE clause is used to erase part or all of the user's display device during the execution of a DISPLAY

statement.

H.9.2 General Format

ERASE

H.9.3 Syntax Rules

(1) The word EOL is equivalent to the phrase END OF LINE.

(2) The word EOS is equivalent to the phrase END OF SCREEN.

H.9.4 General Rules

(1) The ERASE clause is effective only during the execution of a DISPLAY statement.

(2) ERASE SCREEN and ERASE with no additional modifiers erases the entire screen and positions the cursor

to line 1 column 1.

(3) ERASE LINE erases the current line from column 1 to the end of the line without changing the cursor

position.

(4) ERASE EOL and ERASE END OF LINE erase the screen starting at the cursor position to the end of the

line. The cursor is not affected.

(5) ERASE EOS and ERASE END OF SCREEN erase the screen starting at the cursor position and continuing

to the end of the screen. The cursor position is not changed.

(6) ERASE and ERASE SCREEN are processed before any LINE and COLUMN positioning clauses because

they have an implicit positioning of the cursor. All other ERASE clauses are processed after the LINE and

COLUMN positioning clauses and before any screen-literal or screen-data items so that they can be used to clear

data previously displayed on the screen before displaying new data at the same position.

NOTE: If the compiler’s ISO screen behavior option (-G e) is specified, the ERASE LINE

clause will erase the line beginning at the cursor position and continuing to the end of the line. Similarly,

the ERASE SCREEN clause will erase from the cursor position to the end of the screen.

Interactive COBOL Language Reference & Developer’s Guide - Part One

218

H.10. FROM, TO, USING Clauses

H.10.1 Function

These clauses are used to determine the types of input-output operations (ACCEPT and DISPLAY) that can be

performed on an item, as well as the associated data items or values.

H.10.2 General Format

H.10.3 General Rules

(1) A FROM clause with no TO clause defines the field as an output field.

(2) A TO clause with no FROM clause defines the field as an input field.

(3) A FROM clause and a TO clause together define a field as an input-output field.

(4) A USING clause defines the field as an update field.

(5) The default attribute for output fields is DIM, and for input, input-output, or update fields is BOLD. This

may be overridden by using the appropriate attribute.

(6) When a DISPLAY statement is executed, an input field is displayed as underscore characters. The number

of underscores displayed corresponds to the number of characters in the picture string.

(7) The item specified by literal-1 or identifier-1 (for an output or input-output field) or by identifier-3 (for an

update field) must be compatible with the screen-data according to the rules for the MOVE statement, where

literal-1, identifier-1, or identifier-3 is the sending item, and the screen-data is the receiving item.

(8) The item specified by identifier-2 (for an input or input-output field) or identifier-3 (for an update field)

must be compatible with the screen-data according to the rules for the MOVE statement, where screen-data is the

sending item and identifier-2 or identifier-3 is the receiving item, with the exception that the combination of a

numeric edited sending item and numeric receiving item is allowed.

(9) If the subject of the TO, FROM or USING entry is subject to an OCCURS clause,

identifier-1, identifier-2, or identifier-3 shall be specified without the subscripting normally required.

(10) For more on how each clause works see ACCEPT screen, page 283; or DISPLAY screen, page 338.

DATA DIVISION - SCREEN SECTION (LINE, COLUMN)

219

H.11. LINE and COLUMN Clauses

H.11.1 Function

The LINE and COLUMN clauses specify the vertical and horizontal location of the cursor on the user's display

device (and thus the location of the erase, input, or output operation being specified.)

H.11.2 General Format

H.11.3 Syntax Rules

(1) Integer-1 and integer-2 must be unsigned and non-zero.

(2) Identifier-1 and identifier-2 must represent an unsigned elementary numeric data item.

(3) The word COL is an abbreviation for the word COLUMN.

(4) PLUS and + are synonyms.

(5) MINUS and - are synonyms.

(6) Neither the PLUS nor MINUS phrase shall be specified for the first elementary item in a screen record.

(7) If generating for code revision 1, identifier-1 and identifier-2 may not be specified if either the PLUS or

MINUS clauses are present.

H.11.4 General Rules

(1) The screen description entries in a screen description are processed beginning with the 01 level item and

proceeding through all screen description entries subordinate to the 01 level item in the order in which they appear in

the source program.

(2) As the screen description entries are processed, the compiler maintains a current cursor position for the

screen description. The current cursor position determines the placement of fields on the user's display screen when

an ACCEPT or DISPLAY statement is executed. This current cursor position is composed of two components, the

current cursor line and the current cursor column, with the upper left corner of the display being line 1, column 1.

(3) The current cursor position cannot be greater than line 128 or column 128 at the beginning of a BLANK

LINE operation or as the starting character position for a screen-literal or screen-data item.

(4) The current cursor position after a screen-literal or screen-data cannot be greater than line 128 or column

256.

(5) At execution time, if the current cursor position exceeds the size of the display device, the component of the

position that exceeds the display size (line or column or both), is re-computed to be the remainder of the original

Interactive COBOL Language Reference & Developer’s Guide - Part One

220

value divided by the display size, e.g., a cursor position of line 20 column 132 on a 24 line, 80 column display is re-

computed as line 20, column 52.

(6) Each screen description is assumed to start (at the 01 level) with a current cursor position of line 1, column

1.

(7) If no LINE or COLUMN clause is specified, the current cursor position is not modified before the

processing of any input, output, input-output, or update field that might be present, except by the BLANK SCREEN

or ERASE SCREEN clause (which sets the current cursor position to line 1, column 1.)

(8) In the rules that follow, the components of the current cursor position are often treated independently.

(9) Line and/or column positions may be specified in one of three ways: Absolute positioning; Relative

positioning; and Variable positioning.

(10) Absolute line positioning is defined by a LINE clause with integer-1 and without either PLUS or MINUS.

The value of integer-1 becomes the new current cursor line value. It may not exceed the value 128 and should not

exceed the usual number of lines in the display device. If a COLUMN phrase is also specified, it is handled

independently. If one is not specified, it is assumed to be the same as specifying COLUMN 1.

(11) Absolute column positioning is defined by a COLUMN clause with integer-2 and without either PLUS or

MINUS. The value of integer-2 becomes the current cursor column value. It may not exceed the value 128 and

should not exceed the usual number of columns in the display device.

(12) Relative line positioning is defined by using the LINE clause with either the PLUS or MINUS phrase and

integer-1 or identifier-1. If PLUS is specified, the current cursor line is incremented by the value of integer-1 or the

contents of identifier-1. If MINUS is specified, the current cursor line is decremented by the value of integer-1 or

the contents of identifier-1. The resulting value must not exceed 128 or be less than 1. If a COLUMN phrase is also

specified, it is handled independently. If one is not specified, it is assumed to be the same as specifying COLUMN

1.

(13) Relative column positioning is defined by using the COLUMN clause with either the PLUS or MINUS

phrase and integer-2 or identifier-2. If PLUS is specified, the current cursor column is incremented by the value of

integer-2 or the contents of identifier-2. If MINUS is specified, the current cursor column is decremented by the

value of integer-2 or the contents of identifier-2. The resulting value must not exceed 128 or be less than 1.

(14) Variable line positioning is defined by using the LINE clause with identifier-1 and without either PLUS or

MINUS. The actual line value is not known until execution time. If a COLUMN phrase is also specified, it is

handled independently. If one is not specified, it is assumed to be the same as specifying COLUMN 1.

(15) Variable column positioning is defined by using the COLUMN clause with identifier-2 and without either

PLUS or MINUS. The actual column value is not known until execution time.

(16) If generating for code revision 1, relative line positioning cannot be specified for an entry that follows an

entry with variable line positioning unless there is an intervening entry with absolute line positioning. If generating

for code revision 2 or greater, the this restriction does not apply.

(17) If generating for code revision 1, relative column positioning cannot be specified for an entry that follows

an entry with variable column positioning unless there is an intervening entry with absolute column positioning. The

absolute column positioning may be derived from the COLUMN 1 clause that is implied in certain cases. If

generating for code revision 2 or greater, this restriction does not apply.

(18) If the screen description entry also contains a VALUE clause or is an input, output, input-output, or update

field, the value of the current cursor position is associated with the literal or field item. The current cursor column is

also updated to be positioned at the first column after the literal or field item (i.e., it is incremented by the length of

the literal or field item) unless the current cursor column is currently undefined because of variable column

positioning. The updated current column position cannot exceed 256.

DATA DIVISION - SCREEN SECTION (LINE, COLUMN)

221

(19) The effects of LINE and COLUMN clauses in combination with each other is defined in the following

table:

 LINE Clause COLUMN Clause Field Position

 No clause No clause No change

COL Same line, column plus 1

COL n Same line, column n

COL PLUS n Same line, column plus n

COL id Same line, column id

 LINE No clause Line plus 1, column 1

COL Line plus 1, column plus 1

COL n Line plus 1, column n

COL PLUS n Line plus 1, column plus n

COL id Line plus 1, column id

 LINE m No clause Line m, column 1

COL Line m, column plus 1

COL n Line m, column n

COL PLUS n Line m, column plus n

COL id Line m, column id

 LINE PLUS m No clause Line plus m, column 1

COL Line plus m, column plus 1

COL n Line plus m, column n

COL PLUS n Line plus m, column plus n

COL id Line plus m, column id

 LINE id No clause Line id, column 1

COL Line id, column plus 1

COL n Line id, column n

COL PLUS n Line id, column plus n

COL id Line id, column id

TABLE 13. LINE and COLUMN relationship

Interactive COBOL Language Reference & Developer’s Guide - Part One

222

H.12. OCCURS Clause

H.12.1 Function

The OCCURS clause is similar to the OCCURS clause defined in the Working-Storage Section. It is eliminates the

need for separate entries for repeated screen items and supplies information needed for the application of subscripts.

H.12.2 General Format

OCCURS integer TIMES

H.12.3 Syntax Rules

(1) The maximum number of dimensions for a table described in a screen description entry is two.

(2) If a screen description entry includes the OCCURS clause, then if it or any item subordinate to it has a

description that includes the TO, FROM, or USING clause, that screen description entry shall be part of a table with

the same number of dimensions and number of occurrences in each dimension as the identifier representing the

receiving or sending operand. The identifier representing the receiving or sending operand shall not be subordinate

to an OCCURS clause with the DEPENDING phrase.

(3) If a screen description entry that includes the OCCURS clause also contains the COLUMN clause, then the

COLUMN clause shall include the PLUS or MINUS phrase, unless the screen description entry also includes a LINE

clause with a PLUS or MINUS phrase.

(4) If a screen description entry that includes the OCCURS clause also contains the LINE clause, then the LINE

clause shall include the PLUS or MINUS phrase, unless the screen description entry also includes a COLUMN

clause with a PLUS or MINUS phrase.

H.12.4 General Rules

(1) During a DISPLAY screen or an ACCEPT screen statement that references a screen item whose description

includes the OCCURS clause and whose description or whose subordinate’s description includes a FROM, TO, or

USING clause, the data values for corresponding table elements are moved from the data table element to the screen

table element or from the screen table element to the data table element.

(2) If the description of a screen item includes the OCCURS clause, the positioning within the screen record of

each occurrence of that screen item is as follows:

a. If the description of that screen item contains a COLUMN clause, each occurrence behaves as though it

had the same column clause specified.

b. If that screen item is a group item with a subordinate screen item whose description contains a

COLUMN clause with the PLUS or MINUS phrase and that group screen item is subordinate to a screen item whose

description contains a LINE clause, each occurrence behaves as though it had the same subordinate entries with the

same COLUMN clause specified.

c. If the description of that screen item contains a LINE clause with the PLUS or MINUS phrase, each

occurrence behaves as though it had the same LINE clause specified.

d. If that screen item is a group item with a subordinate screen item whose description contains a LINE

clause with the PLUS or MINUS phrase, each occurrence behaves as though it had the same subordinate entries with

the same LINE clause specified.

DATA DIVISION - SCREEN SECTION (PICTURE)

223

H.13. PICTURE Clause

H.13.1 Function

The PICTURE clause is similar to the PICTURE clause defined in the Working-Storage Section. It is used to

determine the size of a screen-data, the format of the data when it is presented to the user through the execution of a

DISPLAY statement, and the data validation rules to apply to the data when it is entered by the user in response to

the execution of an ACCEPT statement.

H.13.2 General Format

 IS character-string

H.13.3 Syntax Rules

(1) The picture characters P, V, CR, and DB can be used only with output (FROM) fields.

H.13.4 General Rules

(1) The rules for compatibility between the screen-data PICTURE and the literal or data items specified in the

TO, FROM, or USING clauses are specified under the section for TO, FROM, and USING.

(2) Unless the SIGN IS clause is also specified, the S PICTURE character is ignored by the compiler to be

consistent with older versions of Interactive COBOL.

Interactive COBOL Language Reference & Developer’s Guide - Part One

224

H.14. SECURE Clause

H.14.1 Function

This clause affects the behavior of data entry to input fields while in an ACCEPT and how the entry is displayed

during an ACCEPT.

ANSI 74 and ANSI 85:

The SECURE or SECURE ECHO clause causes asterisks to be echoed on the display during data entry or data

display. The SECURE NO ECHO clause prevents characters from echoing on the display during data entry or

data display.

VXCOBOL:

The SECURE clause prevents characters from echoing on the display during data entry or data display.

H.14.2 General Format (ANSI 74 and ANSI 85)

SECURE

H.14.3 General Format (VXCOBOL)

SECURE

H.14.4 Syntax Rules

(1) This clause can only be used with input, input-output, or update screen-data items or with screen-group

format items.

H.14.5 General Rules

(1) The SECURE clause is effective only during the execution of an ACCEPT statement.

(2) If the SECURE clause is specified for a screen-group item, the clause applies to each elementary input,

input-output, and update item subordinate to the screen-group item.

ANSI 74 and ANSI 85:

(3) During the execution of an ACCEPT statement for a screen item that contains SECURE or SECURE

ECHO, any characters entered by the user will be echoed as asterisks.

(4) During the execution of an ACCEPT statement for a screen item that contains SECURE NO ECHO, any

characters entered by the user will not be echoed, and the cursor will not move as the characters are entered.

VXCOBOL:

(5) During the execution of an ACCEPT statement, any characters entered by the user will not be echoed.

Additionally, the cursor will not move as the characters are entered.

DATA DIVISION - SCREEN SECTION (SIGN)

225

H.15. SIGN Clause

H.15.1 Function

The SIGN clause specifies the position and the mode of representation of the operational sign when it is necessary to

describe these properties explicitly.

H.15.2 General Format

[SIGN IS] SEPARATE CHARACTER

H.15.3 Syntax Rules

(1) The SIGN clause may be specified only for a numeric data description entry whose PICTURE contains the

character `S'.

(2) The numeric data description entries to which the SIGN clause applies must be described, implicitly or

explicitly, as USAGE IS DISPLAY.

H.15.4 General Rules

(1) The optional SIGN clause, if present, specifies the position and the mode of representation of the

operational sign for the numeric data description entry to which it applies, or for each numeric data description entry

subordinate to the group to which it applies. The SIGN clause applies only to numeric data description entries

whose PICTURE contains the character `S'; the `S' indicates the presence of, but neither the representation nor,

necessarily, the position of the operational sign.

(2) If a SIGN clause is specified in a group item subordinate to a group item for which a SIGN clause is

specified, the SIGN clause specified in the subordinate group item takes precedence for that subordinate group item.

(3) If a SIGN clause is specified in an elementary numeric data description entry subordinate to a group item for

which a SIGN clause is specified, the SIGN clause specified in the subordinate elementary numeric data description

entry takes precedence for that elementary numeric data item.

(4) a. The operational sign will be presumed to be the leading (or, respectively, trailing) character position of

the elementary numeric data item; this character position is not a digit position.

b. The letter `S' in a PICTURE character-string is counted in determining the size of the item (in terms of

standard data format characters).

c. The operational signs for positive and negative are the standard data format characters `+' and `-'

respectively.

(5) Every numeric data description entry whose PICTURE contains the character `S' is a signed numeric data

description entry. If a SIGN clause applies to such an entry and conversion is necessary for purposes of computation

or comparisons, conversion takes place automatically.

Interactive COBOL Language Reference & Developer’s Guide - Part One

226

H.16. USAGE Clause (ISQL)

H.16.1 Function

The USAGE clause specifies the special formatting of the data for the corresponding usage in the TO, FROM, or

USING data items or literals.

H.16.2 General Format

 [USAGE IS]

H.16.3 Syntax Rules

(1) The USAGE clause specifying DATE, INTERVAL, TIME, or TIMESTAMP is available only when the

ISQL feature-set is enabled and appear as USAGE options that are in addition to certain dialect-specific options.

(2) A USAGE clause specifying DATE, INTERVAL, TIME, or TIMESTAMP must not be specified at the

group level.

(3) The BLANK WHEN ZERO, JUSTIFIED, PICTURE, and SIGN clauses must not be specified for screen

items whose usage is DATE, INTERVAL, TIME, or TIMESTAMP.

(4) The value of integer-2 must be greater than zero and less than the values specified in the general rules

below.

(5) The value of integer-3 must be greater than zero and less than or equal to six.

E.17.5 General Rules

(1) If the USAGE clause is not specified, the usage is implicitly DISPLAY.

(2) The USAGE IS DATE clause specifies a screen item that can accept and display an SQL date value. Upon

output, the date value will be formatted with intervening hyphens in the same manner as a date literal. Upon input,

the field will appear as three separate fields separated by intervening hyphens. The system will automatically skip

over the hyphens. The entered value will be tested to be a valid date and an appropriate message will be displayed to

the user if it is not. A screen field of usage DATE occupies 10 characters. (yyyy-mm-dd)

(3) The USAGE IS INTERVAL clause specifies a screen item that can accept or display an SQL interval value.

Upon output, the interval value will be formatted in the same manner as the corresponding interval literal. The

number of digits in the leftmost field can be set by specifying integer-3. The maximum and default values for

DATA DIVISION - SCREEN SECTION (USAGE)

227

integer-3 depend on the type of the leftmost field specifier and are specified in the following table. The size of the

screen field is 1 byte plus the sum of the sizes of the individual fields in the range, plus the number of fields minus

one for the intervening formatting characters. Upon input, the field will appear as separate fields (one for each of the

interval fields) separated by the appropriate punctuation. The system will automatically skip over the punctuation.

The entered value will be tested to be a valid interval and an appropriate message will be displayed to the user if it is

not. The field has a minimum size of 2 characters (sign plus a single field of precision 1) and a maximum size of 24

characters.

For example, DAY (7) TO SECOND (6) may have a value that displays as:

+1234567 12:34:56.123456

Field Maximum Precision

as Leftmost Field

Default Precision

YEAR 4 4

MONTH 6 2

DAY 7 2

HOUR 8 2

MINUTE 10 2

SECOND 12 2

TABLE 14. INTERVAL Field Maximum Precision (ISQL)

(4) The USAGE IS TIME clause specifies a screen item that can accept and display an SQL time value. If

integer-3 is omitted, it is assumed to be zero. The value of integer-3 must be less than or equal to 6 and specifies the

number of fractional seconds field. Upon output, the data is formatted in the same manner as a time literal with the

intervening colons and an optional decimal point. Upon input, the field will appear as three (or four) separate fields

separated by the colons and an optional decimal point. The system will automatically skip over the colons (and

decimal point) as data is entered. The entered value will be tested to be a valid time and an appropriate message will

be displayed to the user if it is not. A screen field of usage TIME occupies from 8 to 15 characters on the screen.

I.E., from hh:mm:ss to hh:mm:ss.nnnnnn.

(5) The USAGE IS TIMESTAMP clause specifies a screen item that can accept and display an SQL timestamp

value. The screen item is a composite of a date screen field and a time screen field with an intervening space. A

TIMESTAMP screen item occupies from 19 to 26 characters, depending on the number of fractional second digits.

Interactive COBOL Language Reference & Developer’s Guide - Part One

228

H.17 VALUE Clause

H.17.1 Function

The VALUE clause specifies literal information to be displayed.

H.17.2 General Format

[VALUE IS] literal-1

H.17.3 Syntax Rules

(1) Literal-1 must be a nonnumeric-literal.

(2) Literal-1 must not be a figurative constant.

(3) The words VALUE IS are not required.

H.17.4 General Rules

(1) During the execution of a DISPLAY statement, the contents of literal-1 are displayed on the user's display

device at the current cursor position (see LINE and COLUMN clauses).

(2) Literals are displayed DIM unless the BOLD/BRIGHT/HIGHLIGHT attribute was specified.

PROCEDURE DIVISION

229

VI. PROCEDURE DIVISION

A. General Description

The Procedure Division contains procedures to be executed by the object program. The Procedure Division is

optional in a COBOL source program.

A.1. DECLARATIVES

Declarative sections must be grouped at the beginning of the Procedure Division preceded by the keyword

DECLARATIVES and followed by the keywords END DECLARATIVES.

A.2. Procedures

A procedure is composed of a paragraph, or a group of successive paragraphs, or a section, or a group of successive

sections within the Procedure Division. If one paragraph is in a section, all paragraphs must be in sections. A

procedure-name is a word used to refer to a paragraph or section in the source program in which it occurs. It

consists of a paragraph-name (which may be qualified) or a section-name.

A section consists of a section header followed by zero, one, or more successive paragraphs. A section ends

immediately before the next section or at the end of the Procedure Division or, in the declaratives portion of the

Procedure Division, at the keywords END DECLARATIVES.

A paragraph consists of a paragraph-name followed by a period and a space and by zero, one, or more successive

sentences. A paragraph ends immediately before the next paragraph-name or section-name or at the end of the

Procedure Division or, in the declaratives portion of the Procedure Division, at the keywords END

DECLARATIVES. A sentence consists of one or more statements and is terminated by the separator period.

A statement is a syntactically valid combination of words, literals, and separators beginning with a COBOL verb.

The term `identifier' is defined as the word or words necessary to make unique reference to a data item.

A.3. Execution

Execution begins with the first statement of the Procedure Division, excluding declaratives. Statements are then

executed in the order in which they are presented for compilation, except where the rules indicate some other order.

The general formats of the Procedure Division are shown below.

Interactive COBOL Language Reference & Developer’s Guide - Part One

230

Format 1:

PROCEDURE DIVISION [USING { data-name-1 }...] .

[DECLARATIVES.

{ section-name SECTION [segment-number] .

USE statement.

[paragraph-name.

[sentence]...]... }...

END DECLARATIVES.]

{ section-name SECTION [segment-number] .

[paragraph-name.

[sentence]...]... }...

Format 2:

PROCEDURE DIVISION [USING { data-name-1 }...] .

{ paragraph-name.

[sentence]... }...

B. Concepts

B.1. Arithmetic Expressions

B.1.1 Definition of an Arithmetic Expression

An arithmetic expression can be an identifier of a numeric elementary item, a numeric literal, the figurative constant

ZERO (ZEROS, ZEROES), such identifiers, figurative constants, and literals separated by arithmetic operators, two

arithmetic expressions separated by an arithmetic operator, or an arithmetic expression enclosed in parentheses. Any

arithmetic expression may be preceded by a unary operator. The permissible combinations of identifiers, numeric

literals, arithmetic operators, and parentheses are given in the table, Combination of Symbols in Arithmetic

Expressions, below.

Those identifiers and literals appearing in an arithmetic expression must represent either numeric elementary items or

numeric literals on which arithmetic may be performed.

B.1.2 Arithmetic Operators

There are five binary arithmetic operators and two unary arithmetic operators that may be used in arithmetic

expressions. They are represented by specific characters that must be preceded by a space and followed by a space.

PROCEDURE DIVISION - Concepts (Arithmetic Expressions)

231

Binary

Arithmetic Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

** Exponentiation

Unary

Arithmetic Operator Meaning

+ The effect of multiplication by the numeric literal +1

- The effect of multiplication by the numeric literal -1

B.1.3 Formation and Evaluation Rules

(1) Parentheses may be used in arithmetic expressions to specify the order in which elements are to be

evaluated. Expressions within parentheses are evaluated first, and, within nested parentheses, evaluation proceeds

from the least inclusive set to the most inclusive set. When parentheses are not used, or parenthesized expressions

are at the same level of inclusiveness, the following hierarchical order of execution is implied:

1st - Unary plus and minus

2nd - Exponentiation

3rd - Multiplication and division

4th - Addition and subtraction

(2) Parentheses are used either to eliminate ambiguities in logic where consecutive operations of the same

hierarchical level appear, or to modify the normal hierarchical sequence of execution in expressions where it is

necessary to have some deviation from the normal precedence. When the sequence of execution is not specified by

parentheses, the order of execution of consecutive operations of the same hierarchical level is from left to right.

(3) The ways in which identifiers, literals, operators, and parentheses may be combined in an arithmetic

expression are summarized in the table below, where:

a. The letter `P' indicates a permissible pair of symbols.

b. The character `-' indicates an invalid pair.

FIRST SYMBOL
SECOND SYMBOL

Identifier
or Literal

+ - * / ** Unary +
or -

()

 Identifier or
 Literal

- P - - P

 + - * / ** P - P P -

 Unary + or - P - - P -

 (P - P P -

) - - - - P

TABLE 15. Combination of Symbols in Arithmetic Expressions

(4) An arithmetic expression may only begin with the symbol `(', `+', `-', an identifier, or a literal and may only

end with a `)', an identifier, or a literal. There must be a one-to-one correspondence between left and right

parentheses of an arithmetic expression such that each left parenthesis is to the left of its corresponding right

Interactive COBOL Language Reference & Developer’s Guide - Part One

232

parenthesis. If the first operator in an arithmetic expression is a unary operator, it must be immediately preceded by

a left parenthesis if that arithmetic expression immediately follows an identifier or another arithmetic expression.

(5) The following rules apply to evaluation of exponentiation in an arithmetic expression:

a. If the value of an expression to be raised to a power is zero, the exponent must have a value greater than

zero. Otherwise, the size error condition exists.

b. If the evaluation yields both a positive and a negative real number, the value returned as the result is the

positive number.

c. If no real number exists as the result of the evaluation, the size error condition exists.

(6) Arithmetic expressions allow the user to combine arithmetic operations without the restrictions on

composite of operands and/or receiving data items.

(7) (ISQL) The following table summarizes the valid arithmetic operations involving items of class date-time

and interval.

First Operand Operator(s) Second Operand Result

date-time - date-time interval

date-time + - interval date-time

interval + date-time date-time

interval + - interval interval

interval + - * / number interval

number + * interval interval

(8) (ISQL) The following rules apply to arithmetic operations involving items of class date-time and interval:

a. If both operands are of class date-time, they must both have the same category.

b. If both operands are of class interval, they must both have the same category. The result is of the same

category with a span of fields that encompasses the span of fields of both operands. For example. Adding a DAY TO

HOUR interval to an HOUR TO MINUTE interval will yield a DAY TO MINUTE interval as the result.

c. If one operand is class date-time and the other operand is class interval, the category of the interval

operand must be defined such that it contains date-time fields that are also contained in the date-time operand. The

category of the date-time result is of the same as the category of the date-time operand.

d. The difference of two timestamp operands is a day-time interval; of two date operands is a year-month

interval; and of two time operands is a day-time interval.

e. The computation of an interval combined with a number is accomplished by first converting the interval

into an equivalent interval value consisting of just the lowest order field, performing the arithmetic on that value,

discarding any fraction that cannot be contained in the field, and then converting back to the original interval

(normalized). For example, INTERVAL “4:30.25" MINUTE TO SECOND(2) / 2 is handled by converting to the

equivalent INTERVAL “270.25" SECOND (3, 2), dividing by 2 to yield INTERVAL “135.12" SECOND (3,2),

discarding the .005 second fraction, and then converting back to the original format INTERVAL “2:15.12"

MINUTE TO SECOND (2).

B.2. Conditional Expressions

Conditional expressions identify conditions that are tested to enable the object program to select between alternate

paths of control depending upon the truth value of the condition. A conditional expression has a truth value

PROCEDURE DIVISION - Concepts (Conditional Expressions)

233

represented by either true or false. Conditional expressions are specified in the EVALUATE, IF, PERFORM, and

SEARCH statements. There are two categories of conditions associated with conditional expressions: simple

conditions and complex conditions. Each may be enclosed within any number of paired parentheses, in which case

its category is not changed.

B.2.1 Simple Conditions

The simple conditions are the relation, class, condition-name, switch-status, and sign conditions. A simple condition

has a truth value of true or false. The inclusion in parentheses of simple conditions does not change the simple

condition truth value.

B.2.1.1 Relation Condition

A relation condition causes a comparison of two operands, each of which may be the data item referenced by an

identifier, a literal, the value resulting from an arithmetic-expression, or an index-name. A relation condition has a

truth value of true if the relation exists between the operands. Comparison of two numeric operands is permitted

regardless of the formats specified in their respective USAGE clauses. However, for all other comparisons, the

operands must have the same usage. If either of the operands is a group item, the nonnumeric comparison rules

apply. Comparisons involving POINTER items have their own explicit rules. See section B.2.1.1.4 on page 235,

236.

The format for a relation condition is as follows:

The first operand (identifier-1, literal-1, arithmetic-expression-1, or index-name-1) is called the subject of the

condition; the second operand (identifier-2, literal-2, arithmetic-expression-2, or index-name-2) is called the object

of the condition. The relation condition must contain at least one reference to a variable.

The relational operators specify the type of comparison to be made in a relation condition. A space must precede

and follow each reserved word comprising the relational operator. When used, NOT and the next keyword or

relation character are one relational operator that defines the comparison to be executed for truth value. The

following relational operators are equivalent:

IS NOT GREATER THAN is equivalent to IS LESS THAN OR EQUAL TO;

IS NOT LESS THAN is equivalent to IS GREATER THAN OR EQUAL TO.

IS <> is equivalent to IS NOT =.

IS NOT <> is equivalent to IS =.

Interactive COBOL Language Reference & Developer’s Guide - Part One

234

Relational Operator Meaning

IS [NOT] GREATER THAN
IS [NOT] >

Greater than OR
not greater than

IS [NOT] LESS THAN
IS [NOT] <

Less than OR
not less than

IS [NOT] EQUAL TO
IS [NOT] =

Equal to OR
not equal to

IS [NOT] GREATER THAN OR EQUAL TO
IS [NOT] >=

Greater than or equal to OR
not greater than or equal to

IS [NOT] LESS THAN OR EQUAL TO
IS [NOT] <=

Less than or equal to OR
not less than or equal to

IS <> Not equal to

TABLE 16. Relational Operators

B.2.1.1.1 Comparison of Numeric Operands

For operands whose class is numeric, a comparison is made with respect to the algebraic value of the operands. The

length of the literal or arithmetic-expression operands, in terms of the number of digits represented, is not significant.

Zero is considered a unique value regardless of the sign.

Comparison of these operands is permitted regardless of the manner in which their usage is described. Unsigned

numeric operands are considered positive for purposes of comparison.

B.2.1.1.2 Comparison of Nonnumeric Operands

For nonnumeric operands, or one numeric and one nonnumeric operand, a comparison is made with respect to a

specified collating sequence of characters. If one of the operands is specified as numeric, it must be an integer data

item or an integer literal and:

(1) If the nonnumeric operand is an elementary data item or a nonnumeric literal, the numeric operand is treated

as though it were moved to an elementary alphanumeric data item of the same size as the numeric data item (in terms

of standard data format characters), and the content of this alphanumeric data item were then compared to the

nonnumeric operand.

(2) If the nonnumeric operand is a group item, the numeric operand is treated as though it were moved to a

group item of the same size as the numeric data item (in terms of standard data format characters), and the content of

this item were then compared to the nonnumeric operand.

(3) A non-integer numeric operand cannot be compared to a nonnumeric operand.

The size of an operand is the total number of standard data format characters in the operand. Numeric and

nonnumeric operands may be compared only when their usage is the same.

When comparing two nonnumeric operands there are two cases to consider: operands of equal size and operands of

unequal size.

(1) Operands of equal size. If the operands are of equal size, comparison effectively proceeds by comparing

characters in corresponding character positions starting from the high order end and continuing until either a pair of

unequal characters is encountered or the low order end of the operand is reached, whichever comes first. The

operands are determined to be equal if all pairs of corresponding characters are equal.

The first encountered pair of unequal characters is compared to determine their relative position in the

collating sequence. The operand that contains the character that is positioned higher in the collating sequence is

considered to be the greater operand.

PROCEDURE DIVISION - Concepts (Conditional Expressions)

235

(2) Operands of unequal size. If the operands are of unequal size, comparison proceeds as though the shorter

operand were extended on the right by sufficient spaces to make the operands of equal size.

B.2.1.1.3 Comparisons Involving Index-Names and/or Index Data Items

Relation tests may be made only between:

(1) Two index-names. The result is the same as if the corresponding occurrence numbers were compared.

(2) An index-name and a data item (other than an index data item) or literal. The occurrence number that

corresponds to the value of the index-name is compared to the data item or literal.

(3) An index data item and an index-name or another index data item. The actual values are compared without

conversion.

B.2.1.1.4 Comparisons Involving USAGE POINTER Data Items (ANSI 74 and ANSI 85)

Two data items that are explicitly or implicitly defined as USAGE POINTER can be compared. Pointer

comparisons can include only relational operators which test for equality or inequality. The general format of such

comparisons is:

Syntax Rules:

(1) Identifier-1 and identifier-3 can refer to any data items defined in the Data Division.

(2) Identifier-2 and identifier-4 must be defined as USAGE IS POINTER.

General Rules:

(1) If ADDRESS OF clause is specified, the address if the named identifier is referenced, not the contents of the

identifier.

(2) The operands are equal if the two address are identical. Otherwise, they are unequal.

(3) This type of condition is allowed in the IF, PERFORM and Format 1 SEARCH statement. It is not allowed

in a Format 2 SEARCH statement (SEARCH ALL) since there is no implied ordering to pointer data items.

B.2.1.1.5 Comparisons Involving Date-Time Items (ISQL)

General Rules:

(1) Two items of class date-time may be compared provided that they have the same category.

(2) Comparisons are performed in accordance with chronological ordering.

B.2.1.1.6 Comparisons Involving Interval Items (ISQL)

Interactive COBOL Language Reference & Developer’s Guide - Part One

236

General Rules:

(1) Two items of class interval may be compared provided that they have the same category.

(2) An item of class interval and a numeric item may be compared provided that the interval item consists of

only a single date-time field. The interval items is treated as a signed integer item for the purpose of the comparison.

(3) Comparisons are performed in accordance with the sign and magnitude.

(4) When the set of fields of the two intervals match, the comparison is straightforward and proceeds field by

field from left to right.

(5) When the set of fields of the two intervals does not match, the comparison extends either operand as

necessary with additional fields of value zero such that the set of fields matches. The extended values are

‘normalized’ by beginning with the rightmost field and normalizing it to its usual range and carrying any overflow to

the next field to the left. Comparison then proceeds as in rule 4.

For example:

Taking the comparison (INTERVAL “1:45" HOUR TO MINUTE < INTERVAL “105:23" MINUTE TO

SECOND) and applying the rules of extension above, we would have (INTERVAL “1:45:00" HOUR TO

SECOND < INTERVAL “0:105:23" HOUR TO SECOND) and normalizing the second operand yields

(INTERVAL “1:45:00" HOUR TO SECOND < INTERVAL “1:45:23" HOUR TO SECOND), which evaluates

to TRUE.

B.2.1.2 Class Condition

The class condition determines whether an operand is numeric, alphabetic, or contains only the characters in the set

of characters specified by the CLASS clause as defined in the SPECIAL-NAMES paragraph of the Environment

Division.

B.2.1.2.1 General Format

ANSI 74 and ANSI 85

identifier IS [NOT]

VXCOBOL

identifier IS [NOT]

B.2.1.2.1 Syntax Rules

(1) If the NUMERIC phrase is specified, the usage of the operand being tested must be described as DISPLAY,

except for VXCOBOL where the NUMERIC test will allow any numeric item.

PROCEDURE DIVISION - Concepts (Conditional Expressions)

237

(2) If the NUMERIC phrase is specified, the operand being tested must not be an item whose data description

describes the item as alphabetic or as a group item composed of elementary items whose data description indicates

the presence of operational sign(s).

(3) If the NUMERIC phrase is not specified, the usage of the operand being tested must be described as

DISPLAY.

(4) If the ALPHABETIC, ALPHABETIC-UPPER, ALPHABETIC-LOWER, or class-name-1 phrase is

specified, the operand being tested must not be an item whose data description describes the item as numeric.

B.2.1.2.2 General Rules

(1) When used, NOT and the next keyword specify one class condition that defines the class test to be executed

for truth value and which has the opposite truth value from the test without the NOT. So, e.g., NOT NUMERIC is a

truth test for determining that an operand is nonnumeric. The remaining rules are expressed in terms of the truth of

the condition expressed without the NOT.

(2) When the operand being tested is a zero-length item, the result of the test is always false.

(3) If the NUMERIC phrase is specified, the following rules apply:

a. If the data description of the item being tested does not indicate the presence of an operational sign, the

item being tested is determined to be numeric only if the content is numeric and an operational sign is not present. If

the data description of the item does indicate the presence of an operational sign, the item being tested is determined

to be numeric only if the content is numeric and a valid operational sign is present. Valid operational signs for data

items described with the SIGN IS SEPARATE clause are the standard data format characters + and -; see The

USAGE clause on page 189, 192, 226 for more information.

b. (VXCOBOL) The result is true for a usage display operand if it consists entirely of the characters 0, 1,

2, ... 9 and space with or without the operation sign; however, if the ‘-G a’ compiler switch is used, space is not

allowed. The result is true for non-display identifiers if their content is in agreement with the data description.

c. (ANSI 74 and ANSI 85) The result is true if the operand consists entirely of the characters 0, 1, 2, 3, ... ,

9, with or without an operational sign.

(4) If the ALPHABETIC phrase is specified, the following rules apply:

a. (ANSI 74 and VXCOBOL) The result is true if the operand consists entirely of the uppercase letters A,

B, C, ... , Z, or space, or any combination of the uppercase letters and spaces.

b. (ANSI 85) The result is true if the operand consists entirely of the uppercase letters A, B, C, ... , Z,

space, or the lowercase letters a, b, c, ... , z, or any combination of the uppercase and lowercase letters and spaces.

(5) If the ALPHABETIC-LOWER phrase is specified, the result is true if the operand consists entirely of the

lowercase letters a, b, c, ... , z, or space, or any combination of the lowercase letters and spaces.

(6) If the ALPHABETIC-UPPER phrase is specified, the result is true if the operand consists entirely of the

uppercase letters A, B, C, ... , Z, or space, or any combination of the uppercase letters and spaces.

(7) If the class-name-1 phrase is specified, the result is true if the operand consists entirely of the characters

listed in the definition of class-name-1 in the SPECIAL-NAMES paragraph.

Interactive COBOL Language Reference & Developer’s Guide - Part One

238

B.2.1.3 Condition-Name Condition (Conditional Variable)

In a condition-name condition, a conditional variable is tested to determine whether or not its value is equal to one of

the values associated with condition-name-1. The general format for the condition-name condition is as follows:

condition-name-1

If condition-name-1 is associated with a range or ranges of values, then the conditional variable is tested to

determine whether or not its value falls in this range, including the end values.

The rules for comparing a conditional variable with a condition-name value are the same as those specified for

relation conditions.

The result of the test is true if one of the values corresponding to condition-name-1 equals the value of its associated

conditional variable.

B.2.1.4 Switch-Status Condition

A switch-status condition determines the on or off status of an external switch. The switch-name and the on or off

value associated with the condition must be named in the SPECIAL-NAMES paragraph of the Environment

Division. (See The SPECIAL-NAMES paragraph on page 74 for the description of switch conditions.) The general

format for the switch-status condition is as follows:

condition-name-1

The result of the test is true if the switch is set to the specified position corresponding to condition-name-1.

B.2.1.5 Sign Condition

The sign condition determines whether or not the algebraic value of an arithmetic expression is less than, greater

than, or equal to zero. The general format for a sign condition is as follows:

arithmetic-expression-1 IS [NOT]

When used, NOT and the next keyword specify one sign condition that defines the algebraic test to be executed for

truth value; e.g., NOT ZERO is a truth test for a nonzero (positive or negative) value. An operand is positive, if its

value is greater than zero, negative if its value is less than zero, and zero if its value is equal to zero.

Arithmetic-expression-1 must contain at least one reference to a variable.

B.2.1.6 (ISQL) Indicator Condition

The indicator condition determines the status of an indicator value. The general format for an indicator condition is

as follows:

identifier IS [NOT]

When used, NOT and the next keyword specify one indicator condition that defines the test to be executed for truth

value. Since there are only three valid values, the NOT test is a test for either one of the values other than the one

specified, e.g., NOT VALID is a truth test for either NULL or OVERFLOW. An indicator value of NULL means

PROCEDURE DIVISION - Concepts (Conditional Expressions)

239

that the database item was a NULL item and the corresponding data item was not set. An indicator value of VALID

means that the database item was fetched and stored in the corresponding data item. An indicator value of

OVERFLOW means that the database item was fetched, but it had to be truncated in order to be stored in the data

item.

B.2.2 Complex Conditions

A complex condition is formed by combining simple conditions and/or complex conditions with logical connectors

(logical operators `AND' and `OR') or by negating these conditions with logical negation (the logical operator

`NOT')'. The truth value of a complex condition, whether parenthesized or not, is that truth value which results from

the interaction of the stated logical operators on its constituent conditions.

The logical operators and their meanings are:

Logical Operator Meaning

AND Logical conjunction; the truth value is true if both of the conjoined conditions are true; false if

both of the conjoined conditions is false.

OR Logical inclusive OR; the truth value is true if one or both of the included conditions is true;

false if both included conditions are false.

NOT Logical negation or reversal of truth value; the truth value is true if the condition is false; false

if the condition is true.

The logical operators must be preceded by a space and followed by a space.

B.2.2.1 Negated Conditions

A condition is negated by use of the logical operator `NOT' which reverses the truth value of the condition to which

it is applied. Thus, the truth value of a negated condition is true if and only if the truth value of the condition being

negated is false; the truth value of a negated condition is false if and only if the truth value of the condition being

negated is true. Including a negated condition in parentheses does not change its truth value.

The general format for a negated condition is:

NOT condition-1

B.2.2.2 Combined Conditions

A combined condition results from connecting conditions with one of the logical operators `AND' or `OR'. The

general format of a combined condition is:

condition { condition }...

B.2.2.3 Precedence of Logical Operators and the Use of Parentheses

In the absence of the relevant parentheses in a complex condition, the precedence (i.e., binding power) of the logical

operators determines the conditions to which the specified logical operators apply and implies the equivalent

parentheses. The order of precedence is `NOT', `AND', `OR'. Thus, specifying `condition-1 OR NOT condition-2

AND condition-3' implies and is equivalent to specifying `condition-1 OR ((NOT condition-2) AND condition-3)'.

Interactive COBOL Language Reference & Developer’s Guide - Part One

240

Where parentheses are used in a complex condition, they determine the binding of conditions to logical operators.

Parentheses can, therefore, be used to depart from the normal precedence of logical operators as specified above.

Thus, the example complex condition above can be given a different meaning by specifying it as `(condition-1 OR

(NOT condition-2)) AND condition-3'.

The following table indicates the ways in which conditions and logical operators may be combined and parenthe-

sized. There must be a one-to-one correspondence between left and right parentheses such that each left parenthesis

is to the left of its corresponding right parenthesis.

Given the
following
element:

In a conditional
expression:

In a left-to-right sequence of
elements:

May
element

be
first?

May
element

be
last?

Element, when
not first, may
be immediately
followed by

only:

Element, when
not last, may
be immediately
followed by

only:

simple-
condition

Yes Yes OR, NOT, AND, (OR, AND,)

OR or AND No No simple-
condition,)

simple-
condition,
NOT, (

NOT Yes No OR, AND, (simple-
condition, (

(Yes No OR, NOT, AND, (simple-
condition,
NOT, (

) No Yes simple-
condition,)

OR, AND,)

TABLE 17. Combinations of Conditions, Logical Operators, and Parentheses

Thus, the element pair `OR NOT' is permissible, while the pair `NOT OR' is not permissible; the pair `NOT (' is

permissible, while the pair `NOT NOT' is not permissible.

B.2.3 Abbreviated Combined Relation Conditions

When simple or negated simple relation conditions are combined with logical connectives in a consecutive sequence

such that a succeeding relation condition contains a subject or subject and relational operator that is common with

the preceding relation condition, and no parentheses are used within such a consecutive sequence, any relation

condition except the first may be abbreviated by:

(1) The omission or the subject of the relation condition, or

(2) The omission of the subject and relational operator of the relation condition.

The format for an abbreviated combined relation condition is:

relation-condition { [NOT] [relational-operator] object }...

Within a sequence of relation conditions both of the above forms of abbreviation may be used. The effect of using

such abbreviations is as if the last preceding stated subject were inserted in place of the omitted subject, and the last

stated relational operator were inserted in place of the omitted relational operator. The result of such implied

insertion must comply with the rules of TABLE 17. This insertion of an omitted subject and/or relational operator

terminates once a complete simple condition is encountered within a complex condition.

The interpretation applied to the use of the word NOT in an abbreviated combined relation condition is as follows:

(1) If the word immediately following NOT is GREATER, >, LESS, <, EQUAL, =, then the NOT participates

as part of the relational operator; otherwise,

PROCEDURE DIVISION - Concepts (Conditional Expressions)

241

(2) The NOT is interpreted as a logical operator and, therefore, the implied insertion of subject or relational

operator results in a negated relation condition.

Some examples of abbreviated combined and negated combined relation conditions and expanded equivalents

follow.

Abbreviated Combined
Relation Condition

Expanded Equivalent

a > b AND NOT < c OR d ((a > b) AND (a NOT < c)) OR (a NOT < d)

a NOT EQUAL b OR c (a NOT EQUAL b) OR (a NOT EQUAL c)

NOT a = b OR c (NOT (a = b)) OR (a = c)

NOT (a GREATER b OR < c) NOT ((a GREATER b) OR (a < c))

NOT (a NOT > b AND c AND NOT d) NOT (((a NOT > b) AND (a NOT > c)) AND
(NOT (a NOT > d)))

EXAMPLE 14. Abbreviated combined and negated combined relation conditions

B.2.4 Order of Evaluation of Conditions

Parentheses, both explicit and implicit, denote a level of inclusiveness within a complex condition. Two or more

conditions connected by only the logical operator `AND' or only the logical operator `OR' at the same level of

inclusiveness establish a hierarchical level within a complex condition. Thus, an entire complex condition may be

considered to be a nested structure of hierarchical levels with the entire complex condition itself being the most

inclusive hierarchical level. Within this context, the evaluation of the conditions within an entire complex condition

begins at the left of the entire complex condition and proceeds according to the following rule recursively applied

where necessary:

(1) The constituent connected conditions within a hierarchical level are evaluated in order from left to right, and

evaluation of that hierarchical level proceeds until all the constituent connected conditions within that hierarchical

level have been evaluated.

Negated conditions are evaluated when it is necessary to evaluate the complex condition that they represent.

Interactive COBOL Language Reference & Developer’s Guide - Part One

242

Application of the above rules is shown in the 4 figures that follow.

FIGURE 1. Evaluation of condition-1 AND condition-2 AND ... condition-n

PROCEDURE DIVISION - Concepts (Conditional Expressions)

243

FIGURE 2. Evaluation of condition-1 OR condition-2 OR ... condition-n

Interactive COBOL Language Reference & Developer’s Guide - Part One

244

FIGURE 3. Evaluation of condition-1 OR condition-2 AND condition-3

PROCEDURE DIVISION - Concepts (ROUNDED Phrase)

245

FIGURE 4. Evaluation of (condition-1 OR NOT condition-2) AND condition-3 AND condition-4

B.3. Common Options and Rules for Statements

Paragraph B and its subordinate paragraphs provide a description of the common options and conditions that pertain

to or appear in several different statements.

B.3.1 ROUNDED Phrase

If, after decimal point alignment, the number of places in the fractions of the result of an arithmetic operation is

greater than the number of places provided for the fraction of the resultant identifier, truncation is relative to the size

provided for the resultant identifier. When rounding is requested, the absolute value of the resultant identifier is

increased by one in the low-order position whenever the most significant digit of the excess is greater than or equal

to five.

When the low-order integer positions in a resultant identifier are represented by the character P in the PICTURE for

that resultant identifier, rounding or truncation occurs relative to the right-most integer position for which storage is

allocated.

Interactive COBOL Language Reference & Developer’s Guide - Part One

246

B.3.2 ON SIZE ERROR Phrase

The size error condition occurs under the following circumstances:

(1) Violation of the rules for evaluation of exponentiation always terminates the arithmetic operation and

always causes a size error condition.

(2) Division by zero always terminates the arithmetic operation and always causes a size error condition.

(3) If, after radix point alignment, the absolute value of a result exceeds the largest value that can be contained

in the associated resultant identifier, a size error condition exists. If the ROUNDED phrase is specified, rounding

takes place before checking for size error.

(4) (ISQL) If, after adding or subtracting an interval from a date-time value, the resulting date-time value is not

a valid date-time value, the size error condition exists. For example, DATE “2001-01-30" + INTERVAL “1"

MONTH yields DATE “2001-02-30", which is not a valid date.

If the ON SIZE ERROR phrase is specified and a size error condition exists after the execution of the arithmetic

operations specified by an arithmetic statement, the values of the affected resultant identifiers remain unchanged

from the values they had before execution of the arithmetic statement. The values of resultant identifiers for which

no size error condition exists are the same as they would have been if the size error condition had not resulted for

any of the resultant identifiers. After completion of the arithmetic operations, control is transferred to the

imperative-statement specified in the ON SIZE ERROR phrase and execution continues according to the rules for

each statement specified in that imperative-statement. If a procedure branching or conditional statement which

causes explicit transfer of control is executed, control is transferred in accordance with the rules for that statement;

otherwise, upon completion of the execution of the imperative-statement specified in the ON SIZE ERROR phrase,

control is transferred to the end of the arithmetic statement and the NOT ON SIZE ERROR phrase, if specified, is

ignored.

If the ON SIZE ERROR phrase is not specified and a size error condition exists after the execution of the arithmetic

operations specified by an arithmetic statement, the values of the affected resultant identifiers are undefined. The

values of resultant identifiers for which no size error condition exists are the same as they would have been if the size

error condition had not resulted for any of the resultant identifiers. After completion of the arithmetic operations,

control is transferred to the end of the arithmetic statement and the NOT ON SIZE ERROR phrase, if specified, is

ignored.

If the size error condition does not exist after the execution of the arithmetic operations specified by an arithmetic

statement, the ON SIZE ERROR phrase, if specified, is ignored and control is transferred to the end of the arithmetic

statement or to the imperative-statement specified in the NOT ON SIZE ERROR phrase, if it is specified. In the

latter case, execution continues according to the rules for each statement specified in that imperative-statement. If a

procedure branching or conditional statement which causes explicit transfer of control is executed, control is

transferred in accordance with the rules for that statement; otherwise, upon completion of the execution of the

imperative-statement specified in the NOT ON SIZE ERROR phrase, control is transferred to the end of the

arithmetic statement

For the ADD or SUBTRACT statement with the CORRESPONDING phrase, if any of the individual operations

produces a size error condition, imperative-statement-1 in the ON SIZE ERROR phrase is not executed until all of

the individual additions or subtractions are completed.

B.3.3 CORRESPONDING Phrase

For the purpose of this discussion, D1 and D2 must each be identifiers that refer to group items. A pair of data

items, one from D1 and one from D2 correspond if the following conditions exist:

(1) A data item in D1 and a data item in D2 are not designated by the keyword FILLER and have the same

data-name and the same qualifiers up to, but not including, D1 and D2.

PROCEDURE DIVISION - Concepts (CORRESPONDING)

247

(2) At least one of the data items is an elementary data item and the resulting move is legal according to the

move rules in the case of a MOVE statement with the CORRESPONDING phrase; and both of the data items are

elementary numeric data items in the case of the ADD statement with the CORRESPONDING phrase or the

SUBTRACT statement with the CORRESPONDING phrase.

(3) The description of D1 and D2 must not contain level-number 66, 77, or 88, the USAGE IS INDEX clause,

or (for ANSI 74 and ANSI 85) the USAGE IS POINTER clause.

(4) A data item that is subordinate to D1 or D2 and contains a REDEFINES, RENAMES, OCCURS, or

USAGE IS INDEX clause is ignored, as well as those data items subordinate to the data item that contains the

REDEFINES, OCCURS, USAGE IS INDEX clause, or (for ANSI 74 and ANSI 85) the USAGE IS POINTER

clause.

(5) The name of each data item which satisfies the above conditions must be unique after application of the

implied qualifiers.

The following examples demonstrate the MOVE CORRESPONDING and ADD CORRESPONDING

statements.

Interactive COBOL Language Reference & Developer’s Guide - Part One

248

FD PATIENT-FILE.
01 PATIENT-RECORD.
 03 PATIENT-KEY.

05 PATIENT-NO PIC 9(6).
05 PATIENT-EMPLOYER PIC X(30).

 03 PATIENT-NAME PIC X(20).
 03 PATIENT-INSURANCE-CO PIC X(15).

 03 PATIENT-INS-GROUP-NO PIC 9(3).
 03 TODAYS-CHARGES PIC 9(4)V99.
 03 PATIENT-BALANCE.
 05 0-30 PIC 9(4)V99.
 05 31-60 PIC 9(4)V99.
 05 OVER-60 PIC 9(4)V99.

01 BILL-DETAIL-LINE.
 03 PATIENT-NAME PIC X(20).
 03 FILLER PIC X(5) VALUE SPACE.
 03 TODAYS-CHARGES. PIC 9(4)V99.
 03 FILLER PIC X(5) VALUE SPACE.
 03 PREVIOUS-BALANCE PIC 9(4)V99.
 03 TOTAL-BALANCE PIC 9(6)V99.
01 ACCTS-REC-TOTALS
 03 SUPPLIER-BALANCE PIC 9(8)V99.
 03 PATIENT-BALANCE.

 05 0-30 PIC 9(4)V99.
 05 31-60 PIC 9(4)V99.
 05 OVER-60 PIC 9(4)V99.

*** The following MOVE statement is the equivalent to:

*** MOVE PATIENT-NAME OF PATIENT-RECORD
*** TO PATIENT-NAME OF BILL-DETAIL-LINE.
*** MOVE TODAYS-CHARGES OF PATIENT-RECORD
*** TO TODAYS-CHARGES OF BILL-DETAIL-LINE.

MOVE CORR PATIENT-RECORD TO BILL-DETAIL-LINE.

*** The following ADD statement is equivalent to:

*** ADD 0-30 OF PATIENT-BALANCE OF PATIENT-RECORD
*** TO 0-30 OF PATIENT-BALANCE OF ACCTS-REC-TOTALS.
*** ADD 31-60 OF PATIENT-BALANCE OF PATIENT-RECORD
*** TO 31-60 OF PATIENT-BALANCE OF ACCTS-REC-TOTALS.
*** ADD OVER-60 OF PATIENT-BALANCE OF PATIENT-RECORD
*** TO OVER-60 OF PATIENT-BALANCE OF ACCTS-REC-TOTALS.

ADD CORR PATIENT-BALANCE OF PATIENT-RECORD TO PATIENT-BALANCE
 OF ACCTS-REC-TOTALS.

EXAMPLE 15. MOVE CORRESPONDING and ADD CORRESPONDING

PROCEDURE DIVISION - Concepts (CORRESPONDING)

249

The following code demonstrates the MOVE CORRESPONDING statement.

WORKING-STORAGE SECTION.
01 SYSTEM-DATE PIC 9(8) VALUE ZERO.
01 SYSTEM-DATE-R REDEFINES SYSTEM-DATE.
 03 SYSTEM-YEAR PIC 9(4).
 03 SYSTEM-MONTH PIC 9(2).
 03 SYSTEM-DAY PIC 9(2).
01 CURRENT-DATE.
 03 SYSTEM-MONTH PIC 9(2).
 03 SYSTEM-DAY PIC 9(2).
 03 SYSTEM-YEAR PIC 9(4).
01 CURRENT-DATE-R REDEFINES CURRENT-DATE PIC 9(8).

 ACCEPT SYSTEM-DATE FROM DATE YYYYMMDD.
 MOVE CORRESPONDING SYSTEM-DATE-R TO CURRENT-DATE.

EXAMPLE 16. MOVE CORRESPONDING

B.3.4 Arithmetic Statements

The arithmetic statements are the ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements. They

have several common features.

(1) The data descriptions of the operands need not be the same; any necessary conversion and decimal point

alignment is supplied throughout the calculation.

(2) The maximum size of each operand is 18 decimal digits. The composite of operands, which is a

hypothetical data item resulting from the superimposition of specified operands in a statement aligned on their

decimal points, must not contain more than 18 decimal digits.

B.3.5 Overlapping Operands

When a sending and a receiving data item in any statement share a part or all of their storage areas, yet are not

defined by the same data description entry, the result of the execution of such a statement is undefined. For

statements in which the sending and receiving data items are defined by the same data description entry, the results

of the execution of the statement may or may not be defined depending on the general rules associated with the

applicable statement. If there are no specific rules addressing such overlapping operands, the results are undefined.

In the case of reference modification, the unique data item produced by reference modification is not considered to

be the same data description entry as any other data description entry. Therefore, if an overlapping situation exists,

the results of the operation are undefined.

B.3.6 Multiple Results in Arithmetic Statements

The ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements may have multiple results. Such

statements behave as though they had been written in the following way:

(1) A statement whose execution accesses all data items that are part of the initial evaluation of the statement,

performs any necessary arithmetic or combining of these data items and stores the result of this operation in a

temporary location. See the individual statements for the rules indicating which items are part of the initial

evaluation.

Interactive COBOL Language Reference & Developer’s Guide - Part One

250

(2) A sequence of statements whose execution transfers or combines the value in this temporary location with

each single resulting data item. These statements are considered to be written in the same left-to-right sequence that

the multiple results are specified.

The result of the statement

ADD a, b, c, TO c, d(c), e

is equivalent to

ADD a, b, c GIVING temp
ADD temp TO c
ADD temp TO d(c)
ADD temp TO e

and the result of the statement

MULTIPLY a(i) BY i, a(i)

is equivalent to

MOVE a(i) TO temp
MULTIPLY temp BY i
MULTIPLY temp BY a(i)

in both cases, `temp' is an intermediate result item provided by the compiler.

B.3.7 Incompatible Data

Except for the class condition, when the content of a data item is referenced in the Procedure Division and the

content of that data item is not compatible with the class specified for that data item by its PICTURE clause, then the

result of such a reference is undefined.

B.4. Statements and Sentences

There are four types of statements: imperative statements, conditional statements, compiler directing statements, and

delimited scope statements.

There are three types of sentences: imperative sentences, conditional sentences, and compiler directing sentences.

B.4.1 Conditional Statements and Sentences

B.4.1.1 Definition of Conditional Statement

A conditional statement specifies that the truth value of a condition is to be determined and that the subsequent

action of the object program is dependent on this truth value.

A conditional statement is one of the following:

(1) An EVALUATE, IF, SEARCH, or RETURN statement.

(2) A READ statement that specifies the AT END, NOT AT END, INVALID KEY, or NOT INVALID KEY

phrase.

(3) A WRITE statement that specifies the INVALID KEY, NOT INVALID KEY, END-OF-PAGE, or NOT

END-OF-PAGE phrase.

PROCEDURE DIVISION - Concepts (Statements and Sentences)

251

(4) A DEFINE SUB-INDEX, DELETE, EXPUNGE SUB-INDEX, LINK SUB-INDEX, RETRIEVE,

REWRITE, START, or UNDELETE statement that specifies the INVALID KEY or NOT INVALID KEY phrase.

(5) An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY, SUBTRACT) that specifies the ON

SIZE ERROR or NOT ON SIZE ERROR phrase.

(6) A STRING or UNSTRING statement that specifies the ON OVERFLOW or NOT ON OVERFLOW

phrase.

(7) A CALL statement that specifies the ON OVERFLOW, ON EXCEPTION, or NOT ON EXCEPTION

phrase.

(8) A CALL PROGRAM statement that specifies the ON EXCEPTION or NOT ON EXCEPTION phrase.

(9) An ACCEPT statement that specifies ON ESCAPE or NOT ON ESCAPE.

 (10) (ISQL) A COMMIT, CONNECT, DEALLOCATE, DISCONNET, EXECUTE, EXECUTE

IMMEDIATE, FETCH, PREPARE, ROLLBACK, or SET CONNECTION statement that specifies ON

SQLERROR or NOT ON SQLERROR.

(11) (ISQL) A GET DIAGNOSTICS statement that specifies the ON EXCEPTION or NOT ON EXCEPTION

phrase.

B.4.1.1.1 Definition of Conditional Phrase

A conditional phrase specifies the action to be taken upon determination of the truth value of a condition resulting

from the execution of a conditional statement.

A conditional phrase is one of the following:

(1) an AT END or NOT AT END phrase when specified within a READ statement.

(2) an INVALID KEY or NOT INVALID KEY phrase when specified within a DELETE, READ, REWRITE,

START, UNDELETE, or WRITE statement.

(3) a SIZE ERROR or NOT SIZE ERROR phrase when specified within an ADD, COMPUTE, DIVIDE,

MULTIPLY, or SUBTRACT statement.

(4) an ON OVERFLOW or NOT ON OVERFLOW phrase when specified within a STRING or UNSTRING

statement.

(5) an ON OVERFLOW, ON EXCEPTION, NOT ON OVERFLOW, or NOT ON EXCEPTION phrase when

specified within a CALL statement.

(6) an ON EXCEPTION or NOT ON EXCEPTION phrase when specified within a CALL PROGRAM

statement.

(7) an END-OF-PAGE or NOT END-OF-PAGE phrase when specified with a WRITE statement.

(8) an ON ESCAPE or NOT ON ESCAPE phrase when specified with an ACCEPT statement.

(9) (ISQL) an ON SQLERROR or NOT ON SQLERROR phrase when specified with a COMMIT,

CONNECT, DEALLOCATE, DISCONNECT, EXECUTE, EXECUTE IMMEDIATE, FETCH, PREPARE,

ROLLBACK, SET CONNECTION statement.

Interactive COBOL Language Reference & Developer’s Guide - Part One

252

(10) (ISQL) an ON EXCEPTION or NOT ON EXCEPTION phrase when specified within a GET

DIAGNOSTICS statement.

B.4.1.2 Definition of Conditional Sentence

A conditional sentence is a conditional statement, optionally preceded by an imperative statement, terminated by the

separator period.

B.4.2 Compiler Directing Statements and Sentences

B.4.2.1 Definition of Compiler Directing Statement

A compiler directing statement consists of a compiler directing verb and its operands. The compiler directing verbs

are COPY and USE. A compiler directing statement causes the compiler to take a specific action during

compilation.

B.4.2.2 Definition of Compiler Directing Sentence

A compiler directing sentence is a single compiler directing statement terminated by the separator period.

B.4.3 Imperative Statements and Sentences

B.4.3.1 Definition of Imperative Statement

An imperative statement begins with an imperative verb and specifies an unconditional action to be taken by the

object program or is a conditional statement that is delimited by its explicit scope terminator (delimited scope

statement). An imperative statement may consist of a sequence of imperative statements, each possibly separated

from the next by a separator. The imperative verbs are:

ACCEPT 7

ADD 1

CALL 5

CALL PROGRAM 6

CANCEL

CLOSE

COMPUTE 1

CONNECT 9

CONTINUE

DEALLOCATE 9

DEFINE SUB-INDEX

DELETE 2

DISCONNECT 9

DISPLAY

DIVIDE 1

EXECUTE 9

EXIT

EXPUNGE

EXPUNGE SUB-INDEX 2

FETCH 9

GET 6

GO TO

INITIALIZE

INSPECT

LINK SUB-INDEX 2

MERGE

MOVE

MULTIPLY 1

OPEN

PERFORM

PREPARE 9

READ 4

RELEASE

RETRIEVE 2

REWRITE 2

SET

SET (ISQL) 9

SORT

START 2

STOP

STRING 3

SUBTRACT 1

UNDELETE 2

UNSTRING 3

WRITE 8

 without the optional ON SIZE ERROR and NOT ON SIZE ERROR phrases1

 without the optional INVALID KEY and NOT INVALID KEY phrases2

 without the optional ON OVERFLOW and NOT ON OVERFLOW phrases3

 without the optional AT END, NOT AT END, INVALID KEY, and NOT INVALID KEY phrases4

 without the optional ON OVERFLOW, ON EXCEPTION, and NOT ON EXCEPTION phrases5

 without the optional ON EXCEPTION and NOT ON EXCEPTION phrases6

 without the optional ON ESCAPE and NOT ON ESCAPE phrases7

 without the optional INVALID KEY, NOT INVALID KEY, END-OF-PAGE, and NOT END-OF-PAGE phrases8

 without the optional ON SQLERROR and NOT ON SQLERROR phrases9

Whenever `imperative-statement' appears in the general format of statements, `imperative-statement' refers to that

sequence of consecutive imperative statements that must be ended by a period or by any phrase associated with a

statement containing that `imperative-statement'.

PROCEDURE DIVISION - Concepts (Scope of Statements)

253

(ISQL) The COMMIT, CONNECT, DEALLOCATE, DISCONNECT, EXECUTE, EXECUTE IMMEDIATE,

FETCH, GET DIAGNOSTICS, PREPARE, ROLLBACK, and SET CONNECTION statements are only available

when the ISQL feature-set is enabled.

B.4.3.2 Definition of Imperative Sentence

An imperative sentence is an imperative statement terminated by the separator period.

B.5. Scope of Statements

A delimited scope statement is any statement which includes its explicit scope terminator. (See section B.6.5 on

page 255.)

When statements are nested within other statements, a separator period which terminates the sentence also implicitly

terminates all nested statements.

Whenever any statement is contained within another statement, the next phrase of the containing statement following

the contained statement terminates the scope of any unterminated contained statement.

When statements are nested within other statements which allow optional conditional phrases, any optional

conditional phrase encountered is considered to be the next phrase of the nearest preceding unterminated statement

with which that phrase is permitted to be associated according to the general format and the syntax rules for that

statement, but with which no such phrase has already been associated. An unterminated statement is one which has

not been previously terminated either explicitly or implicitly.

B.6. Explicit and Implicit Specifications

There are four types of explicit and implicit specifications that occur in COBOL source programs:

(1) Explicit and implicit Procedure Division references

(2) Explicit and implicit transfers of control

(3) Explicit and implicit attributes

(4) Explicit and implicit scope terminators

B.6.1 Explicit and Implicit Procedure Division References

A COBOL source program can reference data items either explicitly or implicitly in Procedure Division statements.

An explicit reference occurs when the name of the referenced item is written in a Procedure Division statement or

when the name of the referenced item is copied into the Procedure Division by the processing of a COPY statement.

An implicit reference occurs when the item is referenced by a Procedure Division statement without the name of the

referenced item being written in the source statement. An implicit reference also occurs, during the execution of a

PERFORM statement, when the index or data item referenced by the index-name or identifier specified in the

VARYING, AFTER, or UNTIL phrase is initialized, modified, or evaluated by the control mechanism associated

with that PERFORM statement. Such an implicit reference occurs if and only if the data item contributes to the

execution of the statement.

B.6.2 Explicit and Implicit Transfers of Control

Interactive COBOL Language Reference & Developer’s Guide - Part One

254

The mechanism that controls program flow transfers control from statement to statement in the sequence in which

they were written in the source program unless an explicit transfer of control overrides this sequence or there is no

next executable statement to which control can be passed. The transfer of control from statement to statement occurs

without the writing of an explicit Procedure Division statement, and, therefore, is an implicit transfer of control.

COBOL provides both explicit and implicit means of altering the implicit control transfer mechanism.

In addition to the implicit transfer of control between consecutive statements, implicit transfer of control also occurs

when the normal flow is altered without the execution of a procedure branching statement. COBOL provides the

following types of implicit control flow alterations which override the statement-to-statement transfers of control:

(1) If a paragraph is being executed under control of another COBOL statement (for example, PERFORM,

USE, SORT, and MERGE) and the paragraph is the last paragraph in the range of the controlling statement, then an

implied transfer of control occurs from the last statement in the paragraph to the control mechanism of the last

executed controlling statement. Further, if a paragraph is being executed under the control of a PERFORM

statement which paragraph is being executed under the control of a PERFORM statement which causes iterative

execution, and that paragraph is the first paragraph in the range of that PERFORM statement, an implicit transfer of

control occurs between the control mechanism associated with that PERFORM statement and the first statement in

that paragraph for each iterative execution of the paragraph.

(2) When a SORT or MERGE statement is executed, an implicit transfer of control occurs to any associated

input or output procedures.

(3) When any COBOL statement is executed which results in the execution of a declarative section, an implicit

transfer of control to the declarative section occurs. Another implicit transfer of control occurs after execution of the

declarative section, as described in paragraph 1 above.

An explicit transfer of control consists of an alteration of the implicit control transfer mechanism by the execution of

a procedure branching or conditional statement. An explicit transfer of control can be caused only by the execution

of a procedure branching or conditional statement. The procedure branching statement EXIT PROGRAM causes an

explicit transfer of control only when the statement is executed in a called program.

In this document, the term `next executable statement' is used to refer to the next COBOL statement to which control

is transferred according to the rules above and the rules associated with each language element.

There is no next executable statement when the program contains no Procedure Division or does contain the

following:

(1) The last statement in a declarative section when the paragraph in which it appears is not being executed

under the control of some other COBOL statement.

(2) The last statement in a declarative section when the statement is in the range of an active PERFORM

statement executed in a different section and this last statement of the declarative section is not also the last statement

of the procedure that is the exit of the active PERFORM statement.

(3) The last statement in a program when the paragraph in which it appears is not being executed under the

control of some other COBOL statement in that program.

(4) A STOP RUN statement or EXIT PROGRAM statement that transfers control outside the COBOL program.

When there is no next executable statement and control is not transferred outside the COBOL program, the program

flow of control is undefined unless the program execution is in the nondeclarative procedures portion of a program

under control of a CALL statement, in which case an implicit EXIT PROGRAM statement is executed.

B.6.3 Explicit and Implicit Attributes

PROCEDURE DIVISION - Concepts (Explicit and Implicit Specifications)

255

Attributes may be implicitly or explicitly specified. Any attribute which has been explicitly specified is called an

explicit attribute. If an attribute has not been specified explicitly, then the attribute takes on the default specification.

Such an attribute is known as an implicit attribute.

For example, the usage of a data item need not be specified, in which case a data item's usage is DISPLAY.

B.6.4 Scope Terminators

Scope terminators serve to delimit the scope of certain Procedure Division. Scope terminators are of two types:

explicit and implicit.

B.6.5 Explicit Scope Terminators

The explicit scope terminators are the following:

END-ACCEPT

END-ADD

END-CALL

END-COMMIT

END-COMPUTE

END-CONNECT

END-DEALLOCATE

END-DEFINE

END-DELETE

END-DISCONNECT

END-DIVIDE

END-EXECUTE

END-EVALUATE

END-EXPUNGE

END-FETCH

END-GET

END-IF

END-LINK

END-MULTIPLY

END-PERFORM

END-PREPARE

END-READ

END-RETRIEVE

END-RETURN

END-REWRITE

END-ROLLBACK

END-SEARCH

END-SET

END-START

END-STRING

END-SUBTRACT

END-UNDELETE

END-UNSTRING

END-WRITE

B.6.6 Implicit Scope Terminators

The implicit scope terminators are the following:

(1) At the end of any sentence, the separator period which terminates the scope of all previous statements not

yet terminated.

(2) Within any statement containing another statement, the next phrase of the containing statement following the

contained statement terminates the scope of any unterminated contained statement. Examples of such phrases are

ELSE, NOT AT END, etc.

Interactive COBOL Language Reference & Developer’s Guide - Part One

256

C. File Concepts

A file is a collection of records which may be placed into or retrieved from a storage medium. The user not only

chooses the file organization, but also chooses the file processing method and sequence. Although the file

organization and processing method are restricted for sequential media, no such restrictions exist for mass storage

media.

When describing the capabilities of COBOL programs to manipulate files, the following conventions are used. The

term `file-name' means the user-defined word used in the COBOL source program to reference a file. The terms `file

referenced by file-name' and `file' mean the physical file regardless of the file-name used in the COBOL program.

The term `file connector' means the entity containing information concerning the file. All accesses to physical files

occur through file connectors. In various implementations, the file connector is referred to as a file information

table, a file control block, etc.

C.1. File Attributes

A file has several attributes which apply to the file at the time it is created and cannot be changed throughout the

lifetime of the file. The primary attribute is the organization of the file, which describes its logical structure. Other

fixed attributes of the file provided by the COBOL program are primary record key, alternate record keys, code set,

the minimum and maximum logical record size, the record type (fixed or variable), the collating sequence of the keys

for indexed files, the blocking factor, the padding character, and the record delimiter.

For ANSI 74 and ANSI 85, there are three organizations: sequential, relative, and indexed. For VXCOBOL, there

are four organizations: sequential, relative, indexed, and INFOS.

C.1.1 Sequential Organization

Sequential files are organized so that each record, except the last, has a unique successor record; each record, except

the first, has a unique predecessor record. The successor relationships are established by the order of execution of

WRITE statements when the file is created. Once established, successor relationships do not change except in the

case where records are added to the end of a file.

A sequentially organized mass storage file has the same logical structure as a file on any sequential medium;

however, a sequential mass storage file may be updated in place. When this technique is used, new records cannot

be added to the file and each replaced record must be the same size as the original record.

C.1.2 Relative Organization

A file with relative organization is a mass storage file from which any record may be stored or retrieved by providing

the value of its relative record number.

Conceptually, a file with relative organization comprises a serial string of areas, each capable of holding a logical

record. Each of these areas is denominated by a relative record number. Each logical record in a relative file is

identified by the relative record number of its storage area. For example, the tenth record is the one addressed by

relative record number 10 and is in the tenth record area, whether or not records have been written in any of the first

through the ninth record areas.

In order to achieve more efficient access to records in a relative file, the number of character positions reserved on

the medium to store a particular logical record may be different from the number of character positions in the

description of that record in the program.

PROCEDURE DIVISION - File Concepts (Logical Records)

257

C.1.3 Indexed Organization

A file with indexed organization is a mass storage file from which any record may be accessed by giving the value of

a specified key in that record. For each key data item defined for the records of a file, an index is maintained. Each

such index represents the set of values from the corresponding key data item in each record. Each index, therefore,

is a mechanism which can provide access to any record in the file.

Each indexed file has a primary index which represents the primary record key of each record in the file. Each

record is inserted in the file, changed, or deleted from the file based solely upon the value of its primary record key.

The primary record key of each record in the file must be unique, and it must not be changed when updating a

record. The primary record key is declared in the RECORD KEY clause of the file control entry for the file.

Alternate record keys provide alternative means of retrieval for the records of a file. Such keys are named in the

ALTERNATE RECORD KEY clauses of the file control entry. The value of a particular alternate record key in

each record need not be unique. When these values may not be unique, the DUPLICATES phrase is specified in the

ALTERNATE RECORD KEY clause.

C.1.4 INFOS Organization (VXCOBOL)

A file with INFOS organization is a mass storage file from which any record may be accessed by giving the value of

a specified key or keys. For each key data item defined for the records of a file, a subindex is maintained. Each such

index represents the set of values from the corresponding key data item. One or more keys can be associated with

each record in the file.

A key may or may not be contained within the record. A key may or may not be associated with a record.

A file with INFOS organization can have several modes of indexing:

(1) simple indexing (one index per file)

(2) alternate indexing (multiple paths to a record)

(3) multiple indexing

(4) multilevel indexing

ICOBOL requires the U/FOS data management software from Transoft, Inc. to provide INFOS support.

C.2. Logical Records

A logical record is the unit of data which is retrieved from or stored into a file. There are two types of records: fixed

length and variable length. When a file is created, it is declared to contain either fixed length or variable length

records. In any case, the content of the record does not reflect any information the implementor may add to the

record on the physical storage medium (such as record length headers), nor does the length of the record used by the

COBOL programmer reflect these additions.

C.2.1 Fixed Length Records

Fixed length records must contain the same number of character positions for all the records in the file. All

input-output operations on the file can only process this one record size.

For ANSI 74 and ANSI 85, fixed length records may be explicitly selected by specifying a Format 1 RECORD

clause in the file description entry for the file regardless of the individual record descriptions.

Interactive COBOL Language Reference & Developer’s Guide - Part One

258

For VXCOBOL, fixed length records may be explicitly selected by specifying RECORDING MODE IS FIXED

clause in the file description entry for the file regardless of the individual record descriptions.

C.2.2 Variable Length Records (ANSI 74 and ANSI 85)

Variable length records may contain differing numbers of character positions among the records on the file. To

define variable length records explicitly, the VARYING phrase may be specified in the RECORD clause in the file

description entry or the sort-merge file description entry for the file. The length of a record is affected by the

data-item referenced in the DEPENDING phrase of the RECORD clause or the DEPENDING phrase of an

OCCURS clause or by the length of the record description entry for this file. They may also be obtained with the

RECORDING MODE IS VARIABLE clause, however this is obsolete and applies to sequential files only.

C.2.3 Variable Length Records (VXCOBOL)

Variable length records may contain differing numbers of character positions among the records on the file. Variable

length records may be explicitly selected by selecting the RECORDING MODE IS VARIABLE clause in the file

regardless of the individual record descriptions.

C.3. File Processing

A file can be processed by performing operations upon individual records or upon the file as a unit, or (for INFOS

files when using the VXCOBOL dialect) by performing operations upon individual keys. Unusual conditions that

occur during processing are communicated back to the program.

C.4. Record Operations

The ACCESS MODE clause of the file description entry specifies the manner in which the object program operates

upon records within a file. The access mode may be sequential, random, or dynamic.

For files that are organized as relative, indexed, or INFOS, any of the three access modes can be used to access the

file regardless of the access mode used to create the file. A file with sequential organization may only be accessed in

sequential mode.

When a file is accessed in random mode, input-output statements are used to access the records in a

programmer-specified order. With the indexed organization, the programmer specifies the desired record by placing

the value of one of its record keys in a record key or an alternate record key data item.

With dynamic access mode, the programmer may change at will from sequential accessing to random accessing,

using appropriate forms of input-output statements.

C.4.1 Sequential Access Mode

A file can be accessed sequentially irrespective of the file organization.

For sequential organization, the order of sequential access is the order in which the records were originally written.

The START statement may be used to establish a starting point for a series of subsequent retrievals.

For relative organization, the order of sequential access is ascending or descending based on the value of the relative

record numbers. Only records which currently exist in the file are made available. The START statement may be

used to establish a starting point for a series of subsequent sequential retrievals.

PROCEDURE DIVISION - File Concepts (Record Operations)

259

For indexed organization or INFOS, the order of sequential access is ascending or descending based on the value of

the key of reference according to the collating sequence associated with the native character set. Any of the keys

associated with the file may be established as the key of reference during the processing of the file. The order of

retrieval from a set of records which have duplicate key of reference values is the original order of arrival of those

records into the set. The START statement may be used to establish a starting point within an indexed file for a

series of subsequent sequential retrievals.

For VXCOBOL, each individual I/O operation may be used to establish a starting point within an INFOS file for

subsequent sequential retrievals.

C.4.2 Random Access Mode

When a file is accessed in random mode, input-output statements are used to access the records in a

programmer-specified order. The random access mode may only be used with relative, indexed, or INFOS file

organizations.

For a file with relative organization, the programmer specifies the desired record by placing its relative record

number in a relative key data item. With the indexed organization, the programmer specifies the desired record by

placing the value of one of its record keys in a record key or an alternate record key data item. With INFOS

organization, the programmer specifies the desired record by placing the value of one or more of its record keys in

appropriate record key data items.

C.4.3 Dynamic Access Mode

With dynamic access mode, the programmer may change at will from sequential accessing to random accessing,

using appropriate forms of input-output statements. The dynamic access mode may only be used on files with

relative, indexed, or INFOS organizations.

C.4.4 Open Mode

The open mode of the file is related to the actions to be performed upon is in the file. The open modes and purposes

are: INPUT, to retrieve records; OUTPUT, to place records into a file; EXTEND, to append records to an existing

file; and I-O, to retrieve and update records. The open mode is specified in the OPEN statement.

When the open mode is INPUT, a file may be accessed by the READ and for VXCOBOL the RETRIEVE

statement. The START statement may also be used for files organized as indexed, relative, INFOS which are in

sequential or dynamic access modes or for files organized as sequential.

When the open mode is OUTPUT, the records are placed into the file by issuing WRITE statements.

When the open mode is EXTEND, new records are added to the logical end of a file by issuing WRITE statements.

Only mass storage files may be referenced in the open I-O mode. The additional capabilities of mass storage devices

permit updating in place, thus READ and REWRITE statements may always be used. A mass storage file may be

updated in the same manner as a file on a sequential medium, by transcribing the entire file into another file (perhaps

in a separate area of mass storage) using READ and WRITE statements. However, it is sometimes more efficient to

update a mass storage file in place. This mass storage file maintenance technique uses the REWRITE statement to

return to their previous locations on the storage medium only those records which have changed.

READ, REWRITE, and START statements are the only operations allowed, while updating in place sequentially

organized files. However, for indexed, relative, or INFOS organized files, the following additional functions may be

applied: the DELETE Statement may be used with any access mode to remove a record logically from a file; the

UNDELETE Statement may be used with any access mode to add a record that had been logically removed from a

file; the WRITE statement may be used in random or dynamic access mode to insert a new record into the file.

Interactive COBOL Language Reference & Developer’s Guide - Part One

260

C.4.5 Current Volume Pointer

The current volume pointer is a conceptual entity used in this document to facilitate exact specification of the current

physical volume of a sequential file. The status of the current volume pointer is affected by the CLOSE, OPEN,

READ, and WRITE statements.

C.4.6 File Position Indicator

The file position indicator is a conceptual entity used in this document to facilitate exact specification of the next

record to be accessed within a given file during certain sequences of input-output operations. The concept of a file

position indicator has no meaning for a file opened in the output or extend mode.

For sequential, relative, and indexed files, the setting of the file position indicator is affected only by the OPEN,

READ, and START statements. The file position indicator can be updated on all INFOS file operations.

C.5. File Operations

Several COBOL statements operate upon files as entities or as collections of records. These are the CLOSE,

DELETE FILE, and OPEN statements. For VXCOBOL, the EXPUNGE statement is also included.

C.6. Exception Handling

During the execution of any input or output operation, unusual conditions may arise which preclude normal

completion of the operation. There are four methods by which these conditions are communicated to the object

program; status keys, exception declaratives, optional phrases associated with the imperative statement, and the

ACCEPT FROM EXCEPTION STATUS statement. If a fatal I/O error is encountered and the program terminates,

the current Exception Status is displayed right after the current opcode location and current PC.

C.6.1 I-O Status (FILE STATUS)

The I-O status is a two-character conceptual entity whose value is set to indicate the status of an input-output

operation during the execution of a CLOSE, DEFINE SUB-INDEX, DELETE, DELETE FILE, EXPUNGE,

EXPUNGE SUB-INDEX, LINK SUB-INDEX, OPEN, READ, RETRIEVE, REWRITE, START, UNDELETE,

UNLOCK, or WRITE statement and prior to the execution of any imperative statement associated with that input-ou-

tput statement or prior to the execution of any applicable USE AFTER STANDARD EXCEPTION procedure. The

value of the FILE STATUS is made available to the COBOL program through the use of the FILE STATUS clause

in the file control entry for the file.

For VXCOBOL, whenever the I-O status is updated the INFOS STATUS is also updated. INFOS STATUS is an

extension to ANSI COBOL.

The I-O status also determines whether an applicable USE AFTER STANDARD EXCEPTION procedure will be

executed. If any condition other than those contained under the heading "Successful Completion" below results,

such a procedure may be executed depending on rules stated elsewhere. If one of the conditions listed under the

heading "Successful Completion" below results, no such procedure will be executed. (See The USE Statement, page

479).

Certain classes of I-O status values indicate critical error conditions. These are:

any that begin with the digit 3 or 4, and

any that begin with the digit 9.

PROCEDURE DIVISION - File Concepts (ANSI 74 I-O Status)

261

If the value of the I-O status for an input-output operation indicates such an error condition, and an applicable USE

AFTER STANDARD EXCEPTION procedure exists, it is executed. After execution of the USE procedure, control

returns to the statement following the statement that caused the error. If no applicable USE AFTER STANDARD

EXCEPTION applies, after completion of the normal input-output control system error processing, and NO I-O

status (FILE STATUS) or INFOS STATUS was associated with this file, the COBOL program is terminated with a

Fatal Error indicating the type of error encountered and the COBOL pc. To prevent this from happening, a

Declaratives section with an applicable USE procedure should be defined.

C.6.2 I-O Status (ANSI 74)

I-O status expresses one of the following conditions upon completion of the input-output operation:

(1) Successful Completion (0x). The input-output statement was successfully executed.

(2) At End (1x). A sequential READ statement was unsuccessfully executed as a result of an at end condition.

(3) Invalid Key (2x). The input-output statement was unsuccessfully executed as a result of an invalid key

condition.

(4) Permanent Error (3x). The input-output statement was unsuccessfully executed as the result of an error that

precluded further processing of the file. Any specified exception procedures are executed. The permanent

error condition remains in effect for all subsequent input-output operations on the file unless an

implementor-defined technique is invoked to correct the permanent error condition.

(5) ICOBOL-Defined (Implementor-Defined) (9x). The input-output statement was unsuccessfully executed as

a result of a condition that is specified by ICOBOL.

The following is a list of the values placed in the I-O status for the previously named conditions resulting from the

execution of an input-output operation on a file.

(1) Successful Completion

00 The input-output statement is successfully executed and no further information is available concerning the

input-output operation.

02 The input-output statement is successfully executed but a duplicate key is detected. SUPPORTED WHEN

USING VERSION 7 INDEXED FILES WITH -G d OPTION TO ICRUN

a. For a READ random or READ NEXT statement, the key value for the current key of reference is equal

to the value of the same key in the next record within the current key of reference. For a READ PREVIOUS

statement, the key value for the current key of reference is equal to the value of the same key in the previous record

within the current key of reference.

b. For a REWRITE or WRITE statement, the record just written created a duplicate key value for at least

one alternate record key for which duplicates are allowed.

04 A READ statement is successfully executed but the length of the record being processed does not conform

to the fixed file attributes for that file.

(2) At End Condition With Unsuccessful Completion

10 A sequential READ statement is attempted and no next logical record exists in the file because:

a. The end of the file has been reached, or

b. A sequential READ statement is attempted for the first time on an optional input file that is not present.

Interactive COBOL Language Reference & Developer’s Guide - Part One

262

(3) Invalid Key Condition With Unsuccessful Completion

21 A sequence error exists for a sequentially accessed indexed file. The primary record key value has been

changed by the program between the successful execution of a READ statement and the execution of the

next REWRITE statement for that file, or the ascending sequence requirements for successive record key

values are violated.

22 The duplicates condition exists because:

a. An attempt is made to write a record that would create a duplicate key in a relative file, on the primary

key, or on an alternate key that does not allow duplicates in an indexed file, or

b. An attempt is made to UNDELETE a record that was not deleted. THIS IS AN EXTENSION TO

ANSI COBOL.

23 The no record found condition exists because:

a) An attempt is made to randomly access a record that does not exist in the file, or

b) A START or random READ statement is attempted on an optional input file that is not present.

24 An attempt is made to write beyond the externally defined boundaries of a relative or indexed file. Under

ICOBOL this implies: for a relative file writing beyond the record number limit; and for an Indexed file the

index structure is full.

(4) Permanent Error Condition With Unsuccessful Completion

30 A permanent error exists and no further information is available concerning the input-output operation.

Generally related to some hardware condition.

34 A permanent error exists because of a boundary violation; an attempt is made to write beyond the externally

defined boundaries of a sequential file. Generally out of disk space.

(5) ICOBOL-Defined (Implementor-Defined) Condition With Unsuccessful Completion.

91 An OPEN error. The possible violations are:

a. An OPEN statement referred to a file that was nonexistent.

b. An OPEN statement referred to a file that was already open. This is a 41 with ANSI 85.

c. An OPEN statement referred to a file that was had an illegal name.

d. A CLOSE statement referred to a file that had not been opened. This is a 42 with ANSI 85.

e. On OPEN, the filename already existed.

f. On OPEN, a nondirectory argument was in the pathname.

g. On OPEN, a zero-length filename was specified.

h. On OPEN, no more files could be opened from the operating system.

i. On OPEN, for devices the hardware is not present.

j. On a data-sensitive READ, the line is too long for the record. This is a 34 with ANSI 85.

PROCEDURE DIVISION - File Concepts (ANSI 74 I-O Status)

263

92 An Access mode error. The possible violations are:

a. File not opened.

b. WRITE attempted to file opened for input. This is a 48 with ANSI 85.

c. DELETE attempted to file opened for input. This is a 49 with ANSI 85.

d. READ attempted for file opened for output. This is a 47 with ANSI 85.

e. OPEN attempted for file closed with lock. This is a 38 with ANSI 85.

f. DELETE or REWRITE statement not preceded by a READ statement for a file in sequential access

mode. This is a 43 with ANSI 85.

g. OPEN attempted on a file with insufficient access rights for OPEN mode. This is a 37 with ANSI 85.

h. An attempt is made to WRITE or REWRITE a record that is larger than the largest or smaller than the

smallest record allowed by the RECORD IS VARYING clause of the associated filename. This is a 44 with ANSI

85.

94 An In Use Error. The possible violations are:

a. File cannot be exclusively opened because it is in use.

b. Record cannot be accessed because it is locked.

c. DELETE FILE attempted for an opened file.

96 A directory named by the program does not exist.

97 Maximum number of open files exceeded.

98 Attempt to write more than 65,535 records to a relative file. This is a 24 with ANSI 85.

99 Printer control file is full.

9A File description inconsistency. Record length, key length, or key positions specified in program does not

agree with the data file. This is a 39 with ANSI 85. ICISAM file version is not valid.

9B Corruption error. The possible violations are:

a. After a successful OPEN of an ISAM file, the runtime system has detected possible corruption in the file.

Close this file; this sets the ISAM reliability flags and prevents further access to the file.

b. The data (.XD) portion of an Indexed or relative file is full. The ICISAM reliability flags are set.

c. On an attempted OPEN of an ICISAM file, the runtime has detected that the file is possibly corrupt

although the ICISAM reliability flags are clear. The appropriate reliability flag(s) are set and the file is not opened.

9C Index (.NX) portion of an Indexed or relative file is full. The ICISAM reliability flags are not set.

9E Record lock limit has been exceeded.

9F Possible corruption of an ICISAM file has been detected on an attempted OPEN of the file; i.e., one or both

of the ICISAM reliability flags had previously been set.

Interactive COBOL Language Reference & Developer’s Guide - Part One

264

9T A time out condition has occurred on an I/O operation.

C.6.3 I-O Status (ANSI 85)

I-O status expresses one of the following conditions upon completion of the input-output operation:

(1) Successful Completion (0x). The input-output statement was successfully executed.

(2) At End (1x). A sequential READ statement was unsuccessfully executed as a result of an at end

condition.

(3) Invalid Key (2x). The input-output statement was unsuccessfully executed as a result of an invalid key

condition.

(4) Permanent Error (3x). The input-output statement was unsuccessfully executed as the result of an error

that precluded further processing of the file. Any specified exception procedures are executed. The

permanent error condition remains in effect for all subsequent input-output operations on the file unless

an implementor-defined technique is invoked to correct the permanent error condition.

(5) Logic Error (4x). The input-output statement was unsuccessfully executed as a result of an improper

sequence of input-output operations that were performed on the file or as a result of violating a limit

defined by the user.

(6) ICOBOL-Defined (Implementor-Defined) (9x) Condition With Unsuccessful Completion. The

input-output statement was unsuccessful executed as a result of a condition that is specified by

ICOBOL.

The following is a list of the values placed in the I-O status for the previously named conditions resulting from the

execution of an input-output operation on a file.

(1) Successful Completion

00 The input-output statement is successfully executed and no further information is available concerning the

input-output operation.

02 The input-output statement is successfully executed but a duplicate key is detected. SUPPORTED WHEN

USING VERSION 7 INDEXED FILES.

a) For a READ random or READ NEXT statement, the key value for the current key of reference is equal

to the value of the same key in the next record within the current key of reference. For a READ

PREVIOUS statement, the key value for the current key of reference is equal to the value of the same

key in the previous record within the current key of reference.

b) For a REWRITE or WRITE statement, the record just written created a duplicate key value for at least

one alternate record key for which duplicates are allowed.

04 A READ statement is successfully executed but the length of the record being processed does not conform

to the fixed file attributes for that file.

05 An OPEN statement is successfully executed but the referenced optional file is not present at the time the

OPEN statement is executed. If the open mode is I-O or extend, the file has been created.

(2) At End Condition With Unsuccessful Completion

10 A sequential READ statement is attempted and no next logical record exists in the file because:

PROCEDURE DIVISION - File Concepts (ANSI 85 I-O Status)

265

a. The end of the file has been reached, or

b. A sequential READ statement is attempted on an optional input file that is not present.

14 A sequential READ statement is attempted for a relative file and the number is larger than the size of the

relative key data item described for the file. NEVER GENERATED BY ICOBOL.

(3) Invalid Key Condition With Unsuccessful Completion

21 A sequence error exists for a sequentially accessed indexed file. The primary record key value has been

changed by the program between the successful execution of a READ statement and the execution of the

next REWRITE statement for that file, or the ascending sequence requirements for successive record key

values are violated.

22 The duplicates condition exists because:

a. An attempt is made to write a record that would create a duplicate key in a relative file, on the primary

key, or on an alternate key that does not allow duplicates in an indexed file.

b. An attempt is made to UNDELETE a record that was not deleted. THIS IS AN EXTENSION TO

ANSI COBOL.

23 The no record found condition exists because:

a. An attempt is made to randomly access a record that does not exist in the file; or

b. A START or random READ statement is attempted on an optional input file that is not present.

24 An attempt is made to write beyond the externally defined boundaries of a relative or indexed file. Under

ICOBOL this implies: for a relative file writing beyond the record number limit; and for an Indexed file the

index structure is full.

(4) Permanent Error Condition With Unsuccessful Completion

30 A permanent error exists and no further information is available concerning the input-output operation.

Generally related to some hardware condition.

34 A permanent error exists because of a boundary violation; an attempt is made to write beyond the externally

defined boundaries of a sequential file. Generally out of disk space. On a DATA-SENSITIVE READ the

line is too long for the record.

35 A permanent error exists because an OPEN statement with the INPUT, I-O, or EXTEND phrase is

attempted on a non-optional file that is not present.

37 A permanent error exists because an OPEN statement is attempted on a file and that file will not support the

open mode specified in the OPEN statement.

The possible violations are:

a. The EXTEND or OUTPUT phrase is specified but the file will not support write operations.

b. The I-O phrase is specified but the file will not support the input and output operations that are permitted

for a sequential file when opened in the I-O mode.

c. The INPUT phrase is specified but the file will not support read operations.

38 A permanent error exists because an OPEN statement is attempted on a file previously closed with lock.

Interactive COBOL Language Reference & Developer’s Guide - Part One

266

39 The OPEN statement is unsuccessful because a conflict has been detected between the fixed file attributes

and the attributes specified for that file in the program.

(5) Logic Error Condition With Unsuccessful Completion.

41 An OPEN statement is attempted for a file in the open mode.

42 A CLOSE statement is attempted for a file not in open mode.

43 For a mass storage file in the sequential access mode, the last input-output statement executed for the

associated file prior to the execution of a REWRITE statement was not a successfully executed READ

statement.

44 A boundary violation exists because:

a. An attempt is made to write or rewrite a record that is larger than the largest or smaller than the smallest

record allowed by the RECORD IS VARYING clause of the associated file-name, or

b. An attempt is made to rewrite a record to a sequential, relative, or indexed file and the record is not the

same size as the record being replaced.

46 A sequential READ statement is attempted on a file open in the input or I-O mode and no valid next record

has been established because:

a. The preceding READ statement was unsuccessful but did not cause an at end condition, or

b. The preceding READ statement caused an at end condition.

c. The preceding START statement was unsuccessful.

47 The execution of a READ or START statement is attempted on a file not open in the input or I-O mode.

48 The execution of a WRITE statement is attempted on a file not open in the I-O, output or extend mode.

49 The execution of a DELETE, REWRITE, or UNDELETE statement is attempted file not open in the I-O

mode.

(6) ICOBOL-Defined (Implementor-Defined) Condition With Unsuccessful Completion.

91 An OPEN error. The possible violations are:

a. An OPEN statement referred to a file that was nonexistent.

b. An OPEN statement referred to a file that was had an illegal name.

c. On OPEN, the filename already existed.

d. On OPEN, a nondirectory argument was in the pathname.

e. On OPEN, a zero-length filename was specified.

f. On OPEN, no more files could be opened from the operating system.

g. On OPEN, for devices the hardware is not present.

92 An Access mode error. The possible violations are:

PROCEDURE DIVISION - File Concepts (VXCOBOL I-O Status)

267

a. File not opened.

94 An In Use Error. The possible violations are:

a. File cannot be exclusively opened because it is in use.

b. Record cannot be accessed because it is locked.

c. DELETE FILE attempted for an opened file.

96 A directory named by the program does not exist.

97 Maximum number of open files exceeded.

99 Printer control file is full.

9A ICISAM file version is not valid.

9B Corruption error. The possible violations are:

a. After a successful OPEN of an ICISAM file, the runtime system has detected possible corruption in the

file. Close this file; this sets the ICISAM reliability flags and prevents further access to the file.

b. The data (.XD) portion of an Indexed or relative file is full. The ICISAM reliability flags are set.

c. On an attempted OPEN of an ICISAM file, the runtime has detected that the file is possibly corrupt

although the ICISAM reliability flags are clear. The appropriate reliability flag(s) are set and the file is not opened.

9C Index (.NX) portion of an Indexed or relative file is full. The ICISAM reliability flags are not set.

9E Record lock limit has been exceeded.

9F Possible corruption of an ICISAM file has been detected on an attempted OPEN of the file; i.e., one or both

of the ICISAM reliability flags had previously been set.

9T A time out condition has occurred on an I/O operation.

C.6.4 I-O Status (VXCOBOL)

I-O status expresses one of the following conditions upon completion of the input-output operation:

(1) Successful Completion (0x). The input-output statement was successfully executed.

(2) At End (1x). A sequential READ statement was unsuccessfully executed as a result of an at end condition.

(3) Invalid Key (2x). The input-output statement was unsuccessfully executed as a result of an invalid key

condition.

(4) Permanent Error (3x). The input-output statement was unsuccessfully executed as the result of an error that

precluded further processing of the file. Any specified exception procedures are executed. The permanent error

condition remains in effect for all subsequent input-output operations on the file unless an implementor-defined

technique is invoked to correct the permanent error condition.

(5) ICOBOL-Defined (Implementor-Defined) (9x). The input-output statement was unsuccessfully executed as

a result of a condition that is specified by ICOBOL.

Interactive COBOL Language Reference & Developer’s Guide - Part One

268

The following is a list of the values placed in the I-O status for the previously named conditions resulting from the

execution of an input-output operation on a file.

(1) Successful Completion

00 The input-output statement is successfully executed and no further information is available concerning the

input-output operation.

02 The input-output statement is successfully executed but a duplicate key is detected.

a. For a READ random or READ NEXT statement, the key value for the current key of reference is equal

to the value of the same key in the next record within the current key of reference. For a READ BACKWARD

statement, the key value for the current key of reference is equal to the value of the same key in the previous record

within the current key of reference.

b. For a REWRITE or WRITE statement, the record just written created a duplicate key value for at least

one alternate record key for which duplicates are allowed.

(2) At End Condition With Unsuccessful Completion

10 A sequential READ statement is attempted and no next logical record exists in the file because:

a. The end of the file has been reached,

b. The end of a subindex has been reached, or

c. A sequential READ statement is attempted for the first time on an optional input file that is not present.

(3) Invalid Key Condition With Unsuccessful Completion

21 A sequence error exists for a sequentially accessed indexed file. The primary record key value has been

changed by the program between the successful execution of a READ statement and the execution of the

next REWRITE statement for that file, or the ascending sequence requirements for successive record key

values are violated.

22 The duplicates condition exists because:

a. An attempt is made to write a record that would create a duplicate key in a relative file, on the primary

key, or on an alternate key that does not allow duplicates in an indexed file, or any key which does not allow

duplicates in an INFOS file.

b. For an INFOS file, an attempt has been made to write a record or partial record which already exists.

c. For an INFOS file, an attempt to write a duplicate key in a subindex which does not allow duplicate

keys.

23 The no record found condition exists because:

a. An attempt is made to randomly access a key, data record, or partial record that does not exist in the file;

b. A START or random READ statement is attempted on an optional input file that is not present.

c. Relative key is too large.

d. For relative and indexed files, no valid current record pointer has been established.

e. A subindex referenced in an INFOS key path does not exist.

PROCEDURE DIVISION - File Concepts (VXCOBOL I-O Status)

269

f. The total length of an INFOS key path is too long or is a single null byte.

g. Attempt to UNDELETE a record which is not logically deleted.

24 An attempt is made to write beyond the externally defined boundaries of a relative or indexed file. Under

ICOBOL, this implies that the index structure is full.

(4) Permanent Error Condition With Unsuccessful Completion

30 A permanent error exists and no further information is available concerning the input-output operation.

Generally related to some hardware condition or any condition for which there is no logical I-O status.

(more specific information is found in EXCEPTION Status.)

34 A permanent error exists because of a boundary violation; an attempt is made to write beyond the externally

defined boundaries of a file. Generally out of disk space.

(5) ICOBOL-Defined (Implementor-Defined) Condition With Unsuccessful Completion.

91 An OPEN error. The possible violations are:

a. An OPEN statement referred to a file that was nonexistent.

b. An OPEN statement referred to a file that was already open.

c. An OPEN statement referred to a file that was had an illegal name.

d. On OPEN, the filename already existed.

e. On OPEN, a nondirectory argument was in the pathname.

f. On OPEN, a zero-length filename was specified.

g. On OPEN, no more files could be opened from the operating system.

h. On OPEN, for devices the hardware is not present.

i. On OPEN, access to the file or device is denied.

j. Any consistency errors on open of an INFOS file.

92 An Access mode error. The possible violations are:

a. An I/O operation referred to a file that was not opened.

b. WRITE attempted to file opened for input.

c. DELETE attempted to file opened for input.

d. READ attempted for file opened for output.

e. OPEN attempted for file closed with lock.

f. OPEN attempted on a file with insufficient access rights for OPEN mode.

94 An In Use Error. The possible violations are:

a. File cannot be exclusively opened because it is in use.

Interactive COBOL Language Reference & Developer’s Guide - Part One

270

b. Record cannot be accessed because it is locked.

c. DELETE FILE attempted for an opened file.

96 The record the program is trying to access has been previously marked as logically deleted either globally

or locally.

97 REWRITE or DELETE attempted without executing previous READ statement for an indexed file with

sequential access.

99 On a data-sensitive READ, the line is too long for the record, or for INFOS, an INFOS error has occurred

for which there is no corresponding file status code. See INFOS Status for more information.

9A File description inconsistency. Record length, key length, or key positions specified in program does not

agree with the data file. ICISAM file version is not valid.

9B Corruption error. The possible violations are:

a. After a successful OPEN of an ICISAM file, the runtime system has detected possible corruption in the

file. Close this file; this sets the ICISAM reliability flags and prevents further access to the file.

b. The data (.XD) portion of an ICISAM file is full. The ICISAM reliability flags are set.

c. On an attempted OPEN of an ICISAM file, the runtime has detected that the file is possibly corrupt

although the ICISAM reliability flags are clear. The appropriate reliability flag(s) are set and the file is not opened.

9C Index (.NX) portion of an ICISAM file is full. The ICISAM reliability flags are not set.

9E Record lock limit has been exceeded.

9F Possible corruption of an ICISAM file has been detected on an attempted OPEN of the file; i.e., one or both

of the ICISAM reliability flags had previously been set.

9T A time out condition has occurred on an I/O operation.

PROCEDURE DIVISION - File Concepts (VXCOBOL INFOS Status)

271

C.6.5 INFOS Status (VXCOBOL)

The INFOS STATUS data item receives a value representing an exception code that INFOS II, U/FOS, or the

operating system returns during an input-output operation. Whenever the I-O status (FILE Status) is updated,

INFOS STATUS is also updated. INFOS STATUS is an 11-character item taking one of two forms:

(1) A string representing an octal AOS/VS error message code. For example, "00000007030" represents the

octal AOS/VS error code 7030, "Keyed positioning error".

(2) A string beginning with the letter `X' and representing a decimal ICOBOL exception status. For example,

"X0000000073" corresponds to exception status 73, "Reliability flag indicates the .NX file may be corrupt.".

In the first form, an AOS/VS-compatible error code is returned even on UNIX or Windows systems.

On a successful input-output operation INFOS STATUS will be set to zero, i.e. "00000000000".

C.6.6 The At End Condition

The at end condition can occur as a result of the execution of a READ or RETRIEVE statement.

C.6.7 The Invalid Key Condition

The invalid key condition can occur as a result of the execution of a DEFINE SUB-INDEX, DELETE, EXPUNGE

SUB-INDEX, LINK SUB-INDEX, READ, RETRIEVE, REWRITE, START, UNDELETE, or WRITE statement.

When the invalid key condition occurs, execution of the input-output statement which recognized the condition is

unsuccessful and the file is not affected.

If the invalid key condition exists after the execution of the input-output operation specified in an input-output

statement, the following actions occur in the order shown:

(1) The I-O status of the file connector associated with the statement is set to a value indicating the invalid key

condition.

(2) If the INVALID KEY phrase is specified in the input-output statement, any USE AFTER STANDARD

EXCEPTION procedure associated with the file connector is not executed and control is transferred to the

imperative-statement specified in the INVALID KEY phrase. Execution then continues according to the rules for

each statement specified in that imperative-statement. If a procedure branching or conditional statement which

causes explicit transfer of control is executed, control is transferred in accordance with the rules for that statement;

otherwise, upon completion of the execution of the imperative-statement specified in the INVALID KEY phrase,

control is transferred to the end of the input-output statement and the NOT INVALID KEY phrase is ignored, if

specified.

(3) If the INVALID KEY phrase is not specified in the input-output statement, a USE AFTER STANDARD

EXCEPTION procedure must be associated with the file connector and that procedure is executed and control is

transferred according to the rules of the USE statement. The NOT INVALID KEY phrase is ignored, if specified.

(4) For VXCOBOL, if neither the INVALID KEY phrase nor a USE procedure is applicable, then control

proceeds to the end of the input-output statement if either INFOS STATUS or FILE STATUS is specified.

Otherwise the program is aborted.

If the invalid key condition does not exist after the execution of the input-output operation specified by an

input-output statement, the INVALID KEY phrase is ignored, if specified. The I-O status of the file connector

associated with the statement is updated and the following actions occur:

Interactive COBOL Language Reference & Developer’s Guide - Part One

272

(1) If an exception condition which is not an invalid key condition exists, control is transferred according to the

rules of the USE statement following the execution of any USE AFTER STANDARD EXCEPTION procedure

associated with the file connector. (See The USE Statement, page 479.) For VXCOBOL, if there is no applicable

USE statement and either INFOS STATUS or FILE STATUS has been specified, control passes to the end of the

input-output statement. Otherwise, for all dialects, the program is aborted.

(2) If no exception condition exists, control is transferred to the end of the input-output statement or to the

imperative-statement specified in the NOT INVALID KEY phrase, if it is specified. In the latter case, execution

continues according to the rules for each statement specified in that imperative-statement. If a procedure branching

or conditional statement which causes explicit transfer of control is executed, control is transferred in accordance

with the rules for that statement; otherwise, upon completion of the execution of the imperative-statement in the

NOT INVALID KEY phrase, control is transferred to the end of the input-output statement.

C.6.8 The File Attribute Conflict Condition

The file attribute conflict condition can result from the execution of an OPEN, REWRITE, or WRITE statement.

When the file attribute conflict condition occurs, execution of the input-output statement that recognized the

condition is unsuccessful and the file is not affected. (See The OPEN Statement, page 399; The REWRITE

Statement, page 433; and The WRITE Statement, page 483.)

When the file attribute conflict condition is recognized, these actions take place in the following order:

(1) A value is placed in the I-O status associated with the file-name to indicate the file attribute conflict

condition.

(2) A USE AFTER STANDARD EXCEPTION procedure, if any, associated with the file-name is executed.

C.6.9 Exception Declaratives

A USE AFTER STANDARD EXCEPTION procedure, when one is specified for the file, is executed whenever an

input or output condition arises which results in an unsuccessful input-output operation. However, the exception

declarative is not executed if the condition is invalid key and the INVALID KEY phrase is specified, or if the

condition is at end and the AT END phrase is specified.

C.6.10 Optional Phrases

The INVALID KEY and NOT INVALID KEY phrases may be associated with the DEFINE SUB-INDEX,

DELETE, EXPUNGE SUB-INDEX, LINK SUB-INDEX, READ, RETRIEVE, REWRITE, START, UNDELETE,

or WRITE statements.

Some of the conditions that give rise to an invalid key condition are:

(1) A requested key does not exist in the file (DELETE, READ, START, or UNDELETE statements),

(2) A key is already in a file and duplicates are not allowed (WRITE statement),

(3) A key does not exist in the file, or

(4) A key was not the last key read (REWRITE statement).

If the invalid key condition occurs during the execution of a statement for which the INVALID KEY phrase has been

specified, the statement identified by that INVALID KEY phrase is executed.

PROCEDURE DIVISION - File Concepts (ACCEPT FROM EXCEPTION STATUS)

273

The AT END and NOT AT END phrase may be associated with a READ statement. The at end condition occurs in

a sequentially accessed file when no next logical record exists in the file, when the number of significant digits in the

relative record number is larger than the size of the relative key data item, when an optional file is not present, or

when a READ statement is attempted and the at end condition already exists. If the at end condition occurs during

the execution of a statement for which the AT END phrase has been specified, the statement identified by that AT

END phrase is executed.

C.6.11 ACCEPT FROM EXCEPTION STATUS

The exception status is a very specific error number that allows much better reporting of errors than I-O status (FILE

STATUS) values. An exception status is not specific to I-O. More on exception status can be found in the ACCEPT

FROM EXCEPTION STATUS statement discussion starting on page 290. ACCEPT FROM EXCEPTION

STATUS is an extension to ANSI COBOL.

C.7. Shared Record Area

This feature saves memory space in the object program, as it allows more than one file to share the same file area and

input-output areas.

When the RECORD option of the SAME clause is used, only the record area is shared and the input-output areas for

each file remain independent. In this case, any number of the files sharing the same record area may be active at one

time. This can increase the execution speed of the object program.

To illustrate this point, consider file maintenance. If the programmer assigns the same record area to both the old

and new files, he not only saves memory in the object program, but because this technique eliminates a move of each

record from the input to the output area, significant time savings result. An additional benefit of this technique is

that the programmer need not define the record in detail as a part of both the old and new files. Rather, he defines

the record completely in one case and simply includes the level 01 entry in the other. Because these record areas are

in fact the same area, one set of names suffices for all processing requirements without requiring qualification.

C.8. INFOS File I-O Common Phrases (VXCOBOL)

Many of the INFOS input-output statements share a set of common phrases that direct the operation of the statement.

In particular, they direct positioning of the record pointer, motion through the index structure, and the manner in

which keys are used.

C.8.1 The POSITION Phrase (VXCOBOL)

The POSITION phrase allows for control of positioning within an INFOS file. The current position is a marker in an

INFOS file which establishes a reference point for relative motion within the file.

The format of the position phrase is:

If FIX POSITION is specified, the file's current position is set to the key accessed by the statement if the operation

was successful. The file's current position remains unchanged if RETAIN POSITION is specified.

Each input-output statement has a default positioning behavior. This behavior can be overridden with the

POSITION phrase.

Interactive COBOL Language Reference & Developer’s Guide - Part One

274

RETAIN POSITION is the default for the DEFINE SUB-INDEX, EXPUNGE SUB-INDEX, LINK SUB-INDEX,

RETRIEVE SUB-INDEX, RETRIEVE STATUS, REWRITE, UNDELETE, and WRITE statements. The current

position remains unchanged from its last position.

FIX POSITION is the default for READ, RETRIEVE HIGH KEY, and RETRIEVE KEY. The current position is

set to the key it last accessed.

The default positioning for the START and DELETE statements cannot be overridden. START sets the current

position to the key it last accessed. DELETE sets the current position to the key prior to the one just deleted,

possibly in front of a subindex if it was the first key.

OPEN sets the current position in front of the main index for files in SEQUENTIAL or DYNAMIC access modes.

C.8.2 The Relative Motion Phrase (VXCOBOL)

The relative motion phrase is used to control motion within an INFOS file. With relative motion, the key being

sought in the INFOS file is in a position relative to the current position.

The format of the relative motion phrase is:

NEXT and FORWARD are equivalent. They imply movement to the next higher key in the index relative to the

current position. If there is no next higher key, an "end of subindex" error (I-O status 10, INFOS STATUS 7011)

occurs.

BACKWARD implies movement to the next lower key in the index relative to the current position. If there is no

next lower key, an "end of subindex" error (I-O status 10, INFOS STATUS 7011) occurs.

UP implies movement to the key entry in the immediately higher index level relative to the current position. If the

current position is in the top level index (main index), a "positioned above main index" error (I-O status 99, INFOS

STATUS 7006) will occur with upward motion.

DOWN implies movement to a position prior to the first key in the subindex defined for the current key. If the

current key does not have an associated subindex, a "subindex not defined" error (I-O status 99, INFOS STATUS

7010) occurs.

UP FORWARD, UP BACKWARD, and DOWN FORWARD combine processing between index levels with

movement to keys in the index. UP FORWARD and UP BACKWARD imply movement to the next higher level and

movement to the next higher or lower key respectively. DOWN FORWARD implies movement to the first key in

the subindex defined for the current key.

STATIC means no movement relative to the current position.

PROCEDURE DIVISION - File Concepts (KEY Series Phrase)

275

C.8.3 The KEY Series Phrase (VXCOBOL)

The key series phrase is used to specify a specific key in an INFOS file. The format of the key series phrase is:

where identifier is a RECORD KEY named in the SELECT statement for the INFOS file.

For a single level file, at most one key may be specified. If the key series phrase is present then no relative motion

phrase (NEXT, FORWARD, BACKWARD, or STATIC) may be specified on the input-output statement.

For a multilevel file, the maximum number of keys that may be specified in the key series phrase on an input-output

statement is equal to the number of levels in the file. If no relative motion phrase is specified on the statement, each

key identifies an index entry at increasingly lower levels, i.e. the first key identifies the entry at the top level, the

second key indicates an entry in the subindex defined for the top key, etc. If a relative motion phrase is specified on

the input-output statement, the relative motion is performed first and the key series phrase identifies a path beginning

at the key determined by the relative motion.

Each key specified in the key series phrase may be modified with the GENERIC or APPROXIMATE clauses.

ICOBOL searches for keys in the following manner:

(1) Without either clause, the key value sought is the value contained in the identifier up to the length of the

identifier or an optionally specified KEY LENGTH. The match must be exact in both content and length.

(2) If the GENERIC clause is specified, the first key in the current index or subindex that matches the key up to

the length specified will be a match. The key located may be longer than the key that was specified. This allows for

matching based only on the first few characters of a value.

(3) If the APPROXIMATE clause is specified, the first key in the current index or subindex that is greater than

or equal to the value specified, within the length specified, will be a match.

C.8.4 The SUPPRESS Phrase (VXCOBOL)

ICOBOL allows for suppressing the input or output of a data record or partial record. The SUPPRESS phrase has

the following format:

[SUPPRESS [PARTIAL RECORD] [DATA RECORD]]

If PARTIAL RECORD is specified, the contents of the partial record for the key is neither read nor written. For

example, a WRITE statement with a SUPPRESS PARTIAL RECORD will write only the data record.

If DATA RECORD is specified, the contents of the data record for the key is neither read nor written. For example,

a READ statement with a SUPPRESS DATA RECORD will retrieve only the data in the partial record.

Both clauses may be specified together. If both clauses are specified on a READ, the result is to change the current

position without retrieving any data. If both clauses are specified on a WRITE, only a key is written.

SUPPRESS alone is equivalent to specifying both phrases.

Interactive COBOL Language Reference & Developer’s Guide - Part One

276

C.8.5 The LOCK/UNLOCK Phrase (VXCOBOL)

Many input-output statements for INFOS files support the LOCK/UNLOCK phrase. The format of the phrase is:

Record locks are a binary condition. A record is either locked or it is not locked. Data records and partial records

can be locked and unlocked independently.

If the LOCK phrase is specified on an operation, the record is locked and no other user can access the record until it

is unlocked. If the UNLOCK phrase is specified, the record is unlocked and becomes accessible to any user. (Locks

typically occur at the beginning of an operation and unlocks at the end.)

Data record locks are not regarded if SUPPRESS DATA RECORD is specified on the input-output statement.

Partial record locks are not regarded if SUPPRESS PARTIAL RECORD is specified.

All records in a file that have been locked can be unlocked at once with the UNLOCK statement or by closing the

file.

PROCEDURE DIVISION (Header)

277

D. Header

The Procedure Division is identified by, and must begin with, the following header:

PROCEDURE DIVISION [USING { data-name-1 }...] .

The USING phrase is necessary only if the object program is to be invoked by a CALL statement or a CALL

PROGRAM statement, and that statement includes a USING phrase.

The USING phrase of the Procedure Division header identifies the names used by the program for any parameters

passed to it by a calling program. The parameters passed to a called program are identified in the USING phrase of

the calling program's CALL statement. The correspondence between the two lists of names is established on a

positional basis.

Data-name-1 must be defined as a level 01 entry or a level 77 entry in the Linkage Section. A particular

user-defined word may not appear more than once as data-name-1. The data description entry for data-name-1 must

not contain a REDEFINES clause. Data-name-1 may, however, be the object of a REDEFINES clause elsewhere in

the Linkage Section.

The following additional rules apply:

(1) If the reference to the corresponding data item in the CALL statement declares the parameter to be passed

by content, the value of the item is moved when the CALL statement is executed and placed into a system-defined

storage item possessing the attributes declared in the Linkage Section for data-name-1. The data description of each

parameter in the BY CONTENT phrase of the CALL statement must be the same, meaning no conversion or

extension or truncation, as the data description of the corresponding parameter in the USINAG phrase of the

Procedure Division header.

(2) If the reference to the corresponding data item in the CALL statement declares the parameter to be passed

by reference, the object program operates as if the data item in the called program occupies the same storage area as

the data item in the calling program. The description of the data item in the called program must describe the same

number of character positions as described by the description of the corresponding data item in the calling program.

(3) At all times in the called program, references to data-name-1 are resolved in accordance with the

description of the item given in the Linkage Section of the called program.

(4) Data items defined in the Linkage Section of the called program may be referenced within the Procedure

Division of that program if, and only if, they satisfy one of the following conditions:

a. They are operands of the USING phrase of the Procedure Division header.

b. They are subordinate to operands of the USING phrase of the Procedure Division header.

c. They are defined with a REDEFINES or RENAMES clause, the object of which satisfies the above

conditions.

d. They are items subordinate to any item which satisfies the condition in rule 4c.

e. They are condition-names or index-names associated with data items that satisfy any of the above four

conditions.

Interactive COBOL Language Reference & Developer’s Guide - Part One

278

PROCEDURE DIVISION (ACCEPT (keyboard))

279

E. Statements

E.1. ACCEPT (keyboard)

E.1.1 Function

The ACCEPT statement causes data from the keyboard to be made available to data items in the File,

Working-Storage, or Linkage sections.

Screens are an extension to ANSI COBOL. The TIME-OUT clause is an extension to ANSI COBOL.

E.1.2 General Format (ANSI 74 and ANSI 85)

Format 1:

ACCEPT identifier-1 [FROM mnemonic-name] [TIME-OUT AFTER]

[ON ESCAPE imperative-statement-1]

[NOT ON ESCAPE imperative-statement-2]

[END-ACCEPT]

Format 2:

ACCEPT screen-name [AT]

[TIME-OUT AFTER]

[ON ESCAPE imperative-statement-1]

[NOT ON ESCAPE imperative-statement-2]

[END-ACCEPT]

Format 3:

ACCEPT { identifier-1 [UNIT] [{ accept-clause }]... }...

[END-ACCEPT]

where accept-clause is one of the following:

Interactive COBOL Language Reference & Developer’s Guide - Part One

280

NO

BLINK

CONTROL

CONVERT

CONVERTING

CURSOR

ECHO

ERASE

LINE

PROMPT [literal-11]

SIZE

PROCEDURE DIVISION (ACCEPT (keyboard))

281

TAB

BEFORE TIME

TIME-OUT AFTER

UPDATE

E.1.3 General Format (VXCOBOL)

Format 1:

ACCEPT identifier-1 [FROM mnemonic-name] [TIME-OUT AFTER SECONDS]

[ON ESCAPE imperative-statement-1]

[NOT ON ESCAPE imperative-statement-2]

[END-ACCEPT]

Format 2:

ACCEPT screen-name [AT]

[TIME-OUT AFTER SECONDS]

[ON ESCAPE imperative-statement-1]

[NOT ON ESCAPE imperative-statement-2]

[END-ACCEPT]

E.1.4 Syntax Rules

(1) Screen-name may not be subscripted.

(2) If screen-name is a group format item, it must have at least one input, input-output, or update screen-data

item; otherwise, it must specify an input, input-output, or update screen-data item.

(3) In Format 1 and 3, identifier-1 cannot be larger than the 132 characters for ANSI 74 and ANSI 85 and 2048

for VXCOBOL.

(4) In Format 2, identifier-2, identifier-3, literal-1, and literal-2 must be elementary integer items.

(5) In Format 3, identifier-5, identifier-6, identifier-7, identifier-9, identifier-10, identifier-11, identifier-12,

identifier-13, identifier-14, literal-4, literal-5, literal-6, literal-8, literal-9, literal-10, literal-12, literal-13

must be unsigned elementary integer items. Identifier-8 must be a nonnumeric data-item and literal-7 must be a

nonnumeric literal. Literal-6 must be a nonnumeric literal exactly one character in length.

(6) Identifier-4 and literal-3 may represent any numeric literal or elementary numeric data-item.

(7) Color-name-1 and color-name-2 represent one of the predefined color names: BLACK, BLUE, GREEN,

CYAN, RED, MAGENTA, BROWN, or WHITE.

Interactive COBOL Language Reference & Developer’s Guide - Part One

282

(8) The word COL is an abbreviation for the word COLUMN.

(9) In Format 1, Mnemonic-name must be specified in the SPECIAL-NAMES paragraph of the

ENVIRONMENT DIVISION and must be associated with a hardware device.

(10) In Format 1, the FROM clause is for documentation purposes only.

(11) In Format 3, the word EXCEPTION is a synonym for ESCAPE, the word POSITION is a synonym for

COLUMN, and the word BEEP is a synonym for BELL.

E.1.5 General Rules

Format 1:

(1) The ACCEPT statement causes the transfer of data from the keyboard. This data replaces the contents of

the data item referenced by identifier-1 according to the rules for the MOVE statement.

(2) Data input for identifier-1 must be valid for the identifier. For ANSI 74 and ANSI 85, if the characters that

are input do not agree with the item's PICTURE, then an error message is displayed on the last line of the display

screen, and the input must be corrected. For example, alphabetic characters entered into a numeric item will be

rejected. For complete details of PICTURE definitions and acceptable input, see the PICTURE Clause discussion in

the WORKING-STORAGE section. For VXCOBOL, the data will be converted and assigned to identifier-1 as

closely as is possible if it is not valid for the identifier.

(3) If a field terminator key (i.e., any key configured in the terminal description to generate a value of 00) is

pressed at any time during an ACCEPT statement, the data is validated and transferred to the data item referenced by

identifier-1. The ON ESCAPE clause, if present, is bypassed and the NOT ON ESCAPE phrase, if specified, is

executed; otherwise, control is transferred to the end of the ACCEPT statement.

(4) If the ESC function key (i.e., any key configured in the terminal description to generate a value of 01) is

pressed at any time during an ACCEPT statement, the data from the keyboard is discarded, and the data item

referenced by identifier-1 is not changed. The ACCEPT terminates, and the ON ESCAPE clause, if present, is

executed.

(5) If a normal function key (i.e., any key configured in the terminal description to generate a value that is not

00 or 01) is pressed at any time during an ACCEPT statement, the data is validated and transferred to the data item

referenced by identifier-1. The ACCEPT terminates, and the ON ESCAPE clause, if present, is executed.

(6) Each keyboard sequence is interpreted as defined by the current ICTERM entry. If you wish to read binary

data from the terminal, you should open a file whose SELECT clause contains an ASSIGN TO DISK “@CON” and

perform a READ to get non-interpreted binary data with no positioning codes sent to the terminal.

(7) An ACCEPT statement should not be executed while in Print Pass Through mode on a terminal, as the

ACCEPT will generate some output that will then be printed.

(8) For ANSI 74 and ANSI 85, A non-screen ACCEPT is limited to a single line and is truncated at the column

width of the terminal. After entering the data, a <nl><nl><up-arrow> sequence is generated to position to the first

column on the next line. For VXCOBOL, up to 2048 characters are read with echoing and backspace processing

starting at the current cursor position. An ESC or function key will exit with an ON ESCAPE processing, but no

echoing of the ESC or function key. A NL or CR will echo as a newline with no ON ESCAPE processing.

PROCEDURE DIVISION (ACCEPT (keyboard))

283

01 ANY-CHANGE-SCREEN.
 05 LINE 23 COL 60 “ANY CHANGE?”.
 05 LINE 23 COL 75 PIC X TO ANY-CHANGE-ANSWER.

ANY-CHANGE-1.
 DISPLAY ANY-CHANGE-SCREEN.
 ACCEPT ANY-CHANGE-SCREEN.

ANY-CHANGE-2.
 DISPLAY ANY-CHANGE-SCREEN AT LINE 5 COLUMN 30.
 ACCEPT ANY-CHANGE-SCREEN AT LINE 5 COLUMN 30.

Format 2:

(9) A screen ACCEPT that extends past a terminal’s width is supported by allowing the ACCEPT to wrap to the

next line since the screen does not have to scroll; i.e., the wrap would otherwise move to the line after the last line on

the screen.

(10) ACCEPT screen-name transfers information entered on the screen via the keyboard to the data items

associated with screen-name. The program should have executed a DISPLAY screen-name before the ACCEPT to

display any associated prompts.

(11) ACCEPT screen-name without the LINE or COLUMN phrases is equivalent to ACCEPT screen-name AT

LINE 0 COLUMN 0.

(12) If screen-name refers to a screen-group item, the ACCEPT statement processes all input, input-output, and

update screen-data items subordinate to screen-name. The fields are processed in the order in which they appear in

the source program.

(13) The LINE phrase and COLUMN phrase in DISPLAY and ACCEPT statements allow the entire screen

description referenced by screen-name to be moved to a different starting position on the user's display device. This

capability is called variable origin. All screen descriptions assume that the origin is at line 1 and column 1 on the

user's display device. The value specified in the DISPLAY or ACCEPT’s LINE phrase, if present, is treated as a

relative offset to be added to all line positions in the screen. Similarly, the value of the COLUMN phrase, if

specified, is treated as a relative offset to be added to all column positions in the screen. If any line or column

position becomes larger than what is supported by the current screen, the screen will wrap at its limits, and the new

(wrapped) values will in turn be offset again by the variable origin.

For example, consider the code fragments:

The following discussion describes how to determine the origin point for each of the two DISPLAY and ACCEPT

pairs in the code fragments above. Assume the display device has 24 lines and 80 columns.

a. Remember, all screen descriptions assume an origin point of line 1, column 1. This screen has a

positioning definition of line 23, column 60, and the first screen DISPLAY statement contains no positioning (line or

column) clauses. Therefore, the origin point for the first DISPLAY is line 23, column 60.

b. For the second screen DISPLAY statement, which contains the positioning clauses AT LINE 5

COLUMN 30, the offset position will be line 28, column 90. (We added the line and column variable-positioning

values in the DISPLAY statement to the origin point established in the previous step.)

c. Now, because the line and column numbers are larger than the size of the display device, we subtract the

line and column size of the display device, to find the wrap values: line 4, column 10. This becomes the new origin

point.

d. Finally, add the line and column positioning values which in turn will be offset to line 9, column 40.

Therefore, the second screen DISPLAY will begin at line 9, column 40.

Interactive COBOL Language Reference & Developer’s Guide - Part One

284

e. Determining the origin point for the ACCEPT field is similar. The table below illustrates how the

origin points are calculated for the second ACCEPT and DISPLAY.

literal field input field Description

LINE COLUMN LINE COLUMN

23 60 23 75 Origin point in screen definition

5 30 5 30 ADD offset from DISPLAY/ACCEPT

28 90 28 105 Giving offset position

24 80 24 80 SUBTRACT display device size

4 10 4 25 Giving new origin point

5 30 5 30 ADD offset from DISPLAY/ACCEPT

9 40 9 55 Giving origin point for 2nd

DISPLAY/ACCEPT

TABLE 18. Variable Origin for DISPLAY and ACCEPT

(14) If variable origin is used for an ACCEPT operation on a screen-name, the same variable origin

specification should be used for the corresponding DISPLAY statement of the screen-name in order to have the

correct visual association between prompts and data-entry items..

(15) The basic operation of the ACCEPT statement is described by the following steps. The discussion

assumes that screen-name represents a group item in the screen description that has several subordinate input,

input-output, and/or update fields. The case where screen-name specifies a single screen-data item is simply a subset

of the description below.

a. The screen management system positions to the first (in terms of its position in the source definition of

screen-name) input, input-output, or update field that is subordinate to screen-name.

b. The content of the screen field (which has either been set by a previous execution of a DISPLAY

statement for the field, or which remains from a previous execution of an ACCEPT statement for the field) is

redisplayed on the screen with the specified attributes. If the field is a numeric-edited picture, the field is first de-

edited by removing all the editing characters (i.e., all but the plus or minus sign, the decimal point, and the numeric

digits).

For ANSI 74 and ANSI 85, if the field has the SECURE ECHO attribute, the field is redisplayed as all

asterisk (*) characters; if the field has the SECURE NO ECHO attribute, nothing is displayed.

For VXCOBOL, if the field has the SECURE attribute, nothing is displayed.

c. The cursor is positioned to the first character of the field, and the screen control system waits for the user

to enter data into the field. The user may enter new data characters, field editing keys, or field termination keys. The

screen management system echoes input characters and positions the cursor appropriately in response to the user's

input. The field is terminated by entering an appropriate field termination key (see the ESCAPE KEY table above)

or, if the field has the AUTO attribute, by entering a character into the last data position in the field.

For ANSI 74 and ANSI 85, if the field has the SECURE ECHO attribute, the field is redisplayed as all

asterisk (*) characters; if the field has the SECURE NO ECHO attribute, nothing is displayed and the cursor does

not move.

For VXCOBOL, if the field has the SECURE attribute, nothing is displayed and the cursor does not move.

d. If the field is terminated by an ESC function key (any key with an ESCAPE KEY value of 01), the data

entered by the user is discarded, no field validation is performed, the screen field is not changed, the entire accept

operation is ended, and the ESCAPE KEY value is set to 01.

PROCEDURE DIVISION (ACCEPT (keyboard))

285

e. If the field is terminated by a field terminator key (any key with an ESCAPE KEY value of 00), the

screen control system checks that the data entered by the user is valid for its PICTURE. It also checks to make sure

the data entry requirements implied by REQUIRED and FULL have been met. If there is an error, the screen control

system sounds the tone, puts an error message on the last line of the display, and positions the cursor at the location

of the error. The user must enter correct data before the field can be terminated. When the field passes the system

checks, any error message that was displayed is erased, and the system processes the terminator. If the terminator

indicates motion to a previous field, and the field is not the first field, the cursor is positioned to the previous field

and the accept operation begins for that field; otherwise, the tone is sounded and the cursor remains at the first field.

If the terminator indicates motion to the next field, and the field is not the last field, the cursor is moved to the next

field and the accept operation begins for that field; otherwise, the action depends on additional attributes of the

terminator. If it is a field terminator key, the entire accept operation is completed, and ESCAPE KEY is set to 00.

f. If the field is terminated by a normal function key (any key with an ESCAPE KEY value greater than

01), the field validation takes place as for a field terminator key. Once the field validation has been successfully

completed, the entire accept operation is also terminated, and ESCAPE KEY is set to the value for the terminator.

g. When the entire accept operation is terminated, the screen fields are moved to their corresponding data

items. Those fields that were processed during the execution of the ACCEPT will have the new data. Those fields

that were not processed (whether due to entering an ESC function key or a normal function key) will have the old

data (for input fields, this will usually be underscores). When the screen field is a numeric-edited item and the data

item is a numeric item, the screen field is first de-edited before moving the data, thus only the numeric value is

moved. In all other cases, the moves take place according to the rules for the MOVE statement.

(16) If the accept operation was terminated by a field terminator key (a key with an ESCAPE KEY value of 00),

the ON ESCAPE clause, if specified, is bypassed and control passes to the NOT ON ESCAPE clause, if present, or

to the end of the ACCEPT statement.

(17) If the accept operation was terminated by an ESC function key or a normal function key (any key with an

ESCAPE KEY value that is not 00), control passes to the ON ESCAPE clause, if specified. If no ON ESCAPE

clause was specified, control passes to the end of the ACCEPT statement.

(18) The value of the ESCAPE KEY is available through the Format 2 ACCEPT FROM ESCAPE KEY

statement.

(19) Entries that start past column 128 are undefined. When hard coded, the ICOBOL compiler will give an

error for entries past column 128. In all other cases, the runtime will behave in an undefined fashion for a particular

terminal type.

Format 3:

(20) The ACCEPT statement causes the transfer of data from the keyboard. This data replaces the contents of

the data item referenced by identifier-1 according to the rules for the MOVE statement.

(21) Data input for identifier-1 must be valid for the identifier. If the characters that are input do not agree with

the item's PICTURE, then an error message is displayed on the last line of the display screen, and the input must be

corrected. For example, alphabetic characters entered into a numeric item will be rejected. For complete details of

PICTURE definitions and acceptable input, see the PICTURE Clause discussion in the WORKING-STORAGE

section.

(22) If a field terminator key (i.e., any key configured in the terminal description to generate a value of 00) is

pressed at any time during an ACCEPT statement, the data is validated and transferred to the data item referenced by

identifier-1. When a field terminator key is pressed for the last identifier-1, the ON ESCAPE clause, if present, is

bypassed and the NOT ON ESCAPE phrase, if specified, is executed; otherwise, control is transferred to the end of

the ACCEPT statement. When a field terminator key is pressed for any other identifier-1, the ACCEPT statement

continues processing with the next identifier-1.

Interactive COBOL Language Reference & Developer’s Guide - Part One

286

(23) If the ESC function key (i.e., any key configured in the terminal description to generate a value of 01) is

pressed at any time during an ACCEPT statement, the data from the keyboard is discarded, and the data item

referenced by identifier-1 is not changed. If the ESC function key is pressed for the last identifier-1, the ACCEPT

terminates, and the ON ESCAPE clause, if present, is executed. Otherwise, processing continues with the next

identifier-1.

(24) If a normal function key (i.e., any key configured in the terminal description to generate a value that is not

00 or 01) is pressed at any time during an ACCEPT statement, the data is validated and transferred to the data item

referenced by identifier-1. When a normal function key is pressed for the last identifier-1, the ON ESCAPE clause,

if present, is executed; otherwise, control is transferred to the end of the ACCEPT statement. When a normal

function key is pressed for any other identifier-1, the ACCEPT statement continues processing with the next

identifier-1.

(25) If the ON ESCAPE clause is executed and identifier-14 has been specified, the two-digit code generated

by the key that terminated the last identifier-1 is stored into identifier-14. This is equivalent to executing an

ACCEPT identifier-14 FROM ESCAPE KEY statement as the first statement of the ON ESCAPE clause.

(26) Format 3 ACCEPTs that extend past a terminal’s width are supported by allowing the ACCEPT to wrap to

the next line since the screen does not have to scroll; i.e., the wrap would otherwise move to the line after the last

line on the screen.

(27) The BACKGROUND-COLOR and FOREGROUND-COLOR phrases determine the background and

foreground colors used during the processing of identifier-1. The color is identified by an integer value from 0 to 7

specified for literal-5 or literal-9 or as the contents of identifier-6 or identifier-10. It may also be specified by use of

color-name-1 or color-name-2. The color names with their integer values are BLACK=0, BLUE=1, GREEN=2,

CYAN=3, RED=4, MAGENTA=5, BROWN=6, WHITE=7. BACKGROUND is a synonym for BACKGROUND-

COLOR and FOREGROUND is a synonym for FOREGROUND-COLOR.

(28) The NO BELL phrase causes suppression of the bell (or beep) signal which normally sounds as each

identifier-1 is processed.

(29) BLINK causes the PROMPT character and any data displayed for the field to be displayed in a blinking

mode.

(30) The COLUMN and LINE phrases are used to position identifier-1 on the screen based on the line and

leftmost character position. The top line is line 1 and each succeeding line has a value one larger than the previous

line. The leftmost character of a line is column 1 and the column value increases by one for each succeeding

character on the line. The line number is specified by literal-11 or the contents of identifier-11 and should be

between 1 and 128. The column number is specified by literal-6 or the contents of identifier-7.

The line and column positions are determined as follows:

a. If the COLUMN phrase is omitted, column 1 is assumed for the first identifier-1 or if a UNIT phrase has

been specified for the same identifier-1. Otherwise the column position is set to zero.

b. If the LINE phrase is omitted or the line position is zero the line position is set as follows: If an ERASE

or ERASE SCREEN phrase is specified for the same identifier-1, then line 1 is assumed. If the column position is

not zero, the line position is the current line plus one. If the column position is zero, the line position is set to the

current line.

c. If the column position is equal to zero, it is set to the current line.

At runtime, values outside the allowable ranges are wrapped.

(31) The CONTROL phrase is used to dynamically specify options to be used or overridden. Identifier-8 or

literal-7 are used to hold an options list. This list consists of a series of keywords separated by commas. The

keywords may be specified in any order, but are processed from left to right as they appear in the string. While

PROCEDURE DIVISION (ACCEPT (keyboard))

287

processing the list, lowercase characters are considered equivalent to the corresponding uppercase character and

blanks or unprintable characters are ignored.

The following keywords impact execution of the ACCEPT statement: BEEP, BLINK, CONVERT, ECHO, ERASE,

ERASE EOL, ERASE EOS, ERASE LINE, ERASE SCREEN, HIGH, LOW, LOWER, NO BEEP, NO BLINK,

NO CONVERT, NO ECHO, NO ERASE, NO LOWER, NO OFF, NO PROMPT, NO REVERSE, NO SECURE,

NO TAB, NO UNDERLINE, NO UPDATE, NO UPPER, OFF, PROMPT, SECURE, SECURE ECHO, SECURE

NO ECHO, TAB, UNDERLINE, UPDATE, and UPPER.

Each of the keywords has the same meaning as when statically coded plus the negative versions (NO xxx) to allow

suppression of the of the option. The keywords UPPER, LOWER, NO UPPER, and NO LOWER are used to enable

or suppress the CONVERTING UP or CONVERTING DOWN options.

(32) The CONVERT phrase is used to control input conversion. If identifier-1 is numeric and the CONVERT

phrase is specified, the data input from the screen is converted to a signed numeric value and stored in identifier-1

according to the rules for a numeric MOVE. (CONVERT is implied for numeric values unless the

“NO CONVERT” is specified as a value for the CONTROL option.) CONVERT is implied by the UPDATE option

when identifier-1 is numeric. If identifier-1 is numeric and input conversion is not specified either implicitly

or explicitly, identifier-1 is treated as an elementary alphanumeric item of the same size and the unconverted input

data is moved to that item according to the rules for an alphanumeric MOVE.

If identifier-1 is numeric edited and the CONVERT phrase is specified, the data input from the screen is converted to

a signed numeric value and stored in identifier-1 according to the PICTURE of identifier-1.

If identifier-1 is alphanumeric edited and the CONVERT phrase is specified, the data input from the screen is stored

in identifier-1 according to the rules for a alphanumeric to alphanumeric edited MOVE. (CONVERT is implied

when identifier-1 is alphanumeric edited.)

In all other cases or if CONVERT is not specified, data is moved from the screen to identifier-1 according to the

rules for an alphanumeric MOVE.

NOTE: Interactive validation is performed on numeric or numeric edited values whenever the CONVERT option is

supplied or implied.

(33) The CONVERTING phrase is used to control the case of the data accepted. If CONVERTING UP is

specified character data entered during an ACCEPT is echoed to the screen and stored in uppercase. In particular,

characters between ‘a’ and ‘z’ inclusive are converted to the corresponding character between ‘A’ and ‘Z’. If

CONVERTING DOWN is specified character data entered during an ACCEPT is echoed to the screen and stored in

lowercase. In particular, characters between ‘A’ and ‘Z’ inclusive are converted to the corresponding character

between ‘a’ and ‘z.

(34) The CURSOR option is used to specify the initial cursor position within the screen field. The initial

position is specified by literal-8 or the contents of identifier-9. The leftmost position is 1. A value of 0 is treated as

one and a value greater than the size of the screen field is treated as the size of the screen field. If identifier-9 is

specified, the cursor position at field termination is returned in it.

(35) The ECHO phrase causes the contents of identifier-1 to be displayed in the screen field following

completion of data input for the field. The display is performed as if a DISPLAY with similar options was

performed. Note that CONVERT in an ACCEPT statement controls only input conversion. Output conversion is

controlled by the UPDATE phrase. If identifier-1 is numeric and input conversion was specified or implied, output

conversion will be used on the display. If the ECHO phrase is not specified, the original input data remains in the

screen field.

(36) The ERASE clause is used to control erasure of portions of the screen prior to accepting data. ERASE

SCREEN and ERASE with no additional modifiers erases the entire screen and positions the cursor to line 1 column

1. ERASE LINE erases the current line from column 1 to the end of the line without changing the cursor position.

ERASE EOL erase the screen starting at the cursor position to the end of the line. The cursor is not affected.

Interactive COBOL Language Reference & Developer’s Guide - Part One

288

ERASE EOS erase the screen starting at the cursor position and continuing to the end of the screen. The cursor

position is not changed.

(37) The HIGH, HIGHLIGHT, BOLD, and BRIGHT options cause the accepted and displayed data to be

displayed at high intensity. The LOW, LOWLIGHT, and DIM options cause the accepted and displayed data to be

displayed at low intensity.

(38) The PROMPT clause causes fill characters to be displayed on the screen in the positions in which data is to

be accepted. If literal-11 is not specified, the fill character used is an underscore. If literal-11 is specified, it must

be of length one and represents the fill character. When PROMPT is not specified, no prompting occurs an the

original contents of the screen field are not modified unless UPDATE is specified. If both PROMPT and UPDATE

are specified, all positions in the screen field not occupied by characters in identifier-1 are filled with the fill

character.

(39) The REVERSE, REVERSED, and REVERSE-VIDEO options cause the accepted and displayed data to be

displayed in reverse video mode. If not specified, data is displayed in normal mode.

(40) The SECURE clause controls echoing of input data as it is entered. If either SECURE with no additional

options or SECURE WITH ECHO is specified, an asterisk is echoed and the cursor moved right one position as each

character is entered. If SECURE NO ECHO is specified, no echoing or cursor movement takes place. If OFF is

specified, a space is echoed and the cursor moved right one position as each character is entered.

(41) The SIZE clause controls the size of the screen input field. If the SIZE clause is present and literal-12 or

the contents of identifier-12 is not zero, the size of the screen field is determined by the value of literal-12 or

identifier-12. Otherwise, the size of the screen field is determined by description of identifier-1.

When identifier-1 is numeric and input conversion is specified or implied, the size is the number of digits in

identifier-1's PICTURE plus 1 if its is signed plus 1 if it is not an integer. When identifier-1 is numeric and input

conversion is not specified, the size value is determined by the number of bytes of stored required for identifier-1.

(42) The TAB clause causes the ACCEPT statement to wait for a field termination key to be pressed before

completing the accept of the screen field. If the TAB clause is not present, the field will terminate when the end of

the screen input field is reached or when a field termination key is pressed. (When TAB is absent, the field behaves

much like an AUTO field in a screen description.)

(43) The BEFORE TIME clause is used to specify an interval of time to wait before automatically terminating

the field when no data has been entered. Literal-13 or the contents of identifier-13 are integer values which specify

this time interval in hundredths of seconds. If the user enters any data in the field prior to the expiration of the time

interval, then the timer is cancelled and the ACCEPT of the field behaves as if no BEFORE TIME clause was

specified. Valid values and their behavior are:

Time-out value Meaning
>= 4,294,967,295 No time-out (Wait forever)
0 Time-out immediately
> 630000 Set to 6300 seconds
1-630000 Set to n seconds

If the specified time interval completes before any data is entered, the field is terminated as if a Newline or Enter key

was pressed. The escape key code returned will be 99.

NOTE: The TIME-OUT clause described below is similar, but is expressed in seconds and does not have to be an

integer. It represents a time to wait between keystrokes before terminating a field. If the time-out occurs it

behaves as if the ESC key were pressed. Both TIME-OUT and BEFORE TIME may not be specified for

the same identifier-1.

(44) The UNDERLINE and UNDERLINED options cause the accepted and displayed data to be displayed in

underlined mode.

PROCEDURE DIVISION (ACCEPT (keyboard))

289

 NOTE:
Using an extended open option to set timeout on your console does NOT
affect an ACCEPT or STOP statement. Extended open options are discussed
later Developer’s Guide Section.

IC_SET_TIMEOUT is discussed in this document beginning on page 558, 559.

(45) The UNIT clause is for documentation only and is ignored except for its impact on the COLUMN clause

as previously described.

(46) The UPDATE clause control output conversion of the current value of identifier-1. This option changes

the contents from its internal form into a form appropriate for display. The user may then modify the screen field

and upon field termination the data in the screen field is stored with input conversion back into identifier-1.

With output conversion, numeric data is converted such that a leading separate sign is provided for negative values,

an explicit decimal point is added for non-integers, leading zeros are removed and the remaining digits are left-

justified.

If both UPDATE and CONVERT are specified for a numeric edited item, a numeric value for identifier-1 is

determined by the rules for a MOVE from a numeric edited item to numeric item. The numeric values is then

converted as described above. If identifier-1 is numeric edited, but only the UPDATE clause is present, then it is not

converted before display.

Output conversion does not itself change the value of identifier-1, but only the appearance of data in the screen field.

The UPDATE clause signals output conversion, and implies input conversion. Unlike with the DISPLAY statement,

CONVERT does not signal output conversion, but rather signals input conversion.

All formats:

(47) The TIME-OUT phrase enables a local time-out for the particular ACCEPT statement. If provided, it

overrides any other specified time-out value. The time-out specifies the amount of time, in seconds, that the runtime

will wait between keystrokes. If the time expires, the ACCEPT terminates as if an ESCAPE had been struck and sets

the ESCAPE KEY value to 99. Valid values are:

Time-out value Meaning
<= 0 or >= 65535 No time-out (Wait forever)
65534 Time-out immediately
> 6300 Set to 6300 seconds
1-6300 Set to n seconds

(48) If the time-out value specified by identifier-4 or literal-3 is not an integer, its value is rounded to the

nearest tenth of a second..

(49) When using timeouts, ICOBOL handles them in the following order for both the ACCEPT statement and

the STOP literal statement:

a. If a local timeout was specified by the TIME-OUT or BEFORE TIME clause of the ACCEPT statement,

then it is used; otherwise,

b. If a timeout had been set with the IC_SET_TIMEOUT builtin, then it is used; otherwise,

c. The global timeout as set with ICTIMEOUT will be used. The default case for global timeout is to wait

forever.

Interactive COBOL Language Reference & Developer’s Guide - Part One

290

E.2. ACCEPT (system)

E.2.1 Function

The ACCEPT (system) statements cause data from the system to be made available to data items in the File,

Working-Storage, or Linkage sections.

ENVIRONMENT, ESCAPE KEY, EXCEPTION STATUS, LINE NUMBER, and USER NAME are extensions to

ANSI COBOL.

E.2.2 General Format (ANSI 74 and ANSI 85)

Format 1:

ACCEPT identifier FROM

Format 2:

ACCEPT identifier FROM

E.2.3 General Format (VXCOBOL)

Format 1:

ACCEPT identifier FROM

Format 2:

ACCEPT identifier FROM

ACCEPT identifier FROM LINE NUMBER

d [ON VIRTUAL TERMINAL imperative-statement [END-ACCEPT]]

E.2.4 Syntax Rules

(1) (ISQL) In Format 1, the TIMESTAMP phrase may only be specified if the ISQL feature-set is enabled.

(2) (ISQL) If identifier specifies an item of class date-time and category date, the DATE phrase must be

specified. The YYYYMMDD phrase is implied if it is omitted.

(3) (ISQL) If identifier specifies an item of class date-time and category time, the TIME phrase must be

specified.

PROCEDURE DIVISION (ACCEPT (system))

291

(4) (ISQL) If identifier specifies an item of class date-time and category timestamp, the TIMESTAMP phrase

must be specified.

E.2.5 General Rules

(1) The ACCEPT statement causes the information requested to be transferred to the data item specified by

identifier according to the rules for the MOVE statement. DATE, DAY, DAY-OF-WEEK TIME, and

TIMESTAMP reference the current date and time provided by the system on which the ACCEPT statement is

executed. DATE, DAY, DAY-OF-WEEK and TIME are standard COBOL conceptual data items and, therefore, are

not described in the COBOL program. TIMESTAMP, ENVIRONMENT, ESCAPE KEY, EXCEPTION STATUS,

LINE NUMBER, and USER NAME are conceptual data items and, therefore, are not described in the COBOL

program.

(2) DATE, without the phrase YYYYMMDD, is composed of the data elements: year of century, month of

year, and day of month (yymmdd). Therefore, December 25, 1986, would be expressed as 861225. DATE without

the phrase YYYYMMDD, when accessed by a COBOL program, behaves as if it had been described in a COBOL

program as an unsigned elementary numeric integer data item six digits in length (PIC 9(6)).

(3) DATE, with the phrase YYYYMMDD behaves as it had been described as an unsigned elementary integar

data item of usage display eight digits in length, the character positions of which, numbered from left to right, are:

Character Positions Contents
1-4 Four numeric characters of the year in the Gregorian calendar.
5-6 Two numeric characters of the day of the year in the range 01

through 12.
7-8 Two numeric characters of the day of the month in the range 01

through 31.

(4) DAY, without the phrase YYYYDDD, is composed of the data elements: year of century and day of year

(yyddd). Therefore, December 25, 1986, would be expressed as 86359. DAY, when accessed by a COBOL

program, behaves as if it had been described in a COBOL program as an unsigned elementary numeric integer data

item five digits in length (PIC 9(5)).

(5) DAY with the phrase YYYYDDD behaves as if it had been described as an unsigned elementary integer

data item of usage display seven digits in length, the character positions of which, numbered from left to right are:

Character Positions Contents

1-4 Four numeric characters of the year in the Gregorian calendar.
5-7 Three numeric characters of the day of the year in the range 001

through 366.

(6) TIME is composed of the data elements hours, minutes, seconds, and hundredths of a second (hhmmsshh).

TIME is based on elapsed time after midnight on a 24-hour clock basis; thus, 2:41 p. m. would be expressed as

14410000. TIME, when accessed by a COBOL program, behaves as if it had been described in a COBOL program

as an unsigned elementary numeric integer data item eight digits in length (PIC 9(8)). The minimum value of TIME

is 00000000; the maximum value of TIME is 23595999. If the system does not have the facility to provide

fractional parts of a second, the value zero is returned for those parts which cannot be determined (e.g., 386UNIX

returns 00 as the hundredths of a second in the seventh and eight character positions).

NOTE: If the ISQL feature-set is enabled, one can use the TIMESTAMP features to retrieve a

date and time as one operation. Otherwise, the recommended method is to use either the

IC_FULL_DATE builtin call or the CURRENT-DATE function. Each of the three

methods return a four-digit year and assure that the both date and time were retrieved

without the system crossing midnight, which can occur if one uses separate ACCEPT

FROM DATE and ACCEPT FROM TIME statements. IC_FULL_DATE is discussed

in this document beginning on page 518, and the CURRENT-DATE function is

discussed on page 594.

Interactive COBOL Language Reference & Developer’s Guide - Part One

292

(7) DAY-OF-WEEK is composed of a single data element whose content represents the day of the week.

DAY-OF-WEEK, when accessed by a COBOL program, behaves as if it had been described in a COBOL program

as an unsigned elementary numeric integer data item one digit in length. In DAY-OF-WEEK, the value 1 represents

Monday, 2 represents Tuesday, ... , 7 represents Sunday.

(8) (ISQL) TIMESTAMP is composed of a 4-digit year field, a 2-digit month field, a 2-digit day field, a 2-digit

hour field, a 2-digit minute field, a 2-digit second field, and a 2-digit hundredths of second field. It is equivalent to

SQL TIMESTAMP(2). Conceptually it is equivalent to PIC 9(16). If <identifier> is a timestamp, then the internal

timestamp will have all 6 fractional digits for seconds.

(9) ENVIRONMENT is composed of a structure containing specific information for a particular operating

system environment. The amount of data transferred depends on the environment and the revision of the runtime

system. For revision 3.30 of ICOBOL, the structure is defined as follows:

01 ENV-STRUCTURE.
 02 SYSTEM-CODE PIC 99.
 88 IC-AOSVS VALUE IS 01.
 88 IC-AOSVSII VALUE IS 04.
 88 IC-MSDOS VALUE IS 30.
 88 IC-386UNIX VALUE IS 31.
 88 IC-DGUX-88K VALUE IS 34.
 88 IC-AIX-RS VALUE IS 39.
 88 IC-SUN-SPARC VALUE IS 40.
 88 IC-HPUX-PA-RISC VALUE IS 41.
 88 IC-MOTOROLA-88K VALUE IS 43.
 88 IC-STRATUS-860 VALUE IS 44.
 88 IC-LINUX-INTEL VALUE IS 45.
 88 IC-DGUX-INTEL VALUE IS 47.
 88 IC-SCO-UNIX-INTEL VALUE IS 48.
 88 IC-UNIXWARE-INTEL VALUE IS 49.
 88 IC-WINDOWS-9X VALUE IS 60.
 88 IC-WINDOWS-NT-INTEL VALUE IS 61
 02 REVISION-CODE PIC 99.
 02 PROGRAM-NAME PIC X(28).
 02 PID PIC 9(5).
 02 CONSOLE-TYPE PIC X.
 88 CON-BATCH VALUE IS "B".
 88 CON-NORMAL VALUE IS "C".
 88 CON-MASTER VALUE IS "M". (end rev 00)
 02 SCREEN-LINES PIC 9(3).
 02 SCREEN-COLUMNS PIC 9(3).
 02 PRIVILEGES PIC X(16).
 02 PRIV-REDEF REDEFINES PRIVILEGES.
 03 ABORT-PROGRAM PIC X.
 03 INTERNAL-INFORMATION PIC X.
 03 MESSAGE-SENDING PIC X.
 03 TERMINAL-STATUS PIC X.
 03 PRINTER-CONTROL PIC X.
 03 PRINTER-CONTROL-MGMT PIC X.
 03 SHUTDOWN-RUNTIME PIC X.
 03 BG-CONSOLE-OR-HOST-EXEC PIC X.
 03 CONSOLE-INTERRUPT PIC X.
 03 DEBUG-PROGRAM PIC X.
 03 WATCH-FACILITY PIC X.
 03 XWATCH-FACILITY PIC X. (new rev 05)
 03 FILLER PIC X(4).
 02 FILENAME-CASE PIC X.
 88 CONVERT-TO-LOWER VALUE "L".
 88 CONVERT-TO-UPPER VALUE "U".
 88 CONVERT-NONE VALUE "N". (end rev 01)
 02 ICREV-INFO PIC X(8). (end rev 02)
 02 PROGRAM-TYPE PIC X.
 88 NORMAL-PROGRAM VALUE IS "N".
 88 HOTKEY-PROGRAM VALUE IS "H".
 88 NORMAL-PROGRAM-CHILD VALUE IS "C".
 02 MAX-LEVELS PIC 99.
 02 CURRENT-LEVEL PIC 99. (end rev 03)
 02 LARGE-PID PIC 9(10). (end rev 04)
 02 SCREEN-COLUMNS-MIN PIC 9(3).
 02 SCREEN-COLUMNS-MAX PIC 9(3).
 02 SYS-NODENAME PIC X(16). (end rev 05)

PROCEDURE DIVISION (ACCEPT (system))

293

Where

SYSTEM-CODE indicates that this COBOL program is currently running under ICOBOL on the operating

system corresponding to the 2-digit code that is returned. New codes are added as additional systems are

supported. Please see the ICOBOL product’s README file for the latest values. The current system-code

can be overridden when starting the runtime with the Set System code switch (-S).

REVISION-CODE indicates the current revision of this structure under ICOBOL for this system and is set to 05

for this revision.

PROGRAM-NAME is the current program that is running (i.e., the same as would be seen by a

IC_TERM_STAT on another console).

PID is the current process id.

 CONSOLE-TYPE is `B' if this process is a batch job or detached program or otherwise has the standard input

set to the null device; `C' if it is attached to an interactive console, or `M' if this is console 0 in the

configuration file (.cfi), even if the Master Console has been reset to a console number other than 0 by use

of the Lowest Console number switch to ICEXEC.

SCREEN-LINES and SCREEN-COLUMNS is the number of lines and columns that ICOBOL is currently

using for this terminal. When in Batch mode these numbers are undefined.

PRIVILEGES contains characters defining the privileges that the current program has. If the privilege is

granted the indicated column will contain the letter specified, otherwise the column will contain a space.

Position Contents Meaning
 1 A User can run Abort Terminals
 2 I User can run System Information
 3 M User can run Message Sending
 4 T User can run Terminal Status
 5 P User can run Printer Control
 6 C User has printer control management
 7 S User can run Shutdown
 8 O User can Detach jobs or call host
 9 B Program Interrupts are allowed
 10 D User can debug
 11 W User can use the Watch Facility
 12 X This user can NOT be watched
 13-16 space Undefined (reserved)

FILENAME-CASE contains the case that ICOBOL on UNIX is using for filenames, i.e., the -C value from the

command line as U=upper, L=lower, and N=none.

ICREV-INFO contains the 8-byte string set with the ICREVSET utility or with the compiler OEM Version

Switch (-o|-O ver).. If not set, it will contain nulls (LOW-VALUES).

PROGRAM-TYPE is ‘H’ if the current program was called via a hotkey, ‘C’ if the current program was called

from within a hotkey program, or ‘N’ if the current program is a normal program.

FILLER will always contain zeros (00). (Formerly MAX-LEVELS, the maximum configured number of CALL

levels allowed. This item is obsolete.)

CURRENT-LEVEL shows the current number of active and inactive programs in this run-unit. If greater than

99, then only 99 is shown.

LARGE-PID shows a 10 character pid number on those systems that support larger pid ranges, otherwise

LARGE-PID matches PID

SCREEN-COLUMNS-MIN, SCREEN-COLUMNS-MAX is the minimum and maximum values for a terminal

that supports compressed mode.

SYS-NODENAME is a 16 character name of the current computer.

.

ICOBOL sets batch job (`B' in CONSOLE-TYPE) when it detects that the standard input is set to the null device.

An ACCEPT will generate an immediate end-of-file. All programs started with the IC_DETACH will be considered

as batch jobs. CGICOBOL programs are considered as batch jobs.

The runtime system uses the rules for a MOVE statement to transfer data into the environment structure. If the

identifier is smaller than the data, data is truncated on the right. If the identifier is larger, the data is left-justified and

the identifier is padded with spaces.

(10) ESCAPE KEY contains a two-digit (PIC 99) code generated by the key that terminated the last Format 3

(ACCEPT identifier-1) or Format 4 (ACCEPT screen-name) ACCEPT statement in the program. It should be

queried immediately after the ACCEPT you wish to test.

Interactive COBOL Language Reference & Developer’s Guide - Part One

294

The ESCAPE KEY will return a zero if a valid ACCEPT has not been done since the program was started via

either a CALL PROGRAM or CALL.

The following table shows the default ESCAPE KEY codes for a Data General D2xx compatible terminal.

Key Key
alone

Key +
SHIFT

Key +
CTRL

Key +
SHIFT+CTRL

 CR 00 00 00 00

 NEWLINE 00 00 00 00

 ESC 01 01 01 01

 F1 02 10 18 26

 F2 03 11 19 27

 F3 04 12 20 28

 F4 05 13 21 29

 F5 06 14 22 30

 F6 07 15 23 31

 F7 08 16 24 32

 F8 09 17 25 33

 F9 34 41 48 55

 F10 35 42 49 56

 F11 36 43 50 57

 F12 37 44 51 58

 F13 38 45 52 59

 F14 39 46 53 60

 F15 40 47 54 61

 C1 62 66 62 66

 C2 63 67 63 67

 C3 64 68 64 68

 C4 65 69 65 69

 Down-arrow 00 77 00 00

 Up-arrow n/a 70 n/a 70

 Right-arrow n/a 71 n/a 71

 Left-arrow n/a 72 n/a 72

 CMD-Print 73 74 73 74

 HOME n/a 75 n/a 75

TABLE 19. Function Key Escape Codes

Escape key codes are configurable in the terminal description files (.tdi) on a terminal type basis. See the

Installing and Configuring manuals for complete details.

(11) EXCEPTION STATUS, without the WITH ERROR IN phrase, contains a five-digit (PIC 9(5)) code, for

the most recent I/O operation. This includes all I/O operations: file I/O (which also set File Status), plus ACCEPT,

DISPLAY, CALL and CALL PROGRAM. The returned Exception Status value can be used with the

IC_MSG_TEXT builtin to get the error message text for the particular error.

Remember: to retrieve the correct status, the ACCEPT FROM EXCEPTION STATUS must be issued

prior to any further I/O or CALL operation, including screen I/O operations.

APPENDICES F (ANSI) and G (VXCOBOL), starting on pages 827 and 835 respectively, show all possible

Exception Status values with their meaning, along with any UNIX or Windows error that will generate that

Exception Status.

If a fatal I/O error is encountered and the program terminates, the current Exception Status is displayed right

after the COBOL PC as E=nnn.

(12) EXCEPTION STATUS with the WITH ERROR IN phrase returns the operating system error that caused

the exception, if such was the case. The program’s definition of identifier-5 should be PIC 9(5).

PROCEDURE DIVISION (ACCEPT (system))

295

(13) LINE NUMBER contains a five-digit number of the console number (n of @CONn) on which this

program is running. Its PICTURE is 9(5). The ON VIRTUAL TERMINAL clause, available for VXCOBOL, is for

documentation purposes only and is therefore ignored.

(14) USER NAME contains the current system user name (if available) of the user currently running this

program. Up to 15 characters are returned; i.e., its PICTURE is X(15). By default, the user name is returned in

lower-case. A runtime switch (-U) may be specified to convert the case of the user name that is returned by

ACCEPT FROM USER NAME. The name may be changed by the IC_SET_USERNAME builtin, which is

discussed in this document beginning on page 560.

Interactive COBOL Language Reference & Developer’s Guide - Part One

296

PROCEDURE DIVISION (ADD)

297

E.3. ADD

E.3.1 Function

The ADD statement causes two or more numeric operands to be summed and the result to be stored.

E.3.2 General Format

Format 1:

ADD TO { identifier-2 [ROUNDED] }...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-ADD]

Format 2:

ADD TO GIVING { identifier-3 [ROUNDED] }...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-ADD]

Format 3:

ADD identifier-1 TO identifier-2 [ROUNDED]

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-ADD]

E.3.3 Syntax Rules

(1) In Formats 1 and 2, each identifier must refer to an elementary numeric item, except that in Format 2 each

identifier following the word GIVING must refer to either an elementary numeric item or an elementary numeric

edited item. In Format 3, each identifier must refer to a group item.

(2) Each literal must be a numeric literal.

(3) The composite of operands must not contain more than 18 digits.

a. In Format 1, the composite of operands is determined by using all of the operands in a given statement.

b. In Format 2, the composite of operands is determined by using all of the operands in a given statement,

excluding the data items that follow the word GIVING.

c. In Format 3, the composite of operands is determined separately for each pair of corresponding data

items.

(4) CORR is an abbreviation for CORRESPONDING.

Interactive COBOL Language Reference & Developer’s Guide - Part One

298

E.3.4 General Rules

(1) If Format 1 is used, the values of the operands preceding the word TO are added together and the sum is

stored in a temporary data item. The value in this temporary data item is added to the value of the data item

referenced by identifier-2, with the result stored into the data item referenced by identifier-2. This process is

repeated for each successive occurrence of identifier-2, in the left-to-right order in which identifier-2 is specified.

(2) If Format 2 is used, the values of the operands preceding the word GIVING are added together, then the

sum is stored as the new content of each data item referenced by identifier-3.

(3) If Format 3 is used, data items in identifier-1 are added to and stored in corresponding data items in

identifier-2.

(4) The compiler insures that enough places are carried, so as not to lose any significant digits during execution.

(5) Additional rules and explanations relative to this statement are given under the appropriate paragraphs. (See

Scope of Statements, page 253; The ROUNDED Phrase, page 245; The ON SIZE ERROR Phrase, page 246; The

Arithmetic Statements, page 249; Overlapping Operands, page 249; Multiple Results in Arithmetic Statements, page

249; and The CORRESPONDING Phrase, page 246.)

PROCEDURE DIVISION (CALL)

299

E.4. CALL

E.4.1 Function

The CALL statement causes control to be transferred from one object program to another, within the run unit or to an

external executable program as defined by a particular ICOBOL operating system version.

To see how ICOBOL processes the program name see the External Filename description in the Developer’s Guide

section on page 751.

E.4.2 General Format

Format 1:

CALL [USING ...]

[ON EXCEPTION imperative-statement-1]

[NOT ON EXCEPTION imperative-statement-2]

[END-CALL]

Format 2:

CALL [USING ...]

[ON OVERFLOW imperative-statement-1]

[END-CALL]

E.4.3 Syntax Rules

(1) Literal must be a nonnumeric literal.

(2) Identifier-1 must be defined as an alphanumeric data item such that its value can be a program-name.

(3) Each of the operands (identifier-2) in the USING phrase must have been defined as a data item in the File

Section, Working-Storage Section, or Linkage Section.

E.4.4 General Rules

(1) Literal or the content of the data item referenced by identifier-1 must contain the name of the called

program. The program in which the CALL statement appears is the calling program.

(2) If, when a CALL statement is executed, the program specified by the CALL statement is made available for

execution, control is transferred to the called program. After control is returned from the called program, the ON

OVERFLOW or ON EXCEPTION phrase, if specified is ignored and control is transferred to the end of the CALL

statement or, if the NOT ON EXCEPTION phrase is specified, to imperative-statement-2. If control is transferred to

imperative-statement-2, execution continues according to the rules for each statement specified in

imperative-statement-2. If a procedure branching or conditional statement which causes explicit transfer of control

is executed, control is transferred in accordance with the rules for that statement; otherwise, upon completion of the

execution of imperative-statement-2, control is transferred to the end of the CALL statement.

Interactive COBOL Language Reference & Developer’s Guide - Part One

300

(3) If it is determined, when a CALL statement is executed, that the program specified by the CALL statement

cannot be made available for execution at that time the appropriate Exception Status is set and one of the two actions

listed below will occur.

a. If the ON OVERFLOW or ON EXCEPTION phrase is specified in the CALL statement, control is

transferred to imperative-statement-1. Execution then continues according to the rules for each statement specified

in imperative-statement-1. If a procedure branching or conditional statement which causes explicit transfer of

control is executed, control is transferred in accordance with the rules for that statement; otherwise, upon completion

of the execution of imperative-statement-1, control is transferred to the end of the CALL statement and the NOT ON

EXCEPTION phrase, if specified, is ignored.

b. If the ON OVERFLOW or ON EXCEPTION phrase is not specified in the CALL statement, the NOT

ON EXCEPTION phrase, if specified, is ignored, and control is transferred to the end of the CALL statement.

(4) If the called program does not possess the initial attribute, the called program is in its initial state the first

time it is called within a run unit and the first time it is called after a CANCEL to the called program. On all other

entries into the called program, the state of the program remains unchanged from its state when last exited.

If the called program possesses the initial attribute it is placed into its initial state every time the called

program is called within a run unit.

(5) Files associated with a called program's internal file connectors are not in the open mode when the program

is in an initial state.

On all other entries into the called program, the states and positioning of all such files is the same as when

the called program was last exited.

External file connectors always maintain their state across a CALL.

(6) The USING phrase is included in the CALL statement only if there is a USING phrase in the Procedure

Division header of the called program, in which case the number of operands in each USING phrase must be

identical. If the program being called is other than a COBOL program, the use of the USING phrase is defined by

the program being called. For example, builtins define the expected operands.

(7) The sequence of appearance of the data-names in the USING phrase of the CALL statement and in the

corresponding USING phrase in the called program's Procedure Division header determines the correspondence

between the data-names used by the calling and called programs. This correspondence is positional and not by name

equivalence; the first data-name in one USING phrase corresponds to the first data-name in the other, the second to

the second, etc.

(8) The values of the parameters referenced in the USING phrase of the CALL statement are made available to

the called program at the time the CALL statement is executed.

(9) Both the BY CONTENT and BY REFERENCE phrases are transitive across the parameters which follow

them until another BY CONTENT or BY REFERENCE phrase is encountered. If neither the BY CONTENT nor

BY REFERENCE phrase is specified prior to the first parameter, the BY REFERENCE phrase is assumed.

(10) For a parameter that is described either explicitly or implicitly as BY REFERENCE, the object program

operates as if the corresponding data item in the called program occupies the same storage area as the data item in

the calling program. The description of the data item in the called program must describe the same number of

character positions as described by the description of the corresponding data item in the calling program.

(11) For a parameter that is described as BY CONTENT, the object program operates as if the storage area in

the calling program is copied to a storage area reserved in the LINKAGE Section of the called program, by the

USING phrase in the Procedure Division header, for the corresponding item in the USING phrase of the CALL. The

storage area of the calling program remains unchanged when the EXIT PROGRAM statement is executed in the

called program. The description of the data item in the called program must describe the same number of character

PROCEDURE DIVISION (CALL)

301

positions as described by the description of the corresponding data item in the calling program. See Values of

Parameters on page 56 for more information.

(12) Called programs may contain CALL statements. However, a called program must not execute a CALL

statement that directly or indirectly calls the calling program. If a CALL statement is executed within the range of a

declarative, that CALL statement cannot directly or indirectly reference any called program in which control has

been transferred and which has not completed execution.

(13) The maximum number of parameters that may be specified in a USING phrase is 32.

(14) The CALL statement cannot pass switches to a called program. Switches are the same for the entire run

unit.

(15) A few of the more-common error conditions and their exception status codes are:

Exception
Status Code Error Condition

83 The file does not have the correct revision

203 Program not found

207 Program is already active

209 Parameter count or parameter size mismatch

213 Program file cannot be loaded.

TABLE 20. Common Error Conditions for a CALL Statement

(16) The END-CALL phrase delimits the scope of the CALL statement.

(17) CALL can be used to execute user-written C subroutines that have been bound into the currently executing

runtime by using the ICOBOL Link Kit. In most cases these user-written are bound in dynamically using icbltn.so

(UNIX) or icbltn.dll (Windows). See the readlink.txt file in the ICOBOL link_kit subdirectory for details.

(18) CALL can be used to execute operating system executable programs.

E.4.5 Calling Operating System Executables

(1) The name of the executable file literal-1 or the contents of identifier-1 must begin with the special character

vertical bar (“|”) which indicates that the name following is an executable file and should be passed to the operating

system to be executed with the given arguments identifier-2 and then return to ICOBOL when finished.

(2) If the program specified cannot be executed, the Exception Status is set and the ON EXCEPTION clause, if

specified, will be performed. Otherwise, the returned error code is placed into Exception Status, but the ON

EXCEPTION clause is not executed.

(3) By using the CALL to an operating system executable, other copies of ICOBOL or ICOBOL utilities can

be started from within a COBOL program. These other processes will get console numbers from the range of

consoles that have been enabled with no device name specified; thus, you will never have another ICOBOL runtime

running with the same console number.

(4) Multiple arguments can be passed but the contents of the data items are never modified by the operating

system executables.

UNIX examples

EXAMPLE: To call the Bourne shell you could use the following:

Interactive COBOL Language Reference & Developer’s Guide - Part One

302

 MOVE "-s" TO ARGUMENT.
 CALL "|sh" USING ARGUMENT.

 MOVE "-c" TO ARGUMENT1.
 MOVE "ls -l" TO ARGUMENT2.
 CALL "|sh" USING ARGUMENT1, ARGUMENT2.

 MOVE "-l" TO ARGUMENT.
 CALL "|ls" USING ARGUMENT.

 CALL "|c:\winnt\system32\cmd.exe".

 MOVE “/C DIR” TO ARGUMENT.
 CALL "|c:\winnt\system32\cmd.exe" USING ARGUMENT.

EXAMPLE 17. CALL the Bourne shell from a COBOL program (UNIX)

The above example code starts the sh program with the initial argument "-s", which tells the shell to use stdin

and stdout for its input and output. When the shell is terminated, control returns to ICOBOL, with the exit code

being stored into Exception Status.

EXAMPLE: To call the shell and have it execute a single "ls" command and return, use the following:

EXAMPLE 18. CALL the shell, have it execute “ls” and return (UNIX)

EXAMPLE: To call the ls command directly and return, use the following:

EXAMPLE 19. CALL the “ls” command directly and return (UNIX)

Windows examples

EXAMPLE: To call the Windows command processor.

EXAMPLE 20. CALL the command processor (Windows)

EXAMPLE: To call the Windows command processor and have it executed the DIR command:.

EXAMPLE 21. CALL the command processor and execute the DIR command (Windows)

PROCEDURE DIVISION (CALL PROGRAM)

303

E.5. CALL PROGRAM

E.5.1 Function

The CALL PROGRAM statement begins a new run unit with another COBOL program or it performs a system

function as defined by a particular ICOBOL operating system version. CALL PROGRAM is an extension to ANSI

COBOL. Also see the table, CALL and CALL PROGRAM Compared, at the end of this description.

To see how ICOBOL processes the program name see the External Filename description in the Developer’s Guide

section on page 751.

E.5.2 General Format

CALL PROGRAM [USING { identifier-2 }...]

[ON EXCEPTION imperative-statement-1]

[NOT ON EXCEPTION imperative-statement-2]

[END-CALL]

E.5.3 Syntax Rules

(1) Literal must be a nonnumeric literal.

(2) Identifier-1 must be defined as an alphanumeric data item such that its value can be a program-name.

(3) In addition to the program-name, literal or identifier-1 can include program switches, each a nonnumeric

literal. For example:

CALL PROGRAM "REPORT/M/WEEKLY/QUARTERLY".

(4) Each of the operands in the USING phrase must have been defined as a data item in the File Section,

Working-Storage Section, or Linkage Section.

E.5.4 General Rules

(1) Literal or the content of the data item referenced by identifier-1 is the name of the called program and

possibly program switches. The program in which the CALL PROGRAM statement appears is the calling program.

Literal or the content of the data item referenced by identifier-1 must contain the program-name of the program to be

called or the system call to be executed.

(2) If, when a CALL PROGRAM statement is executed, the program specified by the statement is a COBOL

program, it is made available for execution, all files in the current program are closed, and control is transferred to

the called program. The successful transfer of control to a called program is equivalent to the execution of a

STOP RUN statement within the calling program followed by the start of the called program. (You cannot return to

the original or calling program, except when doing system calls.)

(3) If, when a CALL PROGRAM statement is executed, the program specified by the CALL PROGRAM

statement is a system call, it is executed in accordance with the specifications for that system call. A system call is

defined to be any program name starting with the `#' symbol. Valid system calls for a particular operating system

and their function can be found in this manual in APPENDIX L beginning on page 851. If the specified system call

returns to the program, and the NOT ON EXCEPTION phrase is specified control is transferred to

imperative-statement-2; otherwise, control is transferred to the end of the CALL PROGRAM statement.

Interactive COBOL Language Reference & Developer’s Guide - Part One

304

(4) If it is determined, when a CALL PROGRAM statement is executed, that the program specified by the

CALL PROGRAM statement cannot be made available for execution at that time, the exception status is set to the

appropriate value and one of the two actions listed below will occur.

a. If the ON EXCEPTION phrase is specified in the CALL PROGRAM statement, control is transferred to

imperative-statement-1. Execution then continues according to the rules for each statement specified in

imperative-statement-1. If a procedure branching or conditional statement which causes explicit transfer of control

is executed, control is transferred in accordance with the rules for that statement; otherwise, upon completion of the

execution of imperative-statement-1, control is transferred to the end of the CALL PROGRAM statement and the

NOT ON EXCEPTION phrase, if specified, is ignored.

b. If the ON EXCEPTION phrase is not specified in the CALL PROGRAM statement, control is

transferred to the end of the CALL PROGRAM statement and the NOT ON EXCEPTION phrase, if specified, is

ignored.

(5) A few of the more common error conditions and their exception status codes are:

Exception
Status Code Error Condition

83 The file does not have the correct revision

203 Program not found, or this is a system call and the system call
is not valid for the operating system

213 Program file could not be loaded. program

TABLE 21. Common Error Conditions for a CALL PROGRAM Statement

(6) The END-CALL phrase delimits the scope of the CALL PROGRAM statement.

(7) The USING phrase can be included in the CALL PROGRAM statement even if there is not a USING phrase

in the Procedure Division header of the called program, in which case no parameters are passed to the called

program. If the program being called is other than a COBOL program, the use of the USING phrase is defined by

the program being called.

(8) The sequence of appearance of the data-names in the USING phrase of the CALL PROGRAM statement

and in the corresponding USING phrase in the called program's Procedure Division header determines the

correspondence between the data-names used by the calling and called programs. This correspondence is positional

and not by name equivalence; the first data-name in one USING phrase corresponds to the first data-name in the

other, the second to the second, etc.

(9) The values of the parameters referenced in the USING phrase of the CALL PROGRAM statement are made

available to the called program at the time the CALL PROGRAM statement is executed.

(10) For a parameter, the object program operates as if the storage area in the calling program is copied to a

storage area reserved in the LINKAGE Section of the called program by the USING phrase in the Procedure

Division header for the corresponding item in the USING phrase of the CALL PROGRAM. The description of the

data item in the called program does not have to describe the same number of character positions as described by the

description of the corresponding data item in the calling program. If more bytes are passed than can be stored the

extra bytes are ignored. If not enough bytes are passed the resulting storage is undefined.

(11) Without the ICOBOL runtime options ‘-G s’ (Strict switch processing) or ‘-N e’ (No embedded spaces)

the following default rules describe how the runtime extracts switches from the value of literal or identifier-1:

a. The switch character is the forward slash '/'.

b. Using ':' or '\' as pathname separators or an initial '=' or '^' removes all ambiguity; i.e., everything starting

with '/' is a switch.

PROCEDURE DIVISION (CALL PROGRAM)

305

c. Switches may be multiple characters.

d. Single character switches follow this special rule: All /x pairs are removed (beginning at the right and

moving left) and treated as switches except for a pair occurring as the first 2 characters. This rule is in effect for

compatibility with existing applications where program switches are a single character.

e. The first " /" (that’s a space followed by a /) (from left to right) will always end a program name and

begin program switches.

f. All processing is discontinued at the first CR, NL, FF or NUL.

g. By default, embedded spaces are allowed in literal or identifier-1.

(12) With the ‘-G s’ (Strict switch processing) runtime option, a ‘/’ in the value in literal or identifier-1 always

signals the start of a program switch.

(13) With the ‘-N e’ (No embedded spaces) runtime option, embedded spaces are not allowed in program

names, and processing of literal or identifier-1 is discontinued at the first space not preceding either a ‘/’ or spaces

preceding a ‘/’.

(14) The following table shows example values for literal or identifier-1 and how they are evaluated and

processed by the ICOBOL runtime. It shows differences between a runtime that was brought up using the ‘-G s’

option and a runtime that was brought up without that option.

DEFAULT Behavior
(without ‘-G s’)

WITH ‘-G s’
runtime option

Program Switches Program Switches

1. /x/a/b/c /x a, b, c <error>

2. /x/a/b /c /x/a/b c <error>

3. /x/a/b /c/d /e /x/a/b c, d, e <error>

4. x/a/b/c x a, b, c x a, b, c

5. xxx/a/b/c xxx a, b, c xxx a, b, c

6. x/a/b/ccc x/a/b/ccc <none> x a, b, ccc

7. aaa/bbb/c aaa/bbb c aaa bbb, c

8. aaa/bbb/ccc aaa/bbb/ccc <none> aaa bbb, ccc

9. aaa\bbb/ccc aaa/bbb ccc aaa/bbb ccc

10. aaa:bbb/ccc aaa/bbb ccc aaa/bbb ccc

11. =aaa/bbb/ccc ./aaa bbb, ccc ./aaa bbb, ccc

12. ^aaa/bbb/ccc ../aaa bbb, ccc ../aaa bbb, ccc

13. aaa/bbb /ccc aaa/bbb ccc aaa bbb, ccc

14. aaa/x<nl>/b /ccc aaa x aaa x

15. my dir/my prg /sw my_dir/my prg sw my_dir my 1

 - The last example shows the default behavior as far as1

allowing embedded spaces. With the ‘-N e’ runtime option (no
embedded spaces), an error is returned.

TABLE 22. How Program Switches are evaluated

Interactive COBOL Language Reference & Developer’s Guide - Part One

306

E.5.5 CALL and CALL PROGRAM Compared

This table presents a high-level view of the major differences between the CALL statement and the CALL

PROGRAM statement. Details for the CALL and CALL PROGRAM statements begin on pages 299 and 303

respectively. Also see related sections in this document: PROCEDURE DIVISION USING phrase on page 56 and

EXIT PROGRAM statement on page 357.

CALL CALL PROGRAM

A “PERFORM” equivalent. A “chain” equivalent.

Returns to the calling program. Does not return to the calling program
(except for # or ## system calls, which may
perform a task and return).

Called program runs in the same run
unit as the calling program.

Called program begins a new run unit or
performs a system call.

Cannot pass switches to the called
program.

Can pass switches to the called program.

The calling program is left in the
current state except that contents
of items in the USING phrase may
have been altered by the called
program.

All files in the calling program are closed
before control is passed to the called
program.

The state of the called program
remains unchanged from its state
when last exited unless it has the
INITIAL attribute in which case it
will have its initial state when
next called.

N/A - Called program is always in its initial
state.

CANCEL logically removes called
program from the run unit so it will
be in its initial state next time it
is called.

CANCEL is not applicable for a program called
with CALL PROGRAM.

EXIT PROGRAM marks the logical end
of a called program.

EXIT PROGRAM has no effect in a called
program.

TABLE 23. CALL and CALL PROGRAM Compared

PROCEDURE DIVISION (CANCEL)

307

E.6. CANCEL

E.6.1 Function

The CANCEL statement ensures that the next time the referenced program is called it will be in its initial state.

E.6.2 General Format

CANCEL

E.6.3 Syntax Rules

(1) Literal must be a nonnumeric literal.

(2) Identifier must be defined as an alphanumeric data item such that its value can be a program name.

E.6.4 General Rules

(1) Literal or the content of the data item referenced by identifier identifies the program to be canceled.

(2) Subsequent to the execution of an explicit or implicit CANCEL statement, the program referred to therein

ceases to have any logical relationship to the run unit in which the CANCEL statement appears. If the program

referenced by a successfully executed explicit or implicit CANCEL statement in a run unit is subsequently called in

that run unit, that program is in its initial state.

(3) A program named in a CANCEL statement in another program must be callable by that other program.

(4) A program named in the CANCEL statement must not refer directly or indirectly to any program that has

been called and has not yet executed an EXIT PROGRAM statement.

(5) A logical relationship to a canceled program is established only by execution of a subsequent CALL

statement naming that program.

(6) A called program is canceled either by being referred to as the operand of a CANCEL statement, by the

termination of the run unit of which the program is a member (STOP RUN, CALL PROGRAM, interrupt), or by

execution of an EXIT PROGRAM statement in a called program that possesses the initial attribute.

(7) No action is taken when an explicit or implicit CANCEL statement is executed naming a program that has

not been called in this run unit or has been called and is at present canceled. Control is transferred to the next

executable statement following the explicit CANCEL statement.

(8) During execution of an explicit or implicit CANCEL statement, an implicit CLOSE statement without any

optional phrases is executed for each file in the open mode that is associated with an internal file connector in the

program named in the explicit CANCEL statement. Any USE procedures associated with any of these files are not

executed.

(9) The contents of data items in external data records described by a program are not changed when that

program is cancelled.

(10) The CANCEL statement does not close external files, even those open in the subprogram. You must

explicitly close external files.

Interactive COBOL Language Reference & Developer’s Guide - Part One

308

PROCEDURE DIVISION (CLOSE)

309

E.7. CLOSE

E.7.1 Function

The CLOSE statement terminates the processing of files with optional lock.

E.7.2 General Format

For sequential files: (ANSI 74 and ANSI 85)

CLOSE { file-name }...

For sequential files: (VXCOBOL)

CLOSE { file-name }...

For relative, indexed, and INFOS files:

CLOSE { file-name [W ITH LOCK] }...

E.7.3 Syntax Rules

(1) The files referenced in the CLOSE statement need not all have the same organization or access.

E.7.4 General Rules

(1) A CLOSE statement may only be executed for a file in an open mode.

(2) If the LOCK phrase is specified for a file, the file cannot be reopened by the program that performed the

CLOSE WITH LOCK.

(3) The execution of the CLOSE statement causes the value of the I-O status associated with file-name to be

updated.

(4) If an optional input file is not present, no end-of-file processing is performed for the file and the file position

indicator is unchanged.

(5) Following the successful execution of a CLOSE statement the record area associated with a file-name is no

longer available. The unsuccessful execution of such a CLOSE statement leaves the availability of the record area

undefined.

(6) Following the successful execution of a CLOSE statement the file is removed from the open mode, and the

file is no longer associated with the file connector.

Interactive COBOL Language Reference & Developer’s Guide - Part One

310

(7) If more than one file-name is specified in a CLOSE statement, the result of executing this CLOSE statement

is the same as if a separate CLOSE statement had been written for each file-name in the same order as specified in

the CLOSE statement.

(8) If the CLOSE is unsuccessful, a USE procedure, if specified, is executed.

(9) The NO REWIND, REEL/UNIT, RELEASE, and FOR REMOVAL clauses are for documentation purposes

only.

(10) When the CLOSE statement is executed for a file, any modified file buffers (including any that were

modified by other users) are flushed to disk or other device by the ICOBOL system. For indexed and relative files,

the ICISAM reliability flags in the file are cleared.

(11) On a CLOSE of a character device, if a timeout value was not specified on the OPEN, the CLOSE will try

forever. If a timeout had been specified, the CLOSE will complete in that time, the line will be closed, and the

buffer reset.

(12) An implicit CLOSE is executed for all open files within a program whenever it terminates.

PROCEDURE DIVISION (COMMIT)

311

E.8. COMMIT (ISQL)

E.8.1 Function

The COMMIT statement allows the program to commit an SQL database connection or connections..

E.8.2 General Format

COMMIT [ALL]

[ON SQLERROR imperative-statement-1]

[NOT ON SQLERROR imperative-statement-2]

[END-COMMIT]

E.8.3 Syntax Rules

E.8.4 General Rules

(1) The ALL phrase specifies that all connections in the run unit will be committed. (if there are any). If not

specified only the current connection is committed.

(2) Upon completion of the COMMIT statement, the following occurs in the order specified:

a. The value of the SQLSTATE data item is updated with the status of the operation.

b. If the value of the SQLSTATE class field is “00" or “01", the statement is successful. Control is

transferred to the end of the COMMIT statement or to imperative-statement-2, if specified. In the latter case,

execution continues according to the rules for each statement specified in imperative-statement-2. If a procedure

branching or conditional statement which causes explicit transfer of control is executed, control is transferred in

accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-2,

control is transferred to the end of the COMMIT statement.

c. If the value of the SQLSTATE class field is not “00" or “01", the statement is unsuccessful. The

statement container is deallocated and no statement container of the specified name will exist in the current program.

Control is transferred to the end of the COMMIT statement or to imperative-statement-1, if specified. In the latter

case, execution continues according to the rules for each statement specified in imperative-statement-1. If a

procedure branching or conditional statement which causes explicit transfer of control is executed, control is

transferred in accordance with the rules for the statement; otherwise, upon completion of the execution of

imperative-statement-1, control is transferred to the end of the COMMIT statement.

(3) The END-COMMIT phrase delimits the scope of the COMMIT statement.

(4) More on SQLSTATE can be found on page 133.

Interactive COBOL Language Reference & Developer’s Guide - Part One

312

PROCEDURE DIVISION (COMPUTE)

313

E.9. COMPUTE

E.9.1 Function

The COMPUTE statement assigns to one or more data items the value of an arithmetic expression.

E.9.2 General Format

COMPUTE { identifier-1 [ROUNDED] }... = arithmetic-expression

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-COMPUTE]

E.9.3 Syntax Rules

(1) Identifier-1 must reference either an elementary numeric item or an elementary numeric edited item.

(2) (ISQL) Identifier-1 may also be a date-time or interval elementary data item subject to the general rules for

permissible combinations of operands.

E.9.4 General Rules

(1) An arithmetic-expression consisting of a single identifier or literal provides a method of setting the value of

the data item reference by identifier-1 equal to the literal or the value of the data item reference by the single

identifier.

(2) If more than one identifier is specified for the result of the operation, the value of the arithmetic expression

is developed, and then is stored as the new value of each of the data items referenced by identifier-1.

(3) The COMPUTE statement allows the user to combine arithmetic operations without the restrictions on

composite of operands and/or receiving data items imposed by the arithmetic statements ADD, SUBTRACT,

MULTIPLY, and DIVIDE.

(4) (ISQL) The COMPUTE statement can be used with date-time and interval operands. The category of the

data-item referenced by identifier-1 must match the result category of arithmetic-expression. The rules for an

arithmetic expression involving date-time and interval items are covered under Arithmetic Expressions, beginning on

page 230.

(5) Additional rules and explanations to this statement are given under the appropriate paragraphs. (See

Arithmetic Expressions, page 230; Scope of Statements, page 253; The ROUNDED phrase, page 245; The ON SIZE

ERROR Phrase, page 246; The Arithmetic Statements, page 249; Overlapping Operands, page 249; and Multiple

Results in Arithmetic Statements, page 249.)

Interactive COBOL Language Reference & Developer’s Guide - Part One

314

PROCEDURE DIVISION (CONNECT)

315

E.10. CONNECT (ISQL)

E.10.1 Function

The CONNECT statement allows the program to establish a connection to an SQL database. Other SQL statements

that occur in the program operate in the context of the currently active connection.

E.10.2 General Format

[ON SQLERROR imperative-statement-1]

[NOT ON SQLERROR imperative-statement-2]

[END-CONNECT]

E.10.3 Syntax Rules

(1) Literal-1, literal-2, literal-3, and literal-4 must specify a nonnumeric literal and may not specify a figurative

constant.

(2) Identifier-1, identifier-2, identifier-3, and identifier-4 must specify an alphanumeric data item.

(3) Literal-2 or the value represented by identifier-2 may not specify the value “default” (case-insensitive),

which is reserved as the name for the connection established by specifying the DEFAULT phrase.

E.10.4 General Rules

(1) The DEFAULT phrase specifies that a system default value is to be used for the connection string, user

name, and password. This default value is selected from the environment variables ICSQLDSN, ICSQLUID, and

ICSQLPWD. If ICSQLDSN is not present, a data-set name of “default” is used. If ICSQLUID is not present, the

current login name is used (the same value returned by ACCEPT FROM USER NAME). If ICSQLPWD is not

present, a null string is used. The connection will have the name “default”.

(2) Literal-1 or the content of the data item represented by identifier-1 specifies the connection string that

supplies the information necessary to connect to the database. Usually it specifies a data-set name (DSN).

(3) Literal-2 or the content of the data item represented by identifier-2 in the AS phrase specifies a name for the

connection. The name can be used to identify the connection in a DISCONNECT or SET CONNECTION

statement. The value is not case-sensitive. If the AS phrase is not supplied, the content of the connection string is

used as the connection name.

(4) Literal-3 or the content of the data item represented by identifier-3 in the USER phrase specifies a user

name for the connection. If the USER phrase is not specified, the system will use the current user login name.

(5) Literal-4 or the content of the data item represented by identifier-4 in the USER phrase specifies a password

for the connection. If this optional field is not specified, the system will use a null string.

(6) It is an error if the run unit already has a connection with the same name, which includes the name “default”

for a connection made by using the DEFAULT phrase.

(7) Connections are kept on a run unit basis, i.e., the scope of the connection name is the entire run unit, not the

program containing the CONNECT statement.

Interactive COBOL Language Reference & Developer’s Guide - Part One

316

(8) All connections in a run unit are implicitly disconnected when the run unit terminates, in a manner

equivalent to the execution of a DISCONNECT ALL statement.

.

(9) Upon a successful connection, the currently active connection (if any) is made dormant, and the new

connection is made the currently active connection.

(10) Upon completion of the CONNECT statement, the following occurs in the order specified:

a. The value of the SQLSTATE data item is updated with the status of the operation.

b. If the value of the SQLSTATE class field is “00" or “01", the statement is successful. Control is

transferred to the end of the CONNECT statement or to imperative-statement-2, if specified. In the latter case,

execution continues according to the rules for each statement specified in imperative-statement-2. If a procedure

branching or conditional statement which causes explicit transfer of control is executed, control is transferred in

accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-2,

control is transferred to the end of the CONNECT statement.

c. If the value of the SQLSTATE class field is not “00" or “01", the statement is unsuccessful. The

statement container is deallocated and no statement container of the specified name will exist in the current program.

Control is transferred to the end of the CONNECT statement or to imperative-statement-1, if specified. In the latter

case, execution continues according to the rules for each statement specified in imperative-statement-1. If a

procedure branching or conditional statement which causes explicit transfer of control is executed, control is

transferred in accordance with the rules for the statement; otherwise, upon completion of the execution of

imperative-statement-1, control is transferred to the end of the CONNECT statement.

(11) The END-CONNECT phrase delimits the scope of the CONNECT statement.

(12) More on SQLSTATE can be found on page 133.

(13) CONNECT takes a DSN by default.

Under Windows, this DSN is defined in the ODBC Administrator in the User DSN or System DSN panels.

Under UNIX, this DSN is defined in the .odbc.ini file in the user's home directory for User DSN and the

odbc.ini file for System DSN files. More on ODBC under UNIX can be found in the unixODBC documentation.

At this time only a UserDSN or a SystemDSN can be specified. FileDSN's are not supported.

(14) To help debug ODBC connections enable Tracing to the ODBC Driver.

Under Windows, this is done in the ODBC Administrator under the Tracing panel where the actual log file

and Starting and Stopping tracing is performed.

Under UNIX, this is done in the odbcinst.ini file by adding:

[ODBC]
Trace = Yes
Trace File = filename

Generally tracing should not be enabled as it is VERY expensive in cpu and disk resources.

(15) A sample program that provides a Screen Interface to the ISQL statements is provided on the ftp server

(ftp.icobol.com) in the examples subdirectory of icobol as as isqltest.sr

(16) In addition, the ICODBC Driver can be used to test with ICISAM files if needed.

(17) Under Windows, the odbc32.dll is loaded to allow the ISQL statements to communicate with ODBC.

Under UNIX, the libodbc.so is loaded to allow the ISQL statements to communicate with the unixODBC module.

PROCEDURE DIVISION (CONNECT)

317

Interactive COBOL Language Reference & Developer’s Guide - Part One

318

E.11. CONTINUE

E.11.1 Function

The CONTINUE statement is a no operation (or “no op”) statement. It indicates that no executable statement is

present.

E.11.2 General Format

CONTINUE

E.11.3 Syntax Rules

(1) The CONTINUE statement may be used anywhere a conditional statement or an imperative-statement may

be used.

E.11.4 General Rules

(1) The CONTINUE statement has no effect on the execution of the program.

PROCEDURE DIVISION (DEALLOCATE)

319

E.12. DEALLOCATE (ISQL)

E.12.1 Function

The DEALLOCATE statement allows the program to deallocate a statement container that was allocated by a

PREPARE statement once it is no longer needed.

E.12.2 General Format

DEALLOCATE PREPARE

[ON SQLERROR imperative-statement-1]

[NOT ON SQLERROR imperative-statement-2]

[END-CONNECT]

E.12.3 Syntax Rules

(1) Literal-1 must specify a nonnumeric literal and may not specify a figurative constant.

(2) Identifier-1 must specify an alphanumeric data item.

(3) Literal-1 or the value represented by identifier-1 may not exceed 30 characters in length.

E.12.4 General Rules

(1) Literal-1 or the content of the data item represented by identifier-1 specifies the name of a statement

container to be deallocated in the current program.

(2) If a statement container with the specified name is not found in the current program, the SQLSTATE class

field is set to “01".

(3) If a statement container with the specified name is found in the current program, it is deallocated and a

statement container with the specified name will no longer exist in the current program, the SQLSTATE class field is

set to “00".

(4) Upon completion of the DEALLOCATE statement, the following occurs in the order specified:

a. The value of the SQLSTATE data item is updated with the status of the operation.

b. If the value of the SQLSTATE class field is “00" or “01", the statement is successful. Control is

transferred to the end of the DEALLOCATE statement or to imperative-statement-2, if specified. In the latter case,

execution continues according to the rules for each statement specified in imperative-statement-2. If a procedure

branching or conditional statement which causes explicit transfer of control is executed, control is transferred in

accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-2,

control is transferred to the end of the DEALLOCATE statement.

c. If the value of the SQLSTATE class field is not “00" or “01", the statement is unsuccessful. Control is

transferred to the end of the DEALLOCATE statement or to imperative-statement-1, if specified. In the latter case,

execution continues according to the rules for each statement specified in imperative-statement-1. If a procedure

branching or conditional statement which causes explicit transfer of control is executed, control is transferred in

accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-1,

control is transferred to the end of the DEALLOCATE statement.

(5) The END-DEALLOCATE phrase delimits the scope of the DEALLOCATE statement.

Interactive COBOL Language Reference & Developer’s Guide - Part One

320

PROCEDURE DIVISION (DEFINE SUB-INDEX)

321

E.13. DEFINE SUB-INDEX (VXCOBOL)

E.13.1 Function

The DEFINE SUB-INDEX statement creates a subindex in an INFOS file and associates with it a specified index

entry in that file.

E.13.2 General Format

DEFINE SUB-INDEX file-name

FROM identifier-2

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-DEFINE]

DEFINE SUB-INDEX file-name

[INDEX NODE SIZE IS integer-1]

[ALLOW DUPLICATES]

[ALLOW SUB-INDEX]

d [KEY COMPRESSION]

[MAXIMUM KEY LENGTH IS integer-2]

[PARTIAL RECORD LENGTH IS integer-3]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-DEFINE]

Interactive COBOL Language Reference & Developer’s Guide - Part One

322

01 PACKET.
 03 FILLER PIC XX.
 03 NODE-SIZE PIC 9(4) COMP.
 03 FILLER PIC X.
 03 MAX-KEYLEN PIC 9(2) COMP.
 03 FILLER PIC X.
 03 PARTIAL-REC-LEN PIC 9(2) COMP.
 03 FILLER PIC XX.
 03 FLAGS PIC 9(4) COMP.
 03 FILLER PIC X(4).

E.13.3 Syntax Rules

(1) File-name is a filename that specifies an INFOS file opened for OUTPUT or I/O and selected for ALLOW

SUB-INDEX.

(2) Identifier-1 is an alphanumeric data item that specifies a record key associated with file-name.

(3) Identifier-2 is an alphanumeric data item that contains data in the form of an AOS INFOS (16-bit) sub-index

definition packet and that is defined in Working-Storage.

(4) Integer-3 is an integer or integer literal data item that specifies the maximum partial record length for the

sub-index.

(5) Integer-2 is an integer or integer literal data item that specifies the maximum key length for a sub-index.

(6) Integer-1 is an integer or integer data item that specifies the size of a sub-index node.

E.13.4 General Rules

(1) When using the FROM option, the packet specified should be the AOS INFOS packet, not the 32-bit

INFOS II packet. This packet is 16 bytes long with the following format:

FLAGS values are: 2048 allow duplicates, 16384 Disallow sub-index.

(2) The location of the entry defined is determined according to that specified in the position phrase, the relative

option phrase, and/or the KEY series phrase. The specification can be implicit if the program uses the defaults or

explicit if the KEY or path is specified fully.

(3) FIX POSITION causes the record pointer to move from the current position to the position specified in this

statement. RETAIN position causes the record position to remain at the position it was on before the execution of

this statement. RETAIN is the default.

(4) The relative motion option without the KEY series phrase allows access to the index file relative to that

file's current record position.

(5) Using the KEY series phrase without the relative motion option causes the key path specified to begin with

the top index in the hierarchy and follow a downward motion.

(6) If the KEY series phrase is specified, each key, identifier-1, must be declared in the SELECT statement for

file-name. If the relative motion option and KEY series phrase at both specified only UP, DOWN, and STATIC are

allowed. The relative motion option is processed first, and the key path is used. If both are omitted, STATIC is the

default.

(7) Transfer of control following the successful or unsuccessful execution of the DEFINE SUB-INDEX

operation depends on the presence or absence of the optional INVALID KEY and NOT INVALID KEY phrases in

the DEFINE SUB-INDEX statement.

PROCEDURE DIVISION (DEFINE SUB-INDEX)

323

(8) The PARTIAL RECORD clause must be specified to allow partial records to be stored in the sub-index.

For INFOS II, the length of partial records in the sub-index is established. For U/FOS, any non-zero length says to

allow partial records, the specified length is disregarded.

(9) The ALLOW SUB-INDEX clause must be specified to allow subordinate sub-indexing for the specified

sub-index.

(10) The DUPLICATES clause must be specified to allow for the creation of duplicate keys for the sub-index

being created.

(11) If not specified, the KEY LENGTH defaults to 255.

(12) If not specified, the INDEX NODE SIZE defaults to the system default. (This value is ignored by U/FOS.)

Interactive COBOL Language Reference & Developer’s Guide - Part One

324

PROCEDURE DIVISION (DELETE)

325

E. 14. DELETE

E.14.1 Function

The DELETE statement logically removes a record from a mass storage file for relative, indexed, and INFOS files.

E.14.2 General Format (ANSI 74 and ANSI 85)

DELETE file-name RECORD

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-DELETE]

E.14.3 General Format (VXCOBOL)

Relative:

DELETE file-name RECORD

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-DELETE]

Indexed:

DELETE file-name RECORD

[KEY IS identifier-1]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-DELETE]

INFOS:

DELETE file-name RECORD

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-DELETE]

Interactive COBOL Language Reference & Developer’s Guide - Part One

326

E.14.4 Syntax Rules

(1) The INVALID KEY and the NOT INVALID KEY phrases must not be specified for a DELETE statement

which references a file which is in sequential access mode.

(2) The INVALID KEY phrase must be specified for a DELETE statement which references a file which is not

in sequential access mode and for which an applicable USE AFTER STANDARD EXCEPTION procedure is not

specified.

(3) The PHYSICAL designation applies to version 7 or greater ICISAM files.

For VXCOBOL.

(4) Identifier-1 must be the RECORD KEY as defined in the SELECT.

(5) The key series specifier may not be present for files in SEQUENTIAL ACCESS mode.

E.14.5 General Rules (ANSI 74 and ANSI 85)

(1) The file referenced by file-name must be an indexed or relative file and must be open in the I-O mode at the

time of the execution of this statement.

(2) For files in the sequential access mode, the last input-output statement executed for file-name prior to the

execution of the DELETE statement must have been a successfully executed READ statement. The file system

removes from the file the record that was accessed by that READ statement.

(3) For a relative file in random or dynamic access mode, the file system removes from the file that record

identified by the content of the relative key data item associated with file-name. If the file does not contain the

record specified by the key, the invalid key condition exists.

(4) For an indexed file in random or dynamic access mode, the file system removes from the file the record

identified by the content of the primary record key data item associated with file-name. If the file does not contain

the record specified by the key, the invalid key condition exists.

(5) After the successful execution of a DELETE statement, the identified record has been removed from the file

and can no longer be accessed, although the record may be restored by executing the UNDELETE statement if the

removal was a logical deletion.

(6) The execution of a DELETE statement does not affect the content of the record area.

(7) The file position indicator is not affected by the execution of a DELETE statement.

(8) The execution of the DELETE statement causes the value of the I-O status associated with file-name to be

updated.

(9) Transfer of control following the successful or unsuccessful execution of the DELETE operation depends on

the presence or absence of the optional INVALID KEY and NOT INVALID KEY phrases in the DELETE

statement.

(10) The END-DELETE phrase delimits the scope of the DELETE statement.

(11) If LOGICAL is specified, the record identified by the RECORD KEY or RELATIVE KEY is marked as

being deleted in the file. It is not physically removed, but will not be accessible unless it is subsequently undeleted.

PROCEDURE DIVISION (DELETE)

327

If PHYSICAL is specified, the space in the data file used by the record identified by the RECORD KEY or

RELATIVE KEY is made available for reuse. It is no longer accessible to the program. Its space will be reused

when needed to add another record to the file.

If neither LOGICAL nor PHYSICAL is specified, the delete will be either logical or physical based on the

following:

a. For version 5 or version 6 indexed or relative files, deletes are always logical.

b. For version 7 indexed or relative files, the type of delete performed will be based on the status of the

file's "delete-is-physical" attribute. This attribute bit is set at file creation time and is a permanent attribute of the

file. (It is specified in a COBOL program using the DELETE IS clause of the file description entry (SELECT)).

E.14.6 General Rules (VXCOBOL)

(1) The file referenced by file-name must be a relative, indexed, or INFOS file and must be open in the I-O

mode at the time of the execution of this statement.

(2) For files in the sequential access mode, the last input-output statement executed for file-name prior to the

execution of the DELETE statement must have been a successfully executed READ statement. The file system

removes from the file the record that was accessed by that READ statement.

(3) The execution of a DELETE statement does not affect the content of the record area.

(4) The file position indicator is not affected by the execution of a DELETE statement, for indexed and relative

files.

(5) The execution of the DELETE statement causes the value of the I-O status associated with file-name to be

updated.

(6) Transfer of control following the successful or unsuccessful execution of the DELETE operation depends on

the presence or absence of the optional INVALID KEY and NOT INVALID KEY phrases in the DELETE

statement.

(7) The END-DELETE phrase delimits the scope of the DELETE statement.

For relative files:

(8) For a relative file in random or dynamic access mode, the file system removes the record identified by the

content of the relative-key data-item associated with file-name. If the files does not contain the record specified by

the key, the invalid key condition exists.

(9) Records in relative files are removed on the basis of the “delete-is-physical” attribute set in the file's header.

Files created by VXCOBOL programs will normally have this bit set for purging records (physical deletes).

(10) After the successful execution of a DELETE statement, the identified record has been removed from the

file and can no longer be accessed or restored.

For indexed files:

(11) For an indexed file in random or dynamic access mode, the file system logically or physically removes

from the file the record identified by the content of the primary key data-item associated with file-name. If the files

does not contain the record specified by the key, the invalid key condition exists.

Interactive COBOL Language Reference & Developer’s Guide - Part One

328

(12) If PHYSICAL is specified, the data record is purged from the file. After the successful execution of a

DELETE statement with the PHYSICAL clause, the identified record has been removed from the file and can no

longer be accessed or restored.

(13) If LOGICAL GLOBAL is specified, the data record is logically deleted from the file. After the successful

execution of a DELETE statement with the LOGICAL GLOBAL clause, the identified record may still be accessed.

The record may be restored by executing the UNDELETE statement.

(14) If LOGICAL LOCAL is specified, it is ignored.

(15) If LOGICAL LOCAL GLOBAL is specified, it is equivalent to LOGICAL GLOBAL.

(16) If no type of deletion is specified, PHYSICAL is the default.

For INFOS files:

(17) The occurrence number is used.

(18) FEEDBACK is not used and is not updated.

(19) KEY LENGTH is unaffected.

(20) The record to DELETE is determined according to what is specified in the relative option phrase and/or

the KEY series phrase. The specification can be implicit if the program uses the defaults or explicit if the KEY or

path is fully specified.

(21) The relative motion option without the KEY series phrase allows access to the index file relative to that

file's current record position.

(22) Using the KEY series phrase without the relative motion option cause the key path specified to begin with

the top index in the hierarchy and follow a downward motion.

(23) If the KEY series phrase is specified, each key, identifier-1, must be declared in the SELECT statement for

file-name. If the relative motion option and KEY series phrase at both specified only UP, DOWN, and STATIC are

allowed. The relative motion option is processed first and the key path is used.

(24) If both the relative option and the KEY series phrase are omitted the file is accessed sequentially if the file

access mode is sequential. If the access mode is not sequential the first key named in the SELECT clause is used.

(25) If LOGICAL LOCAL is specified, the key (and any partial record associated with that key) is logically

deleted. Whenever the record or key is accessed through this index a FILE STATUS 96 will be returned.

(26) If LOGICAL GLOBAL is specified, the data record is logically deleted. Whenever the record is accessed

through any index a FILE STATUS 96 will be returned. The index entry including the partial record and any

subindex can still be accessed without receiving a FILE STATUS 96.

(27) If LOGICAL LOCAL GLOBAL is specified, the key (and any partial data record associated with that key)

and the data record is logically deleted.

(28) If PHYSICAL is specified, the key (and any partial data record associated with that key) is deleted and the

data record's use count is decremented. If the data record's use count is decremented to zero, then the data record

itself is deleted such that it is no longer in the file and there is no inversion in the file pointing to it.

(29) If no type of deletion is specified, PHYSICAL is the default.

(30) If you want to know whether a record has been deleted, use the RETRIEVE statement.

PROCEDURE DIVISION (DELETE)

329

(31) A FILE STATUS 02 is returned when a successful physical deletion of a record with a duplicate key is

performed.

(32) A DELETE statement does not change the current position of the record pointer unless it is a PHYSICAL

deletion and the pointer's current position is at the deleted record. If this is the case, the record pointer points to the

record immediately before the deleted record.

(33) If DUPLICATES was specified in the SELECT clause then the occurrence number should be set to the

desired value for the key that should be deleted.

Interactive COBOL Language Reference & Developer’s Guide - Part One

330

PROCEDURE DIVISION (DELETE FILE)

331

E.15. DELETE FILE

E.15.1 Function

The DELETE FILE statement physically removes a file from the file system. DELETE FILE is an extension to

ANSI COBOL. For VXCOBOL, it is equivalent to EXPUNGE.

To see how ICOBOL processes the filename see the External Filename description in the Developer’s Guide section

on page 751.

E.15.2 General Format

DELETE FILE { file-name }...

E.15.3 General Rules

(1) The file referenced by file-name must be a disk file, you must have appropriate permissions, and the file

must not be open anywhere in the ICOBOL system at the time of the execution of this statement. If the file does not

exist, no error is given.

(2) For a relative, indexed, or INFOS file, all parts of that file are removed from the file system.

(3) For VXCOBOL: for an INFOS II file, the indexed file and the database file specified in the SELECT

statement are deleted. If the name of the database file was not specified with an ASSIGN DATA clause, a .DB file

with the same name as that of the indexed file is deleted. For a U/FOS file, the database specified in the SELECT is

deleted, i.e., name.udb.

(4) After the successful execution of a DELETE FILE statement, the identified file has been physically removed

from the file system and can no longer be accessed.

(5) The execution of the DELETE FILE statement causes the value of the I-O status associated with file-name

to be updated.

(6) For systems supporting UNIX symbolic links, DELETE FILE will delete the symbolic link, not the

resolution file.

(7) On UNIX systems, files cannot be individually delete-protected. To make a file delete-protected on UNIX,

you must remove write (w) permission to the directory in which the file resides. If a directory has no write access,

you cannot create, modify or delete files in that directory. On Windows systems, the read-only attribute will protect

the file from deletion.

(8) For ANSI 74 and ANSI 85, If the specified file is a sequential file, ICOBOL will scan the Printer Control

file and if there is an entry there that points to the file being deleted, the entry in the Printer Control file will be

removed.

(9) For VXCOBOL, if file-name is a sort/merge file, it is ignored.

Interactive COBOL Language Reference & Developer’s Guide - Part One

332

PROCEDURE DIVISION (DISCONNECT)

333

E.16. DISCONNECT (ISQL)

E.16.1 Function

The DISCONNECT statement allows the program to disconnect from an SQL database connection.

E.16.2 General Format

[ON SQLERROR imperative-statement-1]

[NOT ON SQLERROR imperative-statement-2]

[END-DISCONNECT]

E.16.3 Syntax Rules

(1) Literal-1 must specify a nonnumeric literal and may not specify a figurative constant.

(2) Identifier-1 must specify an alphanumeric data item.

E.16.4 General Rules

(1) The DEFAULT phrase specifies that the default connection (which has the name “default”) is to be

disconnected. It is an error if there is no default connection either active or dormant. If the default connection is the

current connection, it is replaced as the current connection by the most recently used previous connection.

(2) The CURRENT phrase specifies that the currently active connection is to be disconnected. The most

recently used previous connect becomes the current connection. It is an error if there is no current connection.

(3) The ALL phrase specifies that all connections in the run unit will be disconnected (if there are any).

(4) The value of literal-1 or the content of the data item represented by identifier-1 specifies a specific, named

connection. If the value “default” is specified, it is the same as having specified the DEFAULT phrase. If the

specified connection is the current connection, it is replaced as the current connection by the most recently used

previous connection.

(5) Connections are kept on a run unit basis, i.e., the scope of the connection name is the entire run unit, not just

the program containing the DISCONNECT statement. If a specified connection does not exist, it is an error and

SQLSTATE will be set to “08003", which is “Connection does not exist”.

(6) All connections in a run unit are implicitly disconnected when the run unit terminates in a manner equivalent

to the execution of a DISCONNECT ALL statement.

(7) Any statement containers associated with a connection that is being disconnected are implicitly deallocated

before the connection is disconnected.

.

(8) Upon completion of the DISCONNECT statement, the following occurs in the order specified:

a. The value of the SQLSTATE data item is updated with the status of the operation.

Interactive COBOL Language Reference & Developer’s Guide - Part One

334

b. If the value of the SQLSTATE class field is “00" or “01", the statement is successful. Control is

transferred to the end of the DISCONNECT statement or to imperative-statement-2, if specified. In the latter case,

execution continues according to the rules for each statement specified in imperative-statement-2. If a procedure

branching or conditional statement which causes explicit transfer of control is executed, control is transferred in

accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-2,

control is transferred to the end of the DISCONNECT statement.

c. If the value of the SQLSTATE class field is not “00" or “01", the statement is unsuccessful. The

statement container is deallocated and no statement container of the specified name will exist in the current program.

Control is transferred to the end of the DISCONNECT statement or to imperative-statement-1, if specified. In the

latter case, execution continues according to the rules for each statement specified in imperative-statement-1. If a

procedure branching or conditional statement which causes explicit transfer of control is executed, control is

transferred in accordance with the rules for the statement; otherwise, upon completion of the execution of

imperative-statement-1, control is transferred to the end of the DISCONNECT statement.

(9) The END-DISCONNECT phrase delimits the scope of the DISCONNECT statement.

(10) More on SQLSTATE can be found on page 133.

PROCEDURE DIVISION (DISPLAY)

335

E.17. DISPLAY

E.17.1 Function

The DISPLAY statement causes low volume data to be transferred to the console. Screens are an extension to ANSI

COBOL.

E.17.2 General Format

Format 1:

DISPLAY [UPON mnemonic-name] [W ITH NO ADVANCING]

[END-DISPLAY]

Format 2:

DISPLAY { screen-name [AT] }...

[END-DISPLAY]

Format 3 (ANSI 74 and ANSI 85):

DISPLAY { display-clause... }...

[END-DISPLAY]

where display-clause is one of the following:

BLINK

CONTROL

CONVERT

Interactive COBOL Language Reference & Developer’s Guide - Part One

336

ERASE

LINE

SIZE

E.17.3 Syntax Rules

(1) In Format 1, you cannot use the figurative constant ALL with a DISPLAY statement.

(2) In Format 2, identifier-2, identifier-3, literal-2, and literal-3 must be unsigned integers.

(3) Screen-name may not be subscripted.

(4) The word COL is an abbreviation for the word COLUMN.

(5) END-DISPLAY is supported only for ANSI 74 and ANSI 85. It is an extension to standard COBOL.

(6) Mnemonic-name is associated with a hardware device in the SPECIAL-NAMES paragraph.

(7) In Format 3, identifier-4, identifier-5, identifier-6, identifier-8, identifier-9, identifier-10, literal-4, literal-5,

literal-6, literal-8, literal-9, and literal-10 must be unsigned elementary integer items. Identifier-7 must be a

nonnumeric data-item and literal-7 must be a nonnumeric literal.

(8) Color-name-1 and color-name-2 represent one of the predefined color names: BLACK, BLUE, GREEN,

CYAN, RED, MAGENTA, BROWN, or WHITE.

(9) In Format 3, the word POSITION is a synonym for COLUMN and the word BEEP is a synonym for BELL.

PROCEDURE DIVISION (DISPLAY)

337

E.17.4 General Rules

Format 1: (non-screen display)

(1) The DISPLAY statement causes the content of each operand to be transferred to the console device in the

order listed.

(2) If a figurative constant is specified as one of the operands, only a single occurrence of the figurative

constant is displayed.

(3) If the device is capable of receiving data of the same size as the data item being transferred, then the data

item is transferred.

(4) If a device is not capable of receiving data of the same size as the data item being transferred, then one of

the following applies:

a. If the size of the data item being transferred exceeds the size of the data that the device is capable of

receiving in a single transfer, the data beginning with the left-most character is stored aligned to the left in the

receiving device, and the remaining data is then transferred according to General Rules 4 and 5 until all the data has

been transferred.

b. If the size of the data item that the device is capable of receiving exceeds the size of the data being

transferred, the transferred data is stored aligned to the left in the receiving device.

(5) When a DISPLAY statement contains more than one operand, the size of the sending item is the sum of the

sizes associated with the operands, and the values of the operands are transferred in the sequence in which the

operands are encountered without modifying the positioning of the hardware device between the successive

operands.

(6) If the WITH NO ADVANCING phrase is specified, then the positioning of the device will not be reset to

the next line or changed in any other manner following the display of the last operand. If the device is capable of

positioning to a specific character position, it will remain positioned at the character position immediately following

the last character of the last operand displayed. If the device is not capable of positioning to a specific character

position, only the vertical position, if applicable, is affected. This may cause overprinting if the device supports

overprinting.

(7) If the WITH NO ADVANCING phrase is NOT specified, then after the last operand has been transferred to

the device, the positioning of the device will be reset to the left-most position of the next line of the device.

(8) If vertical positioning is not applicable on the device, the operating system will ignore the vertical

positioning specified or implied.

(9) For VXCOBOL: If the data to be transferred has USAGE COMPUTATIONAL or USAGE

COMPUTATIONAL-3, ICOBOL moves the data to a temporary data-item defined as USAGE DISPLAY, SIGN

LEADING SEPARATE with the same PICTURE. The temporary item is then transferred.

(10) For ANSI 74 and ANSI 85, integer or numeric functions are displayed as if they were defined with

USAGE DISPLAY, SIGN LEADING SEPARATE.

(11) The UPON clause is for documentation only except in the one case where mnemonic-name refers to

“@AUDIT”. If it refers to “@AUDIT” and auditing is enabled, then the DISPLAY will be sent to the audit log. If

auditing is not enabled, nothing is done. Thus, in the procedure division a:

 DISPLAY foo1 foo2 UPON mnemonic-1.

Will send the data in foo1 and foo2 to the audit log.

Interactive COBOL Language Reference & Developer’s Guide - Part One

338

01 ANY-CHANGE-SCREEN.
 05 LINE 23 COL 60 “ANY CHANGE?”.
 05 LINE 23 COL 75 PIC X TO ANY-CHANGE-ANSWER.

ANY-CHANGE-1.
 DISPLAY ANY-CHANGE-SCREEN.
 ACCEPT ANY-CHANGE-SCREEN.

ANY-CHANGE-2.
 DISPLAY ANY-CHANGE-SCREEN AT LINE 5 COLUMN 30.
 ACCEPT ANY-CHANGE-SCREEN AT LINE 5 COLUMN 30.

This facility is especially useful when debugging ThinClients.

(If this statement is executed with a pre-3.13 runtime the DISPLAY will come to the screen.)

Format 2: (screen display)

(12) Format 2 assumes that the device is capable of random positioning.

(13) DISPLAY screen-name is equivalent to DISPLAY screen-name AT LINE 0 COLUMN 0.

(14) If the LINE or COLUMN variable in the SCREEN SECTION has a value of zero (0), ICOBOL treats the

value as one (1).

(15) Variable Origin: The LINE phrase and COLUMN phrase in DISPLAY and ACCEPT statements allow

the entire screen description referenced by screen-name to be moved to a different starting position on the user's

display device. This capability is called variable origin. All screen descriptions assume that the origin is at line 1

and column 1 on the user's display device. The value specified in the DISPLAY or ACCEPT’s LINE phrase, if

present, is treated as a relative offset to be added to all line positions in the screen. Similarly, the value of the

COLUMN phrase, if specified, is treated as a relative offset to be added to all column positions in the screen. If any

line or column position becomes larger than that supported by the current screen, the screen will wrap at its limits,

and the new (wrapped) values will in turn be offset again by the variable origin.

For example, consider the code fragments:

The following discussion describes how to determine the origin point for each of the two DISPLAY and ACCEPT

pairs in the code fragments above. Assume the display device has 24 lines and 80 columns.

a. Remember, all screen descriptions assume an origin point of line 1, column 1. This screen has a

positioning definition of line 23, column 60, and the first screen DISPLAY statement contains no positioning (line or

column) clauses. Therefore, the origin point for the first DISPLAY is line 23, column 60.

b. For the second screen DISPLAY statement, which contains the positioning clauses AT LINE 5

COLUMN 30, the offset position will be line 28, column 90. (We added the line and column variable-positioning

values in the DISPLAY statement to the origin point established in the previous step.)

 c. Now, we subtract the line and column size of the display device, to find the wrap values: line 4, column

10. This becomes the new origin point.

d. Finally, add the line and column positioning values which in turn will be offset to line 9, column 40.

Therefore, the second screen DISPLAY will begin at line 9, column 40.

e. Determining the origin point for the input field is similar. See the table, Variable Origin for DISPLAY

and ACCEPT, on page 284 in the discussion of the ACCEPT statement.

PROCEDURE DIVISION (DISPLAY)

339

(16) If variable origin is used for a DISPLAY operation on a screen-name, the same variable origin

specification should be used for the corresponding ACCEPT statement of the screen-name in order to have the

operation to be correct.

(17) If screen-name specifies a group item, the group item and all subordinate group, literal, input-output,

output, and update fields are processed in the order in which they appear in the source definition of the screen

description.

(18) The basic operation of the DISPLAY statement is described by the following steps. The discussion

assumes that screen-name represents a group item in the screen description that has several subordinate literal,

output, input-output, and/or update fields. The case where screen-name specifies a single screen-data item is just a

simple subset of the description below.

a. The system moves the data items corresponding to all output, input-output, and update fields (either

specified by or subordinate to screen-name) to the screen-data item. The moves take place according to the rules for

the MOVE statement.

b. The system moves underscores to all input fields (either specified by or subordinate to screen-name).

c. The screen management system processes each field in the order in which it was defined in the source.

d. The various clauses of the screen field are processed in the following order:

BACKGROUND-COLOR & FOREGROUND-COLOR

BLANK SCREEN

COLUMN and LINE positioning

BLANK LINE/ERASE EOL, ERASE EOS, ERASE LINE

BELL

display screen-literal or screen-data with appropriate attributes

e. The screen-data or screen-literal value is displayed with the display attributes set by implied attributes or

the explicit use of attribute control keywords in the screen description entry.

f. The cursor is left positioned at the character position following the last character of the last field or literal

displayed according to the preceding steps.

Format 3: (data-item display with screen control)

(19) The DISPLAY statement causes the content of each operand to be transferred to the console device in the

order listed.

(20) Format 3 assumes that the device is capable of random positioning.

(21) The BACKGROUND-COLOR and FOREGROUND-COLOR phrases determine the background and

foreground colors used during the processing of identifier-1 or literal-1. The color is identified by an integer value

from 0 to 7 specified for literal-5 or literal-8 or as the contents of identifier-5 or identifier-8. It may also be

specified by use of color-name-1 or color-name-2. The color names with their integer values are BLACK=0,

BLUE=1, GREEN=2, CYAN=3, RED=4, MAGENTA=5, BROWN=6, WHITE=7. BACKGROUND is a synonym

for BACKGROUND-COLOR and FOREGROUND is a synonym for FOREGROUND-COLOR.

(22) The BELL phrase causes the bell (or beep) signal to sound as each identifier-1 or literal-1 is processed.

(23) BLINK causes the data displayed for the field to be displayed in a blinking mode.

(24) The COLUMN and LINE phrases are used to position identifier-1 or literal-1 on the screen based on the

line and leftmost character position. The top line is line 1 and each succeeding line has a value one larger than the

Interactive COBOL Language Reference & Developer’s Guide - Part One

340

previous line. The leftmost character of a line is column 1 and the column value increases by one for each

succeeding character on the line. The line number is specified by literal-9 or the contents of identifier-9 and should

be between 1 and 128. The column number is specified by literal-6 or the contents of identifier-9.

The line and column positions are determined as follows:

(a) If the COLUMN phrase is omitted, column 1 is assumed for the first identifier-1 or literal-1 if a UNIT

phrase has been specified for the same identifier-1 or literal-1. Otherwise the column position is set to zero.

(b) If the LINE phrase is omitted or the line position is zero the line position is set as follows: If an ERASE or

ERASE SCREEN phrase is specified for the same identifier-1 or literal-1, then line 1 is assumed. If the column

position is not zero, the line position is the current line plus one. If the column position is zero, the line position

is set to the current line.

(c) If the column position is equal to zero, it is set to the current line.

At runtime, values outside the allowable ranges are wrapped.

(25) The CONTROL phrase is used to dynamically specify options to be used or overridden. Identifier-7 or

literal-7 are used to hold an options list. This list consists of a series of keywords separated by commas. The

keywords may be specified in any order, but are processed from left to right as they appear in the string. While

processing the list, lowercase characters are considered equivalent to the corresponding uppercase character and

blanks or unprintable characters are ignored.

The following keywords impact execution of the DISPLAY statement:

BEEP, BLINK, CONVERT, ERASE, ERASE EOL, ERASE EOS, ERASE LINE, ERASE SCREEN, REVERSE,

HIGH, LOW, NO BEEP, NO BLINK, NO CONVERT, NO ERASE, NO REVERSE, NO UNDERLINE, and

UNDERLINE.

Each of the keywords has the same meaning as when statically coded plus the negative versions (NO xxx) to allow

suppression of the of the option.

(26) The CONVERT phrase is used to control output conversion. If identifier-1 or literal-1 is numeric or

numeric edited and the CONVERT phrase is specified, its value is converted from its internal form a displayable

form such that a leading separate sign is provided for negative values, an explicit decimal point is added for non-

integers, leading zeros are removed and the remaining digits are left-justified. If the SIZE clause adjusts the width of

the field, spaces will fill any unused character positions to the right of the value or the converted values will be

truncated if the field size is too small.

If the CONVERT phrase is not specified or if identifier-1 or literal-1 is not numeric, then identifier-1 or literal-1

will be treated as an alphanumeric item of its internal size and moved to the display field according to the rules for a

alphanumeric to alphanumeric edited MOVE.

(27) The ERASE clause is used to control erasure of portions of the screen prior to displaying identifier-1 or

literal-1. ERASE SCREEN and ERASE with no additional modifiers erases the entire screen and positions the

cursor to line 1 column 1. ERASE LINE erases the current line from column 1 to the end of the line without

changing the cursor position. ERASE EOL erase the screen starting at the cursor position to the end of the line. The

cursor is not affected. ERASE EOS erase the screen starting at the cursor position and continuing to the end of the

screen. The cursor position is not changed.

(28) The HIGH, HIGHLIGHT, BOLD, and BRIGHT options cause identifier-1 or literal-1 to be displayed at

high intensity. The LOW, LOWLIGHT, and DIM options cause identifier-1 or literal-1 to be displayed at low

intensity.

(29) The REVERSE, REVERSED, and REVERSE-VIDEO options cause identifier-1 or literal-1 to be

displayed in reverse video mode. If not specified, data is displayed in normal mode.

PROCEDURE DIVISION (DISPLAY)

341

(30) The SIZE clause controls the size of the screen input field. If the SIZE clause is present and literal-10 or

the contents of identifier-10 is not zero, the size of the screen field is determined by the value of literal-10 or

identifier-10. Otherwise, the size of the screen field is determined by description of identifier-1 or literal-1.

When identifier-1 is numeric and output conversion(CONVERT) is specified or implied, the size is the number of

digits in identifier-1's PICTURE plus 1 if its is signed plus 1 if it is not an integer.

If literal-1 is a figurative constant, the constant will be repeated up to the size specified by identifier-10 or literal-10.

(31) The UNDERLINE and UNDERLINED options cause identifier-1 or literal-1 to be displayed in underlined

mode.

(32) The UNIT clause is for documentation only and is ignored except for its impact on the COLUMN clause

as previously described.

NOTES:

(1) ICOBOL treats all DISPLAY statements as if they are going to a DG terminal. (ICOBOL also treats all

WRITE statements for ASSIGN TO PRINTER or ASSIGN TO DISPLAY files that are opened on the current

console as if they are going to a DG terminal.) It does this to optimize characters sent to the terminal and to keep

track of the state of the screen. To send binary data transparently to the terminal, an ASSIGN TO DISK "@CON"

should be used in conjunction with a WRITE statement. This will insure that ICOBOL will not interpret the

characters as screen display.

(2) The special characters the ICOBOL display module understands are the Print Pass Through ON and OFF

codes, Read Model-ID, Compress mode ON and OFF, and display attributes like dim, blink, roll, reverse, etc. All

tab characters will display as a space when not in binary mode. Other non-printable characters are sent to the screen

as is, but the cursor is not moved.

(3) Neither a non-screen DISPLAY without the NO ADVANCING clause nor a screen DISPLAY statement

should be executed while the terminal has Print Pass Through ON.

Interactive COBOL Language Reference & Developer’s Guide - Part One

342

PROCEDURE DIVISION (DIVIDE)

343

E.18. DIVIDE

E.18.1 Function

The DIVIDE statement divides one numeric data item into others and sets the values of data items equal to the

quotient and remainder.

E.18.2 General Format

Format 1:

DIVIDE INTO { identifier-2 [ROUNDED] }...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-DIVIDE]

Format 2:

DIVIDE INTO GIVING { identifier-3 [ROUNDED] }...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-DIVIDE]

Format 3:

DIVIDE BY GIVING { identifier-3 [ROUNDED] }...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-DIVIDE]

Format 4:

DIVIDE INTO GIVING identifier-3 [ROUNDED] REMAINDER identifier-4

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-DIVIDE]

Format 5:

DIVIDE BY GIVING identifier-3 [ROUNDED] REMAINDER identifier-4

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-DIVIDE]

Interactive COBOL Language Reference & Developer’s Guide - Part One

344

E.18.3 Syntax Rules

(1) Each identifier must refer to an elementary numeric item, except that any identifier associated with the

GIVING or REMAINDER phrase must refer to either an elementary numeric item or an elementary numeric edited

item.

(2) Each literal must be a numeric literal.

(3) The composite of operands, which is the hypothetical data item resulting from the superimposition of all

receiving data items (except the REMAINDER data item) of a given statement aligned on their decimal points, must

not contain more than 18 digits.

E.18.4 General Rules

(1) When Format 1 is used, literal-1 or the value of the data item referenced by identifier-1 is divided into the

value of the data item referenced by identifier-2. The value of the dividend (the value of the data item referenced by

identifier-2) is replaced by this quotient.

(2) When Format 2 is used, literal-1 or the value of the data item referenced by identifier-1 is divided into

literal-2 or the value of the data item referenced by identifier-2 and the result is stored in each data item referenced

by identifier-3.

(3) When Format 3 is used, literal-1 or the value of the data item referenced by identifier-1 is divided by

literal-2 or the value of the data item referenced by identifier-2 and the result is stored in each data item referenced

by identifier-3.

(4) When Format 4 is used, literal-1 or the value of the data item referenced by identifier-1 is divided into

literal-2 or the value of the data item referenced by identifier-2 and the result is stored in the data item referenced by

identifier-3. The remainder is then calculated and the result is stored in the data item referenced by identifier-4. If

identifier-4 is subscripted, the subscript is evaluated immediately before the remainder is stored in the data item

referenced by identifier-4.

(5) When Format 5 is used, literal-1 or the value of the data item referenced by identifier-1 is divided by

literal-2 or the value of the data item referenced by identifier-2 and the division continues as specified for Format 4

above.

(6) Formats 4 and 5 are used when a remainder from the division operation is desired, namely identifier-4. The

remainder in COBOL is defined as the result of subtracting the product of the quotient (identifier-3) and the divisor

from the dividend. If identifier-3 is defined as a numeric edited item, the quotient used to calculate the remainder is

an intermediate field which contains the unedited quotient. If ROUNDED is specified, the quotient used to calculate

the remainder is an intermediate field which contains the quotient of the DIVIDE statement, truncated rather than

rounded. This intermediate field is defined as a numeric field which contains the same number of digits, the same

decimal point location, and the same presence or absence of a sign as the quotient (identifier-3).

(7) In Formats 4 and 5, the accuracy of the REMAINDER data item (identifier-4) is defined by the calculation

described above. Appropriate decimal alignment and truncation (not rounding) will be performed for the value of

the data item referenced by identifier-4, as needed.

(8) When the ON SIZE ERROR phrase is used in Formats 4 and 5, the following rules pertain:

a. If the size error occurs on the quotient, no remainder calculation is meaningful. Thus, the contents of the

data items referenced by both identifier-3 and identifier-4 will remain unchanged.

b. If the size error occurs in the remainder, the content of the data item referenced by identifier-4 remains

unchanged. However, as with other instances of multiple results of arithmetic statements, the user will have to do his

own analysis to recognize which situation has actually occurred.

PROCEDURE DIVISION (DIVIDE)

345

(9) Additional rules and explanations relative to this statement are given under the appropriate paragraphs. (See

Scope of Statements, page 253; The ROUNDED Phrase, page 245; The ON SIZE ERROR Phrase, page 246; The

Arithmetic Statements, page 249; Overlapping Operands, page 249; and Multiple Results in Arithmetic Statements,

page 249.

Interactive COBOL Language Reference & Developer’s Guide - Part One

346

PROCEDURE DIVISION (EVALUATE)

347

E.19. EVALUATE (ANSI 74 and ANSI 85)

E.19.1 Function

The EVALUATE statement describes a multi-branch, multi-join structure. It may cause multiple conditions to be

evaluated. The subsequent action of the runtime element depends on the results of these evaluations.

E.19.2 General format

EVALUATE selection-subject [ALSO selection-subject]...

{ { W HEN selection-object [ALSO selection-object]... }... imperative-statement-1 }...

 [W HEN OTHER imperative-statement-2]

[END-EVALUATE]

where

selection-subject is:

selection-object is:

range-expression is:

indicator-value is:

E.19.3 Syntax rules

(1) The words THROUGH and THRU are equivalent.

(2) The number of selection objects within each set of selection objects shall be equal to the number of

selection subjects.

(3) The two operands in a range-expression shall be of the same class and shall not be of class pointer.

(4) Each selection object within a set of selection objects shall correspond to the selection subject having the

same ordinal position within the set of selection subjects according to the following rules:

a. Identifiers, literals, or expressions appearing within a selection object shall be valid operands for

comparison to the corresponding operand in the set of selection subjects in accordance with the rules for Relation

conditions, on Page 233.

Interactive COBOL Language Reference & Developer’s Guide - Part One

348

b. Condition-2 or the words TRUE or FALSE appearing as a selection object shall correspond to

condition-1 or the words TRUE or FALSE in the set of selection subjects.

c. The word ANY may correspond to a selection subject of any type.

d. (ISQL) Date-time and interval operands are permitted subject to the rules for Relation Conditions, page

233, and Arithmetic Expressions, page 230.

e. (ISQL) Indicator-value appearing as a selection object shall correspond to identifier-1 as a selection

subject, where identifier-1 has usage INDICATOR.

(5) The permissible combinations of selection subject and selection object operands are indicated in the

following table, Combination of operands in the EVALUATE statement.

Selection object

Selection subject

Identifier Literal Arithmetic
expression

Condition TRUE or
FALSE

 [NOT] identifier Y Y Y

 [NOT] literal Y Y

 [NOT] arithmetic-expression Y Y Y

 [NOT] range-expression Y Y Y

 [NOT] Indicator-value Y*

 Condition Y Y

 TRUE or FALSE Y Y

 ANY Y Y Y Y Y

 The letter 'Y' indicates a permissible combination.
 A space indicates an invalid combination.
 * indicates restrictions apply

TABLE 24. Combination of operands in the EVALUATE statement

E.19.4 General rules

 (1) At the beginning of the execution of the EVALUATE statement, each selection subject is evaluated and

assigned a value, a range of values, or a truth value as follows:

a. Any selection subject specified by identifier-1 is assigned the value and class of the data item referenced

by the identifier.

b. Any selection subject specified by literal-1 is assigned the value and class of the specified literal.

c. Any selection subject specified by arithmetic-expression-1 is assigned a numeric value according to the

rules for evaluating an arithmetic expression.

d. Any selection subject specified by condition-1 is assigned a truth value according to the rules for

evaluating conditional expressions.

PROCEDURE DIVISION (EVALUATE)

349

e. Any selection subject specified by the words TRUE or FALSE is assigned a truth value. The truth value

'true' is assigned to those items specified with the word TRUE, and the truth value 'false' is assigned to those items

specified with the word FALSE.

(2) The execution of the EVALUATE statement proceeds by processing each WHEN phrase from left to right

in the following manner:

a. Each selection object within the set of selection objects for each WHEN phrase is paired with the

selection subject having the same ordinal position within the set of selection subjects. The result of the analysis of

this set of selection subjects and objects is either true or false as follows:

1. If the selection object is the word ANY, the result is true.

2. If the selection object is condition-2, the selection subject is either TRUE or FALSE. If the

truth value of the selection subject and selection object match, the result of the analysis is true.

If they do not match, the result is false.

3. If the selection object is either TRUE or FALSE, the selection subject is condition-1. If the

truth value of the selection subject and selection object match, the result of the analysis is true.

If they do not match, the result is false.

4. If the selection object is a range-expression, the pair is considered to be a conditional

expression of one of the following forms:

when "NOT" is not specified in the selection object;

selection-subject >= left-part AND selection-subject <= right-part

when "NOT" is specified in the selection object

selection-subject < left-part OR selection-subject > right-part

where left-part is identifier-3, literal-3, or arithmetic-expression-3 and right-part is identifier-4,

literal-4, or arithmetic-expression-4. The result of the analysis is the truth value of the resulting

conditional expression.

5. If the selection object is identifier-2, literal-2, or arithmetic-expression-2, the pair is considered to

be a conditional expression of the following form:

selection-subject [NOT] = selection-object

where "NOT" is present if it is present in the selection object. The result of the analysis is the truth

value of the resulting conditional expression.

6. (ISQL) If the selection object is indicator-value, the pair is considered to be an indicator condition

of the following form:

Identifier-1 IS [NOT] indicator-value

b. If the result of the analysis is true for every pair in a WHEN phrase, that WHEN phrase satisfies the set

of selection subjects and no more WHEN phrases are analyzed.

c. If the result of the analysis is false for any pair in a WHEN phrase, no more pairs in that WHEN phrase

are evaluated and the WHEN phrase does not match the set of selection subjects.

Interactive COBOL Language Reference & Developer’s Guide - Part One

350

EVALUATE YEAR-CODE ALSO LETTER-GRADE
 WHEN 1 THRU 2 ALSO “A” THRU “C”
 PERFORM PROC-1
 WHEN 3 ALSO “A” THRU “B”
 PERFORM PROC-2
 WHEN 4 ALSO ANY
 PERFORM PROC-3
 WHEN OTHER
 PERFORM PROC-4
 END-EVALUATE.

d. This procedure is repeated for subsequent WHEN phrases, in the order of their appearance in the source

element, until either a WHEN phrase satisfying the set of selection subjects is selected or until all sets of selection

objects are exhausted.

(3) The execution of the EVALUATE statement then proceeds as follows:

a. If a WHEN phrase is selected, execution continues with the first imperative-statement-1 following the

selected WHEN phrase.

b. If no WHEN phrase is selected and a WHEN OTHER phrase is specified, execution continues with

imperative-statement-2.

c. The execution of the EVALUATE statement is terminated when execution reaches the end of

imperative-statement-1 of the selected WHEN phrase or the end of imperative-statement-2, or when no WHEN

phrase is selected and no WHEN OTHER phrase is specified.

E.19.5 Example

The following code demonstrates the EVALUATE statement:

EXAMPLE 22. EVALUATE

In this example, if YEAR-CODE is 1 or 2 and LETTER-GRADE is A, B or C, PROC-1 is performed. If

YEAR-CODE is 3 and LETTER-GRADE is A or B, PROC-2 is performed. If YEAR-CODE is 4, PROC-3 is

performed regardless of LETTER-GRADE. Any other combination of YEAR-CODE and LETTER-GRADE will

cause the execution of PROC-4.

PROCEDURE DIVISION (EXECUTE)

351

E.20. EXECUTE (ISQL)

E.20.1 Function

The EXECUTE statement provides the ability to execute an SQL statement using a statement that has been prepared

using the PREPARE statement.

E.20.2 General Format

EXECUTE [INTO { identifier-2 [INDICATOR identifier-3] } ...]

[USING { [INDICATOR identifier-5] } ...]

[ON SQLERROR imperative-statement-1]

[NOT ON SQLERROR imperative-statement-2]

[END-EXECUTE]

E.20.3 Syntax Rules

(1) Literal-1 must specify a nonnumeric literal and must not specify a figurative constant.

(2) Identifier-1 must specify an alphanumeric data item.

(3) Literal-1 or the content of the data item referenced by identifier-1 must not exceed 30 characters in length.

(4) Identifier-3 and identifier-5 must identify data items with usage INDICATOR.

E.20.4 General Rules

(1) Used to execute an SQL statement that was previously prepared by means of a PREPARE statement. See

the PREPARE statement, page 412.

(2) Literal-1 or the content of the data item represented by identifier-1 specifies the name of a statement

container at runtime. The statement container must hold the result of a previously executed PREPARE statement for

the currently active connection.

(3) If there is no currently active connection, it is an error and SQLSTATE will be set to “HY010", which is

“Function sequence error”.

(4) If the name of the statement container cannot be found in the context of the currently active connection, it is

an error and SQLSTATE will be set to “26501", which is “The statement identifier does not exist”.

(5) If the INTO clause is specified, the data items specified by identifier-2 will receive the first row of the result

set of the executed statement. If any identifier-2 has an associated INDICATOR variable, identifier-3, it will be set

in conjunction with the setting of the value of identifier-2. The first identifier-2 will be set to the first column in the

row, the second identifier-2 will be set to the second column in the row, etc. If there are more columns in the row

than specified identifier-2's then SQLSTATE will be set to “01503". If there are no rows in the result set,

SQLSTATE will be set to “02000", which is “No data was affected by the operation”. If there are additional rows in

the result set, they can be fetched with the FETCH statement.

(6) If the INTO clause is not specified, and the EXECUTE statement is successful, the results can be fetched

with the FETCH statement.

Interactive COBOL Language Reference & Developer’s Guide - Part One

352

(7) If there is no associated indicator variable for a null-able column that is null, SQLSTATE will be set to

“22002", which is “Indicator variable required but not supplied”.

(8) When the prepared statement uses dynamic parameter specifiers, the USING clause must be specified, and

the values of literal-2 or the data items specified by identifier-4 are used in the order specified to satisfy the binding

of values to dynamic parameter specifiers. The literals or data items should be of an appropriate class and category

for their usage in the SQL statement and any associated INDICATOR variable, specified by identifier-5, should be

set before the EXECUTE statement is executed.

(9) If there is no currently active connection at the time the EXECUTE statement is executed, it is an error and

SQLSTATE will be set to “HY010", which is “Function sequence error”.

(10) Upon completion of the EXECUTE statement, the following occurs in the order specified:

a. The value of the SQLSTATE data item updated with the status of the operation.

b. If the value of the SQLSTATE class field is “00" or “01", the statement is successful. Control is

transferred to the end of the EXECUTE statement or to imperative-statement-2, if specified. In the latter case,

execution continues according to the rules for each statement specified in imperative-statement-2. If a procedure

branching or conditional statement which causes explicit transfer of control is executed, control is transferred in

accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-2,

control is transferred to the end of the EXECUTE statement.

c. If the value of the SQLSTATE class field is not “00" or “01", the statement is unsuccessful. Control is

transferred to the end of the EXECUTE statement or to imperative-statement-1, if specified. In the latter case,

execution continues according to the rules for each statement specified in imperative-statement-1. If a procedure

branching or conditional statement which causes explicit transfer of control is executed, control is transferred in

accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-1,

control is transferred to the end of the EXECUTE statement.

(11) The END-EXECUTE phrase delimits the scope of the EXECUTE statement.

(12) More on SQLSTATE can be found on page 133.

PROCEDURE DIVISION (EXECUTE IMMEDIATE)

353

E.21. EXECUTE IMMEDIATE (ISQL)

E.21.1 Function

The EXECUTE IMMEDIATE statement provides the ability to execute an SQL statement by directly preparing and

executing the statement as a single operation. No result set is allowed. No parameter markers are allowed.

E.21.2 General Format

EXECUTE IMMEDIATE

[ON SQLERROR imperative-statement-1]

[NOT ON SQLERROR imperative-statement-2]

[END-EXECUTE]

E.21.3 Syntax Rules

(1) Literal-1 must specify a nonnumeric literal and must not specify a figurative constant.

(2) Identifier-1 must specify an alphanumeric data item.

E.21.4 General Rules

(1) Used to both prepare and execute a basic dynamic SQL statement. It cannot be used with parameter

markers. Use the PREPARE and EXECUTE statements for that.

(2) Literal-1 or the content of the data item represented by identifier-1 specifies the text of the SQL statement

that is to be prepared for execution. The text of the SQL statement may not contain references to COBOL data

items, nor may it contain any use of the dynamic parameter specifier.

(3) The set of SQL statements that may be specified for preparation and execution is limited to the following:

• DELETE

• INSERT

• UPDATE

(4) If there is no currently active connection at the time the EXECUTE IMMEDIATE statement is executed, it

is an error and SQLSTATE will be set to “HY010", which is “Function sequence error”.

(5) Upon completion of the EXECUTE IMMEDIATE statement, the following occurs in the order specified:

a. The value of the SQLSTATE data item updated with the status of the operation.

b. If the value of the SQLSTATE class field is “00" or “01", the statement is successful. Control is

transferred to the end of the EXECUTE IMMEDIATE statement or to imperative-statement-2, if specified. In the

latter case, execution continues according to the rules for each statement specified in imperative-statement-2. If a

procedure branching or conditional statement which causes explicit transfer of control is executed, control is

transferred in accordance with the rules for the statement; otherwise, upon completion of the execution of

imperative-statement-2, control is transferred to the end of the EXECUTE IMMEDIATE statement.

c. If the value of the SQLSTATE class field is not “00" or “01", the statement is unsuccessful. Control is

transferred to the end of the EXECUTE IMMEDIATE statement or to imperative-statement-1, if specified. In the

latter case, execution continues according to the rules for each statement specified in imperative-statement-1. If a

procedure branching or conditional statement which causes explicit transfer of control is executed, control is

Interactive COBOL Language Reference & Developer’s Guide - Part One

354

transferred in accordance with the rules for the statement; otherwise, upon completion of the execution of

imperative-statement-1, control is transferred to the end of the EXECUTE IMMEDIATE statement.

(6) The END-EXECUTE phrase delimits the scope of the EXECUTE IMMEDIATE statement.

(7) More on SQLSTATE can be found on page 133.

NOTE: If the same SQL statement is to be executed more than once, it is more efficient to use the PREPARE and

EXECUTE statements rather than the EXECUTE IMMEDIATE statement.

PROCEDURE DIVISION (EXIT)

355

E.22. EXIT

E.22.1 Function

The EXIT statement provides a common end point for a series of procedures.

E.22.2 General Format

EXIT

E.22.3 Syntax Rules

(1) The EXIT statement must appear only in a sentence by itself and comprise the only sentence in the

paragraph.

E.22.4 General Rules

(1) An EXIT statement serves only to enable the user to assign a procedure-name to a given point in a program.

Such an EXIT statement has no other effect on the compilation or execution of the program.

Interactive COBOL Language Reference & Developer’s Guide - Part One

356

PROCEDURE DIVISION (EXIT PROGRAM)

357

E.23. EXIT PROGRAM

E.23.1 Function

The EXIT PROGRAM statement marks the logical end of a called program.

E.23.2 General Format

EXIT PROGRAM

E.23.3 Syntax Rules

(1) If an EXIT PROGRAM statement appears in a consecutive sequence of imperative statements within a

sentence, it must appear as the last statement in that sequence.

E.23.4 General Rules

(1) If the EXIT PROGRAM statement is executed in a program which is not under the control of a calling

program, the EXIT PROGRAM statement causes execution of the program to continue with the next executable

statement.

(2) The execution of an EXIT PROGRAM statement in a called program which does not possess the initial

attribute causes execution to continue with the next executable statement following the CALL statement in the

calling program. The program state of the calling program is not altered and is identical to that which existed at the

time it executed the CALL statement except that the contents of data items and the contents of data files shared

between the calling and called program may have been changed. The program state of the called program is not

altered except that the ends of the ranges of all PERFORM statements executed by that called program are

considered to have been reached.

(3) The storage areas associated with all items in the USING phrase of the Procedure Division header of the

called program are copied to the associated storage areas, in the USING phrase, of the calling program.

(4) Besides the actions specified in general rule 2, the execution of an EXIT PROGRAM statement in a called

program which possesses the initial attribute is equivalent to also executing a CANCEL statement referencing that

program.

Interactive COBOL Language Reference & Developer’s Guide - Part One

358

PROCEDURE DIVISION (EXPUNGE)

359

E.24. EXPUNGE (VXCOBOL)

E.24.1 Function

The EXPUNGE statement physically removes a file from the file system. EXPUNGE is an extension to ANSI

COBOL. It is equivalent to DELETE FILE.

E.24.2 General Format

EXPUNGE { file-name }...

E.24.3 General Rules

(1) The file referenced by file-name must be a disk file, you must have appropriate permissions, and the file

must not be open at the time of the execution of this statement. If the files does not exist, no error is given.

(2) For a relative, indexed, or INFOS file all parts of that file are removed from the file system.

(3) For an INFOS II file the indexed file and the database file specified in the SELECT statement are deleted.

If the name of the database file was not specified with an ASSIGN DATA clause, a .DB file with the same name as

that of the indexed file is deleted. For a U/FOS file, the database specified in the SELECT is deleted, i.e. name.udb.

(4) After the successful execution of an EXPUNGE statement, the identified file has been physically removed

from the file system and can no longer be accessed.

(5) The execution of the EXPUNGE statement causes the value of the I-O status associated with file-name to be

updated.

(6) For systems supporting UNIX symbolic links, DELETE FILE will delete the symbolic link, not the

resolution file.

(7) On UNIX, files cannot be individually delete-protected. To make a file delete-protected on UNIX, you

must remove write (w) permission to the directory in which the file resides. If a directory has no write access, you

cannot create, modify or delete files in that directory. On Windows, the read-only attribute will protect the file from

deletion.

(8) For ANSI 74 and ANSI 85, If the specified file is a sequential file, ICOBOL will scan the Printer Control

file and if there is an entry there that points to the file being deleted, the entry in the Printer Control file will be

removed.

(9) If file-name is a sort/merge file, it is ignored.

Interactive COBOL Language Reference & Developer’s Guide - Part One

360

PROCEDURE DIVISION (EXPUNGE SUB-INDEX)

361

E.25. EXPUNGE SUB-INDEX (VXCOBOL)

E.25.1 Function

The EXPUNGE SUB-INDEX statement deletes or unlinks a subindex from a specified key.

E.25.2 General Format

EXPUNGE SUB-INDEX file-name

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-EXPUNGE]]

E.25.3 Syntax Rules

(1) File-name is a filename that specifies an INFOS file opened for OUTPUT or I/O and selected for ALLOW

SUB-INDEX.

(2) Identifier-1 is an alphanumeric data item that specifies a record key associated with file-name.

E.25.4 General Rules

(1) ICOBOL decrements the use count of the subindex associated with the specified key. If the use count of

the subindex goes to zero, the subindex is unlinked from the key and physically deleted. If the use count of the

subindex remains one or more, the subindex is simply unlinked.

(2) If the position phrase is omitted, RETAIN POSITION is the default.

(3) If the relative option and the KEY series phrase are omitted, the default is the first key in the SELECT

clause.

(4) The occurrence number is not updated.

(5) FEEDBACK is not used and is not updated.

(6) KEY LENGTH is unaffected.

(7) The subindex to remove is determined according to what is specified in the relative option phrase and/or the

KEY series phrase.

(8) FIX POSITION causes the record pointer to move from the current position to the position specified in this

statement. RETAIN POSITION causes the record position to remain at the position it was on before the execution

of this statement. RETAIN is the default.

Interactive COBOL Language Reference & Developer’s Guide - Part One

362

(9) The relative motion option without the KEY series phrase allows access to the index file relative to that

file's current record position.

(10) Using the KEY series phrase without the relative motion option causes the key path specified to begin with

the top index in the hierarchy and follow a downward motion.

(11) If the KEY series phrase is specified, each key, identifier-1, must be declared in the SELECT statement for

file-name. If the relative motion option and KEY series phrase at both specified only UP, DOWN, and STATIC are

allowed. The relative motion option is processed first and the key path is used. If both are omitted, STATIC is the

default.

(12) Transfer of control following the successful or unsuccessful execution of the EXPUNGE SUB-INDEX

operation depends on the presence or absence of the optional INVALID KEY and NOT INVALID KEY phrases in

the EXPUNGE SUB-INDEX statement.

(13) INVALID KEY clauses on I/O statements are ONLY invoked when an Invalid Key error, as determined by

a File Status of 2x where x can be any character 0 - 9 or A - Z, is generated. All other error conditions will cause the

associated USE procedure, if present, as defined in the DECLARATIVES section to be executed. (See The Invalid

Key Condition, page 271, for more a more comprehensive discussion.)

PROCEDURE DIVISION (FETCH)

363

E.26. FETCH (ISQL)

E.26.1 Function

The FETCH statement provides the ability to fetch the next row from a result set. FETCH works using a forward-

only-cursor.

E.26.2 General Format

FETCH NEXT FOR INTO { identifier-2 [INDICATOR identifier-3] } ...

[ON SQLERROR imperative-statement-1]

[NOT ON SQLERROR imperative-statement-2]

[END-FETCH]

E.26.3 Syntax Rules

(1) Literal-1 must specify a nonnumeric literal and must not specify a figurative constant.

(2) Identifier-1 must specify an alphanumeric data item.

(3) Identifier-3 must identify a data item with usage INDICATOR.

E.26.4 General Rules

(1) Literal-1 or the content of the data item represented by identifier-1 specifies the name of a statement

container at runtime. The statement container must hold the result of a previously executed EXECUTE statement for

the currently active connection.

(2) If there is no currently active connection or the previously executed EXECUTE statement was not

successful, it is an error and SQLSTATE will be set to “HY010", which is “Function sequence error”.

(3) If the name of the statement container cannot be found in the context of the currently active connection, it is

an error and SQLSTATE will be set to “26501", which is “The statement identifier does not exist”.

(4) If there is no next row, the SQLSTATE will be set to “02000", which is “No data was affected by the

operation”. If there were no rows at all in the result set, SQLSTATE will be set to “24000", which is “Invalid cursor

state”.

(5) The data items specified by identifier-2 will receive the results of the fetched row. If any identifier-2 has an

associated INDICATOR variable, identifier-3, it will be set in conjunction with the setting of the value of

identifier-2. The first identifier-2 will be set to the first column in the row, the second identifier-2 will be set to the

second column in the row, etc. If there are more columns in the row than specified identifier-2's then SQLSTATE

will be set to “01503".

(6) If there is no associated indicator variable for a null-able column that is null, SQLSTATE will be set to

“22002", which is “Indicator variable required but not supplied”.

(7) Upon completion of the FETCH statement, the following occurs in the order specified:

a. The value of the SQLSTATE data item updated with the status of the operation.

b. If the value of the SQLSTATE class field is “00" or “01", the statement is successful. Control is

transferred to the end of the FETCH statement or to imperative-statement-2, if specified. In the latter case,

Interactive COBOL Language Reference & Developer’s Guide - Part One

364

execution continues according to the rules for each statement specified in imperative-statement-2. If a procedure

branching or conditional statement which causes explicit transfer of control is executed, control is transferred in

accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-2,

control is transferred to the end of the FETCH statement.

c. If the value of the SQLSTATE class field is not “00" or “01", the statement is unsuccessful. Control is

transferred to the end of the FETCH statement or to imperative-statement-1, if specified. In the latter case,

execution continues according to the rules for each statement specified in imperative-statement-1. If a procedure

branching or conditional statement which causes explicit transfer of control is executed, control is transferred in

accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-1,

control is transferred to the end of the FETCH statement.

(8) The END-FETCH phrase delimits the scope of the FETCH statement.

(9) More on SQLSTATE can be found on page 133.

PROCEDURE DIVISION (GET DIAGNOSTICS)

365

E.27. GET DIAGNOSTICS (ISQL)

E.27.1 Function

The GET DIAGNOSTICS statement allows the program to retrieve information from the diagnostics area of the

SQL database connection. There are two formats to this statement. The first retrieves information relating to the

overall execution of the immediately preceding SQL statement (not counting GET DIAGNOSTICS statements

themselves). The second format is used to gain more specific information regarding some particular exception.

E.27.2 General Format

Format 1:

[ON EXCEPTION imperative-statement-1]

[NOT ON EXCEPTION imperative-statement-2]

[END-GET]

Format 2:

[ON EXCEPTION imperative-statement-1]

[NOT ON EXCEPTION imperative-statement-2]

[END-GET]

E.27.3 Syntax Rules

Format 1:

(1) Identifier-1 must specify an integer data item without any p-scaling with the ROW COUNT or NUMBER

phrase.

(2) Identifier-1 must specify an alphanumeric data item with the COMMAND FUNCTION or DYNAMIC

FUNCTION phrase.

Format 2:

(3) Identifier-2/Literal-1 must specify an integer value.

(4) Identifier-3 must specify an integer data item without any p-scaling with the NATIVE ERROR or

MESSAGE LENGTH phrase.

(5) Identifier-3 must specify an alphanumeric data item with the SQLSTATE or MESSAGE TEXT phrase.

E.27.4 General Rules

(1) All assignment operations are carried out in the order specified in the source text.

Interactive COBOL Language Reference & Developer’s Guide - Part One

366

(2) It is permissable to specify a given assignment phrase more than once.

(3) The GET DIAGNOSTICS statement itself does not effect the diagnostics information stored in the system.

(4) The diagnostics information is valid until the next ISQL statement is executed.

(5) Other than the requirement that the first diagnostic record corresponds to the SQLSTATE returned by an

ISQL statement, the diagnostic records are not in any particular order. However, since they are added as they are

encountered, they will generally follow the pattern that diagnostics pertaining to statement preparation (such as

binding parameters) will occur before the diagnostics for the main operation, which will precede diagnostics from

returning results.

Format 1:

(6) ROW COUNT returns the number of rows affected by an INSERT, UPDATE, or DELETE (ISQL)

statement. It does not necessarily return a meaningful value for any other statement.

(7) NUMBER returns the number of diagnostic messages that are available in the diagnostics area. Format 2

can be used to retrieve each individual message.

(8) COMMAND FUNCTION returns a string that specifies the ISQL statement that was executed.

(9) DYNAMIC FUNCTION returns a string for EXECUTE or EXECUTE IMMEDIATE that specifies the

dynamic SQL statement that was executed (e.g., SELECT). For all other statements, it will return an empty string.

Format 2:

(10) The exception number specifier in identifier-2|literal-1 must be greater than zero and less than or equal to

the number of exceptions as would be returned into identifier by a “GET DIAGNOSTICS identifier = NUMBER”

statement.

(11) A non-success SQLSTATE returned by an ISQL statement corresponds to the value returned by GET

DIAGNOSTICS EXCEPTION 1 id = SQLSTATE. I.E., SQLSTATE returns the SQLSTATE corresponding to the

diagnostic record.

(12) NATIVE ERROR returns the numeric error code that may have orginiated in the driver, the driver

manager, or the runtime system. It is usually not useful to the logic of the application but may provide additional

diagnostic information.

(13) MESSAGE TEXT returns a diagnostic message that gives information about the error. It provides useful

information as to the specific problem encountered.

(14) MESSAGE LENGTH returns the length of the text message returned in MESSAGE TEXT. This is

usually not needed.

All Formats:

.

(15) Upon completion of the GET DIAGNOSTICS statement, the following occurs in the order specified:

a. If the GET DIAGNOSTICS was successful, control is transferred to the end of the GET DIAGNOSTICS

statement or to imperative-statement-2, if specified. In the latter case, execution continues according to the rules for

each statement specified in imperative-statement-2. If a procedure branching or conditional statement which causes

explicit transfer of control is executed, control is transferred in accordance with the rules for the statement;

PROCEDURE DIVISION (GET DIAGNOSTICS)

367

otherwise, upon completion of the execution of imperative-statement-2, control is transferred to the end of the GET

DIAGNOSTICS statement.

b. If the GET DIAGNOSTICS is unsuccessful, control is transferred to the end of the GET

DIAGNOSTICS statement or to imperative-statement-1, if specified. In the latter case, execution continues

according to the rules for each statement specified in imperative-statement-1. If a procedure branching or

conditional statement which causes explicit transfer of control is executed, control is transferred in accordance with

the rules for the statement; otherwise, upon completion of the execution of imperative-statement-1, control is

transferred to the end of the GET DIAGNOSTICS statement.

(16) The END-GET phrase delimits the scope of the GET DIAGNOSTICS statement.

(17) More on SQLSTATE can be found on page 133.

Interactive COBOL Language Reference & Developer’s Guide - Part One

368

PROCEDURE DIVISION (GO TO)

369

E.28. GO TO

E.28.1 Function

The GO TO statement causes control to be transferred from one part of the Procedure Division to another.

E.28.2 General Format

Format 1:

GO TO procedure-name-1

Format 2:

GO TO { procedure-name-1 }... DEPENDING ON identifier

E.28.3 Syntax Rules

(1) Identifier must reference a numeric elementary data item which is an integer.

(2) If a GO TO statement represented by Format 1 appears in a consecutive sequence of imperative statements

within a sentence, it must appear as the last statement in that sequence.

(3) A GO TO cannot transfer control between:

a. A procedure-name in a Declarative section from a nondeclarative section.

b. A procedure-name in a nondeclarative section from a Declaratives section.

c. A Declaratives section from another Declaratives section.

d. The above conditions are treated as errors for ANSI 74 and ANSI 85, but may be converted to warnings

with the -G g compiler switch. VXCOBOL treats these conditions as warnings.

(4) No more than 254 procedure-name-1 entries may be specified.

E.28.4 General Rules

(1) When a GO TO statement represented by Format 1 is executed, control is transferred to procedure-name-1.

(2) When a GO TO statement represented by Format 2 is executed, control is transferred to procedure-name-1,

etc., depending on the value of identifier being 1, 2, ... , n. If the value of identifier is anything other than the

positive or unsigned integers 1, 2, ... , n, (where n is the number of procedure-name-1 's specified), then no transfer

occurs and control passes to the next statement in the normal sequence for execution.

Interactive COBOL Language Reference & Developer’s Guide - Part One

370

PROCEDURE DIVISION (GOBACK)

371

E.29. GOBACK

E.29.1 Function

The GOBACK statement marks the logical end of a called program.

The GOBACK statement is equivalent to the sequence:

EXIT PROGRAM.
STOP RUN.

E.29.2 General Format

GOBACK

E.29.3 Syntax Rules

(1) If a GOBACK statement appears in a consecutive sequence of imperative statements within a sentence, it

must appear as the last statement in that sequence.

E.29.4 General Rules

(1) If the GOBACK statement is executed in a program which is not under the control of a calling program, the

GOBACK statement causes execution of the program to act as if a STOP RUN statement had been performed.

(2) The execution of an GOBACK statement in a called program which does not possess the initial attribute

causes execution to continue with the next executable statement following the CALL statement in the calling

program. The program state of the calling program is not altered and is identical to that which existed at the time it

executed the CALL statement except that the contents of data items and the contents of data files shared between the

calling and called program may have been changed. The program state of the called program is not altered except

that the ends of the ranges of all PERFORM statements executed by that called program are considered to have been

reached.

(3) The storage areas associated with all items in the USING phrase of the Procedure Division header of the

called program are copied to the associated storage areas, in the USING phrase, of the calling program.

(4) Besides the actions specified in general rule 2, the execution of a GOBACK statement in a called program

which possesses the initial attribute is equivalent to also executing a CANCEL statement referencing that program.

Interactive COBOL Language Reference & Developer’s Guide - Part One

372

PROCEDURE DIVISION (IF)

373

E.30. IF

E.30.1 Function

The IF statement causes a condition to be evaluated. The subsequent action of the object program depends on

whether the value of the condition is true or false.

E.30.2 General Format

IF condition THEN

E.30.3 Syntax Rules

(1) Statement-1 and statement-2 represent either an imperative statement or a conditional statement optionally

preceded by an imperative statement. A further description of the rules governing statement-1 and statement-2 is

given elsewhere.

(2) The ELSE NEXT SENTENCE phrase may be omitted if it immediately precedes to the terminal period of

the sentence.

(3) If the END-IF phrase is specified, the NEXT SENTENCE phrase must not be specified.

E.30.4 General Rules

(1) The scope of the IF statement may be terminated by any of the following:

a. An END-IF phrase at the same level of nesting.

b. A separator period.

c. If nested, by an ELSE phrase associated with an IF statement at a higher level of nesting.

(2) When an IF statement is executed, the following transfers of control occur:

a. If the condition is true and statement-1 is specified, control is transferred to the first statement of

statement-1 and execution continues according to the rules for each statement specified in statement-1. If a

procedure branching or conditional statement is executed which causes an explicit transfer of control, control is

explicitly transferred in accordance with the rules of that statement. Upon completion of the execution of

statement-1, the ELSE phrase, if specified, is ignored and control passes to the end of the IF statement.

b. If the condition is true and the NEXT SENTENCE phrase is specified instead of statement-1, the ELSE

phrase, if specified, is ignored and control passes to the next executable sentence.

c. If the condition is false and statement-2 is specified, statement-1 or its surrogate NEXT SENTENCE is

ignored, control is transferred to the first statement of statement-2, and execution continues according to the rules for

each statement specified in statement-2. If a procedure branching or conditional statement is executed which causes

an explicit transfer of control, control is explicitly transferred in accordance with the rules of that statement. Upon

completion of the execution of statement-2, control passes to the end of the IF statement.

d. If the condition is false and the ELSE phrase is not specified, statement-1 is ignored and control passes

to the end of the IF statement.

Interactive COBOL Language Reference & Developer’s Guide - Part One

374

e. If the condition is false and the ELSE NEXT SENTENCE phrase is specified, statement-1 is ignored and

control passes to the next executable sentence.

(3) Statement-1 and/or statement-2 may contain an IF statement. In this case, the IF statement is said to be

nested. More detailed rules on nesting are given in the appropriate paragraph. (See Scope of Statements, page 253.)

IF statements within IF statements may be considered as paired IF and ELSE combinations, proceeding

from left to right. Thus, any ELSE or END-IF encountered is considered to apply to the immediately preceding IF

that has not been already paired with an ELSE or END-IF.

PROCEDURE DIVISION (INITIALIZE)

375

E.31. INITIALIZE (ANSI 74 and ANSI 85)

E.31.1 Function

The INITIALIZE statement provides the ability to set selected data items to specified values.

E.31.2 General Format

INITIALIZE { identifier-1 }... [W ITH FILLER] [TO VALUE]

[THEN REPLACING { category-name DATA BY }...]

[THEN TO DEFAULT]

where category-name is:

(ISQL) The following category-name selections are added:

E.31.3 Syntax rules

(1) Identifier-1 must be a valid receiving operand of a MOVE statement, or an item with usage POINTER or

INDICATOR.

(2) For each POINTER or INDICATOR phrase used as the category-name stated in the REPLACING phrase,

identifier-2 shall be specified, and a SET statement with identifier-2 as the sending operand and an item of the

specified category as the receiving item shall be valid..

(3) For each other category-name stated in the REPLACING phrase, a MOVE statement with identifier-2 or

literal-1 as sending operand and an item of the category specified by category-name as receiving operand must be

valid.

(4) An index data item may not appear as an operand of an INITIALIZE statement.

(5) The data description entry for the data item referenced by identifier-1 shall not contain a RENAMES clause.

(6) The same category shall not be repeated in a REPLACING phrase.

Interactive COBOL Language Reference & Developer’s Guide - Part One

376

E.31.4 General rules

(1) The data item referenced by identifier-1 represents the receiving item.

(2) If the REPLACING phrase is specified, literal-1 and the data item referenced by identifier-2 represent the

s7ending item.

(3) The keywords in category-names correspond to a category of data as specified in B.3 Concept of Classes of

Data on page 118. If ALL is specified in the VALUE phrase, it is as if all of the categories listed in category-names

were specified.

(4) Whether identifier-1 references an elementary item or a group item, the effect of the execution of the

INITIALIZE statement is as though a series of implicit MOVE or SET statements, each of which has an elementary

data item as its receiving operand.

If the receiving operand is usage POINTER or INDICATOR, the implicit statement is

SET receiving-operand TO sending-operand

Otherwise, the implicit statement is

MOVE sending-operand TO receiving-operand

were executed, where the sending-operand is as defined in General Rule 6 and the receiving-operand is as defined in

General Rule 5.

(5) The receiving-operand in each implicit MOVE or SET statement is determined by applying the following

steps in order:

a. First, the following data items are excluded as receiving-operands:

1. Any identifiers that are not valid receiving operands of a MOVE statement, except items of usage

POINTER or INDICATOR.

2. If the FILLER phrase is not specified, elementary data items with an explicit or implicit FILLER

clause.

3. Any elementary data item subordinate to identifier-1 whose data description entry contains a

REDEFINES or RENAMES clause or is subordinate to a data item whose data description entry

contains a REDEFINES clause. However, identifier-1 may itself have a REDEFINES clause or be

subordinate to a data item with a REDEFINES clause.

4. Any elementary data item with USAGE INDEX.

b. Second, an elementary data item is a possible receiving item if:

1. It is explicitly referenced by identifier-1; or

2. It is contained within the group data item referenced by identifier-1. If the elementary data item is a

table element, each occurrence of the elementary data item is a possible receiving-operand.

c. Finally, each possible receiving-operand is a receiving-operand if at least one of the following is true:

1. The VALUE phrase is specified, a data-item format or table format VALUE clause is specified in

the data description entry of the elementary data item, and the category of the data item is one of

the categories specified or implied in the VALUE phrase; or

PROCEDURE DIVISION (INITIALIZE)

377

2. The REPLACING phrase is specified and the category of the elementary data item is one of the

categories specified in the REPLACING phrase; or

3. The DEFAULT phrase is specified; or

4. Neither the REPLACING phrase nor the VALUE phrase is specified.

(6) The sending-operand in each implicit MOVE or SET statement is determined as follows:

a. If the data item qualifies as a receiving-operand because of the VALUE phrase:

1. If the receiving-operand is usage POINTER, the sending-operand is the predefined address item

NULL

2. If the receiving-operand is usage INDICATOR, the sending-operand is the predefined indicator

value NULL

3. Otherwise, the sending-operand is determined by the literal in the VALUE clause specified in the

data description entry of the data item. If the data item is a table element, the literal in the VALUE

clause that corresponds to the occurrence being initialized determines the sending-operand. The

actual sending-operand is a literal that, when moved to the receiving-operand with a MOVE

statement, produces the same result as the initial value of the data item as produced by the

application of the VALUE clause.

b. If the data item does not qualify as a receiving-operand because of the VALUE phrase, but does qualify

because of the REPLACING phrase, the sending-operand is the literal-1 or identifier-2 associated with the category

specified in the REPLACING phrase.

c. If the data item does not qualify in accordance with general rules 6a and 6b, the sending-operand is an

implied figurative constant or predefined item.

The figurative sending operand used depends on the category of the receiving operand as follows:

Receiving operand Figurative constant or predefined item
Alphabetic Alphanumeric SPACES
Alphanumeric Alphanumeric SPACES
(ISQL) Character Varying “” (the null string)
Alphanumeric-edited Alphanumeric SPACES
Numeric ZEROES
Numeric-edited ZEROES
Date ZEROES
Time ZEROES
Timestamp ZEROES
Year-to-month ZEROES
Day-to-time ZEROES
Pointer NULL
Indicator NULL

(7) The order of execution of these implicit MOVE or SET statements is the order, left to right, of the

appearance of each identifier-1 in the INITIALIZE statement. Within this sequence, whenever identifier-1 references

a group data item, affected elementary data items are initialized in the sequence of their definition within the group

data item. If a fixed-length table is being initialized, all occurrences are initialized. If variable-length table is being

initialized, the number of occurrences initialized is the number of occurrences specified by the value of the data item

referenced in the DEPENDING phrase.

(8) If identifier-1 occupies the same storage area as identifier-2, the result of the execution of this statement is

undefined, even if they are defined by the same data description entry. (See Page 249, Overlapping Operands.)

Interactive COBOL Language Reference & Developer’s Guide - Part One

378

PROCEDURE DIVISION (INSPECT)

379

E.32. INSPECT

E.32.1 Function

The INSPECT statement provides the ability to tally or replace occurrences of single characters or groups of

characters in a data item.

E.32.2 General Format

Format 1:

INSPECT identifier-1 TALLYING

Format 2:

INSPECT identifier-1 REPLACING

Format 3:

INSPECT identifier-1 TALLYING

 REPLACING

Interactive COBOL Language Reference & Developer’s Guide - Part One

380

Format 4: (ANSI 74 and ANSI 85)

INSPECT identifier-1 CONVERTING TO

[INITIAL]...

E.32.3 Syntax Rules

All Formats:

(1) Identifier-1 must reference either a group item or any category of elementary item described, implicitly or

explicitly, as USAGE IS DISPLAY.

(2) Identifier-3, ... , identifier-n must reference an elementary item described, implicitly or explicitly, as

USAGE IS DISPLAY.

(3) Each literal must be a nonnumeric literal and must not be a figurative constant that begins with the word

ALL. If literal-1, literal-2, or literal-4 is a figurative constant, it refers to an implicit one character data item.

(4) No more than one BEFORE phrase and one AFTER phrase can be specified for any one ALL, LEADING,

CHARACTERS, FIRST, or CONVERTING phrase.

Format 1 and 3:

(5) Identifier-2 must reference an elementary numeric data item.

Format 2 and 3:

(6) The size of literal-3 or the data item referenced by identifier-5 must be equal to the size of literal-1 or the

data item referenced by identifier-3. When a figurative constant is used as literal-3, the size of the figurative

constant is equal to the size of literal-1 or the size of the data item referenced by identifier-3.

(7) When the CHARACTERS phrase is used, literal-2, literal-3, or the size of the data item referenced by

identifier-4, identifier-5 must be one character in length.

Format 4:

(8) The size of literal-5 or the data item referenced by identifier-7 must be equal to the size of literal-4 or the

data item referenced by identifier-6. When a figurative constant is used as literal-5, the size of the figurative constant

is equal to the size of literal-4 or the size of the data item referenced by identifier-6.

(9) The same character must not appear more than once either in literal-4 or in the data item referenced by

identifier-6.

PROCEDURE DIVISION (INSPECT)

381

E.32.4 General Rules

All Formats:

(1) Inspection (which includes the comparison cycle, the establishment of boundaries for the BEFORE or

AFTER phrase, and the mechanism for tallying and/or replacing) begins at the left-most character position of the

data item referenced by identifier-1, regardless of its class, and proceeds from left to right to the right-most character

position as described in General Rules 5 and 6.

(2) For use in the INSPECT statement, the content of the data item referenced by identifier-1, identifier-3,

identifier-4, identifier-5, identifier-6, or identifier-7 will be treated as follows:

a. If any of identifier-1, identifier-3, identifier-4, identifier-5, identifier-6 or identifier-7 reference an

alphabetic or alphanumeric data item, the INSPECT statement treats the contents of each such identifier as a

character-string.

b. If any of identifier-1, identifier-3, identifier-4, identifier-5, identifier-6 or identifier-7 reference

alphanumeric edited, numeric edited, or unsigned numeric data items, the data item is inspected as though it had been

redefined as alphanumeric (see General Rule 2a) and the INSPECT statement had been written to reference the

redefined data item.

c. If any of identifier-1, identifier-3, identifier-4, identifier-5, identifier-6 or identifier-7 reference a signed

numeric data item, the data item is inspected as though it had been moved to an unsigned numeric data item with

length equal to the length of the signed item excluding any separate sign position, and then the rules in General Rule

2b had been applied. (See The MOVE Statement, page 393.) If identifier-1 is a signed numeric item, the original

value of the sign is retained upon completion of the INSPECT statement.

d. (ISQL) If identifier-1 references a data item with usage CHARACTER VARYING, the length of the data

item is evaluated only once at the beginning of the execution of the INSPECT statement. If the length evaluates to

zero, there is no error and no inspection takes place. If any other identifier references a zero-length data item at the

execution of the INSPECT statement, it is an error and no inspection takes place.

(3) In General Rules 5 through 17, all references to literal-1, literal-2, literal-3, literal-4 or literal-5 apply

equally to the content of the data item referenced by identifier-3, identifier-4, identifier-5, identifier-6 or identifier-7

respectively.

(4) Subscripting associated with any identifier is evaluated only once as the first operation in the execution of

the INSPECT statement.

Format 1 and 2:

(5) During inspection of the content of the data item referenced by identifier-1, each properly matched

occurrence of literal-1 is tallied (Format 1) or replaced by literal-3 (Format 2).

(6) The comparison operation to determine the occurrence of literal-1 to be tallied or to be replaced, occurs as

follows:

a. The operands of the TALLYING or REPLACING phrase are considered in the order they are specified

in the INSPECT statement from left to right. The first literal-1 is compared to an equal number of contiguous

characters, starting with the left-most character position in the data item referenced by identifier-1. Literal-1

matches that portion of the content of the data item referenced by identifier-1 if they are equal, character for

character and:

1) If neither LEADING nor FIRST is specified; or

2) If the LEADING adjective applies to literal-1 and literal-1 is a leading occurrence as defined in

General Rules 10 and 13; or

Interactive COBOL Language Reference & Developer’s Guide - Part One

382

3) If the FIRST adjective applies to literal-1 and literal-1 is the first occurrence as defined in General

Rule 13.

b. If no match occurs in the comparison of the first literal-1, the comparison is repeated with each

successive literal-1, if any, until either a match is found or there is no next successive literal-1. When there is no

next successive literal-1, the character position in the data item referenced by identifier-1 immediately to the right of

the left-most character position considered in the last comparison cycle is considered as the left-most character

position, and the comparison cycle begins again with the first literal-1.

c. Whenever a match occurs, tallying or replacing takes place as described in General Rules 10 and 13.

The character position in the data item referenced by identifier-1 immediately to the right of the right-most character

position that participated in the match is now considered to be the left-most character position of the data item

referenced by identifier-1, and the comparison cycle starts again with the first literal-1.

d. The comparison operation continues until the right-most character position of the data item referenced

by identifier-1 has participated in a match or has been considered as the left-most character position. When this

occurs, inspection is terminated.

e. If the CHARACTERS phrase is specified, an implied one character operand participates in the cycle

described in paragraphs 6a through 6d above as if it had been specified by literal-1, except that no comparison to the

content of the data item referenced by identifier-1 takes place. This implied character is considered always to match

the left-most character of the content of the data item referenced by identifier-1 participating in the current

comparison cycle.

(7) The comparison operation defined in General Rule 6 is restricted by the BEFORE and AFTER phrase as

follows:

a. If neither the BEFORE nor AFTER phrase is specified, literal-1 or the implied operand of the

CHARACTERS phrase participates in the comparison operation as described in General Rule 6. Literal-1 or the

implied operand of the CHARACTERS phrase is first eligible to participate in matching at the left-most character

position of identifier-1.

b. If the BEFORE phrase is specified, the associated literal-1 or the implied operand of the

CHARACTERS phrase participates only in those comparison cycles which involve that portion of the content of the

data item referenced by identifier-1 from its left-most character position up to, but not including, the first occurrence

of literal-2 within the content of the data item referenced by identifier-1. The position of this first occurrence is

determined before the first cycle of the comparison operation described in General Rule 6 is begun. If, on any

comparison cycle, literal-1 or the implied operand of the CHARACTERS phrase is not eligible to participate, it is

considered not to match the content of the data item referenced by identifier-1. If there is no occurrence of literal-2

within the content of the data item referenced by identifier-1, its associated literal-1 or the implied operand of the

CHARACTERS phrase participates in the comparison operation as though the BEFORE phrase had not been

specified.

c. If the AFTER phrase is specified, the associated literal-1 or the implied operand of the CHARACTERS

phrase participate only in those comparison cycles which involve that portion of the content of the data item

referenced by identifier-1 from the character position immediately to the right of the right-most character position of

the first occurrence of literal-2 within the content of the data item referenced by identifier-1 to the right-most

character position of the data item referenced by identifier-1. This is the character position at which literal-1 or the

implied operand of the CHARACTERS phrase is first eligible to participate in matching. The position of this first

occurrence is determined before the first cycle of the comparison operation described in General Rule 6 is begun. If,

on any comparison cycle, literal-1 or the implied operand of the CHARACTERS phrase is not eligible to participate,

it is considered not to match the content of the data item referenced by identifier-1. If there is no occurrence of

literal-2 within the content of the data item referenced by identifier-1, its associated literal-1 or the implied operand

of the CHARACTERS phrase is never eligible to participate in the comparison operation.

PROCEDURE DIVISION (INSPECT)

383

Format 1:

(8) The required words ALL and LEADING are adjectives that apply to each succeeding literal-1 until the next

adjective appears.

(9) For ANSI 85 and VXCOBOL, the content of the data item referenced by identifier-2 is not initialized to

zero at the beginning of the execution of the INSPECT statement. For ANSI 74, the tally counter (identifier-2) is set

to zero at the beginning of the INSPECT statement. This is non-standard behavior and we recommend that you

insert a “MOVE ZERO TO identifier-2" statement prior to the INSPECT TALLYING when using ANSI 74.

(10) The rules for tallying are as follows:

a. If the ALL phrase is specified, the content of the data item referenced by identifier-2 is incremented by

one for each occurrence of literal-1 matched within the content of the data item referenced by identifier-1.

b. If the LEADING phrase is specified, the content of the data item referenced by identifier-2 is

incremented by one for the first and each subsequent contiguous occurrence of literal-1 matched within the content

of the data item referenced by identifier-1, provided that the left-most such occurrence is at the point where

comparison began in the first comparison cycle in which literal-1 was eligible to participate.

c. If the CHARACTERS phrase is specified, the content of the data item referenced by identifier-2 is

incremented by one for each character matched, in the sense of General Rule 6e, within the content of the data item

referenced by identifier-1.

(11) If identifier-1, identifier-3, or identifier-4 occupies the same storage area as identifier-2, the result of the

execution of this statement is undefined, even if they are defined by the same data description entry.

Format 2:

(12) The required words ALL, LEADING, and FIRST are adjectives that apply to each succeeding BY phrase

until the next adjective appears.

(13) The rules for replacement are as follows:

a. When the CHARACTERS phrase is specified, each character matched, in the sense of General Rule 6e,

in the content of the data item referenced by identifier-1 is replaced by literal-3.

b. When the adjective ALL is specified, each occurrence of literal-1 matched in the content of the data item

referenced by identifier-1 is replaced by literal-3.

c. When the adjective LEADING is specified, the first and each successive contiguous occurrence of

literal-1 matched in the content of the data item referenced by identifier-1 is replaced by literal-3, provided that the

left-most occurrence is at the point where comparison began in the first comparison cycle in which literal-1 was

eligible to participate.

d. When the adjective FIRST is specified, the left-most occurrence of literal-1 matched within the content

of the data item referenced by identifier-1 is replaced by literal-3. This rule applies to each successive specification

of the FIRST phrase regardless of the value of literal-1.

(14) If identifier-3, identifier-4, or identifier-5 occupies the same storage area as identifier-1, the result of the

execution of this statement is undefined, even if they are defined by the same data description entry.

Format 3:

(15) A Format 3 INSPECT statement is interpreted and executed as though two successive INSPECT

statements specifying the same identifier-1 had been written with one statement being a Format 1 statement with

TALLYING phrases identical to those specified in the Format 3 statement, and the other statement being a Format 2

Interactive COBOL Language Reference & Developer’s Guide - Part One

384

INSPECT ITEM TALLYING
CNTO FOR ALL "AB", ALL “D”
CNT1 FOR ALL "BC"
CNT2 FOR LEADING "EF"
CNT3 FOR LEADING "B"
CNT4 FOR CHARACTERS;

INSPECT ITEM REPLACING
ALL "AB" BY "XY", "D" BY "X"
ALL "BC" BY "VW"
LEADING "EF" BY "TU"
LEADING "B" BY "S"
FIRST "G" BY "R"
FIRST "G" BY "P"
CHARACTERS BY "Z".

statement with REPLACING phrases identical to those specified in the Format 3 statement. The General Rules

given for matching and counting apply to the Format 1 statement and the general rules given for matching and

replacing apply to the Format 2 statement. Subscripting associated with any identifier in the Format 2 statement is

evaluated only once before executing the Format 1 statement.

Format 4:

(16) A Format 4 INSPECT statement is interpreted and executed as though a Format 2 INSPECT statement

specifying the same identifier-1 has been written with a series of ALL phrases, one for each character of literal-4.

The effect is as if each of these ALL phrases referenced, as literal-1, a single character of literal-4 and referenced, as

literal-3, the corresponding single character of literal-5. Correspondence between the characters of literal-4 and the

characters of literal-5 is by ordinal position within the data item.

(17) If identifier-4, identifier-6, or identifier-7 occupies the same storage area as identifier-1, the result of the

execution of this statement is undefined, even if they are defined by the same data description entry.

E.29.5 Examples

In each of the following examples of the INSPECT statement, CNTn is assumed to be zero immediately prior to

execution of the statement. The results shown for each example, except the last, are the result of executing the two

successive INSPECT statements shown above them.

EXAMPLE 23. INSPECT TALLYING, REPLACING

EXAMPLE 23. Source

Initial Value of
ITEM

CNT0 CNT1 CNT2 CNT3 CNT4 Final Value of
ITEM

EFABDBCGABEFGG 3 1 1 0 5 TUXYXVWRXTZZPZ

BABABC 2 0 0 1 1 SXYXYZ

BBBC 0 1 0 2 0 SSVW

EXAMPLE 23. Results

PROCEDURE DIVISION (INSPECT)

385

INSPECT ITEM TALLYING
CNTO FOR CHARACTERS
CNT1 FOR ALL "A";

INSPECT ITEM REPLACING
CHARACTERS BY "Z"

ALL "A" BY "X".

INSPECT ITEM TALLYING
CNTO FOR ALL "AB" BEFORE "BC"
CNT1 FOR LEADING "B" AFTER "D"
CNT2 FOR CHARACTERS AFTER "A" BEFORE “C”;

INSPECT ITEM REPLACING
ALL "AB" BY "XY" BEFORE "BC"
LEADING "B" BY "W" AFTER "D"
FIRST "E" BY "V" AFTER "D"
CHARACTERS BY "Z" AFTER "A" BEFORE “C”.

EXAMPLE 24. INSPECT TALLYING, REPLACING

EXAMPLE 24. source code

Initial Value of ITEM CNT0 CNT1 Final Value of ITEM

BBB 3 0 ZZZ

ABA 3 0 ZZZ

EXAMPLE 24. results

EXAMPLE 25. INSPECT TALLYING, REPLACING

EXAMPLE 25. source code

Initial Value of ITEM CNT0 CNT1 CNT2 Final Value of ITEM

BBEABDABABBCABEE 3 0 2 BBEXYZXYXYZCABVE

ADDDDC 0 0 4 AZZZZC

ADDDDA 0 0 5 AZZZZZ

CDDDDC 0 0 0 CDDDDC

BDBBBDB 0 3 0 BDWWWDB

EXAMPLE 25. results

Interactive COBOL Language Reference & Developer’s Guide - Part One

386

INSPECT ITEM TALLYING
CNTO FOR ALL "AB" AFTER "BA" BEFORE "BC";

INSPECT ITEM REPLACING
ALL "AB" BY "XY" AFTER "BA" BEFORE "BC".

INSPECT ITEM CONVERTING
“ABCD” TO “XYZX” AFTER QUOTE BEFORE “#”.

EXAMPLE 26. INSPECT TALLYING, REPLACING

EXAMPLE 26. source code

Initial Value of ITEM CNT0 Final Value of ITEM

ABABABABC 1 ABABXYABC

EXAMPLE 26. results

EXAMPLE 27. INSPECT CONVERTING

EXAMPLE 27. source code

Initial Value of ITEM Final Value of ITEM

AC”AEBDFBCD#AB”D AC”XEYXFYZX#AB”D

EXAMPLE 27. results

PROCEDURE DIVISION (LINK SUB-INDEX)

387

E.33. LINK SUB-INDEX (VXCOBOL)

E.33.1 Function

The LINK SUB-INDEX statement links a subindex to another index entry so that the subindex can be shared.

E.33.2 General Format

LINK SUB-INDEX file-name

 SOURCE

DESTINATION

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-LINK]

E.33.3 Syntax Rules

(1) File-name is a filename that specifies an INFOS file opened for OUTPUT or I/O and selected for ALLOW

SUB-INDEX.

(2) Identifier-1 is an alphanumeric data item that specifies a record key associated with file-name.

E.33.4 General Rules

(1) If the relative option and the KEY series phrase are omitted, the default is the first key in the SELECT

clause.

(2) The occurrence number is not updated.

(3) FEEDBACK is not updated.

(4) KEY LENGTH is unaffected.

(5) The subindex to link is determined according to what is specified in the relative option phrase and/or the

KEY series phrase in the SOURCE phrase. The link information is then transferred to the index entry specified by

Interactive COBOL Language Reference & Developer’s Guide - Part One

388

the position phrase, the relative options phrase, and the KEY series phrase in the DESTINATION phrase. The

DESTINATION key must not already have a subindex defined.

(6) The position phrase can only be specified in the DESTINATION phrase. FIX POSITION causes the record

pointer to move from the current position to the position specified in this statement. RETAIN position causes the

record position to remain at the position it was on before the execution of this statement. RETAIN is the default.

(7) The relative motion option without the KEY series phrase allows access to the index file relative to that

file's current record position.

(8) Using the KEY series phrase without the relative motion option causes the key path specified to begin with

the top index in the hierarchy and follow a downward motion.

(9) If the KEY series phrase is specified, each key, identifier-1, must be declared in the SELECT statement for

file-name. If the relative motion option and KEY series phrase at both specified only UP, DOWN, and STATIC are

allowed. The relative motion option is processed first and the key path is used.

(10) Transfer of control following the successful or unsuccessful execution of the LINK SUB-INDEX operation

depends on the presence or absence of the optional INVALID KEY and NOT INVALID KEY phrases in the LINK

SUB-INDEX statement.

(11) INVALID KEY clauses on I/O statements are ONLY invoked when an Invalid Key error, as determined by

a File Status of 2x where x can be any character 0 - 9 or A - Z, is generated. All other error conditions will cause the

associated USE procedure, if present, as defined in the DECLARATIVES section to be executed. (See The Invalid

Key Condition, page 271, for more a more comprehensive discussion.)

PROCEDURE DIVISION (MERGE)

389

E.34. MERGE

E.34.1 Function

The MERGE statement combines two or more identically-sequenced files on a set of specified keys, and during the

process makes records available, in merged order, to an output procedure or to an output file.

E.34.2 General Format (ANSI 74 and ANSI 85)

MERGE file-name-1 { ON KEY { data-name-1 }... }...

[COLLATING SEQUENCE IS alphabet-name]d

USING file-name-2 { file-name-3 }...

E.34.3 General Format (VXCOBOL)

MERGE file-name-1 { ON KEY { data-name-1 }... }...

[COLLATING SEQUENCE IS]

USING file-name-2 { file-name-3 }...

E.34.4 Syntax Rules

(1) A MERGE statement may appear anywhere in the Procedure Division except in the declaratives portion.

(2) File-name-1 must be described in a sort-merge file description entry in the Data Division.

(3) If the file referenced by file-name-1 contains variable length records, the size of the records contained in the

files referenced by file-name-2 and file-name-3 must not be less than the smallest record nor greater than the largest

record described for file-name-1. If the file referenced by file-name-1 contains fixed length records, the sizes of the

records contained in the file referenced by file-name-2 and file-name-3 must not be greater than the largest record

described for file-name-1.

(4) Data-name-1 is a key data-name. Key data-names are subject to the following rules:

a. The data items identified by key data-names must be described in records associated with file-name-1.

b. Key data-names may be qualified.

c. Key data-names may not be described as USAGE POINTER.

d. The data items identified by key data-names must not be group items that contain variable occurrence

data items.

Interactive COBOL Language Reference & Developer’s Guide - Part One

390

e. If file-name-1 has more than one record description, the data items identified by key data-names need be

described in only one record description. The same character positions referenced by a key data-name in one record

description entry are taken as the key in all records of the file.

f. None of the data items identified by key data-names can be described by an entry that either contains an

OCCURS clause or is subordinate to an entry that contains an OCCURS clause.

g. If a file referenced by file-name-1 contains variable length records, all the data items identified by key

data-names must be contained within the first x characters positions of the record, where x equals the minimum

record size specified for the file referenced by file-name-1.

(5) File-name-2, file-name-3, and file-name-4 must be described in a file description entry, not a sort-merge

description entry, in the Data Division.

(6) File-names must not be repeated within the MERGE statement.

(7) No pair of file-names in a MERGE statement may be specified in the same SAME AREA, SAME SORT

AREA, or SAME SORT-MERGE AREA clause. The only file-names in a MERGE statement that can be specified

in the SAME RECORD AREA clause are those associated with the GIVING phrase.

(8) The words THRU and THROUGH are equivalent.

(9) File-name-4 is subject to the following rules:

a. If file-name-4 references an indexed file, the first specification of data-name-1 and the data item

referenced by that data-name-1 must occupy the same character positions in its record as the data item associated

with the prime record key for that file. For ANSI 74 and ANSI 85, the first specification of data-name-1 must be

associated with the ASCENDING phrase if file-name-4 has a primary record key described explicitly or implicitly as

VALUES ARE ASCENDING. If the key is described as VALUES ARE DESCENDING, data-name-1 must be

associated with the DESCENDING phrase. For VXCOBOL, the first specification of data-name-1 must be

associated with the ASCENDING phrase.

b. For VXCOBOL, if file-name-4 references an INFOS file, it must not allow subindexing and the first

specification of data-name-1 must be associated with an ASCENDING phrase. The data-item referenced by

data-name-1 must occupy the same character positions in its record as the data item associated with the first

RECORD KEY in the select for file-name-4, i.e., the RECORD KEY and sort key must be internal to the record.

(10) If the GIVING phrase is specified and the file referenced by file-name-4 contains variable length records,

the size of the records contained in the file referenced by file-name-1 must not be less that the smallest record nor

greater that the largest record described for file-name-4. If the file referenced by file-name-4 contains fixed length

records, the size of the records contained in the file referenced by file-name-1 must not be greater that the largest

record described for file-name-4.

(11) For VXCOBOL, if file-name-2 or file-name-3 references INFOS files, they must not allow subindexing.

(12) Alphabet-name shall reference an aplhabet defined in the SPECIAL-NAMES paragraph which defines an

alphnumeric collating sequence.

(13) If file-name-2 or file-name-3 references an indexed, INFOS, or relative file, its access mode shall be

sequential or dynamic.

E.34.5 General Rules

(1) The MERGE statement merges all records contained on the file referenced by file-name-2 and file-name-3.

PROCEDURE DIVISION (MERGE)

391

(2) If the file referenced by file-name-1 contains only fixed length records, any record in the file referenced by

file-name-2 or file-name-3 containing fewer character positions that fixed length is space filled on the right

beginning with the first character position after the last character in the record when that record is released to the file

referenced by file-name-1.

(3) The data-names following the word KEY are listed from left to right in the MERGE statement in order of

decreasing significance without regard to how they are divided into KEY phrases. The leftmost data-name is the

major key, the next data-name is the next most significant key, etc.

a. When the ASCENDING phrase is specified, the merged sequence will be from the lowest value of the

contents of the data items identified by the key data-names to the highest value, according to the rules for comparison

of operands in a relation condition.

b. When the DESCENDING phrase is specified, the merged sequence will be from the highest value of the

contents of the data items identified by the key data-names to the lowest value, according to the rules for comparison

of operands in a relation condition (see Relation Condition, starting on page 299).

(4) When, according to the rules for the comparison of operands in a relation condition, the contents of all key

data items of one data record are equal to the corresponding key data items of one or more other data records, the

order of return of these records:

a. Follows the order of the associated input files as specified in the MERGE statement.

b. Is such that all records associated with one input file are returned prior to the return of records from

another input file.

(5) The collating sequence that applies to the comparison of the nonnumeric key data items specified is

determined at the beginning of the execution of the MERGE statement in the following order of precedence:

a. First, the collating sequence established by the COLLATING SEQUENCE phrase, if specified, in that

MERGE statement.

b. Second, the collating sequence established as the program collating sequence. In ICOBOL, this is

always ASCII since the program collating sequence is ignored.

(6) The results of the merge operation are undefined unless the records in the files referenced by file-name-2

and file-name-3 are ordered as described in the ASCENDING or DESCENDING KEY phrases associated with the

MERGE statement.

(7) All the records in the files referenced by file-name-2 and file-name-3 are transferred to the file referenced by

file-name-1. At the start of the execution of the MERGE statement, the files referenced by file-name-2 and

file-name-3 must not be in the open mode. For each of the files referenced by file-name-2 and file-name-3 the

execution of the MERGE statement causes the following actions to be taken:

a. The processing of the file is initiated. The initiation is performed as if an OPEN statement with the

INPUT phrase had been executed. If an output procedure is specified, this initiation is performed before control

passes to the output procedure.

b. The logical records are obtained and released to the merge operation. Each record is obtained as if a

READ statement with the NEXT and the AT END phrases had been executed.

c. The processing of the file is terminated. The termination is performed as if a CLOSE statement without

optional phrases had been executed. If an output procedure passes the last statement in the output procedure.

These implicit functions are performed such that any associated USE AFTER STANDARD EXCEPTION

procedures are executed.

Interactive COBOL Language Reference & Developer’s Guide - Part One

392

(8) The output procedure may consist of any procedure needed to select, modify, or copy records that are made

available one at a time by the RETURN statement in merged order from the file referenced by file-name-1. The

range includes all statements that are executed as the result of a transfer of control by CALL, EXIT, GO TO, and

PERFORM statements in the range of the output procedure, as well as all statements in declarative procedures that

are executed as a result of the execution of statements in the range of the output procedure. The range of the output

procedure must not cause the execution on any MERGE, RELEASE, or SORT statement. See page 253, 306,

Explicit and Implicit specifications.

(9) If an output procedure is specified, control passes to it during execution of the MERGE statement. The

compiler inserts a return mechanism at the end of the last statement in the output procedure. When control passes

the last statement in the output procedure, the return mechanism provides for termination of the merge, and then

passes control to the next executable statement after the MERGE statement. Before entering the output procedure,

the merge procedure reaches a point at which it can select the next record in merged order when requested. The

RETURN statements in the output procedure are the requests for the next record.

(10) During the execution of the output procedure, no statement may be executed manipulating the file

referenced by or accessing the record area associated with file-name-2 or file-name-3. During the execution of any

USE AFTER STANDARD EXCEPTION procedure implicitly invoked while executing the MERGE statement, no

statement may be executed manipulating the file referenced by, or accessing the record area associated with,

file-name-2, file-name-3, or file-name-4.

(11) If the GIVING phrase is specified, all the merged records are written on the file referenced by file-name-4

as the implied output procedure for the MERGE statement. At the start of execution of the MERGE statement, the

file referenced by file-name-4 must not be in the open mode. For each of the files referenced by file-name-4, the

execution of the MERGE statement causes the following actions to be taken:

a. The processing of the file is initiated. The initiation is performed as if an OPEN statement with the

OUTPUT phrase had been executed.

b. The merged logical records are returned and written onto the file. Each record is written as if a WRITE

statement without any optional phrases had been executed. If the file referenced by file-name-4 is described with

variable length records, the size of any record written to file-name-4 is the size of that record when it was read from

file-name-1 , regardless of the content of the data-item referenced by the DEPENDING ON phrase of either a

RECORD IS VARYING or an OCCURS clause specifiel in the file description entry for file-name-4.

For a relative file, the relative key date for the first record returned contains the value '1'; for the second

record returned, the value '2', etc. After execution of the MERGE statement, the content of the relative key data item

indicates the last record returned to the file.

c. The processing of the file is terminated. The termination is performed as if a CLOSE statement without

optional phrases had been executed.

These implicit functions are performed such that any associated USE AFTER STANDARD EXCEPTION

procedures are executed; however, the execution of such a USE procedure must not cause the execution of any

statement manipulating the file referenced by, or accessing the record area associated with, file-name-4. On the first

attempt to write beyond the externally defined boundaries of the file, any USE AFTER STANDARD EXCEPTION

procedure specified for that file is executed; if control is returned from that USE procedure or if no USE procedure is

specified, the processing of the file is terminated as in paragraph 11c above.

(12) If the file referenced by file-name-4 contains only fixed length records, any record in the file referenced by

file-name-1 containing fewer character positions that fixed length is space filled on the right beginning with the first

character position after the last character in the record when that record is returned to the file referenced by

file-name-4.

PROCEDURE DIVISION (MOVE)

393

E.35. MOVE

E.35.1 Function

The MOVE statement transfers data, in accordance with the rules of editing, to one or more data areas.

E.35.2 General Format

MOVE TO { identifier-2 }...

MOVE identifier-1 TO identifier-2

E.35.3 Syntax Rules

(1) Literal or the data item referenced by identifier-1 represents the sending area. The data item referenced by

identifier-2 represents the receiving area.

(2) CORR is an abbreviation for CORRESPONDING.

(3) When the CORRESPONDING phrase is used, all identifiers must be group items and may not be referenced

modified.

(4) Neither an index data item nor Pointer data item may appear as an operand of a MOVE statement.

E.35.4 General Rules

(1) If the CORRESPONDING phrase is used, selected items within identifier-1 are moved to selected items

within identifier-2, according to the rules specified under the appropriate paragraph. The results are the same as if

the user had referred to each pair of corresponding identifiers in separate MOVE statements.

(2) Literal or the content of the data item referenced by identifier-1 is moved to the data item referenced by

each identifier-2 in the order in which it is specified. The rules referring to identifier-2 also apply to the other

receiving areas. Any length evaluation or subscripting associated with identifier-2 is evaluated immediately before

the data is moved to the respective data item.

If identifier-1 has varying length (ISQL), is reference modified, subscripted, or is a function-identifier, the

current length, reference modifier, subscript, or function-identifier is evaluated only once, immediately before data is

moved to the first of the receiving operands.

The evaluation of the length of identifier-1 or identifier-2 may be affected by the DEPENDING ON phrase

of the OCCURS clause.

(3) Any move in which the receiving operand is an elementary item and the sending operand is either a literal or

an elementary item is an elementary move. Every elementary item belongs to one of the following categories:

numeric, alphabetic, numeric edited, alphanumeric edited, (ISQL) date, time, timestamp, year-to-month, or day-to-

time. Numeric literals belong to the category numeric; nonnumeric literals belong to the category alphanumeric;

(ISQL) date-time and interval literals belong to their respective categories. The figurative constant ZERO (ZEROS,

ZEROES), when moved to a numeric or numeric edited item, belongs to the category numeric. In all other cases, it

belongs to the category alphanumeric. The figurative constant SPACE (SPACES) belongs to the category

alphabetic. All other figurative constants belong to the category alphanumeric.

The following rules apply to an elementary move between these categories:

Interactive COBOL Language Reference & Developer’s Guide - Part One

394

a. The figurative constant SPACE, a numeric edited, an alphanumeric edited, or alphabetic data item must

not be moved to a numeric, numeric edited, (ISQL) date-time, or interval data item.

b. A numeric literal, the figurative constant ZERO, a numeric data item, or a numeric edited data item must

not be moved to an alphabetic, (ISQL) date-time, or interval data item.

c. A non-integer numeric literal or a non-integer numeric data item must not be moved to an alphanumeric

or alphanumeric edited data item.

d. (ISQL) A date-time or interval literal or data item must not be moved to a data item with a category that

differs from the category of the literal or data item.

e. (ISQL) An alphanumeric item must not be moved to a date-time or interval data-item.

f. All other elementary moves are legal and are performed according to the rules given in General Rule 4.

(4) Any necessary conversion of data from one form of internal representation to another takes place during

legal elementary moves, along with any editing specified for the receiving data item:

a. When an alphanumeric edited or alphanumeric item is a receiving item, alignment and any necessary

space filling takes place as previously defined.

1) If the sending operand is described as being signed numeric, the operational sign is not moved; if the

operational sign occupies a separate character position, that character is not moved and the size of the sending

operand is considered to be one less than its actual size in terms of standard data format characters.

2) If the sending operand is numeric edited, no de-editing takes place.

3) If the usage of the sending operand is different from that of the receiving operand, conversion of the

sending operand to the internal representation of the receiving operand takes place.

4) If the sending operand is numeric and contains the PICTURE symbol `P', all digit positions specified

with this symbol are considered to have the value zero and are counted in the size of the sending operand.

b. When a numeric or numeric edited item is the receiving item, alignment by decimal point and any

necessary zero filling takes place as previously defined except where zeros are replaced because of editing

requirements.

1) When a signed numeric item is the receiving item, the sign of the sending operand is placed in the

receiving item. Conversion of the representation of the sign takes place as necessary. If the sending operand is

unsigned, a positive sign is generated for the receiving item.

2) When an unsigned numeric item is the receiving item, the absolute value of the sending operand is

moved and no operational sign is generated for the receiving item.

3) When the sending operand is described as being alphanumeric, data is moved as if the sending

operand were described as an unsigned numeric integer.

c. When a receiving field is described as alphabetic, justification and any necessary space filling takes

place as previously defined.

d. (ISQL) When the sending and receiving items are of category date, time or timestamp, each sub-field is

treated as a simple numeric to numeric move, with any applicable alignment, zero padding, or truncation of

fractional digits.

e. (ISQL) When the sending and receiving items are of category year-month or day-time, the value of the

sending operand is normalized and any alignment, padding with zero fields, or truncation takes place as previously

described.

PROCEDURE DIVISION (MOVE)

395

(5) Any move that is not an elementary move is treated exactly as if it were an alphanumeric to alphanumeric

elementary move, except that there is no conversion of data from one form of internal representation to another. In

such a move, the receiving area will be filled without consideration for the individual elementary or group items

contained within either the sending or receiving area, except as noted in the OCCURS clause.

(6) The following table summarizes the legality of the various types of MOVE statements. ‘Yes’ means the

move is legal; ‘No’ means it is not legal. The General Rule reference (after the slash) indicates the rule that prohibits

the move or that describes the behavior of a legal move.

CATEGORY OF
SENDING
OPERAND

CATEGORY OF RECEIVING DATA ITEM

ALPHABETIC ALPHANUMERIC
EDITED

ALPHANUMERIC

NUMERIC INTEGER
NUMERIC

NONINTEGER
NUMERIC EDITED

DATE TIME TIMESTAMP YEAR-
TO-
MONTH

DAY-TO-
MONTH

ALPHABETIC Yes/4c Yes/4a No/3a No/3a No/3a No/3a No/3a No/3a

ALPHANUMERIC Yes/4c Yes/4a Yes/4b No/3e No/3e No/3e No/3e No/3e

ALPHANUMERIC
EDITED

Yes/4c Yes/4a No/3a No/3a No/3a No/3a No/3a No/3a

NUMERIC
INTEGER

No/3b Yes/4a Yes/4b No/3b No/3b No/3b No/3b No/3b

NUMERIC
NONINTEGER

No/3b No/3c Yes/4b No/3b No/3b No/3b No/3b No/3b

NUMERIC EDITED No/3b Yes/4a No/3a No/3b No/3b No/3b No/3b No/3b

DATE No/3d No/3d No/3d Yes/4d No/3d No/3d No/3d No/3d

TIME No/3d No/3d No/3d No/3d Yes/4d No/3d No/3d No/3d

TIMESTAMP No/3d No/3d No/3d No/3d No/3d Yes/4d No/3d No/3d

YEAR-TO-MONTH No/3d No/3d No/3d No/3d No/3d No/3d Yes/4e No/3d

DAY-TO-TIME No/3d No/3d No/3d No/3d No/3d No/3d No/3d Yes/4e

TABLE 25. Legality of Types of MOVE Statements

Interactive COBOL Language Reference & Developer’s Guide - Part One

396

PROCEDURE DIVISION (MULTIPLY)

397

E.36. MULTIPLY

E.36.1 Function

The MULTIPLY statement causes numeric data items to be multiplied and sets the values of data items equal to the

results.

E.36.2 General Format

Format 1:

MULTIPLY BY { identifier-2 [ROUNDED] }...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-MULTIPLY]

Format 2:

MULTIPLY BY GIVING { identifier-3 [ROUNDED] }...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-MULTIPLY]

E.36.3 Syntax Rules

(1) Each identifier must refer to a numeric elementary item, except that in Format 2 the identifier following the

word GIVING must refer to either an elementary numeric item or an elementary numeric edited item.

(2) Each literal must be a numeric literal.

(3) The composite of operands, which is the hypothetical data item resulting from the superimposition of all

receiving data items of a given statement aligned on their decimal points, must not contain more than 18 digits.

E.36.4 General Rules

(1) When Format 1 is used, literal-1 or the value of the data item referenced by identifier-1 is stored in a

temporary data item. The value in this temporary data item is multiplied by the value of the data item referenced by

identifier-2. The value of the multiplier (the value of the data item referenced by identifier-2) is replaced by this

product; similarly, the temporary data item is multiplied by each successive occurrence of identifier-2 in the left-to-

right order in which identifier-2 is specified.

(2) When Format 2 is used, literal-1 or the value of the data item referenced by identifier-1 is multiplied by

literal-2 or the value of the data item referenced by identifier-2 and the result is stored in the data items referenced

by identifier-3.

(3) Additional rules and explanations relative to this statement are given under the appropriate paragraphs, (See

Scope of Statements, page 253; The ROUNDED Phrase, page 245; The ON SIZE ERROR Phrase, page 246; The

Arithmetic Statements, page 249; Overlapping Operands, page 249; and Multiple Results in Arithmetic Statements,

page 249.)

Interactive COBOL Language Reference & Developer’s Guide - Part One

398

PROCEDURE DIVISION (OPEN)

399

E.37. OPEN

E.37.1 Function

The OPEN statement initiates the processing of files.

E.37.2 General Format (ANSI 74 and ANSI 85)

For sequential files:

OPEN [EXCLUSIVE]

For relative and indexed files:

OPEN [EXCLUSIVE]

E.37.3 General Format (VXCOBOL)

OPEN [EXCLUSIVE]

E.37.4 Syntax Rules

(1) The files referenced in the OPEN statement need not all have the same organization or access.

(2) For ANSI 74, the EXTEND phrase must only be used for sequential files.

(3) For ANSI 85, the EXTEND phrase must only be used for files in the sequential access mode.

(4) For VXCOBOL, the EXTEND phrase must only be used for sequential files, INFOS files, or files in

sequential access mode.

(5) The WITH NO REWIND, REVERSED, WITH VERIFY, ONLY, and EXCLUDE clauses are for

documentation purposes only.

(6) Filename may not be a sort/merge file.

Interactive COBOL Language Reference & Developer’s Guide - Part One

400

(7) The EXTEND phrase must only be used for files for which the LINAGE clause has not been specified.

E.37.5 General Rules

(1) The successful execution of an OPEN statement determines the availability of the file and results in the file

being in an open mode. The successful execution of an OPEN statement associates the file with the filename through

the file connector.

Once the filename is processed the OPEN statement checks to see if the given file is physically present and is

recognized by the input-output control system. and follows the rules as outlined in the following table.

The three tables below show the results of opening available and unavailable files for ANSI 74, ANSI 85, and

VXCOBOL.

File is Available File is Unavailable

INPUT Normal open Open is unsuccessful

I-O Normal open For sequential, Open is
unsuccessful

 For relative and indexed,
Open causes the file to be
created, NOT ANSI STANDARD

OUTPUT For sequential, Normal
open; the file con-
tains no records

 For relative and in-
dexed, Normal open,
NOT ANSI STANDARD

 Open causes the file to be
created

EXTEND
 (sequential only)

 Normal open Open causes the file to be
created

TABLE 26. Availability of a File (ANSI 74)

File is Available File is Unavailable

INPUT Normal open Open is unsuccessful

INPUT
(optional)

 Normal open Normal open; the first READ
causes the at end or
invalid key condition

I-O Normal open Open is unsuccessful

I-O
(optional)

 Normal open Open causes the file to be
created

OUTPUT Normal open; the file
contains no records

 Open causes the file to be
created

EXTEND Normal open Open is unsuccessful

EXTEND
(optional)

 Normal open Open causes the file to be
created

TABLE 27. Availability of a File (ANSI 85)

PROCEDURE DIVISION (OPEN)

401

File is Available File is Unavailable

INPUT Normal open Open is unsuccessful

INPUT
(optional)

 Normal open Normal open; the first READ
causes the at end or
invalid key condition

INPUT SEQUENTIAL
(INFOS)

 Normal open Open is unsuccessful

I-O Normal open Open is unsuccessful

OUTPUT For ICISAM and INFOS,
files-Open is
unsuccessful

 For others-Open is
unsuccessful unless
compiled with the
ANSI switch (-G a)
in which case Open
is successful to an
empty file

 Open causes the file to be
created

OUTPUT INDEX
(INFOS)

 Open is unsuccessful Open causes the file to be
created

EXTEND Normal open Open is unsuccessful

TABLE 28. Availability of a File (VXCOBOL)

(2) The successful execution of an OPEN statement makes the associated record area available to the program.

(3) When a file is not in an open mode, no statement may be executed which references the file, either explicitly

or implicitly, except for a MERGE statement with the USING or GIVING phrase, an OPEN statement, or a SORT

statement with the USING or GIVING phrase..

(4) An OPEN statement must be successfully executed prior to the execution of any of the permissible

input-output statements. In the Permissible Statements table below, `X' at an intersection indicates that the specified

statement may be used with the open mode given at the top of the column.

File Access
Mode Statement

OPEN MODE

Input Output I-O Extend

 Sequential READ X X

 WRITE X X

 REWRITE X X

 START X

 DELETE X

 UNDELETE X

 Random READ X X

 WRITE X X

 REWRITE X

 START

 DELETE X

 UNDELETE X

 Dynamic READ X X

 WRITE X X

 REWRITE X

 START X X

 DELETE X

 UNDELETE X

 All (VXCOBOL:)

 DEFINE SUB-INDEX X X

 EXPUNGE SUB-INDEX X X

 LINK SUB-INDEX X X

 RETRIEVE X X

TABLE 29. Permissible Statements

(5) A file may be opened with the INPUT, OUTPUT, EXTEND, and I-O phrases in the same run unit.

Following the initial execution of an OPEN statement for a file, each subsequent OPEN statement execution for that

same file must be preceded by the execution of a CLOSE statement, without the LOCK phrase, for that file.

(6) Execution of the OPEN statement does not obtain or release the first data record.

Interactive COBOL Language Reference & Developer’s Guide - Part One

402

(7) If during the execution of an OPEN statement a file attribute conflict condition occurs, the execution of the

OPEN statement is unsuccessful.

(8) If a file opened with the INPUT phrase is an optional file which is not present, the OPEN statement sets the

file position indicator to indicate that an optional input file is not present.

(9) When files are opened with the INPUT or I-O phrase, the file position indicator is set to the first record for

sequential files, 1 for relative files, and to the first record using the primary key for indexed files.

(10) When the EXTEND phrase is specified, the OPEN statement positions the file immediately after the last

logical record for that file. The last logical record for a sequential file is the last record written in the file. The last

logical record for a relative file is the currently existing record with the highest relative record number. The last

logical record for an indexed file is the currently existing record with the highest primary key.

(11) The OPEN statement with the I-O phrase must reference a file that supports the input and output

operations that are permitted for a file when opened in the I-O mode. The execution of the OPEN statement with the

I-O phrase places the referenced file in the open mode for both input and output operations.

(12) For ANSI 74, for a file that is unavailable, the successful execution of an OPEN statement with an

EXTEND or I-O phrase creates the file. This creation takes place as if the following statements were executed in the

order shown:

OPEN OUTPUT file-name.
CLOSE file-name.

These statements are followed by execution of the OPEN statement specified in the source program.

The successful execution of an OPEN statement with the OUTPUT phrase creates the file. After the

successful creation of a file, that file contains no data records.

(13) For ANSI 85, for an optional file that is unavailable, the successful execution of an OPEN statement with

an EXTEND or I-O phrase creates the file. This creation takes place as if the following statements were executed in

the order shown:

OPEN OUTPUT file-name.
CLOSE file-name.

These statements are followed by execution of the OPEN statement specified in the source program.

The successful execution of an OPEN statement with the OUTPUT phrase creates the file. After the

successful creation of a file, that file contains no data records.

OPTIONAL is specified in the File Control SELECT clause.

(14) For VXCOBOL, for a file that is unavailable, the execution of an OPEN statement with an EXTEND or

I-O phrase is unsuccessful.

(15) The execution of the OPEN statement causes the value of the I-O status (and, for VXCOBOL, the INFOS

status) associated with filename to be updated.

(16) If more than one filename is specified in an OPEN statement, the result of executing this OPEN statement

is the same as if a separate OPEN statement had been written for each file-name in the same order as specified in the

OPEN statement.

(17) The minimum and maximum record sizes for a file are established at the time the file is created and must

not subsequently be changed.

PROCEDURE DIVISION (OPEN)

403

(18) The EXCLUSIVE phrase is an extension to ANSI COBOL that specifies that for each file in the OPEN

statement, the current program is the only program that will be allowed to open the file, and the program can have

the file open on a single file connector. If any other ICOBOL program already has the file open, the OPEN

statement will fail. On some systems, the open will fail if any other program on the system (not just COBOL

programs) has the file open.

For VXCOBOL:

(19) Opening an INFOS file will automatically perform a DOWN motion positioning the file position indicator

before the first key in the top level index (U/FOS positions the file position indicator above the top level index.) if

the access mode is sequential or dynamic. The downward motion is not done if the access mode is RANDOM.

(20) OPEN INPUT SEQUENTIAL could improve the performance of sequential reads thru INFOS II indexes,

however the SEQUENTIAL phrase is ignored when using U/FOS files.

(21) OPEN OUTPUT INDEX is used to create an additional index for an INFOS file. (The additional index is

frequently referred to as an inversion of the file.) The index named by the ASSIGN INDEX clause of the SELECT

must not exist and the database named by the ASSIGN DATA clause (or implied) must exist.

(22) INFOS files can be created with the OPEN OUTPUT phrase, but it is recommended that they be created

with an external utility. U/FOS files cab be created with the ufos_create utility. This utility provides more complete

access to the options available for the file.

NOTES:

(1) Files opened for OUTPUT, EXTEND, or I-O must not have the Read-Only attribute set, else the OPEN

fails with a File Status 92.

(2) On UNIX , for OPEN OUTPUT to a sequential file that already exists, the file is opened with the UNIX

truncate option, which sets the filesize to 0. This is equivalent to the COBOL behavior of deleting and recreating the

file. This method is used to properly maintain UNIX hard links to the name.

(3) ICOBOL supports Indexed and Relative versions 5, 6, and 7. An OPEN of a file that exists will

automatically adjust for the version of the file. An OPEN of a new file will create the file version 7. A particular

version can be specified under programmer control by using the "v=5|6|7" option in an extended disk open.

(4) On UNIX , for systems supporting symbolic links, OPEN will always open the resolution file.

(5) For ANSI 74 and ANSI 85, OPEN with ASSIGN TO PRINTER or PRINTER-1 including a filename with

the Printer Control utility enabled in the configuration file (.cfi) will place the file in the printer control file to be

printed if the given queue was enabled. If the given filename is a simple name (i.e., no path specifier), the file will

be created in the printer control directory. ASSIGN TO PRINTER will place the file in the queue directed to

@PCQ0 and ASSIGN TO PRINTER-1 will place the file in the queue directed to @PCQ1. If the appropriate PCQ

has the AUTO option enabled, then when the file is closed by the COBOL program the file will automatically start

printing using the default options specified for that PCQ.

The printer control file has a limit of 48 to 1024 files before subsequent OPENs will fail with a File Status 99 if

a new file is to be added to the print queue.

(6) OPEN EXTEND does not imply EXCLUSIVE. If EXCLUSIVE access is desired, it should be explicitly

specified on the OPEN statement.

Interactive COBOL Language Reference & Developer’s Guide - Part One

404

E.38. PERFORM

E.38.1 Function

The PERFORM statement is used to transfer control explicitly to one or more procedures and to return control

implicitly whenever execution of the specified procedure is complete. The PERFORM statement is also used to

control execution of one or more imperative statements which are within the scope of that PERFORM statement.

E.38.2 General Format (ANSI 74 and ANSI 85)

Format 1: Unconditional PERFORM

Out-of-line

PERFORM procedure-name-1 [procedure-name-2]

In-line

PERFORM imperative-statement-1 END-PERFORM

Format 2: Iterative PERFORM

Out-of-line

PERFORM procedure-name-1 [procedure-name-2] TIMES

In-line

PERFORM TIMES imperative-statement-1

END-PERFORM

Format 3: Conditional PERFORM

Out-of-line

PERFORM procedure-name-1 [procedure-name-2]

[W ITH TEST] UNTIL condition-1

In-line

PERFORM [W ITH TEST] UNTIL condition-1 imperative-statement-1 END-PERFORM

PROCEDURE DIVISION (PERFORM)

405

Format 4: Variable PERFORM

Out-of-line

PERFORM procedure-name-1 [procedure-name-2] [W ITH TEST] VARYING

 UNTIL condition-1

[AFTER UNTIL condition-2]...

In-line

PERFORM [W ITH TEST] VARYING

UNTIL condition-1

imperative-statement-1 END-PERFORM

E.38.3.General Formats (VXCOBOL)

Format 1: Unconditional PERFORM

PERFORM procedure-name-1 [procedure-name-2]

[END-PERFORM]

Format 2: Iterative PERFORM

PERFORM procedure-name-1 [procedure-name-2] TIMES

[END-PERFORM]

Format 3: Conditional PERFORM

PERFORM procedure-name-1 [procedure-name-2] UNTIL condition-1

[END-PERFORM]

Format 4: Variable PERFORM

PERFORM procedure-name-1 [procedure-name-2] VARYING

 UNTIL condition-1

[AFTER UNTIL condition-2]...

[END-PERFORM]

Interactive COBOL Language Reference & Developer’s Guide - Part One

406

E.38.4 Syntax Rules

(1) Each identifier represents a numeric elementary item described in the Data Division. In Format 2,

identifier-1 must be described as a numeric integer.

(2) If neither the TEST BEFORE nor TEST AFTER phrase is specified, the TEST BEFORE is assumed. For

VXCOBOL, TEST BEFORE is always assumed.

(3) Each literal represents a numeric literal.

(4) The words THROUGH and THRU are equivalent.

(5) If an index-name is specified in the VARYING or AFTER phrase, then:

a. The identifier in the associated FROM and BY phrases must reference an integer data item.

b. The literal in the associated FROM phrase must be a positive integer.

c. The literal in the associated BY phrase must be a nonzero integer.

(6) If an index-name is specified in the FROM phrase, then:

a. The identifier in the associated VARYING or AFTER phrase must reference an integer data item.

b. The identifier in the associated BY phrase must reference an integer data item.

c. The literal in the associated BY phrase must be an integer.

(7) Literal in the BY phrase must not be zero.

(8) Condition-1, condition-2, ... , may be any conditional expression.

(9) Where procedure-name-1 and procedure-name-2 are both specified and either is the name of a procedure in

the declaratives portion of the Procedure Division, both must be procedure-names in the same declarative section.

(10) Six AFTER phrases are permitted in Format 4 of the out-of-line PERFORM statement.

(11) For VXCOBOL, the END-PERFORM is for documentation purposes only.

E.38.5 General Rules

(1) When procedure-name-1 is specified, the PERFORM statement is referred to as an out-of-line PERFORM

statement; when procedure-name-1 is omitted, the PERFORM statement is referred to as an in-line PERFORM

statement. In-line PERFORM statements are not supported for VXCOBOL.

(2) The data items referenced by identifier-4 and identifier-7 must not have a zero value.

(3) If an index-name is specified in the VARYING or AFTER phrase, and an identifier is specified in the

associated FROM phrase, the data item referenced by the identifier must have a positive value.

(4) The statements contained within the range of procedure-name-1 (through procedure-name-2 if specified)

for an out-of-line PERFORM statement or contained within the PERFORM statement itself for an in-line PERFORM

statement are referred to as the specified set of statements.

(5) The END-PERFORM phrase delimits the scope of the in-line PERFORM statement.

PROCEDURE DIVISION (PERFORM)

407

(6) An in-line PERFORM statement functions according to the following general rules for an otherwise

identical out-of-line PERFORM statement, with the exception that the statements contained within the in-line

PERFORM statement are executed in place of the statements contained within the range of procedure-name-1

(through procedure-name-2 if specified). Unless specially qualified by the word in-line or out-of-line, all the general

rules which apply to the out-of-line PERFORM statement also apply to the in-line PERFORM statement.

(7) When the PERFORM statement is executed, control is transferred to the first statement of the specified set

of statements (except as indicated in general rules 10b, 10c, and 10d). This transfer of control occurs only once for

each execution of a PERFORM statement. For those cases where a transfer of control to the specified set of

statements does take place, an implicit transfer of control to the end of the PERFORM statement is established as

follows:

a. If procedure-name-1 is a paragraph-name and procedure-name-2 is not specified, the return is after the

last statement of procedure-name-1.

b. If procedure-name-1 is a section-name and procedure-name-2 is not specified, the return is after the last

statement of the last paragraph in procedure-name-1.

c. If procedure-name-2 is specified and it is a paragraph-name, the return is after the last statement of the

paragraph.

d. If procedure-name-2 is specified and it is a section-name, the return is after the last statement of the last

paragraph in the section.

e. If an in-line PERFORM statement is specified, an execution of the PERFORM statement is completed

after the last statement contained within it has been executed.

(8) There is no necessary relationship between procedure-name-1 and procedure-name-2 except that a

consecutive sequence of operations is to be executed beginning at the procedure named procedure-name-1 and

ending with the execution of the procedure named procedure-name-2. In particular, GO TO and PERFORM

statements may occur between procedure-name-1 and the end of procedure-name-2. If there are two or more logical

paths to the return point, then procedure-name-2 may be the name of a paragraph consisting of the EXIT statement,

to which all of these paths must lead.

(9) If control passes to the specified set of statements by means other than a PERFORM statement, control will

pass through the last statement of the set to the next executable statement as if no PERFORM statement referenced

the set.

(10) The PERFORM statements operate as follows:

a. Format 1 is the basic PERFORM statement. The specified set of statements referenced by this type of

PERFORM statement is executed once and then control passes to the end of the PERFORM statement.

b. Format 2 is the PERFORM ... TIMES. The specified set of statements is performed the number of times

specified by integer-1 or by the initial value of the data item referenced by identifier-1 for that execution. If at the

time of the execution of a PERFORM statement, the value of the data item referenced by identifier-1 is equal to zero

or is negative, control passes to the end of the PERFORM statement. Following the execution of the specified set of

statements the specified number of times, control is transferred to the end of the PERFORM statement.

During execution of the PERFORM statement, reference to identifier-1 cannot alter the number of

times the specified set of statements is to be executed from that which was indicated by the initial value of the data

item referenced by identifier-1.

See Appendix A, Implementation Limits on page 817, for the maximum number ICOBOL currently

supports for an interative PERFORM (i.e., PERFORM n TIMES) and for the maximum number of active

PERFORMs.

Interactive COBOL Language Reference & Developer’s Guide - Part One

408

c. Format 3 is the PERFORM ... UNTIL. The specified set of statements is performed until the condition

specified by the UNTIL phrase is true. When the condition is true, control is transferred to the end of the

PERFORM statement. If the condition is true when the PERFORM statement is entered, and test TEST BEFORE

phrase is specified or implied no transfer to procedure-name-1 takes place, and control is passed to the end of the

PERFORM statement. If the TEST AFTER phrase is specified, the PERFORM statement functions as if the TEST

BEFORE phrase was specified except that the condition is tested after the specified set of statements has been

executed. Any subscripting associated with the operands specified in condition-1 is evaluated each time the

condition is tested.

d. Format 4 is the PERFORM ... VARYING. This variation of the PERFORM statement is used to

augment the values referenced by one or more identifiers or index-names in an orderly fashion during the execution

of a PERFORM statement. In the following discussion, every reference to identifier as the object of the VARYING,

AFTER, and FROM (current value) phrases also refers to index-names. If index-name-1 or index-name-3 is

specified, the value of the associated index at the beginning of the PERFORM statement must be set to an occurrence

number of an element in the table. If index-name-2 or index-name-4 is specified, the value of the data item

referenced by identifier-2 or identifier-5 at the beginning of the PERFORM statement must be equal to an

occurrence number of an element in a table associated with index-name-2 or index-name-4. Subsequent augmenta-

tion, as described below, of index-name-1 or index-name-3 must not result in the associated index being set to a

value outside the range of the table associated with index-name-1 or index-name-3; except that, at the completion of

the PERFORM statement, the index associated with index-name-1 may contain a value that is outside the range of

the associated table by one increment or decrement value. If identifier-2 or identifier-5 is subscripted, the subscripts

are evaluated each time the content of the data item referenced by the identifier is set or augmented. If identifier-3,

identifier-4, identifier-6, or identifier-7 is subscripted, the subscripts are evaluated each time the content of the data

item referenced by the identifier is used in a setting or augmenting operation. Any subscripting associated with the

operands specified in condition-1 or condition-2 is evaluated each time the condition is tested.

Representation of the actions of several types of Format 4 PERFORM statements are given in figures 5 and

6 on the following pages.

1) If the TEST BEFORE phrase is specified or implied:

When the data item referenced by one identifier is varied, the content of the data item referenced by identifier-2

is set to literal-1 or the current value of the data item referenced by identifier-3 at the point of initial execution of the

PERFORM statement; then, if the condition of the UNTIL phrase is false, the specified set of statements is executed

once. The value of the data item referenced by identifier-2 is augmented by the specified increment or decrement

value (literal-2 or the value of the data item referenced by identifier-4) and condition-1 is evaluated again. The

cycle continues until this condition is true, at which point control is transferred to the end of the PERFORM

statement. If condition-1 is true at the beginning of execution of the PERFORM statement, control is transferred to

the end of the PERFORM statement.

PROCEDURE DIVISION (PERFORM)

409

FIGURE 5. PERFORM [TEST BEFORE] VARYING with one condition

When the data items referenced by two identifiers are varied, the content of the data item referenced by

identifier-2 is set to literal-1 or the current value of the data item referenced by identifier-3 and then the content of

the data item referenced by identifier-5 is set to literal-3 or the current value of the data item referenced by

identifier-6. After the contents of the data items referenced by the identifiers have been set, condition-1 is evaluated;

if true, control is transferred to the end of the PERFORM statement; if false, condition-2 is evaluated. If condition-2

is false, the specified set of statements is executed once, then the content of the data item referenced by identifier-5 is

augmented by literal-4 or the content of the data item referenced by identifier-7 and condition-2 is evaluated again.

This cycle of evaluation and augmentation continues until this condition is true. When condition-2 is true, the

content of the data item referenced by identifier-2 is augmented by literal-2 or the content of the data item referenced

by identifier-4, the content of the data item referenced by identifier-5 is set to literal-3 or the current value of the

data item referenced by identifier-6, and condition-1 is reevaluated. The PERFORM statement is completed if

condition-1 is true; if not, the cycle continues until condition-1 is true.

Interactive COBOL Language Reference & Developer’s Guide - Part One

410

FIGURE 6. PERFORM [TEST BEFORE] VARYING with two conditions

At the termination of the PERFORM statement, the data item referenced by identifier-5 contains

literal-3 or the current value of the data item referenced by identifier-6. The data item referenced by identifier-2

contains a value that exceeds the last used setting by one increment or decrement value, unless condition-1 was true

when the PERFORM statement was entered, in which case, the data item referenced by identifier-2 contains literal-1

or the current value of the data item referenced by identifier-3.

2) For ANSI 74 and ANSI 85, if the TEST AFTER phrase is specified:

 When the data item referenced by one identifier is varied, the content of the data item referenced by

identifier-2 is set to literal-1 or the current value of the data item referenced by identifier-3 at the point of execution

of the PERFORM statement; then the specified set of statements is executed and condition-1 of the UNTIL phrase is

tested. If the condition is false, the value of the data item referenced by identifier-2 is augmented by the specified

increment or decrement value (literal-2 or the value of the data item referenced by identifier-4) and the specified set

of statements is executed again. The cycle continues until condition-1 is tested and found to be true, at which point

control is transferred to the end of the PERFORM statement.

When the data item referenced by two identifiers are varied, the content of the data item referenced by

identifier-2 is set to literal-1 or the current value of the data item referenced by identifier-3, then the content of the

data item referenced by identifier-5 is set to literal-3 or the current value of the data item referenced by identifier-6

and the specified set of statements is executed. Condition-2 is then evaluated; if false, the content of the data item

referenced by identifier-5 is augmented by literal-4 or the content of the data item referenced by identifier-7 and the

specified set of statements is again executed. The cycle continues until condition-2 is again evaluated and found to

be true, at which time condition-1 is evaluated. If the condition is false, the value of the data item referenced by

identifier-2 is augmented by the specified increment or decrement value (literal-2 or the value of the data item

referenced by identifier-4), the content of the data item referenced by identifier-5 is set to literal-3 or the current

value of the data item referenced by identifier-6 and the specified set of statements is executed again. The cycle

PROCEDURE DIVISION (PERFORM)

411

continues until condition-1 is tested and found to be true, at which point control is transferred to the end of the

PERFORM statement.

After the completion of the PERFORM statement, each data item varied by an AFTER or VARYING

phrase contains the same value it contained at the end of the most recent execution of the specified set of statements.

During the execution of the specified set of statements associated with the PERFORM statement, any

change to the VARYING variable (the data item referenced by identifier-2 and index-name-1), the BY variable (the

data item referenced by identifier-4), the AFTER variable (the data item referenced by identifier-5 and

index-name-3), or the FROM variable (the data item referenced by identifier-3 and index-name-2) will be taken into

consideration and will affect the operation of the PERFORM statement.

When the data items referenced by two identifiers are varied, the data item referenced by identifier-5 goes

through a complete cycle (FROM, BY, UNTIL) each time the content of the data item referenced by identifier-2 is

varied. When the contents of three or more data items referenced by identifiers varied, the mechanism is the same as

for two identifiers except that the data item being varied by each AFTER phrase goes through a complete cycle each

time the data item being varied by the preceding AFTER phrase is augmented.

(11) The range of a PERFORM statement consists logically of all those statements that are executed as a result

of executing the PERFORM statement through execution of the implicit transfer of control to the end of the

PERFORM statement. The range includes all statements that are executed as the result of a transfer of control by

CALL, EXIT, GO TO, and PERFORM statements in the range of the PERFORM statement, as well as all statements

in declarative procedures that are executed as a result of the execution of statements in the range of the PERFORM

statement. The statements in the range of a PERFORM statement need not appear consecutively in the source

program.

(12) Statements executed as the result of a transfer of control caused by executing an EXIT PROGRAM

statement are not considered to be part of the range of the PERFORM statement when:

a. That EXIT PROGRAM statement is specified in the same program in which the PERFORM statement is

specified, and

b. The EXIT PROGRAM statement is within the range of the PERFORM statement.

(13) Statements in other programs in the run unit may only be obeyed as a result of executing a PERFORM

statement, if the range of that PERFORM statement includes CALL and EXIT PROGRAM statements.

(14) If the range of a PERFORM statement includes another PERFORM statement, the sequence of procedures

associated with the included PERFORM must itself either be totally included in, or totally excluded from, the logical

sequence referred to by the first PERFORM. Thus, an active PERFORM statement, whose execution point begins

within the range of another active PERFORM statement, must not allow control to pass to the exit of the other active

PERFORM statement; furthermore, two or more such active PERFORM statements may not have a common exit.

See the following illustrations for examples of legal PERFORM constructs:

FIGURE 7. Valid PERFORM constructs

Interactive COBOL Language Reference & Developer’s Guide - Part One

412

E.39. PREPARE (ISQL)

E.39.1 Function

The PREPARE statement prepares an SQL statement for subsequent execution by the EXECUTE statement.

E.39.2 General Format

PREPARE FROM

[ON SQLERROR imperative-statement-1]

[NOT ON SQLERROR imperative-statement-2]

[END-PREPARE]

E.39.3 Syntax Rules

(1) Literal-1 and literal-2 must specify a nonnumeric literal and may not specify a figurative constant.

(2) Identifier-1 and identifier-2 must specify an alphanumeric data item.

(3) Literal-1 or the value represented by identifier-1 may not exceed 30 characters in length.

E.39.4 General Rules

(1) Literal-1 or the content of the data item represented by identifier-1 specifies the name of a statement

container at runtime. The statement container holds the result of the statement preparation process that is performed

when the PREPARE statement is executed. The content of the statement container is subsequently used by an

EXECUTE statement to perform the SQL operation.

(2) Literal-2 or the content of the data item represented by identifier-2 specifies the text of the SQL statement

that is to be prepared for execution.

(3) Statement containers are considered to be local to the currently active connection, regardless of the program

containing the PREPARE statement that allocates them. Therefore a statement can be prepared in one program and

executed in a separate program.

(4) The following SQL statements may be specified as part of literal-2 or the content of the data item

represented by identifier-2:

• CREATE TABLE and CREATE INDEX

• DECLARE CURSOR

• DELETE

• DROP TABLE and DROP INDEX

• SELECT

• INSERT

• UPDATE

Additional information on the syntax for these supported statements can be found in the chapter on the ICODBC

Driver found on page 771.

(5) If there is no currently active connection in the run unit, the execution of the PREPARE statement will result

in an error with a SQLSTATE of “HY010", which is a “Function sequence error”.

PROCEDURE DIVISION (PREPARE)

413

(6) If a statement container by the specified name already exists in the currently active connection at the time

the PREPARE statement is executed, the existing content of the statement container is discarded and the container is

reused for the execution of this PREPARE statement.

(7) If a statement container by the specified name does not already exist in the currently active connection at the

time the PREPARE statement is executed, a new statement container with the given name is allocated for the

currently active connection.

(8) Upon completion of the PREPARE statement, the following occurs in the order specified:

a. The value of the SQLSTATE data item is updated with the status of the operation.

b. If the value of the SQLSTATE class field is “00" or “01", the statement is successful. Control is

transferred to the end of the PREPARE statement or to imperative-statement-2, if specified. In the latter case,

execution continues according to the rules for each statement specified in imperative-statement-2. If a procedure

branching or conditional statement which causes explicit transfer of control is executed, control is transferred in

accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-2,

control is transferred to the end of the PREPARE statement.

c. If the value of the SQLSTATE class field is not “00" or “01", the statement is unsuccessful. The

statement container is deallocated and no statement container of the specified name will exist in the current program.

Control is transferred to the end of the PREPARE statement or to imperative-statement-1, if specified. In the latter

case, execution continues according to the rules for each statement specified in imperative-statement-1. If a

procedure branching or conditional statement which causes explicit transfer of control is executed, control is

transferred in accordance with the rules for the statement; otherwise, upon completion of the execution of

imperative-statement-1, control is transferred to the end of the PREPARE statement.

(9) The END-PREPARE phrase delimits the scope of the PREPARE statement.

(10) More on SQLSTATE can be found on page 133.

Interactive COBOL Language Reference & Developer’s Guide - Part One

414

E.40. READ (ANSI 74 and ANSI 85)

E.40.1 Function

For sequential access, the READ statement makes available the next logical record from a file. For random access,

the READ statement makes available a specified record from a mass storage file. LOCK and IGNORE LOCK are

extensions to ANSI COBOL. TIME-OUT is an extension to ANSI COBOL.

E.40.2 General Format

Format 1:

For sequential files:

READ file-name [NEXT] RECORD [INTO identifier-1] [TIME-OUT AFTER]

[AT END imperative-statement-1]

[NOT AT END imperative-statement-2]

[END-READ]

For indexed and relative files:

READ file-name RECORD [INTO identifier-1]

[AT END imperative-statement-1]

[NOT AT END imperative-statement-2]

[END-READ]

Format 2:

For relative files:

READ file-name RECORD [INTO identifier-1]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-READ]

For indexed files:

READ file-name RECORD [INTO identifier-1] [KEY IS key-name]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-READ]

E.40.3 Syntax Rules

(1) The storage area associated with identifier-1 and the record area associated with file-name must not be the

same storage area.

PROCEDURE DIVISION (ANSI 74 and ANSI 85 READ)

415

(2) Format 1 must be used for all files in sequential access mode.

(3) Identifier-2 may represent any elementary numeric data item. Literal-1 may be any numeric literal.

(4) In Format 1, the NEXT or PREVIOUS phrase must be specified for files in dynamic access mode when

records are to be retrieved sequentially.

(5) Format 2 is used for indexed and relative files in random access mode or for files in dynamic access mode

when records are to be retrieved randomly.

(6) The INVALID KEY phrase or the AT END phrase must be specified, if no applicable USE AFTER

STANDARD EXCEPTION procedure is specified for file-name.

For indexed files:

(7) The KEY IS phrase of the READ statement must reference a key-name (id-1 in the formats of the RECORD

KEY or ALTERNATE RECORD KEY) associated with file-name.

(8) Key-name may be qualified if id-1 is a simple data item. Key-name may be qualified by the filename if it is

a composite data item.

E.40.4 General Rules

(1) The file referenced by file-name must be open in the input or I-O mode at the time this statement is

executed.

(2) In format 1, if neither the NEXT phrase nor the PREVIOUS phrase is specified, then NEXT is implied for

files in sequential access mode.

(3) The execution of the READ statement causes the value of the I-O status associated with file-name to be

updated.

(4) The setting of the file position indicator at the start of the execution of a Format 1 READ statement is used

in determining the record to be made available according to the following rules. Comparisons for records in

sequential files relate to the record number. Comparisons for records in relative files relate to the relative key

number. Comparisons for records in indexed files relate to the value of the current key of reference. For indexed

files, the comparisons are made according to the collating sequence of the file.

a. If the file position indicator indicates that no valid next record has been established, execution of the

READ statement is unsuccessful.

b. If the file position indicator was established by a previous OPEN or START statement, the first existing

record that is selected is either:

1. If NEXT is specified or implied, the first existing record in the file whose record number or key

value is greater than or equal to the file position indicator, or

2. If PREVIOUS is specified, the first existing record in the file whose record number or key value is

less than or equal to the file position indicator.

NOTE: For OPEN, this means that you normally get the first record in the file for sequential or relative and

normally get an at end condition for indexed.

c. If the file position indicator was established by a previous READ statement and the file is sequential or

relative, or an indexed file whose current key of reference does not allow duplicates, the first existing record in the

Interactive COBOL Language Reference & Developer’s Guide - Part One

416

file whose record number (or relative record number) or key value is greater than the file position indicator if NEXT

is specified or implied or is less than the file position indicator if PREVIOUS is specified is selected.

d. For indexed files, if the file position indicator was established by a previous READ statement, and the

current key of reference does allow duplicates, the record that is selected is one of the following:

1. If NEXT is specified or implied, the first record in the file whose key value is either equal to the file

position indicator and whose logical position within the set of duplicates is immediately after the record that was

made available by that previous READ statement, or whose key value is greater that the file position indicator.

2. If PREVIOUS is specified, the first record in the file whose key value is either equal to the file

position indicator and whose logical position within the set of duplicates is immediately prior to the record that was

made available by that previous READ statement, or whose key value is less than the file position indicator.

If a record is found which satisfies the above rules, it is made available in the record area associated with

file-name, unless the RELATIVE KEY phrase is specified for file-name and the number of significant digits in the

relative record number of the selected record is larger than the size of the relative key data item, in which case, the

file position indicator is set to indicate this condition and execution proceeds as specified in General Rule 10.

If no record is found which satisfies the above rules, the file position indicator is set to indicate that no next

logical record exists and execution proceeds as specified in General Rule 9.

If a record is made available, the file position indicator is set to the record number of the record made

available.

(5) Regardless of the method used to overlap access time with processing time, the concept of the READ

statement is unchanged; a record is available to the object program prior to the execution of imperative-statement-2,

if specified, or prior to the execution of any statement following the READ statement, if imperative-statement-2 is

not specified.

(6) When the logical records of a file are described with more than one record description, these records

automatically share the same record area in storage; this is equivalent to an implicit redefinition of the area. The

contents of any data items which lie beyond the range of the current data record ate undefined at the completion of

the execution of the READ statement.

(7) The INTO phrase may be specified in a READ statement:

a. If only one record description is subordinate to the file description entry, or

b. If all record-names associated with file-name and the data item referenced by identifier-1 describe a

group item or an elementary alphanumeric item.

(8) The result of the execution of a READ statement with the INTO phrase is equivalent to the application of

the following rules in the order specified:

a. The execution of the same READ statement without the INTO phrase.

b. The current record is moved from the record area to the area specified by identifier-1 according to the

rules for the MOVE statement without the CORRESPONDING phrase. The size of the current record is specified in

the RECORD clause. If the file description entry contains a RECORD IS VARYING clause, the implied move is a

group move. The implied MOVE statement does not occur if the execution of the READ statement was

unsuccessful. Any subscripting associated with identifier-1 is evaluated after the record has been read and

immediately before it is moved to the data item. The record is available in both the record area and the data item

referenced by identifier-1.

PROCEDURE DIVISION (ANSI 74 and ANSI 85 READ)

417

(9) For ANSI 85, if at the time of execution of a format 2 READ statement, the file position indicator indicates

that an optional input file is not present, the invalid key condition exists and execution of the READ statement is

unsuccessful.

(10) For a Format 1 READ statement, if the file position indicator indicates that no next logical record exists, or

that the number of significant digits in the relative record number is larger that the size of the relative key data item,

the following occurs in the order specified:

a. A value, derived from the setting of the file position indicator, is placed into the I-O status associated

with file-name to indicate the at end condition.

b. If the AT END phrase is specified in the statement causing the condition, control is transferred to

imperative-statement-1 in the AT END phrase. Any USE AFTER STANDARD EXCEPTION procedure associated

with file-name is not executed.

c. If the AT END phrase is not specified, a USE AFTER STANDARD EXCEPTION procedure must be

associated with this file-name, and that procedure is executed. Return from that procedure is to the next executable

statement following the end of the READ statement.

When the at end condition occurs, execution of the READ statement is unsuccessful.

(11) If neither an at end nor an invalid key condition occurs during the execution of a READ statement, the AT

END phrase or INVALID KEY phrase is ignored, if specified, and the following actions occur:

a. The file position indicator is set and the I-O status associated with file-name is updated.

b. If an exception condition which is not an at end or invalid key condition exists, control is transferred

according to rules of the USE statement following the execution of any USE AFTER STANDARD EXCEPTION

procedure applicable to file-name.

c. If no exception condition exists, the record is made available in the record area and any implicit move

resulting from the presence of an INTO phrase is executed. Control is transferred to the end of the READ statement

or to imperative-statement-2, if specified. In the latter case, execution continues according to the rules for each

statement specified in imperative-statement-2. If a procedure branching or conditional statement which causes

explicit transfer of control is executed, control is transferred in accordance with the rules for the statement;

otherwise, upon completion of the execution of imperative-statement-2, control is transferred to the end of the

READ statement.

(12) Following the unsuccessful execution of a READ statement, the content of the associated record area is

undefined, and the file position indicator is set to indicate that no valid next record has been established. If the

READ statement is unsuccessful due to the end-of-file condition or because the record which would have been

returned is locked, the file position indicator remains unchanged. In these cases, the program can loop for the

condition to be released.

(13) If the number of character positions in the record that is read is less than the minimum size specified by the

record description entries for file-name, the portion of the record area which is to the right of the last valid character

read is undefined. If the number of character positions in the record that is read is greater than the maximum

specified by the record description entries for file-name, the record is truncated on the right to the maximum size. In

either of these cases, the READ statement is successful and an I-O status is set, indicating that a record length

conflict has occurred.

For relative files:

(14) For a relative file for which dynamic access mode is specified, a Format 1 READ statement with the

NEXT phrase specified causes the next logical record to be retrieved from that file.

Interactive COBOL Language Reference & Developer’s Guide - Part One

418

(15) For a relative file, if the RELATIVE KEY phrase is specified for file-name, the execution of a Format 1

READ statement moves the relative record number of the record made available to the relative key data item

according to the rules for the MOVE statement.

(16) For a relative file, execution of a Format 2 READ statement sets the file position indicator to the value

contained in the data item referenced by the RELATIVE KEY phrase for the file, and the record whose relative

record number equals the file position indicator is made available in the record area associated with file-name. If the

file does not contain such a record, the invalid key condition exists and execution of the READ statement is

unsuccessful.

For indexed files:

(17) For an indexed file for which dynamic access mode is specified, a Format 1 READ statement with the

NEXT phrase specified causes the next logical record to be retrieved from that file.

(18) For an indexed file being sequentially accessed, records having the same duplicate value in an alternate

record key which is the key of reference are made available in the same order in which they are released by

execution of WRITE statements, or by execution of REWRITE statements which create such duplicate values.

(19) For an indexed file, if the KEY phrase is specified in a Format 2 READ statement, key-name is established

as the key of reference for this retrieval. If the dynamic access mode is specified, this key of reference is also used

for retrievals by any subsequent executions of Format 1 READ statements for the file until a different key of

reference is established for the file.

(20) For an indexed file, if the KEY phrase is not specified in a Format 2 READ statement, the primary record

key is established as the key of reference for this statement. If the dynamic access mode is specified, this key of

reference is also used for retrievals by any subsequent execution of Format 1 READ statements for the file until a

different key of reference is established for the file.

(21) For an indexed file, execution of a Format 2 READ statement sets the file position indicator to the value in

the key of reference. If the RECORD KEY or ALTERNATE RECORD KEY clause of the file control entry

includes the OCCURS phrase, the file position indicator is set to the value in the first occurrence. Similarly, if the

clause contains the ALSO phrase, the value of the root key (id-2 in the format for the RECORD KEY and

ALTERNATE RECORD clauses) is used to set the file position indicator. This value is compared with the value

contained in the corresponding data item of the stored records in the file until the first record having an equal value is

found. In the case of an alternate key with duplicate values, the first record found is the first record of a sequence of

duplicates which was released to the file system. The record so found is made available in the record area associated

with file-name. If no record can be so identified, the invalid key condition exists and execution of the READ

statement is unsuccessful.

For relative and indexed files:

(22) If the LOCK phrase is specified, the system attempts to lock the record for the exclusive use of the

currently executing program. If the lock operation and the read operation are successful, the record may not be read,

deleted, or rewritten by another user, with one exception: a READ statement executed on a file open in the INPUT

mode or a READ with the IGNORE LOCK clause will ignore the lock and the record can be read.

(23) If IGNORE LOCK is specified, READ will successfully read the data from a locked record. (This behaves

similarly to reading locked records in a file open for INPUT.)

(24) If the record cannot be locked, either because it is already locked by another user or because of system

limitations on the number of locks, the I-O status is set to indicate the lock violation and the READ statement is

unsuccessful.

(25) If the conditions in General Rule 22 cause the READ statement to be unsuccessful, the current record

position is not modified, rather than being set as specified in General Rule 12.

PROCEDURE DIVISION (ANSI 74 and ANSI 85 READ)

419

(26) A record lock can be removed by the successful execution of an UNLOCK or CLOSE statement for the

file.

(27) The END-READ phrase delimits the scope of the READ statement.

For sequential files:

(28) The TIME-OUT phrase enables a local timeout for the particular READ statement. The file specified must

be capable of timing out, generally a serial line. The timeout specifies the amount of time, in seconds, that the

runtime will wait for individual keystrokes (characters). If the time expires, the READ terminates with an I-O status

of 9T and an exception status of 76. Valid timeout values are:

<= 0 or >= 65535 No timeout (Wait forever)

65534 Timeout immediately

> 6300 Set to 6300 seconds

1-6300 Set to n seconds

(29) If the timeout value specified by identifier-2 or literal-1 is not an integer, its value is rounded to the nearest

tenth of a second.

(30) When using timeouts, ICOBOL handles them in the following order for READ statements:

aa) If a local timeout was specified by the TIME-OUT clause then it is used, otherwise,

b) If a timeout was set on the OPEN with the extended open option for timeout, then it is used; otherwise,

c) The default timeout for this particular device class is used.

NOTE: Extended open options are discussed in the Developer’s Guide section beginning on page 756.

(31) When performing data-sensitive reads on files whose file control entry has one of the clauses ASSIGN TO

KEYBOARD, ORGANIZATION IS LINE SEQUENTIAL, or RECORD DELIMITER IS DATA-SENSITIVE then

the characters null <000>, carriage-return <015>, newline <012>, form-feed <014>, or the carriage-return newline

pair <015><012) are used to terminate the read. If the ASSIGN TO KEYBOARD phrase is used, the terminator

(one or two bytes) is included in the record if there is sufficient room and it will be included in the length of the

record. If the RECORD DELIMITER IS DATA-SENSITIVE phrase the delimiter is NOT placed into the record

area. The DELIMITER INTO phrase can be used to capture the one or two byte delimiter. The size of the delimiter

is NOT included in the length of the record. In this case an "empty" data-sensitive record will have a length of zero

(0) which will return a file status of "04" since the smallest VARYING RECORD size is 1. We suggest using the

DEPENDING on phrase to return the actual record length and then use the length to determine whether the "04" was

caused by an empty record or a record that is too long.

Interactive COBOL Language Reference & Developer’s Guide - Part One

420

E.41. READ (VXCOBOL)

E.41.1 Function

For sequential access, the READ statement makes available the next logical record from a file. For random access,

the READ statement makes available a specified record from a mass storage file.

E.41.2 General Format

Format 1: Sequential Access Mode

For sequential files:

READ file-name [NEXT] RECORD [INTO identifier-1]

[AT END imperative-statement-1]

[NOT AT END imperative-statement-2]

[END-READ]

For relative and indexed files:

READ file-name [MANDATORY] RECORD [INTO identifier-1]

[AT END imperative-statement-1]

[NOT AT END imperative-statement-2]

[END-READ]

For INFOS files:

READ file-name [MANDATORY]

 [INTO identifier-1]

[AT END imperative-statement-1]

[NOT AT END imperative-statement-2]

[END-READ]

Format 2:

For relative files:

READ file-name RECORD [WAIT] [INTO identifier-1]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-READ]

PROCEDURE DIVISION (VXCOBOL READ)

421

For indexed files:

READ file-name RECORD [INTO identifier-1] [KEY IS data-name]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-READ]

For INFOS files:

READ file-name [MANDATORY]

 [INTO identifier-1]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-READ]

E.41.3 Syntax Rules

(1) The storage area associated with identifier-1 and the record area associated with file-name must not be the

same storage area.

(2) Format 1 must be used for all files in sequential access mode.

(3) In Format 1, the NEXT or BACKWARD phrase must be specified for files in dynamic access mode when

records are to be retrieved sequentially.

(4) Format 2 is used for indexed, relative, and INFOS files in random access mode or for files in dynamic

access mode when records are to be retrieved randomly.

(5) The INVALID KEY phrase or the AT END phrase must be specified if no applicable USE AFTER

STANDARD EXCEPTION procedure is specified for file-name.

For indexed files:

(6) Data-name must be the name of a data item specified as a record key associated with file-name.

(7) Data-name may be qualified.

E.41.4 General Rules

(1) The file referenced by file-name must be open in the input or I-O mode at the time this statement is

executed.

(2) In Format 1, if neither the NEXT phrase nor the BACKWARD phrase is specified, then NEXT is implied for

files in sequential access mode.

(3) The execution of the READ statement causes the value of the I-O status and INFOS status associated with

file-name to be updated.

Interactive COBOL Language Reference & Developer’s Guide - Part One

422

(4) The setting of the file position indicator at the start of the execution of a Format 1 READ statement is used

in determining the record to be made available according to the following rules. Comparisons for records in

sequential files relate to the record number. Comparisons for records in relative files relate to the relative key

number. Comparisons for records in indexed or INFOS files relate to the value of the current key of reference. For

indexed or INFOS files, the comparisons are made according to the collating sequence of the file.

a. If the file position indicator indicates that no valid next record as been established, execution of the

READ statement is unsuccessful.

b. If the file position indicator was established by a previous OPEN or START statement, the first existing

record that is selected is either:

1. If NEXT is specified or implied, the first existing record in the file whose record number or key

value is greater than or equal to the file position indicator, or

2. If BACKWARD is specified, the first existing record in the file whose record number or key value

is less than or equal to the file position indicator.

NOTE: For OPEN, this means that you normally get the first record in the file for sequential or

relative and normally get an at end condition for indexed.

c. If the file position indicator was established by a previous READ statement and the file is sequential or

relative, an indexed, of INFOS file whose current key of reference does not allow duplicates, the first existing record

in the file whose record number (or relative record number) or key value is greater than the file position indicator if

NEXT is specified or implied or is less than the file position indicator if BACKWARD is specified is selected.

d. For indexed files or INFOS, if the file position indicator was established by a previous READ statement,

and the current key of reference does allow duplicates, the record that is selected is one of the following:

1. If NEXT is specified or implied, the first record in the file whose key value is either equal to the file

position indicator and whose logical position within the set of duplicates is immediately after the record that was

made available by that previous READ statement, or whose key value is greater that the file position indicator.

2. If BACKWARD is specified, the first record in the file whose key value is either equal to the file

position indicator and whose logical position within the set of duplicates is immediately prior to the record that was

made available by that previous READ statement, or whose key value is less than the file position indicator.

If a record is found which satisfies the above rules, it is made available in the record area associated with

file-name, unless the RELATIVE KEY phrase is specified for file-name and the number of significant digits in the

relative record number of the selected record is larger than the size of the relative key data item, in which case, the

file position indicator is set to indicate this condition and execution proceeds as specified in General Rule 9.

If no record is found which satisfies the above rules, the file position indicator is set to indicate that no next

logical record exists and execution proceeds as specified in General Rule 9.

If a record is made available, the file position indicator is set to the record number of the record made

available.

(5) Regardless of the method used to overlap access time with processing time, the concept of the READ

statement is unchanged; a record is available to the object program prior to the execution of imperative-statement-2,

if specified, or prior to the execution of any statement following the READ statement, if imperative-statement-2 is

not specified.

(6) When the logical records of a file are described with more than one record description, these records

automatically share the same record area in storage; this is equivalent to an implicit redefinition of the area. The

contents of any data items which lie beyond the range of the current data record are undefined at the completion of

the execution of the READ statement.

PROCEDURE DIVISION (VXCOBOL READ)

423

(7) The INTO phrase may be specified in a READ statement:

a. If only one record description is subordinate to the file description entry, or

b. If all record-names associated with file-name and the data item that is referenced by identifier-1 describe

a group item or an elementary alphanumeric item.

(8) The result of the execution of a READ statement with the INTO phrase is equivalent to the application of

the following rules in the order specified:

a. The execution of the same READ statement without the INTO phrase.

b. The current record is moved from the record area to the area specified by identifier-1 according to the

rules for the MOVE statement without the CORRESPONDING phrase. The size of the current record is specified in

the RECORD LENGTH clause. The implied MOVE statement does not occur if the execution of the READ

statement was unsuccessful. Any subscripting associated with identifier-1 is evaluated after the record has been read

and immediately before it is moved to the data item. The record is available in both the record area and the data item

referenced by identifier-1.

(9) For a Format 1 READ statement, if the file position indicator indicates that no next logical record exists, or

that the number of significant digits in the relative record number is larger that the size of the relative key data item,

the following occurs in the order specified:

a. A value, derived from the setting of the file position indicator, is placed into the I-O status and INFOS

status associated with file-name to indicate the at end condition.

b. If the AT END phrase is specified in the statement causing the condition, control is transferred to

imperative-statement-1 in the AT END phrase. Any USE AFTER STANDARD EXCEPTION procedure associated

with file-name is not executed.

c. If the AT END phrase is not specified, a USE AFTER STANDARD EXCEPTION procedure must be

associated with this file-name, and that procedure is executed. Return from that procedure is to the next executable

statement following the end of the READ statement.

When the at end condition occurs, execution of the READ statement is unsuccessful.

(10) If neither an at end nor an invalid key condition occurs during the execution of a READ statement, the AT

END phrase or INVALID KEY phrase is ignored, if specified, and the following things happen:

a. The file position indicator is set and the I-O status and INFOS status associated with file-name is

updated.

b. If an exception condition which is not an at end or invalid key condition exists, control is transferred

according to rules of the USE statement following the execution of any USE AFTER STANDARD EXCEPTION

procedure applicable to file-name. If there is no applicable USE statement and the I-O status is 96, any implicit

move resulting from the presence of the INTO phrase is executed.

c. If no exception condition exists, the record is made available in the record area and any implicit move

resulting from the presence of an INTO phrase is executed. Control is transferred to the end of the READ statement

or to imperative-statement-2, if specified. In the latter case, execution continues according to the rules for each

statement specified in imperative-statement-2. If a procedure branching or conditional statement which causes

explicit transfer of control is executed, control is transferred in accordance with the rules for the statement;

otherwise, upon completion of the execution of imperative-statement-2, control is transferred to the end of the

READ statement.

(11) Following the unsuccessful execution of a READ statement, the content of the associated record area is

undefined and the file position indicator is set to indicate that no valid next record has been established. If the

Interactive COBOL Language Reference & Developer’s Guide - Part One

424

READ statement is unsuccessful due to the end-of-file condition or because the record which would have been

returned is locked, the file position indicator remains unchanged.

(12) If the number of character positions in the record that is read is less than the minimum size specified by the

record description entries for file-name, the portion of the record area which is to the right of the last valid character

read is undefined. If the number of character positions in the record that is read is greater than the maximum

specified by the record description entries for file-name, the record is truncated on the right to the maximum size. In

either of these cases, the READ statement is successful and an I-O status is set, to indicate that a record length

conflict has occurred.

(13) The END-READ phrase delimits the scope of the READ statement.

For relative files:

(14) For a relative file for which dynamic access mode is specified, a Format 1 READ statement with the

NEXT phrase specified causes the next logical record to be retrieved from that file.

(15) For a relative file, if the RELATIVE KEY phrase is specified for file-name, the execution of a Format 1

READ statement moves the relative record number of the record made available to the relative key data item

according to the rules for the MOVE statement.

(16) For a relative file, execution of a Format 2 READ statement sets the file position indicator to the value

contained in the data item referenced by the RELATIVE KEY phrase for the file, and the record whose relative

record number equals the file position indicator is made available in the record area associated with file-name. If the

file does not contain such a record, the invalid key condition exists and execution of the READ statement is

unsuccessful.

For indexed and INFOS files:

(17) For an indexed file for which dynamic access mode is specified, a Format 1 READ statement with the

NEXT phrase specified causes the next logical record to be retrieved from that file.

(18) For an indexed file being sequentially accessed, records having the same duplicate value in an alternate

record key which is the key of reference are made available in the same order in which they are released by

execution of WRITE statements, or by execution of REWRITE statements which create such duplicate values.

(19) For an indexed file, if the KEY phrase is specified in a Format 2 READ statement, data-name is

established as the key of reference for this retrieval. If the dynamic access mode is specified, this key of reference is

also used for retrievals by any subsequent executions of Format 1 READ statements for the file until a different key

of reference is established for the file.

(20) For an indexed file, if the KEY phrase is not specified in a Format 2 READ statement, the primary record

key is established as the key of reference for this statement. If the dynamic access mode is specified, this key of

reference is also used for retrievals by any subsequent execution of Format 1 READ statements for the file until a

different key of reference is established for the file.

(21) For an indexed file, execution of a Format 2 READ statement sets the file position indicator to the value in

the key of reference. This value is compared with the value contained in the corresponding data item of the stored

records in the file until the first record having an equal value is found. In the case of an alternate key with duplicate

values, the first record found is the first record of a sequence of duplicates which was released to the file system.

The record so found is made available in the record area associated with file-name. If no record can be so identified,

the invalid key condition exists and execution of the READ statement is unsuccessful.

For relative, indexed, and INFOS files:

(22) If the LOCK phrase is specified, the system attempts to lock the record for the exclusive use of the

currently executing program. If the lock operation and the read operation are successful, the record may not be read,

PROCEDURE DIVISION (VXCOBOL READ)

425

deleted, or rewritten by another user, with two exceptions: a READ statement executed on a file open in the INPUT

mode or a read with the MANDATORY clause will ignore the lock, and the record can be read.

(23) If the record cannot be locked, either because it is already locked by another user or because of system

limitations on the number of locks, the I-O status is set to indicate the lock violation and the READ statement is

unsuccessful.

(24) If the conditions in General Rule 21 cause the READ statement to be unsuccessful, the current record

position is not modified, rather than being set as specified in General Rule 11.

(25) A record lock can be removed by the successful execution of an UNLOCK or CLOSE statement for the

file, or by execution of an i/o statement with the UNLOCK clause.

(26) If the UNLOCK phrase is specified, the system attempts to unlock the record after completion of the

READ. The record then becomes accessible to any user if it had in fact been locked.

For INFOS files:

(27) If a file is opened for input and the MANDATORY keyword is used, the program will read a record even

if the record is locked.

(28) If the position phrase is omitted, FIX POSITION is the default.

(29) If the relative option and the KEY series phrase are omitted in random or dynamic access mode, the default

is the first key in the SELECT clause; in sequential access mode the default is READ NEXT.

(30) For an INFOS file being sequentially accessed, records having the same duplicate value in a record key are

made available in the same order in which they are released by execution of WRITE statements or by execution of

REWRITE statements that create duplicate values.

(31) For an INFOS file being randomly accessed, records having the same duplicate value in a key allowing

duplicates are made available as follows:

a. If the OCCURRENCE clause was specified for the key and contains a non-zero value and a key with the

specified value and specified occurrence number exists, then that record will be returned.

b. If no OCCURRENCE clause was specified for the key or if the value of the occurrence data-item is zero,

then the record associated with the first key of the specified value, if any, is returned.

(32) If a FEEDBACK data-item was specified for the file, its value is updated by execution of a successful

READ.

(33) If a RECORD LENGTH data-item was specified for the file, it will be updated with the length of the

record read.

(34) KEY LENGTH is used.

(35) The location of the entry defined is determined according to that specified in the position phrase, the

relative option phrase, and/or the KEY series phrase. The specification can be implicit if the program uses the

defaults or explicit if the KEY or path is specified fully.

(36) FIX POSITION causes the record pointer to move from the current position to the position specified in this

statement. RETAIN position causes the record position to remain at the position it was on before the execution of

this statement. RETAIN is the default.

(37) The relative motion option without the KEY series phrase allows access to the index file relative to that

file's current record position.

Interactive COBOL Language Reference & Developer’s Guide - Part One

426

(38) Using the KEY series phrase without the relative motion option cause the key path specified to begin with

the top index in the hierarchy and follow a downward motion.

(39) If the KEY series phrase is specified, each key, data-name, must be included in the RECORD KEY clause

of the SELECT statement for file-name. If the relative motion option and KEY series phrase at both specified only

UP, DOWN, and STATIC are allowed. The relative motion option is processed first and the key path is used. If

both are omitted, STATIC is the default.

(40) If SUPPRESS DATA RECORD is specified, all locks on the data record are ignored, and the data record

associated with the referenced index entry is not read into the file's record area.

(41) If SUPPRESS PARTIAL RECORD is specified, all locks on the partial record are ignored and the partial

data record associated with the index entry is not retrieved.

For sequential files:

(42) When using timeouts, ICOBOL handles them in the following order for READ statements:

a. If a timeout was set on the OPEN with the extended open option for timeout, then it is used,

b. The default timeout for the particular device class is used.

If a timeout occurs, the I-O status is set to 9T with an exception status of 76.

(43) When performing data-sensitive reads on files whose file control entry has the clause ASSIGN TO

KEYBOARD or whose file description entry specifies RECORDING MODE IS DATA-SENSITIVE the characters

null <000>, carriage-return <015>, newline <012>, and form-feed <014> are used to terminate the read. The

terminator is placed into the record if there is sufficient room. If the record area is too small, the maximum amount

of data is stored in the record and file status 99 (exception status 40) is returned.

PROCEDURE DIVISION (RELEASE)

427

E.42. RELEASE

E.42.1 Function

The RELEASE statement transfers records to the initial phrase of a sort operation.

E.42.2 General Format

RELEASE record-name [FROM identifier]

E.42.3 Syntax Rules

(1) Record-name must be the name of a logical record in a sort-merge file description, and it may be qualified.

(2) A RELEASE statement may be used only within the range of an input procedure associated with a SORT

statement for the file-name whose sort-merge file description entry contains record-name.

(3) Record-name and identifier must not refer to the same storage.

(4) If identifier is a function identifier, it shall reference an alphanumeric function.

E.42.4 General Rules

(1) The execution of a Release statement causes the record named by record-name to be released to the initial

phrase of a sort operation.

(2) The logical record released by the execution of the RELEASE statement is no longer available in the record

area unless the sort-merge file-name associated with record-name is specified in a SAME RECORD AREA clause.

The logical record is also available to the program as a record of other files referenced in the same SAME RECORD

AREA clause as the associated output file, as well as the file associated with record-name.

(3) The result of the execution of a RELEASE statement with the FROM phrase is equivalent to the execution

of the following statements in the order specified:

a. The statement:

MOVE identifier TO record-name

according to the rules specified for the MOVE statement.

b. The same RELEASE statement without the FROM phrase.

(4) After the execution of the RELEASE statement is complete, the information in the area referenced by

identifier is available, even though the information in the area referenced by record-name is not available except as

specified by the SAME RECORD AREA clause.

Interactive COBOL Language Reference & Developer’s Guide - Part One

428

PROCEDURE DIVISION (RETRIEVE)

429

E.43. RETRIEVE (VXCOBOL)

E.43.1 Function

The RETRIEVE statement obtains information about an INFOS file.

E.43.2 General Format

 RETRIEVE file-name

[INTO identifier-2]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-RETRIEVE]

E.43.3 Syntax Rules

(1) File-name is a filename that specifies an INFOS file opened for OUTPUT or I/O and selected for ALLOW

SUB-INDEX.

(2) Identifier-1 is an alphanumeric data item that specifies a record key associated with file-name.

(3) Identifier-2 is any data item specifying a destination that receives record, key, or index status information.

E.43.4 General Rules

(1) If the relative option and the KEY series phrase are omitted, the default is STATIC.

(2) The occurrence number is not used and is not updated.

(3) FEEDBACK is not used and is not updated.

(4) KEY LENGTH is used.

(5) The location from which to retrieve information is determined according to what is specified in the relative

option phrase and/or the KEY series phrase.

(6) FIX POSITION causes the record pointer to move from the current position to the position specified in this

statement. RETAIN position causes the record position to remain at the position it was on before the execution of

this statement. If the position phrase is omitted, RETRIEVE KEY and RETRIEVE HIGH KEY default to FIX

POSITION and RETRIEVE STATUS and RETRIEVE SUBINDEX default to RETAIN.

(7) The relative motion option without the KEY series phrase allows access to the index file relative to that

file's current record position.

Interactive COBOL Language Reference & Developer’s Guide - Part One

430

(8) Using the KEY series phrase without the relative motion option cause the key path specified to begin with

the top index in the hierarchy and follow a downward motion.

(9) If the KEY series phrase is specified, each key, identifier-1, must be declared in the SELECT statement for

file-name. If the relative motion option and KEY series phrase at both specified only UP, DOWN, and STATIC are

allowed. The relative motion option is processed first and the key path is used. If both are omitted, STATIC is the

default.

(10) Transfer of control following the successful or unsuccessful execution of the RETRIEVE operation

depends on the presence or absence of the optional INVALID KEY and NOT INVALID KEY phrases in the

RETRIEVE statement.

(11) INVALID KEY clauses on I/O statements are ONLY invoked when an Invalid Key error, as determined by

a File Status of 2x where x can be any character 0 - 9 or A - Z, is generated. All other error conditions will cause the

associated USE procedure, if present, as defined in the DECLARATIVES section to be executed. (See The Invalid

Key Condition, page 271, for more a more comprehensive discussion.).

(12) If STATUS is specified, identifier-2 is interpreted as a 4-character data item. ICOBOL will store either a

"1" or "0" in each byte as follows:

Character 1: "1" if partial record for target key is logically deleted.

Character 2: "1" if target key is a duplicate.

Character 3: always "0"

Character 4: "1" if data record for target key is logically deleted.

(13) If KEY is specified, ICOBOL moves the value of the target key to identifier-2. If HIGH KEY is specified,

ICOBOL moves the value of the highest key present in the subindex associated with the target key to identifier-2. In

either case, the following also occur:

a. The key length of the retrieved key is returned to the KEY LENGTH data-item associated with the last

key in the key series phrase or the first key in the SELECT statement if there is no key series phrase. If no KEY

LENGTH data item exits, the length is not accessible.

b. If the key is a duplicate, the occurrence number of the retrieved key is returned to the OCCURRENCE

data-item associated with the last key in the key series phrase or the first key in the SELECT statement if there is no

key series phrase. If the retrieved key is not a duplicate, a zero is returned to the OCCURRENCE data-item. If no

OCCURRENCE data-item exists, the occurrence number is not accessible.

(14) If SUB-INDEX is specified, ICOBOL returns a 16-byte data item to identifier-2. This 16-byte item is the

16-bit AOS INFOS subindex definition packet. It has the following format:

01 PACKET.
03 FILLER PIC XX.
03 NODE-SIZE PIC 9(4) COMP.
03 FILLER PIC X.
03 MAX-KEYLEN PIC 9(2) COMP.
03 FILLER PIC X.
03 PARTIAL-REC-LEN PIC 9(2) COMP.
03 FILLER PIC XX.
03 FLAGS PIC 9(4) COMP.
03 FILLER PIC X(4).

FLAGS values are: 2048 allow duplicates, 16384 Disallow subindex.

Under U/FOS, the partial record length will be either zero (no partial records) or 255 (partial records

allowed). Under INFOS II, the actual length was returned.

PROCEDURE DIVISION (RETURN)

431

E.44. RETURN

E.44.1 Function

The RETURN statement obtains either sorted records from the final phrase of a sort operation or merged records

during a merge operation.

E.44.2 General Format

RETURN file-name RECORD [INTO identifier]

AT END imperative-statement-1

[NOT AT END imperative-statement-2]

[END-RETURN]

E.44.3 Syntax Rules

(1) The storage area associated with identifier and the record area associated with file-name must not be the

same storage area.

(2) File-name must be described by a sort-merge file description entry in the Data Division.

(3) A RETURN statement may only be used within the range of an output procedure associated with a SORT or

MERGE statement for file-name.

E.44.4 General Rules

(1) When the logical records in a file are described with more than one record description, these records

automatically share the same storage area; this is equivalent to an implicit redefinition of the area. The contents of

any data items which lie beyond the range of the current data record are undefined at the completion of the execution

of the RETURN statement.

(2) The execution of the RETURN statement causes the next existing record in the file referenced by file-name,

as determined by the keys listed in the SORT or MERGE statement, to be made available in the record area

associated with file-name. If no next logical record exists in the file referenced by file-name, the at end conditions

exists and control is transferred to imperative-statement-1 of the AT END phrase. Execution continues according to

the rules for each statement specified in imperative-statement-1. If a procedure branching or conditional statement

which causes explicit transfer of control is executed, control is transferred according to the rules for that statement;

otherwise, upon completion of the execution of imperative-statement-1, control is transferred to the end of the

RETURN statement and the NOT AT END phrase is ignored, if specified. When the at end condition occurs,

execution of the RETURN statement is unsuccessful and the contents of the record area associated with file-name are

undefined. After the execution of imperative-statement-1 in the AT END phrase, no RETURN statement may be

executed as part of the current output procedure.

(3) If an at end condition does not occur during the execution of a RETURN statement, then after the record is

made available and after executing any implicit move resulting from the presence of an INTO phrase, control is

transferred to imperative-statement-2, if specified; otherwise, control is transferred to the end of the RETURN

statement.

(4) The END-RETURN phrase delimits the scope of the RETURN statement. (See page 253, Scope of

Statements.)

Interactive COBOL Language Reference & Developer’s Guide - Part One

432

(5) The INTO phrase may be specified in a RETURN statement:

a. If only one record description is subordinate to the sort-merge file description entry, or

b. If all record-names associated with file-name and the data items referenced by identifier describe a group

item or an elementary alphanumeric item.

(6) The result of the execution of a RETURN statement with the INTO phrase is equivalent to the application of

the following rules in the order specified:

a. The execution of the same RETURN statement without the INTO phrase.

b. The current record is moved from the record area to the area specified by identifier according to the

rules for the MOVE statement without the CORRESPONDING phrase. The size of the current record is determined

by rules specified for the RECORD clause. If the file description entry contains a RECORD IS VARYING clause,

the implied move is a group move. The implied MOVE statement does not occur if the execution of the RETURN

statement was unsuccessful. Any subscript or reference modification associated with identifier is evaluated after the

record has been read and immediately before it is moved to the data item. The record is available in both the record

area and the data item referenced by identifier.

PROCEDURE DIVISION (REWRITE)

433

E.45. REWRITE

E.45.1 Function

The REWRITE statement logically replaces a record existing in a mass storage file. IMMEDIATE is an extension to

ANSI COBOL.

E.45.2 General Format

Sequential Files:

REW RITE record-name [IMMEDIATE] [FROM identifier]

[END-REW RITE]

Relative and Indexed Files: (ANSI 74 and ANSI 85)

REW RITE record-name [IMMEDIATE] [FROM identifier]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-REW RITE]

Relative and Indexed: (VXCOBOL)

REW RITE record-name [IMMEDIATE] [FROM identifier] [KEY IS identifier-2]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-REW RITE]

INFOS: (VXCOBOL)

REW RITE [INVERTED] record-name [IMMEDIATE]

[SUPPRESS [PARTIAL RECORD] [DATA RECORD]]

 [FROM]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-REW RITE]

Interactive COBOL Language Reference & Developer’s Guide - Part One

434

E.45.3 Syntax Rules

(1) Record-name and identifier must not refer to the same storage area.

(2) Record-name is the name of a logical record in the File Section of the Data Division and may be qualified.

(3) The INVALID KEY and NOT INVALID KEY phrases must not be specified for a REWRITE statement

which references a relative, indexed, or INFOS file in sequential access mode.

(4) The INVALID KEY phrase must be specified in the REWRITE statement for relative, indexed, or INFOS

files in the random or dynamic access mode, and for which an appropriate USE AFTER STANDARD EXCEPTION

procedure is not specified.

(5) For VXCOBOL, for an indexed file, identifier-2 must reference the RECORD KEY data-item for the file.

E.45.4 General Rules

(1) The file referenced by the file-name associated with record-name must be a mass storage file and must be

open in the I-O mode at the time of execution of this statement.

(2) For files in the sequential access mode, the last input-output statement executed for the associated file prior

to the execution of the REWRITE statement must have been a successfully executed READ statement. The file

system logically replaces the record that was accessed by the READ statement.

(3) The logical record released by a successful execution of the REWRITE statement is no longer available in

the record area unless the file-name associated with record-name is specified in a SAME RECORD AREA clause.

The logical record is also available to the program as a record of other files referenced in the same SAME RECORD

AREA clause as the associated output file, as well as the file associated with record-name.

(4) The result of the execution of a REWRITE statement with the FROM phrase is equivalent to the execution

of the following statements in the order specified:

a. The statement:

MOVE identifier TO record-name

according to the rules specified for the MOVE statement.

b. The same REWRITE statement without the FROM phrase.

(5) After the execution of the REWRITE statement is complete, the information in the area referenced by

identifier is available, even though the information in the area referenced by record-name is not available except as

specified by the SAME RECORD AREA clause.

(6) The file position indicator is not affected by the execution of a REWRITE statement.

(7) The execution of the REWRITE statement causes the value of the I-O status (and for VXCOBOL, the

INFOS status) of the file-name associated with record-name to be updated.

(8) The execution of the REWRITE statement releases a logical record to the operating system.

(9) For ANSI 74 and ANSI 85, when using indexed or relative files, the number of character positions in the

record referenced by record-name must not be larger than the largest or smaller than the smallest number of

character positions allowed by the RECORD IS VARYING clause associated with the file-name associated with

record-name. For VXCOBOL, when using indexed, relative, or INFOS files with RECORDING MODE IS

PROCEDURE DIVISION (REWRITE)

435

VARIABLE, the number of character positions in the record referenced by record-name must not be larger than or

smaller than the maximum and minimum record lengths established for the file.

In either of these cases the execution of the REWRITE statement is unsuccessful, the updating operation does

not take place, the contents of the record area are unaffected and the I-O status of the file associated with

record-name is set to a value indicating the cause of the condition.

(10) Transfer of control following the successful or unsuccessful execution of the REWRITE operation depends

on the presence or absence of the optional INVALID KEY and NOT INVALID KEY phrases in the REWRITE

statement.

(11) The END-REWRITE phrase delimits the scope of the REWRITE statement.

(12) For sequential, relative, and indexed files, the IMMEDIATE option causes the REWRITE to immediately

flush the new information to disk. Normally this information could be held in internal buffers before being flushed

to disk. This option increases file security at the expense of performance. For INFOS files the IMMEDIATE option

is ignored.

For relative files:

(13) For a relative file, for a file accessed in either random or dynamic access mode, the file system logically

replaces the record specified by the content of the relative key data of the file-name associated with record-name. If

the file does not contain the record specified by the key, the invalid key condition exists. When the invalid key

condition is recognized, the execution of the REWRITE statement is unsuccessful, the updating operation does not

take place, the contents of the record area are unaffected and the I-O status of the file-name associated with

record-name is set to a value indicating the cause of the condition.

For sequential files:

(14) If the number of character positions specified in the record referenced by record-name is not equal to the

number of character positions in the record being replaced, the execution of the REWRITE statement is

unsuccessful, the updating operation does not take place, the content of the record area is unaffected and the I-O

status of the file associated with record-name is set to a value indicating the cause of the condition.

For indexed files:

(15) For a file in the sequential access mode, the record to be replaced is specified by the value of the primary

record key. When the REWRITE statement is executed, the value of the primary record key of the record to be

replaced must be equal to the value of the primary record key of the last record read from this file.

(16) For a file in the random or dynamic access mode, the record to be replaced is specified by the primary

record key.

(17) Execution of the REWRITE statement for a record which has an alternate key occurs as follows:

a. When the value of a specific alternate record key is not changed, the order of retrieval when that key is

the key of reference remains unchanged.

b. When the value of a specific alternate record key is changed, the subsequent order of retrieval of that

record may be changed when that specific alternate record key is the key of reference. When duplicate key values

are permitted, the record is logically positioned as though this new alternate key was written when the record itself

was added to the file for ICISAM version 5 and 6) or last within the set of duplicate records containing the same

alternate record key value as the one that was placed in the record. (ICISAM version 7)..

(18) The invalid key condition exists under the following circumstances:

Interactive COBOL Language Reference & Developer’s Guide - Part One

436

a. When the file is open in the sequential access mode, and the value of the primary record key of the

record to be replaced is not equal to the value of the primary record key of the last record read from the file, or

b. When the file is open in the dynamic or random access mode, and the value of the primary record key of

the record to be replaced is not equal to the value of the primary record key of any record existing in the file, or

c. When the value of an alternate record key of the record to be replaced, for which duplicates are not

allowed, equals the value of the corresponding data item of a record already existing in the file.

(19) When the invalid key condition is recognized, the execution of the REWRITE statement is unsuccessful

and the I-O status (and for VXCOBOL, the INFOS status) of the filename associated with record-name is set to a

value indicating the cause of the condition.

For INFOS files:

(20) If the position phrase is omitted, RETAIN POSITION is the default.

(21) If the relative option and the KEY series phrase are omitted, the default is the first key in the SELECT

clause.

(22) FEEDBACK is used if you specify INVERTED. REWRITE updates the FEEDBACK data item.

(23) KEY LENGTH is unused.

(24) If INVERTED is not specified, a record is written in a location that is determined according to what is

specified in the relative option phrase and/or the KEY series phrase. The specification can be implicit if the

program uses the defaults or explicit if the KEY or path is fully specified. If INVERTED is specified, the

REWRITE statement does not write a data record but links an existing data record to an index entry with no data

record. A FEEDBACK data-item must have been specified. It contains the record location REWRITE INVERTED

links to the index entry.

(25) FIX POSITION causes the record pointer to move from the current position to the position specified in this

statement. RETAIN position causes the record position to remain at the position it was on before the execution of

this statement. RETAIN is the default.

(26) The relative motion option without the KEY series phrase allows access to the index file relative to that

file's current record position.

(27) Using the KEY series phrase without the relative motion option cause the key path specified to begin with

the top index in the hierarchy and follow a downward motion.

(28) If the KEY series phrase is specified, each key, identifier-2, must be declared in the SELECT statement for

file-name. If the relative motion option and KEY series phrase at both specified only UP, DOWN, and STATIC are

allowed. The relative motion option is processed first and the key path is used. If both are omitted, STATIC is the

default.

(29) If DUPLICATE and OCCURRENCE IS was specified in this file's SELECT clause, and the occurrence

number is not equal to zero, REWRITE uses the occurrence number to determine which record to rewrite. Zero

indicates that the key is not a duplicate.

(30) If SUPPRESS DATA RECORD is specified, all locks on the data record are ignored and the data record

associated with the index entry is not output.

(31) If SUPPRESS PARTIAL RECORD is specified, the partial data record associated with the index entry is

not output.

PROCEDURE DIVISION (ROLLBACK)

437

E.46. ROLLBACK (ISQL)

E.46.1 Function

The ROLLBACK statement allows the program to rollback an SQL database connection or connections..

E.46.2 General Format

ROLLBACK [ALL]

[ON SQLERROR imperative-statement-1]

[NOT ON SQLERROR imperative-statement-2]

[END-ROLLBACK]

E.46.3 Syntax Rules

E.47.4 General Rules

(1) The ALL phrase specifies that all connections in the run unit will be rolled back. (if there are any). If not

specified, only the current connection is rolled back.

(2) Upon completion of the ROLLBACK statement, the following occurs in the order specified:

a. The value of the SQLSTATE data item is updated with the status of the operation.

b. If the value of the SQLSTATE class field is “00" or “01", the statement is successful. Control is

transferred to the end of the ROLLBACK statement or to imperative-statement-2, if specified. In the latter case,

execution continues according to the rules for each statement specified in imperative-statement-2. If a procedure

branching or conditional statement which causes explicit transfer of control is executed, control is transferred in

accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-2,

control is transferred to the end of the ROLLBACK statement.

c. If the value of the SQLSTATE class field is not “00" or “01", the statement is unsuccessful. The

statement container is deallocated and no statement container of the specified name will exist in the current program.

Control is transferred to the end of the ROLLBACK statement or to imperative-statement-1, if specified. In the

latter case, execution continues according to the rules for each statement specified in imperative-statement-1. If a

procedure branching or conditional statement which causes explicit transfer of control is executed, control is

transferred in accordance with the rules for the statement; otherwise, upon completion of the execution of

imperative-statement-1, control is transferred to the end of the ROLLBACK statement.

(3) The END-ROLLBACK phrase delimits the scope of the ROLLBACK statement.

(4) More on SQLSTATE can be found on page 133.

Interactive COBOL Language Reference & Developer’s Guide - Part One

438

PROCEDURE DIVISION (SEARCH)

439

E.47. SEARCH

E.47.1 Function

The SEARCH statement is used to search a table for a table element that satisfies the specified condition and to

adjust the value of the associated index to indicate that table element.

E.47.2 General Format

Format 1:

SEARCH identifier-1 [AT END imperative-statement-1]

[END-SEARCH]

Format 2:

SEARCH ALL identifier-1 [AT END imperative-statement-1]

[END-SEARCH]

E.47.3 Syntax Rules

(1) For VXCOBOL, format 1 may include an optional keyword ALL immediately after the keyword SEARCH

unless the -G h compiler switch is used. In that case the use of the keyword ALL must conform to format 2 and all

the supporting rules which follow.

(2) In both formats 1 and 2, identifier-1 must not be subscripted, but its description must contain an OCCURS

clause including an INDEXED BY phrase. The description of identifier-1 in Format 2 must also contain the KEY IS

phrase in its OCCURS clause.

(3) Identifier-2 must reference a data item described as USAGE IS INDEX or numeric elementary data item

without any positions to the right of the decimal point. Identifier-2 may not be subscripted by the first (or only)

index-name specified in the INDEXED BY phrase in the OCCURS clause associated with identifier-1.

(4) In Format 1, condition-1 may be any conditional expression.

(5) In Format 2, all referenced condition-names must be defined as having only a single value. The data-name

associated with a condition-name must appear in the KEY IS phrase in the OCCURS clause referenced by

identifier-1. Each data-name-1, data-name-2 may be qualified. Each data-name-1, data-name-2 must be

subscripted by the first index-name associated with identifier-1 along with other subscripts as required, and must be

referenced in the KEY IS phrase in the OCCURS clause referenced by identifier-1. Identifier-3, identifier-4, or

identifiers specified in arithmetic-expression-1, arithmetic-expression-2 must not be referenced in the KEY IS

Interactive COBOL Language Reference & Developer’s Guide - Part One

440

phrase in the OCCURS clause referenced by identifier-1 or be subscripted by the first index-name associated with

identifier-1.

In Format 2, when a data-name in the KEY IS phrase in the OCCURS clause referenced by identifier-1 is

referenced, or when a condition-name associated with a data-name in the KEY IS phrase in the OCCURS clause

referenced by identifier-1 is referenced, all preceding data-names in the KEY IS phrase in the OCCURS clause

referenced by identifier-1 or their associated condition-names must also be referenced.

(6) If the END-SEARCH phrase is specified, the NEXT SENTENCE phrase must not be specified.

E.47.4 General Rules

(1) The scope of a SEARCH statement may be terminated by any of the following:

a. An END-SEARCH phrase at the same level of nesting.

b. A separator period.

c. An ELSE or END-IF phrase associated with a previous IF statement.

(2) If Format 1 of the SEARCH statement is used, a serial type of search operation takes place, starting with the

current index setting.

a. If, at the start of execution of the SEARCH statement, the index-name associated with identifier-1

contains a value that corresponds to an occurrence number that is greater than the highest permissible occurrence

number for identifier-1, the search is terminated immediately. The number of occurrences of identifier-1, the last of

which is the highest permissible, is discussed in the OCCURS clause. Then, if the AT END phrase is specified,

imperative-statement-1 is executed; if the AT END phrase is not specified, control passes to the end of the SEARCH

statement.

b. If, at the start of execution of the SEARCH statement, the index-name associated with identifier-1

contains a value that corresponds to an occurrence number that is not greater than the highest permissible occurrence

number for identifier-1 (the number of occurrences of identifier-1, the last of which is the highest permissible, is

discussed in the OCCURS clause), the SEARCH statement operates by evaluating the conditions in the order that

they are written, making use of the index settings, wherever specified, to determine the occurrence of those items to

be tested. If none of the conditions is satisfied, the index-name for identifier-1 is incremented to obtain reference to

the next occurrence. The process is then repeated using the new index-name settings unless the new value of the

index-name settings for identifier-1 corresponds to a table element outside the permissible range of occurrence

values, in which case the search terminates as indicated in 2a above. If one of the conditions is satisfied upon its

evaluation, the search terminates immediately, and control passes to the imperative statement associated with that

condition, if present, or if the NEXT SENTENCE phrase is associated with that condition, to the next executable

sentence; the index-name remains set at the occurrence which caused the condition to be satisfied.

(3) In a Format 2 SEARCH statement, the results of the SEARCH ALL operation are predictable only when:

a. The data in the table is ordered in the same manner as described in the KEY IS phrase of the OCCURS

clause referenced by identifier-1, and

b. The contents of the key(s) referenced in the WHEN phrase are sufficient to identify a unique table

element.

(4) If Format 2 of the SEARCH statement is used, a nonserial type of search operation may take place; the

initial setting of the index-name for identifier-1 is ignored and its setting is varied during the search operation to

conduct a binary search, with the restriction that at no time is it set to a value that exceeds the value which

corresponds to the last element of the table, or that is less than the value that corresponds to the first element of the

table. The length of the table is discussed in the OCCURS clause. If any of the conditions specified in the WHEN

PROCEDURE DIVISION (SEARCH)

441

phrase cannot be satisfied for any setting of the index within the permitted range, control is passed to

imperative-statement-1 of the AT END phrase, when specified, or to the end of the SEARCH statement when this

phrase is not specified; in either case, the final setting of the index is not predictable. If all the conditions can be

satisfied, the index indicates an occurrence that allows the conditions to be satisfied, and control passes to

imperative-statement-2, if specified, or to the next executable sentence if the NEXT SENTENCE phrase is specified.

(5) After execution of imperative-statement-1 or imperative-statement-2, that does not terminate with a GO TO

statement, control passes to the end of the SEARCH statement.

(6) In Format 2, the index-name that is used for the search operation is the first (or only) index-name specified

in the INDEXED BY phrase in the OCCURS clause associated with identifier-1. Any other index-names for

identifier-1 remain unchanged.

(7) In Format 1, if the VARYING phrase is not used, the index-name that is used for the search operation is the

first (or only) index-name specified in the INDEXED BY phrase in the OCCURS clause associated with identifier-1.

Any other index-names for identifier-1 remain unchanged.

(8) In Format 1, if the VARYING index-name-1 phrase is specified, and if index-name-1 appears in the

INDEXED BY phrase in the OCCURS clause referenced by identifier-1, that index-name is used for this search. If

this is not the case or if the VARYING identifier-2 phrase is specified, the first (or only) index-name given in the IN-

DEXED BY phrase in the OCCURS clause referenced by identifier-1 is used for the search. In addition, the

following operations will occur:

a. If the VARYING index-name-1 phrase is used, and if index-name-1 appears in the INDEXED BY

phrase in the OCCURS clause referenced by another table entry, the occurrence number represented by

index-name-1 is incremented by the same amount as, and at the same time as, the occurrence number represented by

the index-name associated with identifier-1 is incremented.

b. If the VARYING identifier-2 phrase is specified, and identifier-2 is an index data item, then the data

item referenced by identifier-2 is incremented by the same amount as, and at the same time as, the index associated

with identifier-1 is incremented. If identifier-2 is not an index data item, the data item referenced by identifier-2 is

incremented by the value one at the same time as the index referenced by the index-name associated with identifier-1

is terminated.

(9) The END-SEARCH phrase delimits the scope of the SEARCH statement.

(10) A representation of the action of a Format 1 SEARCH statement containing two WHEN phrases is shown

in the figure that follows. This figure is not intended to indicate the underlying implementation.

Interactive COBOL Language Reference & Developer’s Guide - Part One

442

FIGURE 8. Format 1 SEARCH statement having two WHEN phrases

PROCEDURE DIVISION (ANSI 74 and ANSI 85 SET)

443

E.48. SET (ANSI 74 and ANSI 85)

E.48.1 Function

The SET statement establishes reference points for table handling operations by setting indices associated with table

elements. It also sets the values of condition names, mnemonic names, and pointer data items; and, (ISQL) the value

of an indicator data item or the current database connection.

E.48.2 General Format

Format 1:

SET

Format 2:

SET { index-name-3 }...

Format 3:

SET { { mnemonic-name-1 }... TO }...

Format 4:

SET { condition-name-1 }... TO TRUE

Format 5:

SET { identifier-4 }... TO

Format 6: (ISQL)

SET { identifier-7 }... TO

E.48.3 Syntax Rules

(1) All references to index-name-1, identifier-1, and index-name-3 apply equally to all recursions thereof.

(2) Identifier-1 and identifier-2 must each reference an index data item or an elementary item described as an

integer.

(3) Identifier-3 must reference an elementary numeric integer.

(4) Integer-1 and integer-2 may be signed. Integer-1 must be positive.

(5) Mnemonic-name-1 must be associated with an external switch, the status of which can be altered.

(6) Condition-name-1 must be associated with a conditional variable.

Interactive COBOL Language Reference & Developer’s Guide - Part One

444

Note: Rule 2 is not currently enforced by ICOBOL.

(7) Every occurrence of identifier-4 and identifier-6 must reference a data item described as USAGE IS

POINTER.

(8) Identifier-5 may reference any data item defined in the Data Division.

(9) (ISQL) Every occurrence of identifier-7 and identifier-8 must reference a data item described as USAGE IS

INDICATOR.

E.48.4 General Rules

Format 1 and 2:

(1) Index-names are associated with a given table by being specified in the INDEXED BY phrase of the

OCCURS clause for that table.

(2) If index-name-1 is specified, the value of the index after the execution of the SET statement must

correspond to an occurrence number of an element in the table associated with index-name-1. The value of the index

associated with an index-name after the execution of a PERFORM statement may be set to an occurrence number

that is outside the range of its associated table.

If index-name-2 is specified, the value of the index before the execution of the SET statement must

correspond to an occurrence number of an element in the table associated with index-name-1.

If index-name-3 is specified, the value of the index both before and after the execution of the SET statement

must correspond to an occurrence number of an element in the table associated with index-name-3.

(3) In Format 1, the following action occurs:

a. Index-name-1 is set to a value causing it to refer to the table element that corresponds in occurrence

number to the table element referenced by index-name-2, identifier-2, or integer-1. If identifier-2 references an

index data item, or if index-name-2 is related to the same table as index-name-1, no conversion takes place.

b. If identifier-1 references an index data item, it may be set equal to either the content of index-name-2 or

identifier-2 where identifier-2 also references an index data item; no conversion takes place in either case.

c. If identifier-1 does not reference an index data item, it may be set only to an occurrence number that

corresponds to the value of index-name-2. Neither identifier-2 nor integer-1 can be used in this case.

d. The process is repeated for each recurrence of index-name-1 or identifier-1, if specified. Each time, the

value of index-name-2 or the data item referenced by identifier-2 is used as it was at the beginning of the execution

of the statement. Any subscripting associated with identifier-1 is evaluated immediately before the value of the

respective data item is changed.

(4) In Format 2, the content of index-name-3 is incremented (UP BY) or decremented (DOWN BY) by a value

that corresponds to the number of occurrences represented by the value of integer-2 or the data item referenced by

identifier-3; thereafter, the process is repeated for each recurrence of index-name-3. For each repetition the value of

the data item referenced by identifier-3 is used as it was at the beginning of the execution of the statement.

(5) Data in the following table represents the validity of various operand combinations in Format 1 of the SET

statement. The general rule reference (after the slash) indicates the applicable general rule.

PROCEDURE DIVISION (ANSI 74 and ANSI 85 SET)

445

SENDING ITEM
RECEIVING DATA ITEM

INTEGER
DATA ITEM

INDEX INDEX
DATA ITEM

 Integer literal No/3c Valid/3a No/3b

 Integer data item No/3c Valid/3a No/3b

 Index Valid/3c Valid/3a Valid/3b*

 Index data item No/3c Valid/3a* Valid/3b*

TABLE 30. Validity of Operand Combinations in Format 1 SET Statements

* No conversion takes place

Format 3:

(6) The status of each external switch associated with the specified mnemonic-name-1 is modified such that the

truth value resultant from evaluation of a condition-name associated with that switch will reflect an on status if the

ON phrase is specified, or an off status if the OFF phrase is specified. See the Switch-Status condition on page 238

Format 4:

(7) The literal in the VALUE clause associated with condition-name-1 is placed in the conditional variable

according to the rules of the VALUE clause, see The VALUE Clause on page 195). If more than one literal is

specified in the VALUE clause, the conditional variable is set to the value of the first literal that appears in the

VALUE clause.

(8) If multiple condition-names are specified, the results are the same as if a separate SET statement had been

written for each condition-name-1 in the same order as specified in the SET statement.

Format 5:

(9) The address specified by the TO phrase is moved into identifier-4. This address will be valid until the

program terminates or returns control to the calling program.

(10) The address specified by the TO phrase is the address contained in identifier-6, the address of identifier-5,

or if NULL is specified, an address which points to no data-item.

Format 6:

(11) The value of the indicator specified by the TO phrase is moved into identifier-7.

Interactive COBOL Language Reference & Developer’s Guide - Part One

446

PROCEDURE DIVISION (VXCOBOL SET)

447

Note: Rule 2 is not currently enforced by ICOBOL.

E.49. SET (VXCOBOL)

E.49.1 Function

Sets one or more data items equal to another data item, or adds an operand to or subtracts an operand from one or

more operands.

E.49.2 General Format

Format 1:

SET

Format 2:

SET ...

E.49.3 Syntax Rules

(1) All references to index-name-1, identifier-1, index-name-3, and identifier-4 apply equally to all recursions

thereof.

(2) Identifier-3 and identifier-4 must reference numeric data-items.

(3) Literal-2 must be a numeric literal.

E.49.4 General Rules

Format 1 and 2:

(1) Index-names are associated with a given table by being specified in the INDEXED BY phrase of the

OCCURS clause for that table.

(2) If index-name-1 is specified, the value of the index after the execution of the SET statement must

correspond to an occurrence number of an element in the table associated with index-name-l. The value of the index

associated with an index-name after the execution of a PERFORM statement may be set to an occurrence number

that is outside the range of its associated table.

If index-name-2 is specified, the value of the index before the execution of the SET statement must

correspond to an occurrence number of an element in the table associated with index-name-1.

If index-name-3 is specified, the value of the index both before and after the execution of the SET statement

must correspond to an occurrence number of an element in the table associated with index-name-3.

Interactive COBOL Language Reference & Developer’s Guide - Part One

448

(3) In Format 1, the following action occurs:

a. Index-name-1 or identifier-1 is set to a value equal to the content of index-name-2 or identifier-2 or to

the value specified by literal-1.

b. The value is set using the MOVE rules. Format 1 of the SET statement is equivalent to:

MOVE

c. The process is repeated for each recurrence of index-name-1 or identifier-1. Each time, the value of

index-name-2 or identifier-2 is used as it was at the beginning of the statement. Any subscripting associated with

identifier-1 is evaluated immediately before the value of the respective data-item is changed.

(4) In format 2, the following action occurs:

a. A SET UP statement adds the contents of identifier-3 or the value of literal-2 to index-name-3 or

identifier-4 and stores it back in index-name-3 or identifier-4, respectively, according to MOVE rules. The SET UP

statement is equivalent to:

ADD

b. A SET DOWN statement subtracts the contents of identifier-3 or the value of literal-2 from

index-name-3 or identifier-4 and stores it back in index-name-3 or identifier-4, respectively, according to MOVE

rules. The SET DOWN statement is equivalent to:

SUBTRACT

c. The process is repeated for each recurrence of index-name-3 or identifier-4. Each time, the value of

identifier-3 is used as it was at the beginning of the statement. Any subscripting associated with identifier-4 is

evaluated immediately before the value of the respective data-item is changed.

NOTE: The VXCOBOL implementation of the SET statement differs substantially from ANSI COBOL.

ANSI COBOL uses SET to establish reference points for table handling operations by setting indices

associated with table elements. As such, identifier-1 and identifier-2 must reference index data items

or elementary integer items. Identifier-3 must be an elementary numeric integer. Literal-1 must be a

positive integer, and literal-2 must be an integer.

PROCEDURE DIVISION (SET CONNECTION)

449

E.50. SET CONNECTION (ISQL)

E.50.1 Function

Set the currently active SQL database connection.

E.50.2 General Format

[ON SQLERROR imperative-statement-1]

[NOT ON SQLERROR imperative-statement-2]

[END-SET]

E.50.3 Syntax Rules

(1) Literal-1 must be an alphanumeric literal and may not specify a figurative constant.

(2) Identifier-1 must be an alphanumeric data item.

E.50.4 General Rules

(1) If the DEFAULT phrase is used, it specifies that the default connection (which has the name “default”) is to

be made the currently active connection.

(2) The value of literal-1 or the content of the data item represented by identifier-1 specifies the name of the

connection that is to be made the currently active connection.

(3) Connections are kept on a run unit basis, i.e., the scope of the connection name is the entire run unit, not just

the program containing the SET CONNECTION statement. If the specified connection does not exist, it is an error

and SQLSTATE will be set to “08003", which is “Connection does not exist”.

(4) If there is a currently active connection and it differs from the connection specified by the SET

CONNECTION statement, it is made the most recent dormant connection.

(5) Upon completion of the SET CONNECTION statement, the following occurs in the order specified:

a. The value of the SQLSTATE data item is updated with the status of the operation.

b. If the value of the SQLSTATE class field is “00", the statement is successful. Control is transferred to

the end of the SET CONNECTION statement or to imperative-statement-2, if specified. In the latter case, execution

continues according to the rules for each statement specified in imperative-statement-2. If a procedure branching or

conditional statement which causes explicit transfer of control is executed, control is transferred in accordance with

the rules for the statement; otherwise, upon completion of the execution of imperative-statement-2, control is

transferred to the end of the SET CONNECTION statement.

c. If the value of the SQLSTATE class field is not “00", the statement is unsuccessful. The statement

container is deallocated and no statement container of the specified name will exist in the current program. Control

is transferred to the end of the SET CONNECTION statement or to imperative-statement-1, if specified. In the latter

case, execution continues according to the rules for each statement specified in imperative-statement-1. If a

procedure branching or conditional statement which causes explicit transfer of control is executed, control is

transferred in accordance with the rules for the statement; otherwise, upon completion of the execution of

imperative-statement-1, control is transferred to the end of the SET CONNECTION statement.

Interactive COBOL Language Reference & Developer’s Guide - Part One

450

(6) The END-SET phrase delimits the scope of the SET CONNECTION statement.

(7) More on SQLSTATE can be found on page 133.

PROCEDURE DIVISION (SORT)

451

E.51. SORT

E.51.1 Function

The SORT statement creates a sort file by executing an input procedure or by transferring records from another file,

sorts the records in the sort file on a set of specified keys; and in the final phrase of the sort operation, makes

available each record from the sort file, in sorted order, to an output procedure or to an output file.

E.51.2 General Format (ANSI 74 and ANSI 85)

SORT file-name-1 { ON KEY { data-name-1 }... }...

[W ITH DUPLICATES IN ORDER]

[COLLATING SEQUENCE IS alphabet-name]

E.51.3 General Format (VXCOBOL)

SORT file-name-1

d [literal [CREATE MAXIMUM RECORDS] [SAVE]]

[ON KEY [data-name-1]...]...

[W ITH DUPLICATES IN ORDER]

[COLLATING SEQUENCE IS]

Interactive COBOL Language Reference & Developer’s Guide - Part One

452

E.51.4 Syntax Rules

(1) A SORT statement may appear anywhere in the Procedure Division except in the declaratives portion.

(2) File-name-1 must be described in a sort-merge file description entry in the Data Division.

(3) If the USING phrase is specified and the file referenced by file-name-1 contains variable length records, the

size of the records contained in the files referenced by file-name-2 must not be less than the smallest record nor

greater than the largest record described for file-name-1. If the file referenced by file-name-1 contains fixed length

records, the sizes of the records contained in the file referenced by file-name-2 must not be greater than the largest

record described for file-name-1.

(4) Data-name-1 is a key data-name. Key data-names are subject to the following rules:

a. The data items identified by key data-names must be described in records associated with file-name-1.

b. Key data-names may be qualified.

c. Key data-names may not be described as USAGE POINTER.

d. The data items identified by key data-names must not be group items that contain variable occurrence

data items.

e. If file-name-1 has more than one record description, the data items identified by key data-names need be

described in only one record description. The same character positions referenced by a key data-name in one record

description entry are taken as the key in all records of the file.

f. None of the data items identified by key data-names can be described by an entry that either contains an

OCCURS clause or is subordinate to an entry that contains an OCCURS clause.

g. If a file referenced by file-name-1 contains variable length records, all the data items identified by key

data-names must be contained within the first x characters positions of the record, where x equals the minimum

record size specified for the file referenced by file-name-1.

h. For VXCOBOL, if no data-name-1 is specified the entire record is used as the key.

(5) The words THRU and THROUGH are equivalent.

(6) File-name-2 and file-name-3 must be described in a file description entry, not a sort-merge description

entry, in the Data Division.

(7) No pair of file-names in a SORT statement may be specified in the same SAME SORT AREA or SAME

SORT-MERGE AREA clause. File-names associated with the GIVING phrase may not be specified in the same

SAME clause.

(8) If file-name-3 is specified it is subject to the following rules:

a. If file-name-3 references an indexed file, the first specification of data-name-1 and the data item

referenced by that data-name-1 must occupy the same character positions in its record as the data item associated

with the prime record key for that file. For ANSI 74 and ANSI 85, the first specification of data-name-1 must be

associated with the ASCENDING phrase if file-name-3 has a primary record key described explicitly or implicitly as

VALUES ARE ASCENDING. If the key is described as VALUES ARE DESCENDING, data-name-1 must be

associated with the DESCENDING phrase. For VXCOBOL, the first specification of data-name-1 must be

associated with the ASCENDING phrase.

b. For VXCOBOL, If file-name-3 references an INFOS file, it must not allow subindexing, and the first

specification of data-name-1 must be associated with an ASCENDING phrase. The data-item referenced by

PROCEDURE DIVISION (SORT)

453

data-name-1 must occupy the same character positions in its record as the data item associated with the first

RECORD KEY in the SELECT for file-name-3, i.e., the RECORD KEY and sort key must be internal to the record.

(9) For VXCOBOL, if file-name-2 references an INFOS file, it must not all subindexing.

(10) If the GIVING phrase is specified and the file referenced by file-name-3 contains variable length records,

the size of the records contained in the file referenced by file-name-1 must not be less that the smallest record nor

greater that the largest record described for file-name-3. If the file referenced by file-name-3 contains fixed length

records, the size of the records contained in the file referenced by file-name-1 must not be greater that the largest

record described for file-name-3.

(11) Alphabet-name shall reference an alphabet defined in the SPECIAL-NAMES paragraph which defines an

alphanumeric collating sequence.

(12) For VXCOBOL, the CREATE clause is for documentation purposes only.

(13) If file-name-2 references an indexed, relative, or INFOS file its access mode shall be sequential or

dynamic.

(14) For VXCOBOL, if the ASCENDING or DESCENDING clause is not specified then ASCENDING is

assumed, and the entire record is used as the key.

E.51.5 General Rules

(1) If the file referenced by file-name-1 contains only fixed length records, any record in the file referenced by

file-name-2 containing fewer character positions that fixed length is space filled on the right beginning with the first

character position after the last character in the record when that record is released to the file referenced by

file-name-1.

(2) The data-names following the word KEY are listed from left to right in the SORT statement in order of

decreasing significance without regard to how they are divided into KEY phrases. The leftmost data-name is the

major key, the next data-name is the next most significant key, etc.

a. When the ASCENDING phrase is specified, the sorted sequence will be from the lowest value of the

contents of the data items identified by the key data-names to the highest value, according to the rules for comparison

of operands in a relation condition.

b. When the DESCENDING phrase is specified, the sorted sequence will be from the highest value of the

contents of the data items identified by the key data-names to the lowest value, according to the rules for comparison

of operands in a relation condition.

(3) If the DUPLICATES phrase is specified and the contents of all the key data items associated with one data

record are equal to the contents of the corresponding key data items associated with one or more other data records,

then the order of return of these records is:

a. The order of the associated input files as specified in the SORT statement. Within a given input file the

order is that in which the records are accessed from that file.

b. The order in which these records are released by an input procedure, when an input procedure is

specified.

(4) If the DUPLICATES phrase is not specified and the contents of all the key data items associated with one

data record are equal to the contents of the corresponding key data items associated with one or more data records,

then the order of return of these records is undefined.

Interactive COBOL Language Reference & Developer’s Guide - Part One

454

(5) The collating sequence that applies to the comparison of the nonnumeric key data items specified is

determined at the beginning of the execution of the SORT statement in the following order of precedence:

a. First, the collating sequence established by the COLLATING SEQUENCE phrase, if specified, in the

SORT statement.

b. Second, the collating sequence established as the program collating sequence. In ICOBOL this is

always ASCII since the program collating sequence is ignored.

(6) The execution of a SORT statement consists of three distinct phases as follows:

a. Records are made available to the file referenced by file-name-1. This is achieved either by the

execution of RELEASE statements in the input procedure or by the implicit execution of READ statements for

file-name-2. When this phrase commences, the file referenced by file-name-2 must not be in the open mode. When

this phrase terminates, the file referenced by file-name-2 is not in the open mode.

b. The file referenced by file-name-1 is sequenced. No processing of the files referenced by file-name-2

and file-name-3 takes places during this phase.

c. The records of the file referenced by file-name-1 are made available in sorted order. The sorted records

are either written to the file referenced by file-name-3 or, by execution of a RETURN statement, are made available

for processing by the output procedure. When this phase commences, the file referenced by file-name-3 must not be

in the open mode. When this phase terminates, the file referenced by file-name-3 is not in the open mode.

(7) The input procedure may consist of any procedure needed to select, modify, or copy the records that are

made available one at a time by the RELEASE statement to the file referenced by file-name-1. The range includes

all statements that are executed as the result of a transfer of control by CALL, EXIT, GO TO, and PERFORM

statements in the range of the input procedure, as well as all statements in declarative procedures that are executed as

a result of the execution of statements in the range of the input procedure. The range of the input procedure must not

cause the execution of any MERGE, RETURN, or SORT statement.

(8) If an input procedure is specified, control is passed to the input procedure before the file referenced by

file-name-1 is sequenced by the SORT statement. The compiler inserts a return mechanism at the end of the last

statement in the input procedure and when control passes the last statement in the input procedure, the records that

have been released to the file referenced by file-name-1 are sorted.

(9) If the USING phrase is specified, all the records in the file(s) referenced by file-name-2 are transferred to

the file referenced by file-name-1. For each of the files referenced by file-name-2 the execution of the SORT

statement causes the following actions to be taken:

a. The processing of the file is initiated. The initiation is performed as if an OPEN statement with the

INPUT phrase had been executed.

b. The logical records are obtained and released to the sort operation. Each record is obtained as if a

READ statement with the NEXT and the AT END phrases had been executed. When the at end condition exists for

file-name-1, the processing for that file connector is terminated. If the file referenced by file-name-1 is described

with variable-length records, the size of any record released to file-name-1 is the size of that record when it was read

from file-name-2, regardless of the content of the data item referenced by the DEPENDING ON phrase of either a

RECORD IS VARYING clause or an OCCURS clause specified in the sort-merge file description entry for

file-name-1. If the size of the record read from the file referenced by file-name-2 is larger than the largest record

allowed in the file description entry for file-name-1 or is smaller than the smallest record allowed in the file

description entry for file-name-1, an exception condition exists and the execution of the SORT statement is

terminated.

For a relative file, the content of the relative key data items is undefined after the execution of the

SORT statement if file-name-2 is not referenced in the GIVING phrase.

PROCEDURE DIVISION (SORT)

455

c. The processing of the file is terminated. The termination is performed as if a CLOSE statement without

optional phrases had been executed. This termination is performed before the file referenced by file-name-1 is

sequenced by the SORT statement.

These implicit functions are performed such that any associated USE AFTER STANDARD EXCEPTION

procedures are executed; however, the execution of such a USE procedure must not cause the execution of any

statement manipulating the file referenced by, or accessing the record area associated with, file-name-2.

(10) The output procedure may consist of any procedure needed to select, modify, or copy records that are

made available one at a time by the RETURN statement in sorted order from the file referenced by file-name-1. The

range includes all statements that are executed as the result of a transfer of control by CALL, EXIT, GO TO, and

PERFORM statements in the range of the output procedure, as well as all statements in declarative procedures that

are executed as a result of the execution of statements in the range of the output procedure. The range of the output

procedure must not cause the execution on any MERGE, RELEASE, or SORT statement. See page 253, 306,

Explicit and Implicit specifications.

(11) If an output procedure is specified, control passes to it after the file referenced by file-name-1 has been

sequenced by the SORT statement. The compiler inserts a return mechanism at the end of the last statement in the

output procedure. When control passes the last statement in the output procedure, the return mechanism provides for

termination of the merge, and then passes control to the next executable statement after the SORT statement. Before

entering the output procedure, the sort procedure reaches a point at which it can select the next record in sorted order

when requested. The RETURN statements in the output procedure are the requests for the next record.

(12) If the GIVING phrase is specified, all the sorted records are written on the file referenced by file-name-3

as the implied output procedure for the SORT statement. For each of the files referenced by file-name-3, the

execution of the SORT statement causes the following actions to be taken:

a. The processing of the file is initiated. The initiation is performed as if an OPEN statement with the

OUTPUT phrase had been executed. This initiation is performed after the execution of any input procedure.

b. The sorted logical records are returned and written onto the file. Each record is written as if a WRITE

statement without any optional phrases had been executed. If the file referenced by file-name-3 is described with

variable length records, the size of any record written to file-name-3 is the size of that record when it was read from

file-name-1, regardless of the content of the data item referenced by the DEPENDING ON phrase of either a

RECORD IS VARYING clause or an OCCURS clause specified in the file description entry for file-name-3.

For a relative file, the relative key date for the first record returned contains the value '1'; for the second

record returned, the value '2', etc. After execution of the SORT statement, the content of the relative key data item

indicates the last record returned to the file.

c. The processing of the file is terminated. The termination is performed as if a CLOSE statement without

optional phrases had been executed.

These implicit functions are performed such that any associated USE AFTER STANDARD EXCEPTION

procedures are executed; however, the execution of such a USE procedure must not cause the execution of any

statement manipulating the file referenced by, or accessing the record area associated with, file-name-3. On the first

attempt to write beyond the externally defined boundaries of the file, any USE AFTER STANDARD EXCEPTION

procedure specified for that file is executed; if control is returned from that USE procedure or if no USE procedure is

specified, the processing of the file is terminated as in paragraph 12c above.

(13) If the file referenced by file-name-3 contains only fixed length records, any record in the file referenced by

file-name-1 containing fewer character positions that fixed length is space filled on the right beginning with the first

character position after the last character in the record when that record is returned to the file referenced by

file-name-3.

(14) The environment entry ICTMPDIR is used for temporary files.

Interactive COBOL Language Reference & Developer’s Guide - Part One

456

(15) An ACCEPT FROM EXCEPTION should be done after this operation to ensure no errors.

PROCEDURE DIVISION (ANSI 74 and ANSI 85 START)

457

E.52. START

E.52.1 Function

The START statement provides a basis for logical positioning within a relative, indexed, or INFOS file, or for a

fixed sequential file for subsequent sequential retrieval of records.

E.52.2 General Format

Format 1: (Relative or Indexed)

ANSI 74 and ANSI 85:

START file-name

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-START]

VXCOBOL

START file-name

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-START]

Format 2: (Relative or Indexed)

ANSI 74 and ANSI 85

START file-name [KEY IS key-name]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-START]

Interactive COBOL Language Reference & Developer’s Guide - Part One

458

Format 3: (Sequential)

ANSI 74 and ANSI 85

START file-name [END-START]

VXCOBOL

START file-name RECORD [CHARACTER] [END-START]

E.52.3 Syntax Rules

(1) File-name must be the name of a file with a sequential or dynamic access.

(2) Key-name may be qualified if id-1 is a simple data item. Key-name may be qualified by the filename if it is

a composite data item.

(3) The INVALID KEY phrase must be specified if no applicable USE AFTER STANDARD EXCEPTION

procedure is specified for file-name.

For relative files:

(4) Key-name, if specified, must be the data item specified in the RELATIVE KEY phrase in the ACCESS

MODE clause of the associated file control entry.

For indexed and INFOS Files:

(5) If the KEY IS phrase is specified, key-name must reference

a. A key associated with file-name (in id-1 in the formats of the RECORD KEY or ALTERNATE

RECORD KEY).

b. Any data-item of category alphanumeric whose leftmost character position within a record of the file

corresponds to the leftmost character position of a record key or the root segment of a record key and whose length is

not greater than the length of that key or root segment.

(6) In the case where multiple alternate keys start at the same position, ICOBOL matches it up with the first key

whose size is larger than key-name. NOT ANSI STANDARD.

For sequential files:

(7) Identifier-1, identifier-2, integer-1 and integer-2 must be integers that are greater than or equal to zero.

(8) If RECORD is specified, the file description entry for file-name may not contain the RECORD IS

VARYING or RECORDING MODE IS VARIABLE clause. The file control entry must explicitly or implicitly be

ASSIGN TO DISK.

(9) If RECORD is specified, identifier-2 or integer-2 must be less than or equal to the maximum record size.

(10) For VXCOBOL, the file description entry associated with file-name must have the RECORDING MODE

IS FIXED.

PROCEDURE DIVISION (ANSI 74 and ANSI 85 START)

459

E.52.4 General Rules

(1) The file referenced by file-name must be open in the input or I-O mode at the time that the START

statement is executed. (See The OPEN Statement, page 399.)

(2) For Format 1, if the KEY phrase is not specified, the relational operator `IS EQUAL TO' is implied.

(3) The execution of the START statement does not alter the content of the record area.

(4) The execution of the START statement causes the value of the I-O status associated with file-name to be

updated.

(5) Transfer of control following the successful or unsuccessful execution of the START operation depends on

the presence or absence of the optional INVALID KEY and NOT INVALID KEY phrases in the START statement.

(6) Following the unsuccessful execution of a START statement, the file position indicator is set to indicate that

no valid next record has been established.

(7) The END-START phrase delimits the scope of the START statement.

For relative files:

(8) The type of comparison specified by the relational operator in the KEY phrase occurs between a key

associated with a record in the file referenced by file-name and a data item as specified in general rule 8. Numeric

comparison rules apply. (See Comparison of Numeric Operands, page 234.)

a. The file position indicator is set to the relative record number of the first logical record in the file whose

key satisfies the comparison.

b. If the comparison is not satisfied by any record in the file, the invalid key condition exists and the

execution of the START statement is unsuccessful.

(9) The comparison described in general rule 8 uses the data item referenced by the RELATIVE KEY phrase of

the ACCESS MODE clause associated with file-name.

For indexed files:

(10) The type of comparison specified by the relational operator in the KEY phrase occurs between a key

associated with a record in the file referenced by file-name-1 and a data item as specified in general rules 12 and 13.

The comparison is made on the ascending key of reference according to the collating sequence of the file. If the

operands are of unequal size, comparison proceeds as though the longer one was truncated on the right such that its

length is equal to that of the shorter. All other nonnumeric comparison rules apply. (See Comparison of

Nonnumeric Operands, page 234.)

a. The file position indicator is set to the value of the key of reference in the first logical record whose key

satisfies the comparison.

b. If the comparison is not satisfied by any record in the file, the invalid key condition exists and the

execution of the START statement is unsuccessful,

(11) A key of reference is established as follows:

a. If the KEY phrase is not specified, the primary record key specified for file-name becomes the key of

reference.

b. If the KEY phrase is specified, and data-name is specified as a record key for file-name, that record key

becomes the key of reference.

Interactive COBOL Language Reference & Developer’s Guide - Part One

460

c. If the KEY phrase is specified, and data-name is not specified as a record key for file-name, the record

key whose left-most character position corresponds to the left-most character position of the data item specified by

data-name, becomes the key of reference.

d. In the case where multiple alternate keys start at the same position ICOBOL matches it up with the first

key whose size is larger than data-name. NOT ANSI STANDARD.

This key of reference is used to establish the ordering of records for the purpose of this START statement, see

general rule 10; and, if the execution of the START statement is successful, the key of reference is also used for

subsequent sequential READ statements. (See The READ Statement, page 412, 414, 420.)

(12) If the KEY phrase is specified, the comparison described in general rule 5 uses:

a. The data-item specified by key-name, if the RECORD KEY or ALTERNATE RECORD KEY clause of

the file control entry for file-name does not include the equal sign (=).

b. The composite key specified by key-name, if the RECORD KEY or ALTERNATE RECORD KEY

clause of the file control entry for file-name includes the PLUS phrase.

c. The first occurrence of the data-item or composite key specified by key-name if the ALTERNATE

RECORD KEY clause of the file control entry for file-name includes the OCCURS phrase.

d. The root key of key_name if the ALTERNATE RECORD KEY clause of the file control entry for

file-name includes the ALSO phrase. (Ths is id-2 in the ALTERNATE RECORD KEY format.)

(13) If the KEY phrase is not specified, the comparison described in general rule 5 uses the data item or

composite key referenced in the RECORD KEY clause associated with file-name.

(14) The keyword FIRST is used to position to the first record in the file for the key of reference.

(15) The keyword LAST is used to position to the last record in the file for the key of reference.

For sequential files:

(16) If the RECORD phrase is specified. The file position indicator will be positioned to the character position

computed by:

 (record length * record number) + character offset

where record length is the fixed length of the records associated with file-name, record number is integer-1 or the

contents of identifier-1, and character offset is integer-2 or the contents of identifier-2. If the CHARACTER phrase

is omitted, integer-2 is assumed to be zero.

(17) If the CHARACTER phrase is specified without the RECORD phrase, positioning occurs as in general rule

16 where integer-1 is assumed to be zero.

(18) The first record in the file is assumed to be record zero, the second record is record 1. Etc. Thus to

position to the Nth record, integer-1 or identifier-1 should be set to N-1.

(19) The AFTER LAST phrase set the file position indicator following the last character of the file (i.e. end-of-

file), This is equivalent to the position immediately after an OPEN EXTEND.

(20) The FIRST CHARACTER phrase set the file position indicator to the first character of the file. This is

equivalent to the position immediately after an OPEN INPUT. The FIRST CHARACTER phrase is equivalent to

CHARACTER 0.

PROCEDURE DIVISION (ANSI 74 and ANSI 85 START)

461

For INFOS Files:

(21) The type of of comparison specified by the relational operator in the KEY phrase occurs between a key

associated with a record in the file referenced by file-name-1 and a data item as specified in general rules 22 and 23.

The comparison is made on the ascending key of reference according to the collating sequence of the file. If the

operands are of unequal size, comparison proceeds as though the longer one was truncated on the right such that its

length is equal to that of the shorter. All other nonnumeric comparison rules apply. (See Comparison of

Nonnumeric Operands, page 234.)

a. The file position indicator is set to the value of the key of reference in the first logical record whose key

satisfies the comparison.

b. If the comparison is not satisfied by any record in the file, the invalid key condition exists and the

execution of the START statement is unsuccessful,

(22) If the KEY phrase is not specified, the comparison described in general rule 5 uses the first data-item

referenced in the RECORD KEY clause associated with file-name.

(23) If the KEY phrase is specified, the key refers to the file's top level. If you have specified DUPLICATES

and the OCCURRENCE options in the file's SELECT clause, and the occurrence number is not zero, then START

uses the occurrence number to refer to the key.

(24) After a START statement, ICOBOL treats a READ NEXT as a READ STATIC.

(25) The FEEDBACK data-item is not updated by a START.

Interactive COBOL Language Reference & Developer’s Guide - Part One

462

PROCEDURE DIVISION (STOP)

463

 NOTE:
Using an extended open option to set timeout on your console does NOT
affect an ACCEPT or STOP statement. Extended open options are discussed
in the Interactive COBOL Developer’s Guide Section.

IC_SET_TIMEOUT is discussed in this document beginning on page 558, 559.

E.53. STOP

E.53.1 Function

The STOP statement causes a permanent or temporary suspension of the execution of the run unit. The literal

variation of the STOP statement is an obsolete element in Standard COBOL because it is to be deleted from the next

revision of Standard COBOL.

E.53.2 General Format

STOP

E.53.3 Syntax Rules

(1) Literal must not be a figurative constant that begins with the word ALL.

(2) If a STOP RUN statement appears in a consecutive sequence of imperative statements within a sentence, it

must appear as the last statement in that sequence.

(3) If literal is numeric, then it must be an unsigned integer.

E.53.4 General Rules

(1) If the RUN phrase is specified, execution of the run unit ceases and control is transferred to the operating

system. If the optional literal is specified, it is displayed before the run unit ceases.

(2) During the execution of a STOP RUN statement, an implicit CLOSE statement without any optional phrases

is executed for each file that is in the open mode in the run unit. Any USE procedures associated with any of these

files are not executed.

(3) A STOP RUN literal will cause a value to be returned as the exit code from ICRUN. If literal is numeric,

and 10 < literal < 255, then the integer portion of literal is returned; otherwise, the value 10 is returned. Exit codes

0 through 9 are reserved for the standard exit codes of the runtime system.

(4) If STOP literal is specified, the execution of the run unit is suspended and literal is communicated to the

operator. Continuation of the execution of the run unit begins with the next executable statement when a newline has

been entered or a STOP RUN is executed if an ESCAPE is entered.

(5) When using timeouts, ICOBOL handles them in the following order:

a. If a timeout had been set with the IC_SET_TIMEOUT builtin, then it is used; otherwise,

b. The global timeout as set with ICTIMEOUT will be used. The default case for global timeout is to wait

forever.

Interactive COBOL Language Reference & Developer’s Guide - Part One

464

PROCEDURE DIVISION (STRING)

465

E.54. STRING

E.54.1 Function

The STRING statement provides juxtaposition of the partial or complete contents of one or more data items into a

single data item.

E.54.2 General Format

STRING { DELIMITED BY }... INTO identifier-3

[W ITH POINTER identifier-4]

[ON OVERFLOW imperative-statement-1]

[NOT ON OVERFLOW imperative-statement-2]

[END-STRING]

E.54.3 Syntax Rules

(1) Literal-1 or literal-2 must not be a figurative constant that begins with the word ALL.

(2) All literals must be described as nonnumeric literals, and all identifiers, except identifier-4, must be

described implicitly or explicitly as USAGE IS DISPLAY.

(3) Identifier-3 must not be reference modified.

(4) Identifier-3 must not represent an edited data item and must not be described with the JUSTIFIED clause.

(5) Identifier-4 must be described as an elementary numeric integer data item of sufficient size to contain a

value equal to 1 plus the size of the data item referenced by identifier-3. The symbol `P' may not be used in the

PICTURE character-string of identifier-4.

(6) Where identifier-1 or identifier-2 is an elementary numeric data item, it must be described as an integer

without the symbol `P' in its PICTURE character-string.

(7) Identifier-1 may not be a function identifier.

E.54.4 General Rules

(1) Identifier-1 or literal-1 represents the sending item. Identifier-3 represents the receiving item.

(2) Literal-2 or the content of the data item referenced by identifier-2 indicates the character(s) delimiting the

move. If the SIZE phrase is used, the content of the complete data item defined by identifier-1 or literal-1 is moved.

When a figurative constant is used as the delimiter, it is a single character nonnumeric literal.

(3) When a figurative constant is specified as literal-1 or literal-2, it refers to an implicit one character data

item whose usage is DISPLAY.

(4) When the STRING statement is executed, the transfer of data is governed by the following rules:

a. Those characters from literal-1 or from the content of the data item referenced by identifier-1 are

transferred to the data item referenced by identifier-3 in accordance with the rules for alphanumeric to alphanumeric

moves, except that no space filling will be provided.

Interactive COBOL Language Reference & Developer’s Guide - Part One

466

b. If the DELIMITED phrase is specified without the SIZE phrase, the content of the data item referenced

by identifier-1, or the value of literal-1, is transferred to the receiving data item in the sequence specified in the

STRING statement beginning with the left-most character and continuing from left to right until the end of the

sending data item is reached or the end of the receiving data item is reached or until the character(s) specified by

literal-2, or by the content of the data item referenced by identifier-2, are encountered. The character(s) specified by

literal-2 or by the data item referenced by identifier-2 are not transferred.

c. If the DELIMITED phrase is specified with the SIZE phrase, the entire content of literal-1, or the

content of the data item referenced by identifier-1, is transferred, in the sequence specified in the STRING statement,

to the data item referenced by identifier-3 until all data has been transferred or the end of the data item referenced by

identifier-3 has been reached.

This behavior is repeated until all occurrences of literal-1 or data items referenced by identifier-1 have been

processed.

(5) If the POINTER phrase is specified, the data item referenced by identifier-4 must be set to an initial value

greater than zero prior to the execution of the STRING statement.

(6) If the POINTER phrase is not specified, the following general rules apply as if the user had specified

identifier-4 referencing a data item with an initial value of 1.

(7) When characters are transferred to the data item referenced by identifier-3, the moves behave as though the

characters were moved one at a time from the source into the character positions of the data item referenced by

identifier-3 designated by the value of the data item referenced by identifier-1 (provided the value of the data item

referenced by identifier-4 does not exceed the length of the data item referenced by identifier-3), and then the data

item referenced by identifier-4 was increased by one prior to the move of the next character or prior to the end of

execution of the STRING statement. The value of the data item referenced by identifier-4 is changed during

execution of the STRING statement only by the behavior specified above.

(8) At the end of execution of the STRING statement, only the portion of the data item referenced by

identifier-3 that was referenced during the execution of the STRING statement is changed. All other portions of the

data item referenced by identifier-3 will contain data that was present before this execution of the STRING

statement.

(9) Before each move of a character to the data item referenced by identifier-3, if the value associated with the

data item referenced by identifier-4 is either less than one or exceeds the number of character positions in the data

item referenced by identifier-3, no (further) data is transferred to the data item referenced by identifier-3, and the

NOT ON OVERFLOW phrase, if specified, is ignored, and control is transferred to the end of the STRING

statement or, if the ON OVERFLOW phrase is specified, to imperative-statement-1. If control is transferred to

imperative-statement-1, execution continues according to the rules for each statement specified in

imperative-statement-1. If a procedure branching or conditional statement which causes explicit transfer of control

is executed, control is transferred in accordance with the rules for that statement; otherwise, upon completion of the

execution of imperative-statement-1, control is transferred to the end of the STRING statement.

(10) If, at the time of execution of a STRING statement with the NOT ON OVERFLOW phrase, the conditions

described in General Rule 9 are not encountered, after completion of the transfer of data according to the other

general rules, the ON OVERFLOW phrase, if specified, is ignored and control is transferred to the end of the

STRING statement or, if the NOT ON OVERFLOW phrase is specified to imperative-statement-2. If a procedure

branching or conditional statement which causes explicit transfer of control is executed, control is transferred in

accordance with the rules for that statement; otherwise, upon completion of the execution of imperative-statement-2,

control is transferred to the end of the STRING statement.

(11) If identifier-1 or identifier-2 occupies the same storage area as identifier-3, or identifier-4, or if identifier-3

and identifier-4 occupy the same storage area, the result of the execution of this statement is undefined, even if they

are defined by the same data description entry.

(12) The END-STRING phrase delimits the scope of the STRING statement.

PROCEDURE DIVISION (SUBTRACT)

467

E.55. SUBTRACT

E.55.1 Function

The SUBTRACT statement is used to subtract one, or the sum of two or more, numeric data items from an item, and

set the value of an item equal to the results.

E.55.2 General Format

Format 1:

SUBTRACT FROM { identifier-2 [ROUNDED] }...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-SUBTRACT]

Format 2:

SUBTRACT FROM GIVING { identifier-3 [ROUNDED] }...

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-SUBTRACT]

Format 3:

SUBTRACT identifier-1 FROM identifier-2 [ROUNDED]

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-SUBTRACT]

E.55.3 Syntax Rules

(1) Each identifier must refer to a numeric elementary item except that:

a. In Format 2, each identifier following the word GIVING must refer to either an elementary numeric item

or an elementary numeric edited item.

b. In Format 3, each identifier must refer to a group item.

(2) Each literal must be a numeric literal.

(3) The composite of operands must not contain more than 18 digits.

a. In Format 1, the composite of operands is determined by using all of the operands in a given statement.

b. In Format 2, the composite of operands is determined by using all of the operands in a given statement

excluding the data item that follows the word GIVING.

c. In Format 3, the composite of operands is determined separately for each pair of corresponding data

items.

Interactive COBOL Language Reference & Developer’s Guide - Part One

468

(4) CORR is an abbreviation for CORRESPONDING.

E.55.4 General Rules

(1) When Format 1 is used, the values of the operands preceding the word FROM are added together and the

sum is stored in a temporary data item. The value in this temporary data item is subtracted from the value of the data

item referenced by identifier-2, storing the result into the data item referenced by identifier-2, and repeating this

process for each successive occurrence of identifier-2 in the left-to-right order in which identifier-2 is specified.

(2) In Format 2, all literals and the values of the data items referenced by the identifiers preceding the word

FROM are added together, the sum is subtracted from literal-2 or the value of the data item referenced by

identifier-2, and the result of the subtraction is stored as the new content of each data item referenced by identifier-3.

(3) If Format 3 is used, data items in identifier-1 are subtracted from and stored into corresponding data items

in identifier-2.

(4) The compiler insures enough places are carried so as not to lose significant digits during execution.

(5) Additional rules and explanations relative to this statement are given under the appropriate paragraphs. (See

Scope of Statements, page 253; The ROUNDED Phrase, page 245; The ON SIZE ERROR Phrase, page 246; The

Arithmetic Statements, page 249; Overlapping Operands, page 249; Multiple Results in Arithmetic Statements, page

249, and The CORRESPONDING Phrase, page 246.)

PROCEDURE DIVISION (ANSI 74 and ANSI 85 UNDELETE)

469

E.56. UNDELETE (ANSI 74 and ANSI 85)

E.56.1 Function

The UNDELETE statement restores a logically deleted record to a relative or indexed file. UNDELETE is an

extension to ANSI COBOL.

E.56.2 General Format

UNDELETE file-name RECORD

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-UNDELETE]

E.56.3 Syntax Rules

(1) File-name must be the name of a file with dynamic or random access.

(2) The INVALID KEY phrase must be specified for an UNDELETE statement which references a file for

which an applicable USE AFTER STANDARD EXCEPTION procedure is not specified.

E.56.4 General Rules

(1) The file referenced by file-name must be a mass storage file and must be open in the I-O mode at the time

the UNDELETE statement is executed.

(2) For a relative file, the file system logically restores to the file that record identified by the content of the

relative key data item associated with file-name. If the file does not contain the logically deleted record specified by

the key, the invalid key condition exists.

(2) For an indexed file, the file system logically restores to the file that record identified by the content of the

RECORD KEY data item associated with the file-name. If the file does not contain the logically deleted record

specified by the key, the invalid key condition exists.

(3) After the successful execution of an UNDELETE statement, the identified record has been logically restored

to the file and can now be accessed.

(4) The execution of a UNDELETE statement does not affect the content of the record area.

(5) The file position indicator is not affected by the execution of a UNDELETE statement.

(6) The execution of the UNDELETE statement causes the value of the I-O status associated with file-name to

be updated.

(7) Transfer of control following the successful or unsuccessful execution of the UNDELETE operation

depends on the presence or absence of the optional INVALID KEY and NOT INVALID KEY phrases in the

UNDELETE statement.

Interactive COBOL Language Reference & Developer’s Guide - Part One

470

PROCEDURE DIVISION (VXCOBOL UNDELETE)

471

E.57. UNDELETE (VXCOBOL)

E.57.1 Function

The UNDELETE statement restores a logically deleted record to an indexed or INFOS file. UNDELETE is an

extension to ANSI COBOL.

E.57.2 General Format

For indexed files:

UNDELETE file-name RECORD [KEY IS identifier-1]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-UNDELETE]

For INFOS files:

 UNDELETE file-name

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-UNDELETE]

E.57.3 Syntax Rules

(1) File-name must be the name of a file with dynamic or random access.

(2) The INVALID KEY phrase must be specified for an UNDELETE statement which references a file for

which an applicable USE AFTER STANDARD EXCEPTION procedure is not specified.

(3) Identifier-1 must be the data-name specified as the RECORD KEY for the SELECT clause for file-name.

E.57.4 General Rules

(1) The file referenced by file-name must be a mass storage file and must be open in the I-O mode at the time

the UNDELETE statement is executed.

(2) The execution of a UNDELETE statement does not affect the content of the record area.

(3) The execution of the UNDELETE statement causes the value of the I-O status associated with file-name to

be updated.

Interactive COBOL Language Reference & Developer’s Guide - Part One

472

(4) Transfer of control following the successful or unsuccessful execution of the UNDELETE operation

depends on the presence or absence of the optional INVALID KEY and NOT INVALID KEY phrases in the

UNDELETE statement.

For indexed files:

(5) For an indexed file, the file system logically restores to the file that record identified by the content of the

RECORD KEY data-item associated with the file-name. If the file does not contain the logically deleted record

specified by the key, the invalid key condition exists.

(6) After the successful execution of an UNDELETE LOGICAL GLOBAL the data record identified has been

logically restored to the file.

(7) If LOCAL is specified, it is ignored. If LOCAL GLOBAL is specified, it is treated as GLOBAL.

(8) If no type of restoration is specified, LOGICAL GLOBAL is assumed.

(9) The file position indicator is not affected by the execution of a UNDELETE statement.

For INFOS files:

(10) If the relative option and the KEY series phrase are omitted, the default is STATIC.

(11) The occurrence number is used.

(12) FEEDBACK is not used and is not updated.

(13) KEY LENGTH is used.

(14) The record to UNDELETE is determined according to what is specified in the relative option phrase

and/or the KEY series phrase. The specification can be implicit if the program uses the defaults or explicit if the

KEY or path is fully specified.

(15) FIX POSITION causes the record pointer to move from the current position to the position specified in this

statement. RETAIN position causes the record position to remain at the position it was on before the execution of

this statement. RETAIN is the default.

(16) The relative motion option without the KEY series phrase allows access to the index file relative to that

file's current record position.

(17) Using the KEY series phrase without the relative motion option cause the key path specified to begin with

the top index in the hierarchy and follow a downward motion.

(18) If the KEY series phrase is specified, each key, identifier-2, must be declared in the SELECT statement for

file-name. If the relative motion option and KEY series phrase at both specified only UP, DOWN, and STATIC are

allowed. The relative motion option is processed first and the key path is used. If both are omitted, STATIC is the

default.

(19) If LOGICAL LOCAL is specified, the key and partial record are logically restored.

(20) If LOGICAL GLOBAL is specified, the data record is logically restored.

(21) If LOGICAL LOCAL GLOBAL is specified, the key, partial record, and the data record are logically

restored.

(22) If no type of restoration is specified, LOGICAL LOCAL GLOBAL is the default.

PROCEDURE DIVISION (UNLOCK)

473

E.58. UNLOCK

E.58.1 Function

The UNLOCK statement unlocks all records that have been locked by the program on a specified file connector.

UNLOCK is an extension to ANSI COBOL.

E.58.2 General Format

UNLOCK file-name

E.58.3 Syntax Rules

(1) File-name must be the name of a file with random or dynamic access.

E.58.4 General Rules

(1) The file referenced by file-name must be a mass storage file and must be open in the input or I-O mode at

the time of the execution of this statement.

(2) After the successful execution of an UNLOCK statement, all records that were locked in the file specified

by file-name by this program are now released.

(3) The execution of a UNLOCK statement does not affect the content of the record area.

(4) The file position indicator is not affected by the execution of an UNLOCK statement.

(5) If no records are locked no error is detected and the UNLOCK is successful.

(6) The execution of the UNLOCK statement causes the value of the I-O status associated with file-name to be

updated.

Interactive COBOL Language Reference & Developer’s Guide - Part One

474

PROCEDURE DIVISION (UNSTRING)

475

E.59. UNSTRING

E.59.1 Function

The UNSTRING statement causes contiguous data in a sending field to be separated and placed into multiple

receiving fields.

E.59.2 General Format

UNSTRING identifier-1 [DELIMITED BY [ALL] [OR [ALL]]...]

INTO { identifier-4

[DELIMITER IN identifier-5]

[COUNT IN identifier-6] }...

[W ITH POINTER identifier-7]

[TALLYING IN identifier-8]

[ON OVERFLOW imperative-statement-1]

[NOT ON OVERFLOW imperative-statement-2]

[END-UNSTRING]

E.59.3 Syntax Rules

(1) Literal-1 and literal-2 must be nonnumeric literals and neither can be a figurative constant that begins with

the word ALL.

(2) Identifier-1, identifier-2, identifier-3, and identifier-5 must reference data items described, implicitly or

explicitly, as category alphanumeric.

(3) Identifier-4 may be described as either the category alphabetic, alphanumeric, or numeric (except that the

symbol `P' may not be used in the PICTURE character-string), and must be described implicitly or explicitly, as

USAGE IS DISPLAY.

(4) Identifier-6 and identifier-8 must reference integer data items (except that the symbol `P' may not be used in

the PICTURE character-string).

(5) Identifier-7 must be described as an elementary numeric integer data item of sufficient size to contain a

value equal to 1 plus the size of the data item referenced by identifier-1. The symbol `P' may not be used in the

PICTURE character-string of identifier-7.

(6) The DELIMITER IN phrase and the COUNT IN phrase may be specified only if the DELIMITED BY

phrase is specified.

(7) Identifier-1 must not be reference modified.

E.59.4 General Rules

(1) All references to identifier-2 and literal-1 apply equally to identifier-3 and literal-2, respectively, and all

recursions thereof.

(2) The data item referenced by identifier-1 represents the sending area.

(3) The data item referenced by identifier-4 represents the data receiving area. The data item referenced by

identifier-5 represents the receiving area for delimiters.

(4) Literal-1 or the data item referenced by identifier-2 specifies a delimiter.

Interactive COBOL Language Reference & Developer’s Guide - Part One

476

(5) The data item referenced by identifier-6 represents the count of the number of characters within the data

item referenced by identifier-1 isolated by the delimiters for the move to the data item referenced by identifier-4.

This value does not include a count of the delimiter character(s).

(6) The data item referenced by identifier-7 contains a value that indicates a relative character position within

the area referenced by identifier-1.

(7) The data item referenced by identifier-8 is a counter which is incremented by 1 for each occurrence of the

data item referenced by identifier-4 accessed during the UNSTRING operation.

(8) When a figurative constant is used as the delimiter, it stands for a single character nonnumeric literal.

When the ALL phrase is specified, one occurrence or two or more contiguous occurrences of literal-1

(figurative constant or not) or the content of the data item referenced by identifier-2 are treated as if they were only

one occurrence, and one occurrence of literal-1 or the data item referenced by identifier-2 is moved to the receiving

data item according to the rules in General Rule 13d.

(9) When any examination encounters two contiguous delimiters, the current receiving area is space filled if it is

described as alphabetic or alphanumeric, or zero filled if it is described as numeric.

(10) Literal-1 or the content of the data item referenced by identifier-2 can contain any character in the

computer's character set.

(11) Each literal-1 or the data item referenced by identifier-2 represents one delimiter. When a delimiter

contains two or more characters, all of the characters must be present in contiguous positions of the sending item,

and in the order given, to be recognized as a delimiter.

(12) When two or more delimiters are specified in the DELIMITED BY phrase, an OR condition exists

between them. Each delimiter is compared to the sending field. If a match occurs, the character(s) in the sending

field is considered to be a single delimiter. No character(s) in the sending field can be considered a part of more than

one delimiter.

Each delimiter is applied to the sending field in the sequence specified in the UNSTRING statement.

(13) When the UNSTRING statement is initiated, the current receiving area is the data item referenced by

identifier-4. Data is transferred from the data item referenced by identifier-1 to the data item referenced by

identifier-4 according to the following rules:

a. If the POINTER phrase is specified, the string of characters referenced by identifier-1 is examined

beginning with the relative character position indicated by the content of the data item referenced by identifier-7. If

the POINTER phrase is not specified, the string of characters is examined beginning with the left-most character

position.

b. If the DELIMITED BY phrase is specified, the examination proceeds left to right until either a delimiter

specified by literal-1 or the value of the data item referenced by identifier-2 is encountered. (See General Rule 11.)

If the DELIMITED BY phrase is not specified, the number of characters examined is equal to the size of the current

receiving area. However, if the sign of the receiving item is defined as occupying a separate character position, the

number of characters examined is one less than the size of the current receiving area.

If the end of the data item referenced by identifier-1 is encountered before the delimiting condition

is met, the examination terminates with the last character examined.

c. The characters thus examined (excluding the delimiting character(s), if any) are treated as an elementary

alphanumeric data item, and are moved into the current receiving area according to the rules for the MOVE

statement.

d. If the DELIMITER IN phrase is specified the delimiting character(s) are treated as an elementary

alphanumeric data item and are moved into the data item referenced by identifier-5 according to the rules for the

PROCEDURE DIVISION (UNSTRING)

477

MOVE statement. If the delimiting condition is the end of the data item referenced by identifier-1, then the data item

referenced by identifier-5 is space filled.

e. If the COUNT IN phrase is specified, a value equal to the number of characters thus examined

(excluding the delimiter character(s), if any) is moved into the area referenced by identifier-6 according to the rules

for an elementary move.

f. If the DELIMITED BY phrase is specified the string of characters is further examined beginning with the

first character to the right of the delimiter. If the DELIMITED BY phrase is not specified the string of characters is

further examined beginning with the character to the right of the last character transferred.

g. After data is transferred to the data item referenced by identifier-4, the current receiving area is the data

item referenced by the next recurrence of identifier-4. The behavior described in paragraphs 13b through 13f is

repeated until either all the characters are exhausted in the data item referenced by identifier-1, or until there are no

more receiving areas.

(14) The initialization of the contents of the data items associated with the POINTER phrase or the TALLYING

phrase is the responsibility of the user.

(15) The content of the data item referenced by identifier-7 will be incremented by one for each character

examined in the data item referenced by identifier-1. When the execution of an UNSTRING statement with a

POINTER phrase is completed, the content of the data item referenced by identifier-7 will contain a value equal to

the initial value plus the number of characters examined in the data item referenced by identifier-1.

(16) When the execution of an UNSTRING statement with a TALLYING phrase is completed, the content of

the data item referenced by identifier-8 contains a value equal to its value at the beginning of the execution of the

statement plus a value equal to the number of identifier-4 receiving data items accessed during execution of the

statement.

(17) Either of the following situations causes an overflow condition:

a. An UNSTRING is initiated, and the value in the data item referenced by identifier-7 is less than 1 or

greater than the size of the data item referenced by identifier-1.

b. If, during execution of an UNSTRING statement, all receiving areas have been acted upon, and the data

item referenced by identifier-1 contains characters that have not been examined.

(18) When an overflow condition exists, the UNSTRING operation is terminated, the NOT ON OVERFLOW

phrase, if specified, is ignored and control is transferred to the end of the UNSTRING statement or, if the ON

OVERFLOW phrase is specified, to imperative-statement-1. If control is transferred to imperative-statement-1,

execution continues according to the rules for each statement specified in imperative-statement-1. If a procedure

branching or conditional statement which causes explicit transfer of control is executed, control is transferred in

accordance with the rules for that statement; otherwise, upon completion of the execution of imperative-statement-1,

control is transferred to the end of the UNSTRING statement.

(19) If, at the time of execution of an UNSTRING statement, the conditions described in General Rule 17 are

not encountered, after completion of the transfer of data according to the other general rules, the ON OVERFLOW

phrase, if specified, is ignored and control is transferred to the end of the UNSTRING statement or, if the NOT ON

OVERFLOW phrase is specified to imperative-statement-2. If control is transferred to imperative-statement-2,

execution continues according to the rules for each statement specified in imperative-statement-2. If a procedure

branching or conditional statement which causes explicit transfer of control is executed, control is transferred in

accordance with the rules for that statement; otherwise, upon completion of the execution of imperative-statement-2,

control is transferred to the end of the UNSTRING statement.

(20) If identifier-1, identifier-2, or identifier-3, occupies the same storage area as identifier-4, identifier-5,

identifier-6, identifier-7, or identifier-8, or if identifier-4, identifier-5, or identifier-6, occupies the same storage area

as identifier-7 or identifier-8, or if identifier-7 and identifier-8 occupy the same storage area, the result of the

execution of this statement is undefined, even if they are defined by the same data description entry.

Interactive COBOL Language Reference & Developer’s Guide - Part One

478

(21) The END-UNSTRING phrase delimits the scope of the UNSTRING statement.

PROCEDURE DIVISION (USE)

479

E.60. USE

E.60.1 Function

The USE statement specifies procedures for input-output error handling that are in addition to the standard

procedures provided by the input-output control system.

E.60.2 General Format

USE AFTER STANDARD PROCEDURE ON

E.60.3 Syntax Rules

(1) A USE statement, when present, must immediately follow a section header in the declaratives portion of the

Procedure Division and must appear in a sentence by itself. The remainder of the section must consist of zero, one,

or more procedural paragraphs that define the procedures to be used.

(2) The USE statement is never executed; it merely defines the conditions calling for the execution of the USE

procedures.

(3) Appearance of file-name in a USE statement must not cause the simultaneous request for execution of more

than one USE procedure.

(4) The words ERROR and EXCEPTION are synonymous and may be used interchangeably.

(5) The files implicitly or explicitly referenced in the USE statement need not all have the same organization or

access.

(6) The INPUT, OUTPUT, I-O, or EXTEND phrases may each be specified only once in the declaratives

portion of a given Procedure Division.

E.60.4 General Rules

(1) A declarative is invoked when any of the conditions described in the USE statement which prefaces the

declarative occurs while the program is being executed.

(2) Within a declarative procedure, there must be no reference to any nondeclarative procedures.

(3) Procedure-names associated with a USE statement may be referenced in a different declarative section or in

a nondeclarative procedure only with a PERFORM statement. (A GO TO statement may be used if the -G g

compiler switch is used, but this is not recommended.)

(4) When file-name is specified explicitly, no other USE statement applies to file-name.

(5) The procedures associated with a USE statement are executed by the input-output control system after

completion of the standard input-output exception routine upon the unsuccessful execution of an input-output

operation unless an AT END or INVALID KEY phrase takes precedence. The rules concerning when the

procedures are executed are as follows:

a. If file-name is specified, the associated procedure is executed when the condition described in the USE

statement occurs.

Interactive COBOL Language Reference & Developer’s Guide - Part One

480

b. If INPUT is specified, the associated procedure is executed when the condition described in the USE

statement occurs for any file open in the input mode or in the process of being opened in the input mode, except

those files referenced by file-name in another USE statement specifying the same condition.

c. If OUTPUT is specified, the associated procedure is executed when the condition described in the USE

statement occurs for any file open in the output mode or in the process of being opened in the output mode, except

those files referenced by file-name in another USE statement specifying the same condition.

d. If I-O is specified, the associated procedure is executed when the condition described in the USE

statement occurs for any file open in the I-O mode or in the process of being opened in the I-O mode, except those

files referenced by file-name in another USE statement specifying the same condition.

e. If EXTEND is specified, the associated procedure is executed when the condition described in the USE

statement occurs for any file open in the extend mode or in the process of being opened in the extend mode, except

those files referenced by file-name in another USE statement specifying the same condition.

(6) After execution of the USE procedure, control is transferred to the invoking routine in the input-output

control system and the input-output control system returns control to the next executable statement following the

input-output statement whose execution caused the exception.

(7) Within a USE procedure, there must not be the execution of any statement that would cause the execution of

a USE procedure that had previously been invoked and had not yet returned control to the invoking routine.

E.60.5 Example

The following example illustrates how USE statements define the conditions under which a declarative

procedure is to be executed. The first USE statement says to execute that declarative procedure for any I-O error

encountered with the file PATIENT-FILE. The other four are for any file except PATIENT-FILE, because

PATIENT-FILE is named in another USE statement.

PROCEDURE DIVISION (USE)

481

DECLARATIVES.
PATIENT-ERROR SECTION. USE AFTER ERROR PROCEDURE ON PATIENT-FILE.
**
*** Any I-O error on PATIENT-FILE.
**
PROCESS-PATIENT-FILE-ERROR.

IF PATIENT-FILE-STATUS = OPEN-ERROR
MOVE PATIENT-FILE-STATUS TO FILE-ERROR-STATUS,
MOVE "PATIENTFILE" TO FILE-ERROR-NAME,
MOVE "PATIENT FILE MAINTENANCE" TO PROGRAM-NAME,
DISPLAY FILE-ACCESS-ERROR-SCREEN,
STOP RUN.

INPUT-ERROR-FILE SECTION. USE AFTER ERROR PROCEDURE ON INPUT.

*** Any INPUT error for any file except PATIENT-FILE.

PROCESS-INPUT-ERROR.
 ACCEPT DECL-EXCEPT-CODE FROM EXCEPTION STATUS.
 PERFORM DISPLAY-ERROR-SCREEN.
 STOP RUN.

OUTPUT-ERROR-FILE SECTION. USE AFTER ERROR PROCEDURE ON OUTPUT.
**
*** Any OUTPUT error for any file except PATIENT-FILE.
**
PROCESS-OUTPUT-ERROR.
 MOVE 5 TO SCR-LINE.
 MOVE 10 TO SCR-COL.
 MOVE 15 TO SCR-HEIGHT.
 MOVE 60 TO SCR-WIDTH.
 MOVE "DECLARE ERROR" TO SCR-LABEL.
 CALL "SD_NEW_WINDOW" USING SCR-LINE, SCR-COL, SCR-HEIGHT,
 SCR-WIDTH, SCR-LABEL.
 DISPLAY ERROR-SCREEN.
 ACCEPT CLRSCR.
 CALL "SD_REMOVE_WINDOW".

INPUT-OUTPUT-FILE SECTION. USE AFTER ERROR PROCEDURE ON I-O.
**
*** Any OUTPUT error for any file except PATIENT-FILE.
**
PROCESS-IO-ERROR.
 ACCEPT DECL-EXCEPT-CODE FROM EXCEPTION STATUS.
 PERFORM DISPLAY-ERROR-SCREEN.
 STOP RUN.

EXTEND-FILE SECTION. USE AFTER ERROR PROCEDURE ON EXTEND.
**
*** Any OUTPUT error for any file except PATIENT-FILE.
**
 ACCEPT DECL-EXCEPT-CODE FROM EXCEPTION STATUS.
 DISPLAY "Please inform the database manager"
 DISPLAY " of the following error:".
 DISPLAY "Status = " DECL-EXCEPT-CODE.
 STOP RUN.

END DECLARATIVES.

EXAMPLE 28. Using Declaratives

Interactive COBOL Language Reference & Developer’s Guide - Part One

482

PROCEDURE DIVISION (WRITE)

483

E.61. WRITE

E.61.1 Function

The WRITE statement releases a logical record for an output or input-output (in random or dynamic access mode)

file. It can also be used for vertical positioning of lines within a logical page (on a sequential file). IMMEDIATE is

an extension to ANSI COBOL.

E.61.2 General Format (ANSI 74 and ANSI 85)

For sequential files:

W RITE record-name-1 [IMMEDIATE] [FROM identifier-1]

[AT imperative-statement-1]

[NOT AT imperative-statement-2]

[END-W RITE]

For relative and indexed files:

W RITE record-name-1 [IMMEDIATE] [FROM identifier-1]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-W RITE]

E.61.3 General Format (VXCOBOL)

For sequential files:

W RITE record-name-1 [IMMEDIATE] [FROM]

[AT imperative-statement-1]

[NOT AT imperative-statement-2]

[END-W RITE]

For relative files:

W RITE record-name-1 [IMMEDIATE] [FROM]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

Interactive COBOL Language Reference & Developer’s Guide - Part One

484

[END-W RITE]

For indexed files:

W RITE record-name-1 [IMMEDIATE] [FROM] [KEY IS identifier-3]

 [INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-W RITE]

For INFOS files:

 W RITE [INVERTED] record-name-1 [IMMEDIATE]

[SUPPRESS [PARTIAL RECORD] [DATA RECORD]]

 [FROM]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-W RITE]

E.61.4 Syntax Rules

(1) Record-name-1 and identifier-1 must not refer to the same storage area.

(2) Record-name-1 is the name of a logical record in the File Section of the Data Division and may be qualified.

(3) Identifier-2 must reference an integer data item.

(4) Integer-1 must be positive or zero.

(5) The ADVANCING phrase may only be specified for files whose file control entry specifies ASSIGN TO

PRINTER, PRINTER-1, or DISPLAY.

(6) The phrases ADVANCING PAGE and END-OF-PAGE must not both be specified in a single WRITE

statement.

(7) If the END-OF-PAGE or the NOT END-OF-PAGE phrase is specified, the LINAGE clause must be

specified in the file description entry for the associated file.

(8) The words END-OF-PAGE and EOP are equivalent.

For VXCOBOL

(9) If mnemonic-name is specified, it must reference a line printer control channel as specified in the

SPECIAL-NAMES paragraph of the Environment Division.

(10) For an indexed file, identifier-3 must be the RECORD KEY specified in the SELECT for file-name. For

an INFOS file, identifier-3 must be a data-name specified as a RECORD KEY in the SELECT for file-name.

PROCEDURE DIVISION (WRITE)

485

E.61.5 General Rules

(1) The file referenced by the file-name associated with record-name-1 must be open in the output, I-O (for

random or dynamic access), or extend mode at the time of the execution of this statement.

(2) The logical record released by the successful execution of the WRITE statement is no longer available in the

record area unless the file-name associated with record-name-1 is specified in a SAME RECORD AREA clause.

The logical record is also available to the program as a record of other files referenced in the SAME RECORD

AREA clause as the associated output file, as well as the file associated with record-name-1.

(3) The result of the execution of a WRITE statement with the FROM phrase is equivalent to the execution of

the following statements in the order specified:

a. The statement:

MOVE identifier-1 TO record-name-1

according to the rules specified for the MOVE statement.

b. The same WRITE statement without the FROM phrase.

(4) After the execution of the WRITE statement is complete, the information in the area referenced by

identifier-1 is available, even though the information in the area referenced by record-name-1 is not available except

as specified by the SAME RECORD AREA clause.

(5) The file position indicator is not affected by the execution of a WRITE statement, except for INFOS files

with the FIX POSITION phrase.

(6) The execution of the WRITE statement causes the value of the I-O status of the file-name associated with

record-name-1 to be updated.

(7) The execution of the WRITE statement releases a logical record to the operating system.

(8) The number of character positions in the record referenced by record-name-1 must not be larger than the

largest or smaller than the smallest number of character positions allowed by the RECORD IS VARYING clause

associated with the file-name associated with record-name-1. In either of these cases the execution of the WRITE

statement is unsuccessful, the WRITE operation does not take place, the content of the record area is unaffected and

the I-O status of the file associated with record-name-1 is set to a value indicating the cause of the condition.

(9) If, during the execution of the WRITE statement with the NOT END-OF-PAGE or NOT INVALID KEY

phrase, and the end-of-page or invalid key condition does not occur, control is transferred to imperative-statement-2

at the appropriate time as follows:

a. If the execution of the WRITE statement is successful, after the record is written and after updating the

I-O status of the file-name associate with record-name-1.

b. If the execution of the WRITE statement is unsuccessful, after updating the I-O status of the file-name

associated with record-name-1, and after executing the procedure, if any, specified by a USE AFTER STANDARD

EXCEPTION PROCEDURE statement applicable to the file-name associated with file-name-1.

(10) The IMMEDIATE option causes the WRITE to immediately flush the new information to disk. Normally

this information could be held in internal buffers before being flushed to disk. This option increases file security at

the expense of performance. The IMMEDIATE option is ignored for INFOS files.

(11) The END-WRITE phrase delimits the scope of the WRITE statement.

Interactive COBOL Language Reference & Developer’s Guide - Part One

486

For sequential files:

(12) The successor relationship of a sequential file is established by the order of execution of WRITE

statements when the file is created. The relationship does not change except when records are added to the end of a

file.

(13) When a sequential file is open in the extend mode, the execution of the WRITE statement will add records

to the end of the file as though the file were open in the output mode. If there are records in the file, the first record

written after the execution of the OPEN statement with the EXTEND phrase is the successor of the last record in the

file.

(14) For a sequential file, when an attempt is made to write beyond the externally defined boundaries of a

sequential file, an exception condition exists and the contents of the record area are unaffected. The following

actions take place:

a. The value of the I-O status of the file-name associated with record-name-1 is set to a value indicating a

boundary violation. (See I-O Status, page 237.)

b. If a USE AFTER STANDARD EXCEPTION declarative is explicitly or implicitly specified for the

file-name associated with record-name-1, that declarative procedure will then be executed.

c. If a USE AFTER STANDARD EXCEPTION declarative is not explicitly or implicitly specified for the

file-name associated with record-name-1, the run unit will be terminated with a "Fatal I/O Error".

(15) For a sequential file, both the ADVANCING phrase and the END-OF-PAGE phrase allow control of the

vertical positioning of each line on a representation of a printed page. If the ADVANCING phrase is not used,

automatic advancing will be provided to act as if the user had specified AFTER ADVANCING 1 LINE. If the

ADVANCING phrase is used, advancing is provided as follows:

a. If integer-1 or the value of the data item referenced by identifier-2 is positive, the representation of the

printed page is advanced the number of lines equal to that value.

b. If the value of the data item referenced by identifier-2 is negative, the results are undefined.

c. If integer-1 or the value of the data item referenced by identifier-2 is zero, no repositioning of the

representation of the printed page is performed.

d. For VXCOBOL, if mnemonic-name is specified the representation of the printed page is advanced

according to the rules of the line printer control channel.

e. If the BEFORE phrase is used, the line is presented before the representation of the printed page is

advanced according to rules a, b, and c above.

f. If the AFTER phrase is used, the line is presented after the representation of the printed page is advanced

according to rules a, b, and c above.

g. If PAGE is specified and the LINAGE clause is specified in the associated file description entry, the

record is presented on the logical page before or after (depending on the phrase used) the device is repositioned to

the next logical page as specified in the LINAGE clause.

h. If PAGE is specified and the LINAGE clause is not specified in the associated file description entry, the

record is presented on the physical page before or after (depending on the phrase used) the device is repositioned to

the next physical page. The repositioning to the next physical page is accomplished in accordance with an

implementor-defined technique. If physical page has no meaning in conjunction with a specific device, advancing

will be provided by the implementor to act as if the user had specified BEFORE or AFTER (depending on the phrase

used) ADVANCING 1 LINE.

PROCEDURE DIVISION (WRITE)

487

(16) If the logical end of the representation of the printed page is reached during the execution of a WRITE

statement with the END-OF-PAGE phrase, imperative-statement-1 specified in the END-OF-PAGE phrase is

executed. The logical end is specified in the LINAGE clause associated with record-name-1.

(17) An end-of-page condition occurs when the execution of a given WRITE statement with the

END-OF-PAGE phrase causes printing or spacing within the footing area of a page body. This occurs when the

execution of such a WRITE statement causes the LINAGE-COUNTER to equal or exceed the value specified by

integer-2 or the data item referenced by data-name-2 of the LINKAGE clause if specified. In this case, the WRITE

statement is executed and then imperative-statement-1 in the END-OF-PAGE phrase is executed.

An automatic page overflow condition occurs when the execution of a given WRITE statement (with or

without an END-OF-PAGE phrase) cannot be fully accommodated within the current page body.

This occurs when a WRITE statement, if executed, would cause the LINAGE-COUNTER to exceed the

value specified by integer-1 or the data item referenced by data-name-1 of the LINAGE clause. In this case, the

record is presented on the logical page before or after (depending on the phrase used) the device is repositioned to

the first line that can be written on the next logical page as specified in the LINAGE clause. Imperative-statement-1

in the END-OF-PAGE phrase, if specified, is executed after the record is written and the device has been

repositioned.

A page overflow condition occurs when the execution of a given WRITE statement would cause

LINAGE-COUNTER to simultaneously exceed the value of both integer-2 or the data item referenced by

data-name-2 of the LINAGE clause and integer-1 or the data item referenced by data-name-1 of the LINAGE

clause.

(18) The runtime treats all WRITE statements for ASSIGN TO PRINTER or ASSIGN TO DISPLAY files

which are opened on the current console as if they are going to a DG terminal. See the DISPLAY statement for more

information.

(19) WRITE's to data-sensitive files generate the following kind of advancing information assuming "data"

represents the record to be written:

ANSI 74 ANSI 85

BEFORE

ADVANCING

On W indows On UNIX On W indows On UNIX

PAGE data<cr><ff> data<ff> data<cr><ff> data<ff>

0 LINES data<cr><cr> data<cr> data data

1 LINES data<cr><lf> data<lf> data<cr><lf> data<lf>

2 LINES data<cr><lf><cr><lf> data<lf><lf> data<cr><lf><cr><lf> data<lf><lf>

AFTER

ADVANCING

On W indows On UNIX On W indows On UNIX

PAGE <cr><ff>data<cr><cr> <ff>data<cr> <cr><ff>data <ff>data

0 LINES <cr><cr>data<cr><cr> <cr>data<cr> data data

1 LINES <cr><lf>data<cr><cr> <lf>data<cr> <cr><lf>data <lf>data

2 LINES <cr><lf><cr><lf>data<cr><cr> <lf><lf>data<cr> <cr><lf><cr><lf>data <lf><lf>data

NOTE: Newline <nl> and linefeed <lf> are equivalent

TABLE 31. ANSI 74 and ANSI 85 ADVANCING Definitions.

Interactive COBOL Language Reference & Developer’s Guide - Part One

488

VXCOBOL

BEFORE ADVANCING On W indows On UNIX

PAGE data<cr><ff> <cr>data<ff>

0 LINES data <cr>data

1 LINES data<cr><lf> <cr>data<lf>

2 LINES data<cr><lf><cr><lf> <cr>data<lf><lf>

AFTER ADVANCING On W indows On UNIX

PAGE <cr><ff>data <cr><ff>data

0 LINES data <cr>data

1 LINES <cr><lf>data <cr><lf>data

2 LINES <cr><lf><cr><lf>data <cr><lf><lf>data

NOTE: Newline <nl> and linefeed <lf> are equivalent

TABLE 32. VXCOBOL ADVANCING Definitions.

(20) In addition VXCOBOL supports WRITE with a CHANNEL option. The CHANNEL option causes the

following advancing information to be generated:

BEFORE AD-

VANCING

CHANNEL <cr>data<^R><channel-code>

AFTER

ADVANCING

CHANNEL <cr><^R><channel-code>data

TABLE 33. VXCOBOL CHANNEL ADVANCING Definitions.

Channels are the values 1 through 12 generating ASCII codes of "@" through "K":

Channel ASCII code Channel ASCII code Channel ASCII code

1 @ 5 D 9 H

2 A 6 E 10 I

3 B 7 F 11 J

4 C 8 G 12 K

(21) When using timeouts, ICOBOL handles them in the following order for WRITE statements:

a. If a timeout was set on the OPEN with the extended open option for timeout, then it is used; otherwise,

b. The default timeout for this particular device class is used.

NOTE: Extended open options are discussed in the Developer’s Guide section beginning on page 756.

For relative files:

(22) When a relative file is opened in the output mode, records may be placed into the file by one of the

following:

PROCEDURE DIVISION (WRITE)

489

a. If the access mode is sequential, the WRITE statement causes a record to be released to the file system.

The first record has a relative record number of 1, and subsequent records released have relative record numbers of

2, 3, 4, If the RELATIVE KEY phrase is specified for the file-name associated with record-name-1, the relative

record number of the record being released is moved into the relative key data item by the file system during

execution of the WRITE statement according to the rules for the MOVE statement. (See The MOVE statement,

page 393.)

b. If the access mode is random or dynamic prior to the execution of the WRITE statement the value of the

relative key data item must be initialized by the program with the relative record number to be associated with the

record in the record area. That record is then released to the file system by execution of the WRITE statement.

(23) When a relative file is opened in the I-O mode and the access mode is random or dynamic records are to be

inserted in the associated file. The value of the relative key data item must be initialized by the program with the

relative record number to be associated with the record in the record area. Execution of the WRITE statement then

causes the content of the record area to be released to the file system.

(24) When a relative file is open in extend mode, records are inserted into the file. The first record released to

the file system has a relative record number one greater than the highest relative record number existing on the file.

Subsequent records released to the file system have consecutively higher relative record numbers. If the RELATIVE

KEY phrase is specified for the file-name associated with record-name-1, the relative record number of the record

being released is moved into the relative key data item during the execution of the WRITE statement according to

the rules for the MOVE statement.

(25) The invalid key condition exists under the following circumstances:

a. When the access mode is random or dynamic and the relative key data item specifies a record which

already exists in the file, or

b. When an attempt is made to write beyond the externally defined boundaries of the file, or

c. When the number of significant digits in the relative record number is larger than the size of the relative

key data item described for the file.

(26) When the invalid key condition is recognized, the execution of the WRITE statement is unsuccessful, the

content of the record area is unaffected, and the I-O status of the file-name associated with record-name-1 is set to a

value indicating the cause of the condition. Execution of the program proceeds according to the rules for an invalid

key condition.

For indexed files:

(27) Execution of a WRITE statement causes the content of the record area to be released. The file system

utilizes the contents of the record keys in such a way that subsequent access of the record may be made based upon

any of these specified record keys.

(28) The value of the primary record key must be unique within the records in the file.

(29) The data item or for a composite key, the data-items specified as the primary record key must be set by the

program to the desired value prior to the execution of the WRITE statement.

(30) If the file is open in the sequential access mode, records must be released to the file system in ascending

order of primary record key values according to the collating sequence of the file. When the file is open in the

extend mode, the first record released to the file system must have a primary record key whose value is greater than

the highest primary record key value existing in the file.

(31) If the file is open in the random or dynamic access mode, records may be released to the file system in any

program-specified order.

Interactive COBOL Language Reference & Developer’s Guide - Part One

490

Notes:

1. The ICOBOL file system always allows duplicates when using ICISAM revision 5 and 6 files.

(32) When the ALTERNATE RECORD KEY clause is specified in the file control entry for an indexed file, the

value of the alternate record key may be non-unique only if the DUPLICATES phrase is specified for that data item.

In this case the file system provides storage of records such that when records are accessed sequentially, the order of

retrieval of those records is the order in which they are released to the file system.

(33) The invalid key condition exists under the following circumstances:

a. When the file is open in the sequential access mode, and the file also is open in the output or extend

mode, and the value of the primary record key is not greater than the value of the primary record key of the previous

record, or

b. When the file is open in the output or I-O mode, and the value of the primary record key equals the value

of the primary record key of a record already existing in the file, or

c. When the file is open in the output, extend, or I-O mode, and the value of an alternate record key for

which duplicates are not allowed equals the value of the corresponding data item of a record already existing in the

file, or

d. When an attempt is made to write beyond the externally defined boundaries of the file.

(34) When the invalid key condition is recognized, the execution of the WRITE statement is unsuccessful, the

content of the record area is unaffected and the I-O status of the file-name associated with record-name-1 is set to a

value indicating the cause of the condition. Execution of the program proceeds according to the rules for an invalid

key condition.

For INFOS files:

(35) If the relative option and the KEY series phrase are omitted, the default is the first key in the SELECT

clause.

(36) The occurrence number is updated.

(37) FEEDBACK is used if you specify INVERTED. WRITE updates the FEEDBACK data item if

INVERTED is not specified.

(38) KEY LENGTH is unused.

(39) If INVERTED is not specified, a record is written in a location that is determined according to what is

specified in the relative option phrase and/or the KEY series phrase. The specification can be implicit if the

program uses the defaults or explicit if the KEY or path is fully specified. If INVERTED is specified, an inversion

of an existing record is written. Two keys will now point to the same data record. The FEEDBACK phrase must be

specified in the FD to use INVERTED.

(40) FIX POSITION causes the record pointer to move from the current position to the position specified in this

statement. RETAIN position causes the record position to remain at the position it was on before the execution of

this statement. RETAIN is the default.

(41) The relative motion option without the KEY series phrase allows access to the index file relative to that

file's current record position.

(42) Using the KEY series phrase without the relative motion option cause the key path specified to begin with

the top index in the hierarchy and follow a downward motion.

PROCEDURE DIVISION (WRITE)

491

(43) If the KEY series phrase is specified, each key, identifier-1, must be declared in the SELECT statement for

file-name. The relative motion option is processed first and the key path is used. If both are omitted, STATIC is the

default.

(44) If DUPLICATE and OCCURRENCE IS was specified in this file's SELECT clause, the occurrence

number is updated for the last key in the key series phrases or the first key in the SELECT if there is no key series

phrase. Zero indicates that no duplicate has occurred.

(45) If SUPPRESS DATA RECORD is specified, all locks on the data record are ignored and the data record

associated with the index entry is not output. If FEEDBACK was defined, a zero is returned.

(46) If SUPPRESS PARTIAL RECORD is specified, the partial data record associated with the index entry is

not output.

(47) If a FEEDBACK data item was declared for a file, it contains the location of the record that you just read,

wrote, or rewrote. This location is used to link a key to an existing record in a WRITE INVERTED statement. If

you intend to use the FEEDBACK data item for an inversion later in the program it must be saved in another

location and restored to the FEEDBACK data item when needed.

(48) The IMMEDIATE option is ignored for INFOS files.

(49) If LOCK is specified, this program is the only one who can access the locked record until an UNLOCK of

some form is done on that record. Closing the file automatically unlocks all locked records in the file.

Interactive COBOL Language Reference & Developer’s Guide - Part One

492

BUILTINS

493

VII. BUILTINS

A. Introduction

A.1. Overview

ICOBOL uses the CALL statement to access a set of builtins, all but four starting with the three-character sequence,

"IC_". When the CALL statement is executed, the ICOBOL runtime looks first for a user-defined subroutine, then a

builtin, and finally a callable COBOL program. All builtins, unless otherwise documented, return to the calling

program with the appropriate Exception Status. User-defined subroutines or COBOL programs should not have

names that begin with "IC_" as it could create a conflict with a builtin.

The following builtins are supported on Windows only:
IC_WINDOWS_SHELLEXECUTE

The following builtins are supported on Windows or on Unix with ThinClient (icrunrs) surrogates:
IC_WINDOW_TITLE
IC_WINDOWS_MSG_BOX

IC_WINDOWS_SETFONT
IC_WINDOWS_SHOW_CONSOLE

The following table lists all the ICOBOL builtins. Following the table is a description for each supported builtin. If

the builtin provides user interaction through a menu, that interface is documented in the appropriate chapter in the

Utilities Manual.

NOTE: The syntax descriptions of the various calls include type information. For numeric items, the

traditional picture and USAGE information is provided, but it is not strictly enforced. You may use

any numeric description in its place as long as it conforms to the tenant that of an integer was called for

an integer is provided. (This does NOT apply to numeric values with packets (records). These must be

coded as shown.) Also note that ICOBOL2 required that these parameters match.

?CBADDR
?CBBADDR
?CBSYS
CLI
IC_ABORT_TERM
IC_CHANGE_DIR
IC_CHANGE_PRIV
IC_CHECK_DATA
IC_COMPRESS_OFF
IC_COMPRESS_ON
IC_CREATE_DIR
IC_CURRENT_DIR
IC_DECODE_URL
IC_DELAY
IC_DETACH_PROGRAM
IC_DIR_LIST
IC_DISABLE_HOTKEY
IC_DISABLE_INTS
IC_ENABLE_HOTKEY
IC_ENABLE_INTS
IC_EXTRACT_STRING
IC_FULL_DATE
IC_GET_DISK_SPACE
IC_GET_ENV
IC_GET_FILE_IND
IC_GET_KEY
IC_HANGUP
IC_HEX_TO_NUM
IC_INFOS_STATUS_TEXT
IC_INSERT_STRING

IC_KILL_TERM
IC_LOGON
IC_LOWER
IC_MOVE_FILE_DATA
IC_MOVE_STRING
IC_MSG_TEXT
IC_NUM_TO_HEX
IC_PID_EXISTS
IC_PRINT_STAT
IC_QUEUE_STATUS
IC_REMOVE_DIR
IC_RENAME
IC_RESOLVE_FILE
IC_SEND_MSG
IC_SEND_MAIL
IC_SERIAL_NUMBER
IC_SET_ENV
IC_SET_TIMEOUT
IC_SET_USERNAME
IC_SHUTDOWN
IC_SYS_INFO
IC_TERM_CTRL
IC_TERM_STAT
IC_TRIM
IC_UPPER
IC_VERSION
IC_WINDOW_TITLE
IC_WINDOWS_MSG_BOX
IC_WINDOWS_SETFONT
IC_WINDOWS_SHELLEXECUTE
IC_WINDOWS_SHOW_CONSOLE

TABLE 34. List of BUILTINS

Interactive COBOL Language Reference & Developer’s Guide - Part One

494

B. Builtins

B.1. ?CBADDR (Added in 3.00)

The ?CBADDR function returns the address of any word-aligned COBOL data item or structure member. If the

record or structure member is not word aligned, an error value of zero is returned as the word address.

The syntax is:

CALL "?CBADDR" USING id-1, id-2

Where

id-1

is a record-level data-item whose word address you want to know. This item is not modified.

id-2

is a data item of type PIC S9(9) USAGE IS COMP to which the address of the data item is returned.

This subroutine also works for structure members if the item is on a word boundary. If you request the word address

of a byte-aligned item, id-2 is set to zero.

Level 01 and Level 77 data items always start on a word boundary, unless the -B compiler switch was specified.

BUILTIN (?CBBADDR)

495

B.2. ?CBBADDR (Added in 3.00)

The ?CBBADDR function returns the byte address of any COBOL data item.

The syntax is:

CALL "?CBBADDR" USING id-1, id-2

Where

id-1

is a data-item whose byte address you want to know. This item is not modified.

id-2

is a data item of type PIC S9(9) USAGE IS COMP to which the address of the data item is returned.

Interactive COBOL Language Reference & Developer’s Guide - Part One

496

B.3. ?CBSYS (Added in 3.00)

The ?CBSYS function allows certain AOS/VS system calls to be executed. The COBOL file COBSYSID.IN

included in the release shows the system calls that can be used.

The syntax is:

CALL "?CBSYS" USING id-1, id-2, id-3, id-4, id-5

Where

id-1

is a data item of type PIC S9(4) USAGE IS COMP that holds one of the symbolic names from

COBSYSID.IN for the system call that you wish to invoke. This item is not modified.

id-2

is a data item of type PIC S9(9) USAGE IS COMP that holds both the value you pass to the system call in

AC0 and the value returned.

id-3

is a data item of type PIC S9(9) USAGE IS COMP that holds both the value you pass to the system call in

AC1 and the value returned.

id-4

is a data item of type PIC S9(9) USAGE IS COMP that holds both the value you pass to the system call in

AC2 and the value returned.

id-5

is a data item of type PIC S9(9) USAGE IS COMP to which the system returns the number of any system

error that occurs during the system call. If none occurs, id5 contains zero.

Refer to the AOS/VS, AOS/VSII, and AOS/RT32 System Call Dictionary from Data General for a full discussion of

system calls.

BUILTIN (CLI)

497

B.4. CLI (Added in 3.00)

The CLI function allows the COBOL program to call the Bourne shell (on UNIX) or the command processor defined

by the COMSPEC.environment variable (on Windows).

The syntax is:

CALL "CLI" [USING id-1 [,id-2]]

Where

id-1

is defined as PIC X(n) and has the value of a particular Bourne shell (UNIX) or command processor

(Windows) command that you wish to execute and return. For VXCOBOL, n = 250. For ANSI 74 and

ANSI 85, 0 < n < 256.

id-2

is defined as PIC X(n) and receives output from the command. The contents of id-2 are either spaces or

"*Error*" depending whether the shell returns a zero or non-zero exit code. For VXCOBOL, n = 250. For

ANSI 74 and ANSI 85, 6 < n < 256.

If no arguments are specified the shell is called in interactive mode. Only when the shell is exited (entering an exit

command or Ctrl-D (UNIX)) will you return to the COBOL program.

On UNIX, if id-1 is specified, it may contain a shell script, or one or more shell commands separated by semicolons.

On Windows, if id-1 is specified it may contain a .BAT file name or a command.

If the shell cannot be started the Exception Status is set and the ON EXCEPTION clause, if specified, is executed. If

the shell exits with an error, the exception status is set, but the ON EXCEPTION clause is not taken, even if present.

Interactive COBOL Language Reference & Developer’s Guide - Part One

498

B.5. IC_ABORT_TERM

The IC_ABORT_TERM builtin allows active terminals to be aborted either to facilitate a system shutdown or for

other reasons.

The IC_ABORT_TERM builtin is enabled with the Abort terminal privilege in the Program Environment configura-

tion of the configuration file (.cfi). If not enabled, the call will fail with an Exception Status 221 "This operation is

not permitted.".

On UNIX, the runtime requests that ICEXEC issue a UNIX SIGUSR1 to the process corresponding to the console

number selected.

On Windows, the runtime passes the request to ICEXEC.

Two modes are available.

Mode 1 (Interactive Mode)

For mode 1, the syntax is:

CALL "IC_ABORT_TERM"

Upon invocation, a terminal status window of all logged-on terminals will be displayed. You are then prompted as to

which terminal you wish to abort. Once that terminal is aborted you will see the confirmation in the status window.

Aborting a terminal will not remove it from the terminal status window but will mark the terminal as `Stopped' in the

terminal status window.

For more on IC_ABORT_TERM in mode 1 see the Abort Terminal utility in the Utilities Manual.

Mode 2 (Program Mode)

For mode 2, the syntax is:

CALL "IC_ABORT_TERM" USING term-number

Where

term-number

is a PIC 9(4) COMP that holds the terminal number to abort.

If an invalid terminal number or a terminal that is not currently active is given, an Exception Status 228 "The

terminal is not logged on" is returned. If the terminal is not enabled, Exception Status 229 "The terminal is not

configured into the system" is returned.

BUILTIN (IC_CHANGE_DIR)

499

Changing the working directory does not change any paths which have been resolved at initialization time. In

particular, ICPCQDIR, ICCODEPATH, and ICDATAPATH are not resolved again.

If this builtin is used, then the directory specifiers "." and " .." as well as an empty path entry (::), should not be

included in these paths. Full pathnames should be used for all entries.

B.6. IC_CHANGE_DIR

The IC_CHANGE_DIR builtin allows the program to change the working directory.

The syntax is:

CALL "IC_CHANGE_DIR" USING name

Where

name

is a PIC X(n) and holds the new working directory name.

Any error will result in a non-zero exception status and the ON EXCEPTION clause, if present, to be executed.

Interactive COBOL Language Reference & Developer’s Guide - Part One

500

B.7. IC_CHANGE_PRIV

The IC_CHANGE_PRIV builtin allows a program to change the privileges associated with its own console or any

other specified console. The changed privileges are only in effect while the runtime system process assigned to that

console is active. The privileges revert to those configured for the line when the runtime system is started again.

The syntax is:

CALL "IC_CHANGE_PRIV" USING operation, privileges, [term-id]

Where

operation

is a PIC X(1) data item containing a code for the operation to be performed. The values are as follows:

Value Operation

S Set the privilege(s)

C Clear the privilege(s)

privilege

is a PIC X(n) string (1 <= n <= 16) which contains the characters indicating which privileges are to be set or

cleared. These characters are as follows:

Value Privilege

A Abort terminal privilege

C Printer control management privilege

D Program debugging privilege

I System Information privilege

M Message sending privilege

O Detach/Host program privilege

P Printer control privilege

S System shutdown privilege

T Terminal status privilege

W Watch other terminals privilege

X eXclude terminal from being watched

These characters correspond to those returned by ACCEPT id FROM ENVIRONMENT. More than one of

these characters may be specified in the string. The B=Console interrupt privilege, cannot be changed with

this call.

term-id

Is a PIC 9(4) COMP item containing the console number whose privileges are to be changed. This terminal

must be logged on. If terminal number is omitted, then the program's own console number is used.

The privileges indicated in the privilege string are either added to or removed from those available to the specified

console.

If the operation code or privilege string contains any character other than those specified above, an Exception Status

13 "Invalid Data", is returned. (The codes are case insensitive, and the privileges string may include SPACES).

Exception Status 228 "The terminal is not logged on", is returned when the term-id variable does not represent a

currently active console.

Exception Status 221 "This operation is not permitted", is returned when:

BUILTIN (IC_CHANGE_PRIV)

501

(1) the watch privilege is to be set but the watch option is not present on the runtime license,

(2) Printer control privilege or Printer control management privilege is to be set and printer control is not

enabled, or

(3) the Console Interrupt Privilege is given as an argument.

Interactive COBOL Language Reference & Developer’s Guide - Part One

502

CRC-CCITT 1021h or 4129 (base 10)
CRC-16 8005h or 32773

reverse CRC-CCITT 8408h or 33800
reverse CRC-16 A001h or 40961

 B.8. IC_CHECK_DATA

The IC_CHECK_DATA builtin allows data to be verified via CRC, LRC (XOR), or checksum.

The syntax is:

CALL "IC_CHECK_DATA" USING option, polynomial, length, buffer, result

Where

option

specifies a 1-byte binary, PIC 99 COMP, that holds the calculation option. Valid options are:

Value Calculation Option

0 Normal CRC using the supplied polynomial

1 Reverse CRC using the supplied polynomial

2 LRC (XOR) 8-bit calculation

3 Checksum calculation

Note: Adding 64 to one of the above calculation options
says to use the passed-in result value as the base to
start the calculation, otherwise zero is used.

polynomial

is a 2-byte binary, PIC 9(4) COMP, that holds the binary value for the CRC generator polynomial.

length

is a 2-byte binary, PIC 9(4) COMP, which holds the length of data in the buffer on which to perform the

calculation. This cannot be larger than buffer.

buffer

is a PIC X(n) that holds the data on which the check is to be calculated.

result

is a 2-byte binary, PIC 9(4) COMP, that holds the calculated value as a binary number.

Some common crc polynomials are:

The CRC-CCITT polynomial is used for XMODEM-CRC protocol.

For example, calculation option 64 would be used to calculate a CRC on a block (or file) that is larger than the buffer

by making repeated calls.

BUILTIN (IC_COMPRESS_OFF)

503

B.9. IC_COMPRESS_OFF (Added in 3.30)

The IC_COMPRESS_OFF builtin causes screen compression to be disabled if the current screen allows compression

and is currently in compressed mode.

The syntax is:

CALL "IC_COMPRESS_OFF"

Errors include "Invalid operation" if compressed mode support is not enabled and "Parameter mismatch" if any

parameters are passed.

When compressed mode is switched from one mode to the other, the screen is completely erased. All information

must be re-displayed by the program. The screen buffer is erased also.

Interactive COBOL Language Reference & Developer’s Guide - Part One

504

B.10. IC_COMPRESS_ON (Added in 3.30)

The IC_COMPRESS_ON builtin causes screen compression to be enabled if the current screen allows compression

and is currently not in compressed mode.

The syntax is:

CALL "IC_COMPRESS_ON"

Errors include "Invalid operation" if compressed mode support is not enabled and "Parameter mismatch" if any

parameters are passed.

When compressed mode is switched from one mode to the other, the screen is completely erased. All information

must be re-displayed by the program. The screen buffer is erased also.

BUILTIN (IC_CREATE_DIR)

505

B.11. IC_CREATE_DIR

The IC_CREATE_DIR builtin creates a directory.

The syntax is:

CALL "IC_CREATE_DIR" USING name

Where

name

is a PIC X(n) and holds the directory name to be created.

If the directory already exists, a File Exists (Exception Status 32) will be returned.

Interactive COBOL Language Reference & Developer’s Guide - Part One

506

B.12. IC_CURRENT_DIR

The IC_CURRENT_DIR builtin allows the program to get the current working directory.

The syntax is:

CALL "IC_CURRENT_DIR" USING name

Where

name

is a PIC X(n) and holds the current working directory name.

Any error will result in a non-zero exception status and the ON EXCEPTION clause, if present, to be executed.

BUILTIN (IC_DECODE_URL)

507

B.13. IC_DECODE_URL

The IC_DECODE_URL builtin decodes a URL-encoded string provided in one data item, placing the result in

another data item. IC_DECODE_URL is the opposite of IC_ENCODE_URL.

The syntax is:

CALL "IC_DECODE_URL" USING source-string, destination-string

Where

source-string

is a PIC X(n) data item that is to be decoded..

destination-string

is a PIC X(n) data item into which the decoded characters are to be moved.

Any error will result in a non-zero exception status and the ON EXCEPTION clause, if present, to be executed.

Any %hex-format characters (unsafe or reserved characters) that are in the URL source-string are converted from

their %hex-format and placed into the destination-string as standard ASCII. Both parameters should be PIC X(n).

Processing of the source-string stops at the length of the string or on a LOW-VALUE. Generally the destina-

tion-string should be initialized to LOW-VALUES.

Reserved characters are:

Character name URL code

; %2B

/ %2F

? %3F

: %3A

@ %40

= %3D

& %26 (or &)

Unsafe characters:

Character name URL code

 (space) %20

< %3C

> %3E

" %22

%23

% %25

[%5B

] %5D

{ %7B

} %7D

| %7C

\ %5C

^ %5E

~ %7E

` %60

Interactive COBOL Language Reference & Developer’s Guide - Part One

508

B.14. IC_DELAY

Suspends program execution for the given number of tenths of seconds. If no argument is specified, 30 (3 seconds)

is used.

The syntax is:

CALL "IC_DELAY" [USING delay-time]

Where

delay-time

is a PIC 9(4) COMP between 0 and 65535. A 0 implies only that a resched be done.

BUILTIN (IC_DETATCH_PROGRAM)

509

NOTES:

If a detached program is started with no optional output file, then all output from the program will go to the null

device (discarded).

All detached programs will generate an end-of-file (EOF) error on any ACCEPT or READ from the console, as the

input device will always be set to the null device.

A detached program can only execute non-screen DISPLAY statements. A screen DISPLAY will generate an error

and the program will terminate.

B.15. IC_DETACH_PROGRAM

The IC_DETACH_PROGRAM builtin allows a COBOL program to be started on another logical console.

IC_DETACH_PROGRAM is enabled with the Detach/Host programs privilege in the Program Environment of the

configuration file (.cfi). If not enabled, the call will fail with an Exception Status 221 "This operation is not

permitted.".

The syntax is:

CALL "IC_DETACH_PROGRAM" USING program [, console [, file-name]]

Where

program

is a PIC X(n) string holding a valid COBOL program including switches to be executed.

console

is a PIC 9(4) COMP and specifies the logical console on which to start the new program. 65535 says to use

the next available console and return that value into console. Otherwise that logical console is used to start

the program. If console is not given, then the next available console is used.

file-name

is a PIC X(n) and specifies an output filename to which to send any output from this program. If not

specified, all output is sent to the null device (discarded). File-name can use ICLINK.

An available detachable console is defined to be a logical console that is:

1) enabled,

2) whose device is set to NUL (on Windows) or null (on UNIX), and

3) is currently not running a detached program.

Possible errors for IC_DETACH_PROGRAM include:

Error
number

Meaning

1 Invalid operation

36 Filename is not valid (for an invalid program name)

209 Parameter mismatch (for no program name specified or
if console is invalid, i.e., greater than 65535 or
not a number)

212 No more programs are available (if no available
consoles can be found to detach this program to)

219 Invalid task number (if the console specified by
console is not avilable or is in use)

221 This operation is not permitted (if the calling
program does not have the Detach/Host programs
privilege).

Interactive COBOL Language Reference & Developer’s Guide - Part One

510

NOTE: A standard CALL PROGRAM error like Program Not Found, Program Too Big, etc. is not returned

by an IC_DETACH_PROGRAM because it occurs after the "detached program" has been detached

from the current program.

The detached program will inherit the starting program's username. Its privileges are those specified for the console

on which it is running. Detached programs cannot execute any builtins or system calls that perform screen I/O.

If a detached program terminates abnormally, any error will be written to the standard output file or to the starting

program's standard error file on UNIX.

BUILTIN (IC_DIR_LIST)

511

01 FILE-ENTRY-REV1.
 02 MODIFIED-INFO.

03 DATE-MODIFIED PIC 9(6).
03 TIME-MODIFIED PIC 9(8).

 02 ACCESSED-INFO.
03 DATE-ACCESSED PIC 9(6).
03 TIME-ACCESSED PIC 9(8).

 02 FILESIZE-BYTES PIC 9(10).
 02 F-ATTRIBUTES PIC X(8).
 02 F-ATTRIBUTE-RED REDEFINES F-ATTRIBUTES.

03 READABLE-ON PIC X(1).
03 WRITABLE-ON PIC X(1).
03 PROTECTABLE-ON PIC X(1).
03 ARCHIVE-IT PIC X(1).
03 DIRECTORY-TYPE PIC X(1).
03 SYSTEM-TYPE PIC X(1).
03 EXECUTABLE-TYPE PIC X(1).
03 FILLER PIC X(1).

 02 FILENAME PIC X(64).

01 FILE-ENTRY-REV2.
 02 MODIFIED-INFO.

03 DATE-MODIFIED PIC 9(8).
03 TIME-MODIFIED PIC 9(8).

 02 ACCESSED-INFO.
03 DATE-ACCESSED PIC 9(8).
03 TIME-ACCESSED PIC 9(8).

 02 FILESIZE-BYTES PIC 9(10).
 02 F-ATTRIBUTES PIC X(8).
 02 F-ATTRIBUTE-RED REDEFINES F-ATTRIBUTES.

03 READABLE-ON PIC X(1).
03 WRITABLE-ON PIC X(1).
03 PROTECTABLE-ON PIC X(1).
03 ARCHIVE-IT PIC X(1).
03 DIRECTORY-TYPE PIC X(1).
03 SYSTEM-TYPE PIC X(1).
03 EXECUTABLE-TYPE PIC X(1).
03 FILLER PIC X(1).

02 FILENAME PIC X(64).

B.16. IC_DIR_LIST

The IC_DIR_LIST builtin allows directory information on a file or files to be retrieved.

The syntax is:

CALL "IC_DIR_LIST" USING lookup-file, entries [, output-file [, rev]]

Where

lookup-file

is a PIC X(n) and specifies the template (or filename) to look up.

entries

is a PIC 9(4) COMP into which is returned the number of entries found.

output-file

is a PIC X(n) and specifies the filename to which file-entry printer records are to be written. Output-file can

use ICLINK.

rev

is a PIC 9(2) COMP (one-byte binary), that specifies the revision of the file-entry for output-file.Valid

values are 1 and 2 (default is 1). Rev 2 entry is 4-bytes larger (dates have 4-byte years).

Each file-entry record is like one of the following:

Any error is stored into Exception Status and the ON EXCEPTION clause, if present, is executed. The

EXCEPTION STATUS gives the error.

Interactive COBOL Language Reference & Developer’s Guide - Part One

512

B.17. IC_DISABLE_HOTKEY

The IC_DISABLE_HOTKEY builtin completely or selectively disables hotkeys.

The syntax is:

CALL "IC_DISABLE_HOTKEY" [USING argument-1 [, argument-2]...]

Where

argument-n

is a PIC 9(2) COMP item specifying a number from 0 to 99. This number identifies the hotkey that is to be

disabled.

For example, if an argument contains 25, the program hotkey25.cx will not be executed as the result of pressing a

key to which it has been assigned.

Multiple hotkeys may be disabled by specifying multiple arguments. ALL hotkeys may be disabled by calling

IC_DISABLE_HOTKEY with no arguments. Hotkeys remain disabled until they are enabled by the

IC_ENABLE_HOTKEY builtin or until the icrun process terminates.

BUILTIN (IC_DISABLE_INTS)

513

B.18. IC_DISABLE_INTS

The IC_DISABLE_INTS builtin disables console interrupts for the current task. This can be done to protect critical

sections of code from unexpected or premature exit.

The syntax is:

CALL "IC_DISABLE_INTS"

Console interrupts will be disabled for the console executing the call. Console interrupts will remain disabled until

either a call is made to IC_ENABLE_INTS or the runtime system terminates.

Interactive COBOL Language Reference & Developer’s Guide - Part One

514

B.19. IC_ENABLE_HOTKEY

The IC_ENABLE_HOTKEYS builtin allows hotkeys to be completely or selectively enabled.

The syntax is:

CALL "IC_ENABLE_HOTKEY" [USING argument-1 [, argument-2]...]

Where

argument-n

is a PIC 9(2) COMP item specifying a number from 0 to 99. This number identifies the hotkey that is to be

enabled.

For example, if an argument contains 25, the program hotkey25.cx may be executed as the result of pressing a key to

which it has been assigned.

Multiple hotkeys may be enabled by specifying multiple arguments. ALL hotkeys may be enabled by calling

IC_ENABLE_HOTKEY with no arguments. Defined hotkeys are always enabled until they are disabled by the

IC_DISABLE_HOTKEY builtin.

BUILTIN (IC_ENABLE_INTS)

515

B.20. IC_ENABLE_INTS

The IC_ENABLE_INTS builtin allows console interrupts to be enabled under program control. This can be used

along with IC_DISABLE_INTS to protect critical sections of code from unexpected or premature exit. Console

interrupt privilege is required in order execute this builtin successfully.

The syntax is:

CALL "IC_ENABLE_INTS"

Console interrupts will be enabled for the console executing the call. Console interrupts will remain enabled until a

call is made to IC_DISABLE_INTS. IC_ENABLE_INTS cannot be used to enable interrupts on consoles that do

not initially support console interrupts as configured with the console interrupt privilege in the Program

Environments section of the configuration file (.cfi).

Exception 221 "This operation is not permitted", is returned when the call is made but the current console does not

have the console interrupt privilege.

Interactive COBOL Language Reference & Developer’s Guide - Part One

516

B.21. IC_ENCODE_URL

The IC_ENCODE_URL builtin encodes an ASCII source string into a valid URL-encoded string converting

reserved and unsafe characters into their %hex formats for the correct interpretation of the data by a browser.

IC_ENCODE_URL acts the opposite of IC_DECODE_URL.

The syntax is:

CALL "IC_ENCODE_URL" USING source-string, destination-string

Where

source-string

is a PIC X(n) data item that is to be encoded..

destination-string

is a PIC X(n) data item into which the encoded characters are to be moved. In almost all cases this string

will be larger than the source string.

Any error will result in a non-zero exception status and the ON EXCEPTION clause, if present, to be executed.

Any unsafe or reserved characters that are in the ASCII source-string are converted to their %hex-format and placed

into the destination-string. Both parameters should be PIC X(n). Processing of the source-string stops at the length

of the string or on a LOW-VALUE. Generally the destination-string should be initialized to LOW-VALUES.

Reserved characters are:

Character name URL code

; %2B

/ %2F

? %3F

: %3A

@ %40

= %3D

& %26 (or &)

Unsafe characters:

Character name URL code

 (space) %20

< %3C

> %3E

" %22

%23

% %25

[%5B

] %5D

{ %7B

} %7D

| %7C

\ %5C

^ %5E

~ %7E

` %60

BUILTIN (IC_EXTRACT_STRING)

517

B.22. IC_EXTRACT_STRING

The IC_EXTRACT_STRING builtin extracts a range of characters from a data-item and stores them into another

one.

The syntax is:

CALL "IC_EXTRACT_STRING" USING source, src-pos, src-len, dest

Where

source

is the data item from which the characters are to be extracted

src-pos

is a two-byte PIC S9(4) COMP-5 item whose content identifies the leftmost character position of the string

to be extracted. It must be in the range 1 to the length of source.

src-len

is a two-byte PIC S9(4) COMP-5 item whose content identifies the number of characters to be extracted. It

must be in the range 1 to length of source minus src-pos plus 1.

dest

is the data-item into which the extracted characters are to be moved

The characters extracted from the source data item are treated as an alphanumeric item and moved to dest according

to the rules for an alphanumeric to alphanumeric MOVE.

Exception Status 13 "Invalid Data" is returned if src-pos or src-len are not within the required ranges.

NOTE: For ANSI 74 and ANSI 85, use of this builtin is not recommended. A more efficient and standard

manner to accomplish this task is to use reference modification:

MOVE source (src-pos:scr-len) TO dest.

Interactive COBOL Language Reference & Developer’s Guide - Part One

518

Using the IC_FULL_DATE builtin or the CURRENT_DATE intrinsic function are recommended methods to get

date and time information as it returns a full, four-digit year, and, in addition, crossing midnight is not a problem as

it is with two separate statements like ACCEPT FROM DATE and ACCEPT FROM TIME.

B.23. IC_FULL_DATE

The IC_FULL_DATE builtin returns a full date and time string including century in a single call. It should be used

to replace ACCEPT FROM DATE and ACCEPT FROM TIME statements, especially to support the year 2000.

The syntax is:

CALL "IC_FULL_DATE" USING date-string

Where

date-string

is a PIC X(20) into which the following data will be stored.

Data Description

YYYY year e.g., 1994

ddd day of the year (1-366)

MM month (1-12)

DD day of the month (1-31)

HH hour (0-23)

MM minute (0-59)

SS second (0-59)

hh hundredths of seconds (0-99)
or 0 if not supported

w day of the week (1-7) where
1-Mon, ... 7-Sunday

The argument must be 20 characters or else an error is returned and no data is moved.

BUILTIN (IC_GET_DISK_SPACE)

519

By using the disk-units parameter in combination with free-space and total-space, disks larger than 4GB can be

described.

B.24. IC_GET_DISK_SPACE

The IC_GET_DISK_SPACE builtin allows total and free disk space to be determined.

The syntax is:

CALL "IC_GET_DISK_SPACE" USING location, free-space [, total-space
[, disk-units]]

Where

location

is a PIC X(n) that holds the drive-name (Windows) or filesystem name (UNIX) upon which to get the

needed data. Space implies the current drive or filesystem be used.

free-space

is a PIC 9(9) COMP receiving the free space in bytes.

total-space

is a PIC 9(9) COMP receiving the total space in bytes. This argument is optional.

disk-units

is a PIC 9(9) COMP receiving the number of bytes per unit that the free-space and total-space were

returned in. If not specified, 1 is used.

Interactive COBOL Language Reference & Developer’s Guide - Part One

520

B.25. IC_GET_ENV

The IC_GET_ENV builtin allows an environment variable to be read.

The syntax is:

CALL "IC_GET_ENV" USING name-argument, return-argument

Where

name-argument

is a PIC X(n) that holds the name of the environment variable to be read

return-argument

is a PIC X(n) into which is returned the value of that argument according to the rules for MOVE.

If the environment variable cannot be found, an error is generated and the ON EXCEPTION clause, if present, is

executed.

BUILTIN (IC_GET_FILE_IND)

521

B.26. IC_GET_FILE_IND (Added in 3.23)

The IC_GET_FILE_IND builtin returns header information about a particular ICISAM indexed file. Thallows an

environment variable to be read. This call uses ICDATAPATH, if needed, to find the file. This call only works for

ICISAM indexed files.

The syntax is:

CALL "IC_GET_FILE_IND" USING file-name, file-info-struc

Where

 File-name

 is a PIC X(n) that holds the name of the file to lookup.

File-info-struct

is a structure with the following format:
 01 FILE-INFO-STRUCT.
 02 IND-STRUCT-REV PIC 9(4) COMP.
 02 FILLER PIC X(2).
 * 5, 6, or 7
 02 IND-VERSION PIC 9(2) COMP.
 * 0x80-Purge attribute value is set
 * 0x40-Purge attribute value (on/off)
 * 0x20-4GB big file attribute value is set
 * 0x10-4GB big file attribute value (on/off)
 02 IND-ATTRIBUTES PIC 9(2) COMP.
 02 IND-MIN-REC-SIZE PIC 9(4) COMP.
 02 IND-MAX-REC-SIZE PIC 9(4) COMP.
 02 IND-NUM-KEYS PIC 9(4) COMP.
 02 IND-KEY-TABLE.
 * 32 bytes each
 10 IND-KEY-ENTRY OCCURS 17 TIMES.
 * 0x80-duplicates (7.00), 0x40-case-insensitive (7.00)
 * 0x20-reverse ordered (7.10) 0x10-Do not invert null (7.10)
 * 0x08-Also keys
 15 IND-KEY-OPTS PIC 9(2) COMP.
 15 IND-KEY-BASE-SIZE PIC 9(2) COMP.
 15 IND-KEY-NULL-VALUE PIC 9(2) COMP.
 15 IND-KEY-COUNT PIC 9(2) COMP.
 15 IND-KEY-BASE-OFFSET PIC 9(4) COMP.
 15 FILLER PIC X(2).
 15 IND-ALSOS.
 17 IND-ALSO-OFFSET OCCURS 6 TIMES PIC 9(4) COMP.
 15 IND-OCCURS REDEFINES IND-ALSOS.
 17 IND-OCCURS-SPAN PIC 9(4) COMP.
 17 IND-OCCURS-SUFFIX-COUNT PIC 9(2) COMP.
 17 IND-OCCURS-SIZE OCCURS 3 TIMES PIC 9(2) COMP.
 17 IND-OCCURS-OFFSET OCCURS 3 TIMES PIC 9(4) COMP.
 02 IND-RECORD-COUNT PIC 9(9) COMP.
 * Below is always 0 for rev 5
 02 IND-DELRECORD-COUNT PIC 9(9) COMP.

See the Indexed API for more info on this structure. INDEXED-STRUCT-REV returns 0x6931. (Decimal 26929).

The IND-DELRECORD-COUNT is set to 0xFFFFFFFF (4,294,967,295) when it cannot be determined. It is set this

way also for files that use ICNETD.

Interactive COBOL Language Reference & Developer’s Guide - Part One

522

01 KEY-STRUC.
 05 KEY-TYPE PIC 99 COMP.
 05 KEY-CODE PIC 99 COMP.
 05 KEY-CODE-X REDEFINES KEY-CODE PIC X.

NOTES:

The key types and key codes correspond to those which are specified for the terminal

description file (.tdi) which was configured using ICCONFIG (ICEDCFW).

Characters set to Special Function (Illegal, Ignored, Refresh screen, Enter minus),

Hot Keys and Interrupt keys are not returned; instead, the defined action is carried out.

For example, when an IC_GET_KEY call is executed if a hot key is pressed, the hot-

key program is executed, and nothing is returned to the call.

No echoing of the keystroke is done to the screen except for those configured as

Special Function.

B.27. IC_GET_KEY

The IC_GET_KEY builtin allows the program to get a keystroke from the keyboard in a terminal independent

manner with a timeout. If no keystroke is received within the timeout period, an error is returned with the Exception

Status 76 "Device Timeout". On an error, the KEY-TYPE and KEY-CODE are set to zero

The syntax is:

CALL "IC_GET_KEY" USING key-struc, time-out-value

Where

key-struc

specifies a structure defined like this:

KEY-TYPE is the type of character and will contain one of the values: 1, 2, 3, 4, 5, 7, or 8, as shown in the

following table.

KEY-CODE returns the given code for the character, as specified in the current terminal definition. The

table below shows KEY-CODE values that are possible for each KEY-TYPE value.

BUILTIN (IC_GET_KEY)

523

KEY-TYPE
value

KEY-TYPE
description

Possible KEY-CODE values,
for each KEY-TYPE value

1 normal character The character's numeric value. NOTE: KEY-CODE-X can be
displayed and is the character.

2 editing function 1=left a character 2= right a character 3=backspace

4=delete a character 5= insert mode on/off 6=clear field

7=clear to end of field 8= beginning of field 9=end of field

10=right a word 11= left a word 12=destructive TAB

13=left tab stop 14= right tab stop 15=sound bell

16=back delete

3 terminate field Escape key code for terminate field key.

4 previous field Escape key code for previous field key.

5 next field Escape key code for next field key.

7 previous row Escape key code for previous row key.

8 next row Escape key code for next row key.

TABLE 35. IC_GET_KEY values returned

timeout-value

specifies a PIC 9(4) COMP containing the number of tenths of seconds to wait before terminating the

READ. The values 0 through 63000 set a timeout in tenths of seconds, a 65535 is interpreted to wait

forever, a 65534 says to default to the value specified as the global timeout (ICTIMEOUT), while a number

between 63000 and 65534 will set the value to 63000. This value represents the time allowed between

keystrokes before the system will timeout and terminate the operation. Setting a 0 essentially only reads the

input buffer.

Interactive COBOL Language Reference & Developer’s Guide - Part One

524

B.28. IC_HANGUP (Added in 3.00)

The IC_HANGUP terminates the runtime system. If the optional argument is specified the value is returned to the

runtime system’s parent process as an exit code.

The syntax is:

CALL "IC_HANGUP" [USING exit-code]

Where

exit-code

is a PIC 9(n). Exit-code may be zero, or any value between 10 and 255 inclusive. Values 1 thru 9 are

reserved for runtime use.

Exception status 13 “Invalid data” is returned if the exit-code is out of range.

BUILTIN (IC_HEX_TO_NUM)

525

B.29. IC_HEX_TO_NUM (Added in 3.00)

The IC_HEX_TO_NUM builtin converts a hexadecimal string into a decimal number.

The syntax is:

CALL "IC_HEX_TO_NUM" USING hex-string, decimal-number

Where

hex-string

specifies a PIC X(n) or A(n) where n is from 1 to 8 inclusive and contains valid hex digits.

decimal-number

specifies a numeric type and the hex-string is converted to an integer and returned into decimal-number.

If the string cannot be converted or if the result will not fit, then an exception 13 (Invalid Data) is generated, and the

ON EXCEPTION clause, if present, is executed.

Interactive COBOL Language Reference & Developer’s Guide - Part One

526

B.30. IC_INFOS_STATUS_TEXT (VXCOBOL) (Added in 3.00)

The IC_INFOS_STATUS_TEXT builtin returns the text associated with an INFOS STATUS.

The syntax is:

CALL "IC_INFOS_STATUS_TEXT" USING infos-status, message-buffer

Where

infos-status

specifies a PIC X(11) holding an INFOS STATUS as returned by ICRUN.

message-buffer

specifies a PIC X(n) into which the message text is returned.

If the data in the INFOS STATUS item does not conform to the standards for INFOS status, an error is generated

and the ON EXCEPTION clause, if present, is executed.

The message file infostat.ms holds the messages returned by IC_INFOS_STATUS_TEXT. The text file infostat.txt

can be used to change the text of the messages as needed. See ICMAKEMS in the Utilities manual for more

information on changing message text.

BUILTIN (IC_INSERT_STRING)

527

B.31. IC_INSERT_STRING

The IC_INSERT_STRING builtin allows a data item to be stored into a specified range of characters in another data

item.

The syntax is:

CALL "IC_INSERT_STRING" USING source, dest, dest-pos, dest-len

Where

source

is the data item to be stored

dest

is the data-item into which all or part of the source is to be moved

dest-pos

is a two-byte PIC S9(4) COMP-5 item whose content identifies the leftmost character position in the

destination data item into which characters will be stored. It must be in the range 1 to the length of dest.

dest-len

is a two-byte PIC S9(4) COMP-5 item whose content identifies the number of characters positions of dest

into which characters will be stored. It must be in the range 1 to length of dest minus dest-pos plus 1.

The characters identified in the dest data item are treated as an alphanumeric item and source is moved to that item

according to the rules for an alphanumeric to alphanumeric MOVE.

Exception Status 13 "Invalid Data" is returned if dest-pos or dest-len are not within the required ranges.

NOTE: For ANSI 74 and ANSI 85, use of this builtin is not recommended. A more efficient and standard

manner to accomplish this task is to use reference modification:

MOVE source TO dest (dest-pos:dest-len)

Interactive COBOL Language Reference & Developer’s Guide - Part One

528

B.32. IC_KILL_TERM

The IC_KILL_TERM builtin allows ICOBOL runtime user tasks to be terminated. This builtin is similar to the

IC_ABORT_TERM builtin except that it terminates the process rather than just aborting the executing program.

The IC_KILL_TERM builtin requires the Abort terminal privilege in the Program Environment configuration of the

configuration file (.cfi). If not enabled, the call will fail with an Exception Status 221 "This operation is not

permitted.".

The syntax is:

CALL "IC_KILL_TERM" [USING term-number]

Where

term-number

is a PIC 9(4) COMP item that holds the terminal number of the process to be terminated.

If no terminal number is specified, a terminal status window of all logged-on terminals will be displayed. You are

then prompted as to which terminal you want to terminate. Once terminated, the terminal will be removed from the

status window.

On UNIX, IC_KILL_TERM requests ICEXEC to issue a UNIX signal of SIGTERM to the PID corresponding to the

console number selected.

On Windows, the runtime passes the request to ICEXEC.

For more on IC_KILL_TERM with no terminal number, see the Kill Terminal utility in the Utilities Manual.

BUILTIN (IC_LOGON)

529

NOTE: A CALL PROGRAM "LOGON" is not the same as CALL “IC_LOGON”, since it will not mark the

terminal as being Inactive.

B.33. IC_LOGON (Added in 3.00)

The IC_LOGON builtin chains to logon. It runs the standard LOGON program and makes the terminal line Inactive

in the terminal status window. IC_LOGON does not remove the terminal from the Terminal Status window. No

ICISAM files should be open in the LOGON program since the system can and will abort users executing LOGON

when entered via IC_LOGON or after the initial sign-on.

The syntax is:

CALL "IC_LOGON"

Any error will result in a non-zero exception status and the ON EXCEPTION clause, if present, to be executed.

Interactive COBOL Language Reference & Developer’s Guide - Part One

530

B.34. IC_LOWER

The IC_LOWER builtin converts the specified string to all lower-case characters.

The syntax is:

CALL "IC_LOWER" USING string

Where

string

specifies a PIC X(n) that holds the data to be converted to lower-case.

NOTE: For ANSI 74 and ANSI 85, a more efficient way of accomplishing this task is by using the

LOWER-CASE intrinsic function:

MOVE FUNCTION LOWER-CASE (string) TO string.

BUILTIN (IC_MOVE_FILE_DATA)

531

B.35. IC_MOVE_FILE_DATA

The IC_MOVE_FILE_DATA builtin provides the ability to quickly copy files from one place to another with

various options.

The syntax is:

CALL "IC_MOVE_FILE_DATA" USING option, source, destination [, count
[, start-src-pos [, start-dst-pos]]]

Where

option

is a PIC 9(2) COMP and is composed of the following bit options:

Option-bit Meaning

1 Don't erase destination if it exists

2 Write at eof (ignore start-dst-pos)

4 The destination file must exist

8 The destination file must NOT exist

Below are the useful combinations of the above option-bits.

Option
Destination file Destination

PositionDoes NOT exist Exists

0 create erase as specified

1 create don't erase as specified

3 create don't erase at eof

4 ERROR erase as specified

5 ERROR don't erase as specified

7 ERROR don't erase at eof

8 create ERROR as specified

source

is a PIC X(n) and holds the source filename to be copied ICLINK can be used.

destination

Is a PIC X(n) and holds the destination filename. It cannot be a directory. ICLINK can be used.

count

is a PIC 9(9) COMP and holds an optional count for how many bytes to copy from source or until EOF. If

given, the number of bytes actually copied is returned.

start-src-pos

is a PIC 9(9) COMP and holds a optional byte offset in the source from which to start the copy. 0 is the

beginning of file.

start-dst-pos

is a PIC 9(9) COMP and holds an optional byte offset in the destination to which copying should start.

The source file must exist and must be available to be opened for binary input.

This call allows a file to be copied upon itself with possible unintended results.

Source and destination are processed as an External Filename as described on page 751.

Interactive COBOL Language Reference & Developer’s Guide - Part One

532

B.36. IC_MOVE_STRING

The IC_MOVE_STRING builtin allows a range of characters to be extracted from one data item and be stored into a

specified range of characters in another data item.

The syntax is:

CALL "IC_MOVE_STRING" USING source, src-pos, src-len, dest, dest-pos,
dest-len

Where

source

is the data item from which the characters are to be extracted

src-pos

is a two-byte PIC S9(4) COMP-5 item whose content identifies the leftmost character position of the string

to be extracted. It must be in the range 1 to the length of source.

src-len

is a two-byte PIC S9(4) COMP-5 item whose content identifies the number of characters to be extracted. It

must be in the range 1 to length of source minus src-pos plus 1.

dest

is the data-item into which all or part of the source is to be moved

dest-pos

is a two-byte PIC S9(4) COMP-5 item whose content identifies the leftmost character position in the

destination data item into which characters will be stored. It must be in the range 1 to the length of dest.

dest-len

is a two-byte PIC S9(4) COMP-5 item whose content identifies the number of characters positions of dest

into which characters will be stored. It must be in the range 1 to length of dest minus dest-pos plus 1.

The characters extracted from the source data item are treated as an alphanumeric item and moved to the characters

identified in the dest data item according to the rules for an alphanumeric to alphanumeric MOVE.

Exception Status 13 "Invalid Data" is returned if src-pos, src-len, dest-pos, or dest-len are not within the required

ranges.

NOTE: For ANSI 74 and ANSI 85, use of this builtin is not recommended. A more efficient and standard

method to accomplish this task is to use reference modification:

MOVE source (src-pos:src-len) TO dest (dest-pos:dest-len)

BUILTIN (IC_MSG_TEXT)

533

B.37. IC_MSG_TEXT

The IC_MSG_TEXT builtin allows system message text to be retrieved for a corresponding Exception Status.

The syntax is:

CALL "IC_MSG_TEXT" USING exc-code, return-argument

Where

exc-code

is a PIC 9(5) that holds the numeric Exception Status for the message to be retrieved.

return-argument

is a PIC X(n) (n should be at least 60) into which is returned the corresponding text.

Interactive COBOL Language Reference & Developer’s Guide - Part One

534

B.38. IC_NUM_TO_HEX (Added in 3.00)

The IC_NUM_TO_HEX builtin converts a decimal number into a hexadecimal string.

The syntax is:

CALL "IC_NUM_TO_HEX" USING decimal-number, hex-string

Where

decimal-number

specifies a numeric type containing an integer whose value is greater than or equal to 0 and < (2**32 - 1)

hex-string

specifies a PIC X(n) or A(n). An n=8 will hold any possible numeric value. Decimal-number is converted

into a hex string and placed in hex-string.

If the number cannot be converted (negative, fractional digits) or if the result will not fit, then an exception 13

(Invalid Data) is generated and the ON EXCEPTION clause, if present, is executed.

BUILTIN (IC_PID_EXISTS)

535

B.39. IC_PID_EXISTS (Added in 3.00)

IC_PID_EXISTS, checks for the existence of a specific pid.

The syntax is:

 CALL "IC_PID_EXISTS" USING pid

Where

pid

is a numeric identifier containing the process identifier (PID) whose existence is to be verified

If the PID specified does not exist, exception status 219 (Invalid Task Number) is generated and the ON

EXCEPTION clause, if present, is executed.

Interactive COBOL Language Reference & Developer’s Guide - Part One

536

01 PCQ-FILTER-NULL.
 03 PCQ-FILTER-HEADER.

05 PKT-ID PIC 9(2) COMP VALUE ZERO.
05 PKT-REV PIC 9(2) COMP VALUE ZERO.
05 FILLER PIC 9(4) COMP VALUE ZERO.

01 PCQ-FILTER-QUEUE.
 03 PCQ-FILTER-HEADER.

05 PKT-ID PIC 9(2) COMP VALUE 1.
05 PKT-REV PIC 9(2) COMP VALUE ZERO.
05 FILLER PIC 9(4) COMP VALUE ZERO.

 03 QUEUE-PKT-MIN-PCQ PIC 9(4) COMP.
 03 QUEUE-PKT-MAX-PCQ PIC 9(4) COMP.

01 PCQ-FILTER-SIZE.
 03 PCQ-FILTER-HEADER.

05 PKT-ID PIC 9(2) COMP VALUE 2.
05 PKT-REV PIC 9(2) COMP VALUE ZERO.
05 FILLER PIC 9(4) COMP VALUE ZERO.

 03 SIZE-PKT-MIN-SIZE PIC 9(8) COMP.
 03 SIZE-PKT-MAX-SIZE PIC 9(8) COMP.

B.40. IC_PRINT_STAT

The IC_PRINT_STAT builtin calls the Printer Control Utility.

The IC_PRINT_STAT builtin requires the Printer Control privilege in the Program Environment configuration of

the configuration file (.cfi). If not enabled, the call returns Exception Status 221 "This operation is not permitted".

The syntax is:

CALL "IC_PRINT_STAT" [USING packet-1 [, packet-2]...]

Where

packet-n

may be the name of any of the following packets.

No filtering:

Filter by range of PCQ numbers:

Filter by range file sizes:

BUILTIN (IC_PRINT_STAT)

537

01 PCQ-FILTER-OWNER-ID.
 03 PCQ-FILTER-HEADER.

05 PKT-ID PIC 9(2) COMP VALUE 3.
05 PKT-REV PIC 9(2) COMP VALUE ZERO.
05 FILLER PIC 9(4) COMP VALUE ZERO.

 03 OWNER-ID-PKT-MIN-ID PIC 9(4) COMP.
 03 OWNER-ID-PKT-MAX-ID PIC 9(4) COMP.

01 PCQ-FILTER-PRINT-ID.
 03 PCQ-FILTER-HEADER.

05 PKT-ID PIC 9(2) COMP VALUE 4.
05 PKT-REV PIC 9(2) COMP VALUE ZERO.
05 FILLER PIC 9(4) COMP VALUE ZERO.

 03 PRINT-ID-PKT-MIN-ID PIC 9(4) COMP.
 03 PRINT-ID-PKT-MAX-ID PIC 9(4) COMP.

* Filter by owner's user name
01 PCQ-FILTER-OWNER-NAME.
 03 PCQ-FILTER-HEADER.

05 PKT-ID PIC 9(2) COMP VALUE 5.
05 PKT-REV PIC 9(2) COMP VALUE ZERO.
05 FILLER PIC 9(4) COMP VALUE ZERO.

 03 OWNER-NAME-PKT-NAME PIC X(16).

01 PCQ-FILTER-PRINT-NAME.
03 PCQ-FILTER-HEADER.

05 PKT-ID PIC 9(2) COMP VALUE 6.
05 PKT-REV PIC 9(2) COMP VALUE ZERO.
05 FILLER PIC 9(4) COMP VALUE ZERO.

03 PRINT-NAME-PKT-NAME PIC X(16).

01 PCQ-FILTER-FILE-NAME.
 03 PCQ-FILTER-HEADER.

05 PKT-ID PIC 9(2) COMP VALUE 7.
05 PKT-REV PIC 9(2) COMP VALUE ZERO.
05 FILLER PIC 9(4) COMP VALUE ZERO.

 03 FILE-NAME-PKT-NAME PIC X(64).

*** NOTE *** FILE-NAME-PKT-NAME can use ICLINK.

Filter by range of owners' console numbers (Windows) or user-ids (UNIX):

Filter by range of printed-by users' console number (Windows) or user-ids (UNIX):

Filter by owner's user name:

Filter by printed-by user name:

Filter by simple filename:

Filter by READ access to file:

Interactive COBOL Language Reference & Developer’s Guide - Part One

538

01 PCQ-FILTER-READ-ACCESS.
03 PCQ-FILTER-HEADER.

05 PKT-ID PIC 9(2) COMP VALUE 8.
05 PKT-REV PIC 9(2) COMP VALUE ZERO.
05 FILLER PIC 9(4) COMP VALUE ZERO.

BUILTIN (IC_PRINT_STAT)

539

* Filter by status (mode); values for status field are defined below
01 PCQ-FILTER-STATUS.
 03 PCQ-FILTER-HEADER.

05 PKT-ID PIC 9(2) COMP VALUE 9.
05 PKT-REV PIC 9(2) COMP VALUE ZERO.
05 FILLER PIC 9(4) COMP VALUE ZERO.

 03 STATUS-PKT-STATUS PIC 9(4) COMP.
 03 FILLER PIC 9(4) COMP VALUE ZERO.

* Filter by directory name; values for status field are defined below
01 PCQ-FILTER-DIR-NAME.
 03 PCQ-FILTER-HEADER.

05 PKT-ID PIC 9(2) COMP VALUE 10.
05 PKT-REV PIC 9(2) COMP VALUE ZERO.
05 FILLER PIC 9(4) COMP VALUE ZERO.

 03 DIR-NAME-PKT-NAME PIC X(64).

01 FILLER.
* No status
 03 PCQ-STATUS-NULL PIC 9(2) COMP VALUE ZERO.
* Not yet printed
 03 PCQ-STATUS-NEW PIC 9(2) COMP VALUE 1.
* Already printed
 03 PCQ-STATUS-OLD PIC 9(2) COMP VALUE 2.
* Error has occurred
 03 PCQ-STATUS-ERROR PIC 9(2) COMP VALUE 3.
* Update in progress
 03 PCQ-STATUS-OPEN PIC 9(2) COMP VALUE 4.
* Queued to print
 03 PCQ-STATUS-QUEUE PIC 9(2) COMP VALUE 5.
* Holding in the print queue
 03 PCQ-STATUS-HOLD PIC 9(2) COMP VALUE 6.
* Printing
 03 PCQ-STATUS-PRINT PIC 9(2) COMP VALUE 7.
* Retrying
 03 PCQ-STATUS-RETRY PIC 9(2) COMP VALUE 8.
* Terminating
 03 PCQ-STATUS-TERM PIC 9(2) COMP VALUE 9.

Filter by status (mode): (values for status field are defined below)

Filter by directory name: (values for status field are defined below)

DIR-NAME-PKT-NAME can use ICLINK.

Values for STATUS-PKT-STATUS:

If no packets are specified, the Printer Control Utility is started and uses either no filtering or a default filter

specified with the ICPCQFILTER environment variable.

If any packets are specified, then only those files which meet the specified criterion will be displayed. If more than

one of these items is specified, then only files which meet ALL of the specified criteria will be displayed.

No more than 9 packets may be specified, and except for PCQ-FILTER-NULL, each packet may be specified at

most one time.

Interactive COBOL Language Reference & Developer’s Guide - Part One

540

NOTE: These packet definitions are shipped on the release media in the file pqfilter.ws found in the examples

directory.

Note that each packet has a common header format that varies only by the value of the packet identifier (and possibly

rev at some later date).

BUILTIN (IC_QUEUE_LIST)

541

B.41. IC_QUEUE_LIST (Added in 3.01)

The IC_QUEUE_LIST builtin is used to retrieve the status of one of the printer control queues. The

The IC_QUEUE_LIST builtin allows a COBOL program to obtain a snapshot of the current contents of the printer

control queue. The information that is provided is equivalent to that viewed with the interactive Printer Control

Utility initiated by the IC_PRINT_STAT builtin. The information returned may optionally be filtered to reduce the

number of entries returned to a particular set of interest.

The syntax is:

CALL "IC_QUEUE_LIST" USING packet [, filt-pkt-1 [, filt-pkt-2]...]

Where

 packet

 is the following structure:
 01 IC-QUEUE-LIST-PKT.
 05 IC-QUEUE-LIST-PKT-REV PIC 9(2) COMP VALUE 1.
 05 IC-QUEUE-LIST-OS-TYPE PIC 9(2) COMP.
 88 IC-QUEUE-LIST-OS-TYPE-WINDOWS VALUE 1.
 88 IC-QUEUE-LIST-OS-TYPE-UNIX VALUE 2.
 05 IC-QUEUE-LIST-COUNT PIC 9(4) COMP.
 05 IC-QUEUE-LIST-ENTRY OCCURS 1 TO 1024 TIMES
 DEPENDING ON IC-QUEUE-LIST-COUNT.
 10 IC-QUEUE-LIST-FILE-SIZE PIC 9(9) COMP.
 10 IC-QUEUE-LIST-PRINT-ERR-CODE PIC 9(9) COMP.
 10 IC-QUEUE-LIST-OWNER-USER-ID PIC 9(9) COMP.
 10 IC-QUEUE-LIST-PRINT-USER-ID PIC 9(9) COMP.
 10 IC-QUEUE-LIST-TIME-MODIFIED PIC X(24).
 10 IC-QUEUE-LIST-TIME-PRINTED PIC X(24).
 10 IC-QUEUE-LIST-OWNER-USER-NAME PIC X(16).
 10 IC-QUEUE-LIST-PRINT-USER-NAME PIC X(16).
 10 IC-QUEUE-LIST-FIRST-PAGE PIC 9(9) COMP.
 10 IC-QUEUE-LIST-LAST-PAGE PIC 9(9) COMP.
 10 IC-QUEUE-LIST-PCQ-UNIT PIC 9(4) COMP.
 10 IC-QUEUE-LIST-PRIORITY PIC 9(4) COMP.
 10 IC-QUEUE-LIST-COPIES PIC 9(4) COMP.
 10 IC-QUEUE-LIST-DISPOSITION PIC 9(2) COMP.
 10 IC-QUEUE-LIST-OPTIONS.
 15 IC-QUEUE-LIST-OPTION-NO-BANNER PIC X.
 15 IC-QUEUE-LIST-OPTION-NOTIFY PIC X.
 15 IC-QUEUE-LIST-OPTION-START-FF PIC X.
 15 IC-QUEUE-LIST-OPTION-COPIES-FF PIC X.
 15 IC-QUEUE-LIST-OPTION-END-FF PIC X.
 15 FILLER PIC X(11).
 10 IC-QUEUE-LIST-STATUS PIC 9(2) COMP.
 10 IC-QUEUE-LIST-OS-INFO PIC X(24).
 10 IC-QUEUE-LIST-WINDOWS REDEFINES IC-QUEUE-LIST-OS-INFO.
 15 IC-QUEUE-LIST-WIN-PRINT-COPY PIC 9(4) COMP.
 15 IC-QUEUE-LIST-WIN-PRINT-PCNT PIC 9(2) COMP.
 15 FILLER PIC X(21).
 10 IC-QUEUE-LIST-UNIX REDEFINES IC-QUEUE-LIST-OS-INFO.
 15 IC-QUEUE-LIST-UNIX-REQ-ID-LEN PIC 9(4) COMP.
 15 IC-QUEUE-LIST-UNIX-REQ-ID PIC X(22).
 10 IC-QUEUE-LIST-QUEUE-SPOT PIC 9(4) COMP.
 10 IC-QUEUE-LIST-FILE-NAME-LEN PIC 9(4) COMP.
 10 IC-QUEUE-LIST-SIMPLE-NAME-OFS PIC 9(4) COMP.
 10 FILLER PIC X(2).
 10 IC-QUEUE-LIST-FILE-NAME PIC X(256).

 filt-pkt-n is a printer control filter packet.

 (See the IC_PRINT_STAT builtin's documentation for a complete description.)

On a call to IC_QUEUE_LIST, the packet revision must be set to one. No other field needs to be set, and if set it

will be overwritten. The fields are described below:

IC-QUEUE-LIST-PKT-REV

Revision of this packet structure -- it must always be set to 1.

IC-QUEUE-LIST-OS-TYPE

Operating system on which call is executed (returned by call). 1 is WINDOWS and 2 is UNIX.

Interactive COBOL Language Reference & Developer’s Guide - Part One

542

IC-QUEUE-LIST-COUNT

Number of entries returned returned from call

IC-QUEUE-LIST-ENTRY

Array of queue entries. The maximum size may be lowered from 1024 to a smaller number, but MUST be a

least as large as the configured number of printer control entries.

IC-QUEUE-LIST-FILE-SIZE

Size of the file to be printed.

IC-QUEUE-LIST-PRINT-ERR-CODE

Standard ICOBOL exception code. Corresponding text can be retrieved for it using the IC_MSG_TXT

builtin function. This code is valid when IC-QUEUE-LIST-STATUS is

IC-QUEUE-LIST-STATUS-ERROR or IC-QUEUE-LIST-STATUS-RETRY.

IC-QUEUE-LIST-OWNER-USER-ID

User id number (UNIX) or console number (WINDOWS) of the file's owner. If not yet known or assigned

the field will contain NULL-USER-ID.

IC-QUEUE-LIST-PRINT-USER-ID

User id number (UNIX) or console number (WINDOWS) of the last user who printed the file. If not yet

known or assigned the field will contain NULL-USER-ID.

IC-QUEUE-LIST-TIME-MODIFIED

The time the file was last modified returned as a string of the form mmm-dd-yyyy hh:mm:ss.hh

IC-QUEUE-LIST-TIME-PRINTED

The time the file was last printed returned as a string of the form mmm-dd-yyyy hh:mm:ss.hh

IC-QUEUE-LIST-OWNER-USER-NAME

User name of the file's owner

IC-QUEUE-LIST-PRINT-USER-NAME

User name of the last user who printed the file

IC-QUEUE-LIST-FIRST-PAGE

First page to print. (May be set for modify operation.) If this value is NULL-PAGE-NUMBER all pages

will be printed.

IC-QUEUE-LIST-LAST-PAGE

Last page to print. (May be set for modify operation.) If this value is NULL-PAGE-NUMBER all from the

specified first through the end of the file will be printed. If IC-QUEUE-LIST-FIRST-PAGE is

NULL-PAGE-NUMBER, the IC-QUEUE-LIST-LAST-PAGE should be as well.

IC-QUEUE-LIST-PCQ-UNIT

PCQ unit on which the file is assigned to print. (May be set for modify operation.) It should always be less

than the maximum configured PCQ.

IC-QUEUE-LIST-PRIORITY

Print job's priority. (May be set for modify operation.) Normally this is set to NULL-PRIORITY to allow

the system to assign. Note that UNIX and Windows priorities differ (see below).

IC-QUEUE-LIST-COPIES

Number of copies to be printed. (May be set for modify operation)

IC-QUEUE-LIST-DISPOSITION

Disposition of the printer queue entry when the file has finished printing. (It may be set for modify

operation.)

IC-QUEUE-LIST-OPTION-NO-BANNER

(UNIX only) Suppress banner page when printing? Field contains 'Y' or 'N' for yes or no respectively.

(May be set for modify operation.)

IC-QUEUE-LIST-OPTION-NOTIFY

(UNIX only) Notify when printing is complete? Field contains 'Y' or 'N' for yes or no respectively. (May

be set for modify operation.)

IC-QUEUE-LIST-OPTION-START-FF

(Windows only) Start printing with a form-feed? Field contains 'Y' or 'N' for yes or no respectively. (May

be set for modify operation.)

IC-QUEUE-LIST-OPTION-COPIES-FF

(Windows only) End each copy with a form-feed? Field contains 'Y' or 'N' for yes or no respectively. (May

be set for modify operation.)

IC-QUEUE-LIST-OPTION-END-FF

(Windows only) End printing with a form-feed? Field contains 'Y' or 'N' for yes or no respectively. (May

be set for modify operation.)

BUILTIN (IC_QUEUE_LIST)

543

IC-QUEUE-LIST-STATUS

This is a code for the current status of the print job. (When any operation is performed, the status is

cross-checked against the operation for validity.) Certain information in this packet is only valid when a

print job has a particular status.

IC-QUEUE-LIST-WIN-PRINT-COPY

(Windows only) Copy number currently being printed. This number is only valid when

IC-QUEUE-LIST-STATUS is IC-QUEUE-LIST-STATUS-PRINT.

IC-QUEUE-LIST-WIN-PRINT-PCNT

(Windows only) Percentage of job already printed. This number is only valid when

IC-QUEUE-LIST-STATUS is IC-QUEUE-LIST-STATUS-PRINT.

IC-QUEUE-LIST-UNIX-REQ-ID-LEN

(UNIX only) Length of the lp request id. This number is only valid when IC-QUEUE-LIST-STATUS is

IC-QUEUE-LIST-STATUS-QUEUE, IC-QUEUE-LIST-STATUS-HOLD,

IC-QUEUE-LIST-STATUS-PRINT or IC-QUEUE-LIST-STATUS-TERM.

IC-QUEUE-LIST-UNIX-REQ-ID

(UNIX only) The lp request id. This field is only valid when IC-QUEUE-LIST-STATUS is

IC-QUEUE-LIST-STATUS-QUEUE, IC-QUEUE-LIST-STATUS-HOLD,

IC-QUEUE-LIST-STATUS-PRINT or IC-QUEUE-LIST-STATUS-TERM.

IC-QUEUE-LIST-QUEUE-SPOT

Print job's current ordinal spot in the queue. This field is only valid when IC-QUEUE-LIST-STATUS is

IC-QUEUE-LIST-STATUS-QUEUE or IC-QUEUE-LIST-STATUS-HOLD.

IC-QUEUE-LIST-FILE-NAME-LEN

Length of the pathname found in IC-QUEUE-LIST-FILE-NAME.

IC-QUEUE-LIST-SIMPLE-NAME-OFs

One-based offset to simple filename found in IC-QUEUE-LIST-FILE-NAME

IC-QUEUE-LIST-FILE-NAME

Full pathname of the file to be printed

 Other flag values used with the control are defined below:

 * Flag values for unassigned entries
01 NULL-PAGE-NUMBER PIC 9(9) COMP VALUE 4294967295.
01 NULL-USER-ID PIC 9(9) COMP VALUE 4294967295.
01 NULL-PRIORITY PIC 9(4) COMP VALUE 65535.

 * Priority values
01 UNIX-HIGH-PRIORITY PIC 9(4) COMP VALUE 0.
01 UNIX-LOW-PRIORITY PIC 9(4) COMP VALUE 39.
01 UNIX-DEFAULT-PRIORITY PIC 9(4) COMP VALUE 39.
01 WINDOWS-HIGH-PRIORITY PIC 9(4) COMP VALUE 99.
01 WINDOWS-LOW-PRIORITY PIC 9(4) COMP VALUE 1.
01 WINDOWS-DEFAULT-PRIORITY PIC 9(4) COMP VALUE 1.

 * Values for IC-QUEUE-LIST-STATUS
01 FILLER.
* No status

 03 IC-QUEUE-LIST-STATUS-NULL PIC 9(2) COMP VALUE ZERO.
 * Not yet printed
 03 IC-QUEUE-LIST-STATUS-NEW PIC 9(2) COMP VALUE 1.
 * Already printed
 03 IC-QUEUE-LIST-STATUS-OLD PIC 9(2) COMP VALUE 2.
 * Error has occurred
 03 IC-QUEUE-LIST-STATUS-ERROR PIC 9(2) COMP VALUE 3.
 * Update in progress
 03 IC-QUEUE-LIST-STATUS-OPEN PIC 9(2) COMP VALUE 4.
 * Queued to print
 03 IC-QUEUE-LIST-STATUS-QUEUE PIC 9(2) COMP VALUE 5.
 * Holding in the print queue
 03 IC-QUEUE-LIST-STATUS-HOLD PIC 9(2) COMP VALUE 6.
 * Printing
 03 IC-QUEUE-LIST-STATUS-PRINT PIC 9(2) COMP VALUE 7.
 * Retrying due to error
 03 IC-QUEUE-LIST-STATUS-RETRY PIC 9(2) COMP VALUE 8.
 * Terminating
 03 IC-QUEUE-LIST-STATUS-TERM PIC 9(2) COMP VALUE 9.

 * Values for IC-QUEUE-LIST-DISPOSITION

Interactive COBOL Language Reference & Developer’s Guide - Part One

544

 01 FILLER.
 * Keep file (don't delete or remove)
 03 IC-QUEUE-LIST-KEEP-DISPOSITION PIC 9(2) COMP VALUE ZERO.
 * Remove file from PASS after printing
 03 IC-QUEUE-LIST-REMOVE-DISPOSITION PIC 9(2) COMP VALUE 1.
 * Delete file (& remove) after printing
 03 IC-QUEUE-LIST-DELETE-DISPOSITION PIC 9(2) COMP VALUE 2.

If no filter packets are specified, then the information returned without filtering or filtered by a default filter specified

with the ICPQFILTER environment variable.

If any filter packets are specified, the only entries for those files which meet the specified criteria will be returned. If

more than one filter packet is specified, then only entries for files which meet ALL of the specified criteria will be

displayed. No more than 9 filter packets may be specified, and except for PCQ-FILTER-NULL, each packet may be

specified at most one time.

The exception status codes which may be returned include:

13 Invalid data One or more of the arguments contain invalid data

36 File name is not valid Simple filename cannot be isolated

203 Program was not found Printer control must be enabled

209 Parameter mismatch on call Number, size or type of arguments is invalid

220 No more entries in the table There are no applicable entries

221 Operation is not permitted The call requires the Printer Control privilege in the program environments

section of the configuration file (.cfi)

378 Data area passed to a system call is too small The size of the entry array has call is too small been

changed so that there is insufficient room to return all the

entries in the .pq file

476 Filename too long The length of the filename exceeds the size of the packet. (Can occur on

UNIX with pathnames > 255 characters.)

NOTE: The filter packet definitions are shipped on the ICOBOL release media in the file pqfilter.ws found in

the examples directory.

The main IC_QUEUE_LIST packet definitions are shipped in the ICOBOL release media in the file pq_list.ws

found in the examples directory.

BUILTIN (IC_QUEUE_OPERATION)

545

B.42. IC_QUEUE_OPERATION (Added in 3.01)

The IC_QUEUE_OPERATION builtin is used to retrieve the status of one of the printer control queues. The

The IC_QUEUE_OPERATION builtin allows a COBOL program to perform operations on items in the printer

control queue. The operations that are available are equivalent to those available with the interactive Printer Control

Utility initiated by the IC_PRINT_STAT builtin, with the addition of a PCQ info operation and get default filter

operation.

The syntax is:

CALL "IC_QUEUE_OPERATION" USING operation, packet

Where

operation

is a numeric value which indicates what operation to perform

1 = Cancel a job 6 = Remove a job

2 = Delete a job 7 = Terminate a job

3 = Hold a job 8 = Unhold a job

4 = Modify job's options 9 = Get PCQ info

5 = Print a job 10 = Get default PCQ filter

packet

For operations 1-8, packet is an IC-QUEUE-LIST-ENTRY from the IC_QUEUE_LIST builtin's main

packet. See the IC_QUEUE_LIST documentation for full details. It has the following structure:

01 IC-QUEUE-LIST-ENTRY.
10 IC-QUEUE-LIST-FILE-SIZE PIC 9(9) COMP.
10 IC-QUEUE-LIST-PRINT-ERR-CODE PIC 9(9) COMP.
10 IC-QUEUE-LIST-OWNER-USER-ID PIC 9(9) COMP.
10 IC-QUEUE-LIST-PRINT-USER-ID PIC 9(9) COMP.
10 IC-QUEUE-LIST-TIME-MODIFIED PIC X(24).
10 IC-QUEUE-LIST-TIME-PRINTED PIC X(24).
10 IC-QUEUE-LIST-OWNER-USER-NAME PIC X(16).
10 IC-QUEUE-LIST-PRINT-USER-NAME PIC X(16).
10 IC-QUEUE-LIST-FIRST-PAGE PIC 9(9) COMP.
10 IC-QUEUE-LIST-LAST-PAGE PIC 9(9) COMP.
10 IC-QUEUE-LIST-PCQ-UNIT PIC 9(4) COMP.
10 IC-QUEUE-LIST-PRIORITY PIC 9(4) COMP.
10 IC-QUEUE-LIST-COPIES PIC 9(4) COMP.
10 IC-QUEUE-LIST-DISPOSITION PIC 9(2) COMP.
10 IC-QUEUE-LIST-OPTIONS.

15 IC-QUEUE-LIST-OPTION-NO-BANNER PIC X.
15 IC-QUEUE-LIST-OPTION-NOTIFY PIC X.
15 IC-QUEUE-LIST-OPTION-START-FF PIC X.
15 IC-QUEUE-LIST-OPTION-COPIES-FF PIC X.
15 IC-QUEUE-LIST-OPTION-END-FF PIC X.
15 FILLER PIC X(11).

10 IC-QUEUE-LIST-STATUS PIC 9(2) COMP.
10 IC-QUEUE-LIST-OS-INFO PIC X(24).
10 IC-QUEUE-LIST-WINDOWS REDEFINES IC-QUEUE-LIST-OS-INFO.

15 IC-QUEUE-LIST-WIN-PRINT-COPY PIC 9(4) COMP.
15 IC-QUEUE-LIST-WIN-PRINT-PCNT PIC 9(2) COMP.
15 FILLER PIC X(21).

10 IC-QUEUE-LIST-UNIX REDEFINES IC-QUEUE-LIST-OS-INFO.
15 IC-QUEUE-LIST-UNIX-REQ-ID-LEN PIC 9(4) COMP.
15 IC-QUEUE-LIST-UNIX-REQ-ID PIC X(22).

10 IC-QUEUE-LIST-QUEUE-SPOT PIC 9(4) COMP.
10 IC-QUEUE-LIST-FILE-NAME-LEN PIC 9(4) COMP.
10 IC-QUEUE-LIST-SIMPLE-NAME-OFS PIC 9(4) COMP.
10 FILLER PIC X(2).
10 IC-QUEUE-LIST-FILE-NAME PIC X(256).

For operation 9 (Get PCQ Info), packet is an IC-QUEUE-OP-INFO-PKT. It is defined as follows:

01 IC-QUEUE-OP-INFO-PKT.
03 IC-QUEUE-OP-INFO-PKT-REV PIC 9(2) COMP VALUE 1.
03 FILLER PIC X.
03 IC-QUEUE-OP-INFO-PCQ-COUNT PIC 9(4) COMP.
03 IC-QUEUE-OP-INFO-PCQ-MAX PIC 9(4) COMP.
03 IC-QUEUE-OP-INFO-JOB-COUNT PIC 9(4) COMP.

Interactive COBOL Language Reference & Developer’s Guide - Part One

546

For operation 10 (Get default PCQ filter), packet is an IC-QUEUE-OP-FILT-PKT. It is defined as follows:

01 IC-QUEUE-OP-FILT-PKT.
05 IC-QUEUE-OP-FILT-PKT-REV PIC 9(2) COMP VALUE 1.
05 FILLER PIC X.
05 IC-QUEUE-OP-FILT-OPTIONS.

10 IC-QUEUE-OP-FILT-QUEUE PIC X.
10 IC-QUEUE-OP-FILT-SIZE PIC X.
10 IC-QUEUE-OP-FILT-OWNER-ID PIC X.
10 IC-QUEUE-OP-FILT-PRINT-ID PIC X.
10 IC-QUEUE-OP-FILT-OWNER PIC X.
10 IC-QUEUE-OP-FILT-PRINT PIC X.
10 IC-QUEUE-OP-FILT-NAME PIC X.
10 IC-QUEUE-OP-FILT-ACCESS PIC X.
10 IC-QUEUE-OP-FILT-STATUS PIC X.
10 IC-QUEUE-OP-FILT-DIR PIC X.
10 FILLER PIC X(6).

05 IC-QUEUE-OP-FILT-STATUS-VAL PIC 9(4) COMP.
05 IC-QUEUE-OP-FILT-MIN-PCQ PIC 9(4) COMP.
05 IC-QUEUE-OP-FILT-MAX-PCQ PIC 9(4) COMP.
05 IC-QUEUE-OP-FILT-MIN-OWNER-ID PIC 9(4) COMP.
05 IC-QUEUE-OP-FILT-MAX-OWNER-ID PIC 9(4) COMP.
05 IC-QUEUE-OP-FILT-MIN-PRINT-ID PIC 9(4) COMP.
05 IC-QUEUE-OP-FILT-MAX-PRINT-ID PIC 9(4) COMP.
05 IC-QUEUE-OP-FILT-MIN-SIZE PIC 9(8) COMP.
05 IC-QUEUE-OP-FILT-MAX-SIZE PIC 9(8) COMP.
05 IC-QUEUE-OP-FILT-OWNER-NAME PIC X(16).
05 IC-QUEUE-OP-FILT-PRINT-NAME PIC X(16).
05 IC-QUEUE-OP-FILT-FILE-NAME PIC X(64).
05 IC-QUEUE-OP-FILT-DIR-NAME PIC X(64).

Job operations

On a call to IC_QUEUE_OPERATION with any option except the PCQ info option (9), the list entry packet

provided should be one that was filled in by a call to IC_QUEUE_LIST. All fields should be left exactly as returned

from the call to IC_QUEUE_LIST. The only exception is that certain fields -- as noted below -- may be set with the

new values requested on a modify operation.

The fields which set for a modify operation are IC-QUEUE-LIST-FIRST-PAGE, IC-QUEUE-LIST-LAST-PAGE,

IC-QUEUE-LIST-PCQ-UNIT, IC-QUEUE-LIST-PRIORITY, IC-QUEUE-LIST-COPIES,

IC-QUEUE-LIST-DISPOSITION.

On UNIX, IC-QUEUE-LIST-OPTION-NO-BANNER and IC-QUEUE-LIST-OPTION-NOTIFY may be set.

On Windows, IC-QUEUE-LIST-OPTION-START-FF, IC-QUEUE-LIST-OPTION-COPIES-FF, and

IC-QUEUE-LIST-OPTION-END-FF may be set.

Once the operation is performed the provided entry is updated with its current values. The entry is set to

LOW-VALUES after the REMOVE or DELETE operations are performed.

The incoming operation code is cross checked against IC-QUEUE-LIST-STATUS for validity and allowed or

rejected according to the following table:

Status Allowable operations

------ --------------------

IC-QUEUE-LIST-STATUS-NEW Delete, Modify, Print, Remove

IC-QUEUE-LIST-STATUS-OLD Delete, Modify, Print, Remove

IC-QUEUE-LIST-STATUS-ERROR Delete, Modify, Print, Remove

IC-QUEUE-LIST-STATUS-OPEN -

IC-QUEUE-LIST-STATUS-QUEUE Cancel, Hold

IC-QUEUE-LIST-STATUS-HOLD Cancel, Unhold

IC-QUEUE-LIST-STATUS-PRINT Terminate

IC-QUEUE-LIST-STATUS-RETRY Terminate

IC-QUEUE-LIST-STATUS-TERM -

PCQ Info Operation

BUILTIN (IC_QUEUE_OPERATION)

547

On a call to IC_QUEUE_OPERATION with the PCQ info option (9), the info packet's revision must be set to one.

No other field needs to be set, and if set it will be overwritten. The fields are described below:

IC-QUEUE-OP-INFO-PKT-REV

Revision of this packet structure -- it must always be set to 1.

IC-QUEUE-OP-INFO-PCQ-COUNT

This is the number of PCQ devices configured

IC-QUEUE-OP-INFO-PCQ-MAX-UNIT

This is the number of the highest PCQ device (currently 127)

IC-QUEUE-OP-INFO-JOB-COUNT

This is the configured maximum number of PCQ jobs

PCQ Default Info Operation

On a call to IC_QUEUE_OPERATION with the PCQ default filter option (10), the filter packet's revision must be

set to one. No other field needs to be set, and if set it will be overwritten. The fields are described below:

IC-QUEUE-OP-FILT-PKT-REV

Revision of this packet structure -- it must always be set to 1.

IC-QUEUE-OP-FILT-QUEUE

If this field contains a 'Y', filtering by queue number is enabled. The two fields

IC-QUEUE-OP-FILT-MIN-PCQ and IC-QUEUE-OP-FILT-MIN-PCQ are valid and contain the minimum

 and maximum queues being viewed.

IC-QUEUE-OP-FILT-SIZE

If this field contains a 'Y', filtering by file size is enabled. The fields IC-QUEUE-OP-FILT-MIN-SIZE and

IC-QUEUE-OP-FILT-MIN-SIZE are valid and contain the minimum and maximum file sizes being viewed.

IC-QUEUE-OP-FILT-OWNER-ID

If this field contains a 'Y', filtering by owner id is enabled. (This is the console number on Windows and

the user-id on UNIX .) The two fields IC-QUEUE-OP-FILT-MIN-OWNER-ID and

IC-QUEUE-OP-FILT-MAX-OWNER-ID are valid and contain the minimum and maximum owner id value

being viewed.

IC-QUEUE-OP-FILT-PRINT-ID

If this field contains a 'Y', filtering by printed-by id is enabled. (This is the console number on Windows

and the user-id on UNIX .) The two fields IC-QUEUE-OP-FILT-MIN-PRINT-ID and

IC-QUEUE-OP-FILT-MAX-PRINT-ID are valid and contain the minimum and maximum printed-by id

value being viewed.

IC-QUEUE-OP-FILT-OWNER

If this field contains a 'Y', filtering by owner name is enabled. The field

IC-QUEUE-OP-FILT-OWNER-NAME is valid and contains the owner name of the files being viewed.

IC-QUEUE-OP-FILT-PRINT

If this field contains a 'Y', filtering by printed-by name is enabled. The field

IC-QUEUE-OP-FILT-PRINT-NAME is valid and contains the printed-by name of the files being viewed.

IC-QUEUE-OP-FILT-NAME

If this field contains a 'Y', filtering by file name is enabled. The field IC-QUEUE-OP-FILT-FILE-NAME is

is valid and contains the simple filename of the files being viewed.

IC-QUEUE-OP-FILT-ACCESS

If this field contains a 'Y', filtering by read access to the file is enabled.

IC-QUEUE-OP-FILT-STATUS

If this field contains a 'Y', filtering by status is enabled. The field IC-QUEUE-OP-FILT-STATUS-VAL is

valid and contains the status value of the files being viewed.

IC-QUEUE-OP-FILT-DIR

If this field contains a 'Y', filtering by directory name is enabled. The field

IC-QUEUE-OP-FILT-DIR-NAME is is valid and contains the directory name of the files being viewed.

IC-QUEUE-OP-FILT-MIN-PCQ

IC-QUEUE-OP-FILT-MAX-PCQ

If IC-QUEUE-OP-FILT-QUEUE contains a 'Y', these two fields are valid and contain the minimum and

maximum queues being viewed.

Interactive COBOL Language Reference & Developer’s Guide - Part One

548

IC-QUEUE-OP-FILT-MIN-SIZE

IC-QUEUE-OP-FILT-MAX-SIZE

If IC-QUEUE-OP-FILT-QUEUE contains a 'Y', these fields are valid and contain the minimum and

maximum file sizes being viewed.

IC-QUEUE-OP-FILT-MIN-OWNER-ID

IC-QUEUE-OP-FILT-MAX-OWNER-ID

If IC-QUEUE-OP-OWNER-ID contains a 'Y', these fields are valid and contain the minimum and maximum

owner id value being viewed.

IC-QUEUE-OP-FILT-MIN-PRINT-ID

IC-QUEUE-OP-FILT-MAX-PRINT-ID

If IC-QUEUE-OP-PRINT-ID contains a 'Y', these fields are valid and contain the minimum and maximum

printed-by id value being viewed.

IC-QUEUE-OP-FILT-STATUS

If this field contains a 'Y', filtering by status is enabled.

IC-QUEUE-OP-FILT-OWNER-NAME

If IC-QUEUE-OP-FILT-OWNER contains a 'Y', this field is valid and contains the owner name of the files

being viewed.

IC-QUEUE-OP-FILT-PRINT-NAME

If IC-QUEUE-OP-FILT-PRINT contains a 'Y', this field is valid and contains the printed-by name of the

files being viewed.

IC-QUEUE-OP-FILT-FILE-NAME

If IC-QUEUE-OP-FILT-NAME contains a 'Y', this field is valid and contains the simple filename of the

files being viewed.

IC-QUEUE-OP-FILT-DIR-NAME

If IC-QUEUE-OP-FILT-DIR contains a 'Y', this field is valid and contains the directory name of the files

being viewed.

Exception Status Codes

The exception status codes which may be returned include:

1 Invalid operation An invalid operation code has been supplied or the operation is not

valid with the status specified by the main packet.

2 File not found A get default PCQ filter operation request was made when there is

no default filter

13 Invalid data One or more of the arguments contain invalid data

36 File name is not valid Simple filename cannot be isolated

203 Program was not found Printer control must be enabled

209 Parameter mismatch on call Number, size or type of arguments is invalid

221 Operation is not permitted The call requires the Printer Control privilege in the program

environments section of the configuration file (.cfi)

476 Filename too long The length of the filename exceed the size of the packet. (Can

occur on UNIX with pathnames > 255 characters.)

NOTE: The main ic_queue_operation packet definitions are shipped in the ICOBOL release media in the file

pq_list.ws found in the examples directory.

BUILTIN (IC_QUEUE_STATUS)

549

B.43. IC_QUEUE_STATUS (Added in 3.00)

The IC_QUEUE_STATUS builtin is used to retrieve the status of one of the printer control queues. The information

returned is equivalent to that returned for the queue when TAB is pressed in the Printer Control Utility.

The syntax is:

 CALL "ic_queue_status" USING queue-number, queue-status, queue-name
 [, queue-trans]

Where

queue-number

is an integer item containing the queue number for which the status is requested

queue-status

is a signed intger item into which a status code is returned, where the value is one of the following:

Status
code Meaning

1 Not available

2 Offline

3 Paused

4 Needs Attention

5 Retrying

6 Printing

7 Available

If the printer is the default printer, then the value returned will be negative. For example, if queue-status

equals -7, then this is the default printer and it is available.

queue-name

is a PIC X(n) item into which the device name for the queue is returned

queue-trans

is an optional PIC X(n) item which, if present, receives the name of the printer translation

The following exception status codes may be returned:

Exception
status code Description

209 (Parameter mismatch on CALL) - Too many or few
arguments, or incorrect type of argument

13 (Invalid data) - Queue number contains invalid data

2 (File not found) - Queue number specified not found

Interactive COBOL Language Reference & Developer’s Guide - Part One

550

Directory must be empty (except for . and .. files) to be removed. If the directory is not empty, a File Exists

(Exception Status 32) will be returned. On UNIX, the current directory can be removed resulting in File Not Found

errors when accessing any file based on the current directory. Generally, this should be avoided.

B.44. IC_REMOVE_DIR

The IC_REMOVE_DIR builtin allows a directory to be removed.

The syntax is:

CALL "IC_REMOVE_DIR" USING name

Where

name

is a PIC X(n) and holds the directory name to be removed.

BUILTIN (IC_RENAME)

551

B.45. IC_RENAME

The IC_RENAME builtin allows a file to be renamed.

The syntax is:

CALL "IC_RENAME" USING old-filename, new-filename

Where

old-filename

is a PIC X(n) that holds the old filename to be renamed.

new-filename

is a PIC X(n) that holds the new filename.

Pathnames can be used. To rename an ICISAM file, you must rename each individual portion, explicitly supplying

the .XD and .NX extensions with two builtin calls.

IC_RENAME does not go through the ICLINK link file facility.

Old-filename and new-filename are processed as an External Filename as described on page 751, except a full

pathname is not made if only a simple name is given.

Interactive COBOL Language Reference & Developer’s Guide - Part One

552

01 FILE-ENTRY-REV1.
 02 MODIFIED-INFO.

03 DATE-MODIFIED PIC 9(6).
03 TIME-MODIFIED PIC 9(8).

 02 ACCESSED-INFO.
03 DATE-ACCESSED PIC 9(6).
03 TIME-ACCESSED PIC 9(8).

 02 FILESIZE-BYTES PIC 9(10).
 02 F-ATTRIBUTES PIC X(8).
 02 F-ATTRIBUTE-RED REDEFINES F-ATTRIBUTES.

03 READABLE-ON PIC X(1).
03 WRITABLE-ON PIC X(1).
03 PROTECTABLE-ON PIC X(1).
03 ARCHIVE-IT PIC X(1).
03 DIRECTORY-TYPE PIC X(1).
03 SYSTEM-TYPE PIC X(1).
03 EXECUTABLE-TYPE PIC X(1).
03 FILLER PIC X(1).

 02 FILENAME PIC X(64).

B.46. IC_RESOLVE_FILE

The IC_RESOLVE_FILE builtin resolves a filename to a full pathname using a search path. Templates are not

allowed. When using ICDATAPATH this works just like an OPEN. When using ICCODEPATH this works just

like a CALL or CALL PROGRAM.

The syntax is:

CALL "IC_RESOLVE_FILE" USING file-argument, lib-name [, search-path
[, file-entry [, rev]]]

Where

file-argument

is a PIC X(n) that holds the name of the file to be resolved. The fully resolved name is returned into this

argument. If the file was found in a library only the simple name is returned in file-argument. If the file

does not exist, the fully resolved name of where the file would be created is returned and the ON

EXCEPTION clause is executed. ICLINK can be used.

lib-name

is a PIC X(n) that holds the fully resolved library name if the file-argument was found in a library. If not

found in a library, this entry will be set to spaces.

search-path

is a PIC X(n) that holds the name of the ICOBOL search path to use. Valid search paths are

ICDATAPATH, ICCODEPATH, and blank for no searching. If the argument is not specified, it defaults to

ICDATAPATH. For an invalid argument, an error is returned and no processing is done.

file-entry

is a structure as defined below that provides status information about the file. If the file does not exist, no

data is moved into this structure. The Filename piece of the structure can be any length but should be long

enough to hold the longest simple name. Each entry can be defined as one of the following:

or

BUILTIN (IC_RESOLVE_FILE)

553

01 FILE-ENTRY-REV2.
 02 MODIFIED-INFO.

03 DATE-MODIFIED PIC 9(8).
03 TIME-MODIFIED PIC 9(8).

 02 ACCESSED-INFO.
03 DATE-ACCESSED PIC 9(8).
03 TIME-ACCESSED PIC 9(8).

 02 FILESIZE-BYTES PIC 9(10).
 02 F-ATTRIBUTES PIC X(8).
 02 F-ATTRIBUTE-RED REDEFINES F-ATTRIBUTES.

03 READABLE-ON PIC X(1).
03 WRITABLE-ON PIC X(1).
03 PROTECTABLE-ON PIC X(1).
03 ARCHIVE-IT PIC X(1).
03 DIRECTORY-TYPE PIC X(1).
03 SYSTEM-TYPE PIC X(1).
03 EXECUTABLE-TYPE PIC X(1).
03 FILLER PIC X(1).

 02 FILENAME PIC X(64).

01 FILE-ENTRY-REV3.
 02 MODIFIED-INFO.

03 DATE-MODIFIED PIC 9(8).
03 TIME-MODIFIED PIC 9(8).

 02 ACCESSED-INFO.
03 DATE-ACCESSED PIC 9(8).
03 TIME-ACCESSED PIC 9(8).

 02 FILESIZE-BYTES PIC 9(10).
 02 F-ATTRIBUTES PIC X(8).
 02 F-ATTRIBUTE-RED REDEFINES F-ATTRIBUTES.

03 READABLE-ON PIC X(1).
03 WRITABLE-ON PIC X(1).
03 PROTECTABLE-ON PIC X(1).
03 ARCHIVE-IT PIC X(1).
03 DIRECTORY-TYPE PIC X(1).
03 SYSTEM-TYPE PIC X(1).
03 EXECUTABLE-TYPE PIC X(1).
03 LINK-TYPE PIC X(1).

 02 USER-COUNT PIC 9(5).
 02 FILENAME PIC X(64).

 or

rev

is a PIC 9(2) COMP (one-byte binary), that specifies the revision of the file-entry lines provided in the

output-file. If not specified, 1 is assumed. Valid entries are 1 ,2, and 3. If not specified, ANSI 74 and

ANSI 85 default to rev1, and VXCOBOL defaults to 3.

In the rev 1 structure each date is of the form YYMMDD. In the rev 2 and rev 3 structures each date is of the form

YYYYMMDD and each time is of the form hhmmsshh. The USER-COUNT field returns the number of times the

file is open to any ICOBOL runtime running on this machine. The attribute field is a space if the particular attribute

is not set, and contains a single uppercase letter if it is set. (R-readable, W-writeable, P-protected, A-archive, D-

directory, S-system, E-executable, L-linkfile).

If an error is generated, the ON EXCEPTION clause, if present, is executed. The EXCEPTION STATUS gives the

error.

Interactive COBOL Language Reference & Developer’s Guide - Part One

554

B.47. IC_SEND_MAIL (Added in 3.50)

The IC_SEND_MAIL builtin allows a COBOL program to send email directly from within COBOL using a standard

SMTP server.

The syntax is:

CALL "IC_SEND_MAIL" USING to-list, from-addr, cc-list, bcc-list, subject,
message [[, att-type, attachment] [, uname-pass]]

Where the parameters are strings that hold:

to-list address [, address]... (comma-separated list)

from-addr address

cc-list [address [, address]...] (comma-separated list)

bcc-list [address [, address]...] (comma-separated list)

subject subject-line

message text-body-of-message (use <cr><nl> to split lines)

att-type mime type of file attached (optional)

attachment filename of file to attach (req'd if att-type specified)

uname-pass a username-password pair to pass as authorization to the SMTP server. password should be

separated by a comma from username.

All strings are trimmed of trailing blanks. A LOW_VALUE will terminate a string.

The number of parameters are checked along with at least one valid to-address is required, the from-address can not

be blank and should be a valid address, cc-list, bcc-list, att-type, attachment, and uname-pass can be blank, subject

cannot be blank, message can use <cr><nl> to split lines and can be blank.

If an att_type is specified, an attachment must be specified. If no att-type is specified, no attachment can be

specified.

Some valid mime-types are text, video, ... Attachment must specify a valid file.

For Mime Types see:

http://www.iana.org/assignments/media%2Dtypes/index.htm

Environment variables:

ICSMTPSERVER required to tell where the SMTP server is located. There is no default.

ICSMTPPORT specifies the port for the SMTP server, 25 is the default

Error messages for this builtin include: :

1301 A mail recipient must be specified (To: field)

1302 A mail sender must be specified (From: field)

1303 A message subject must be specified (Subject: field)

1304 No mail server was specified (ICSMTPSERVER environment variable)

1305 The mail server port was not valid (ICSMTPPORT environment variable)

1306 SMTP System or Help message

1307 The SMTP service is ready

1308 The SMTP service is closing

1309 The SMTP action completed OK

1310 The recipient is nonlocal, message is being forwarded

1311 The recipient was not verified but message was accepted

1312 Start message input and end with <CRLF>.<CRLF>

BUILTIN (IC_SEND_MAIL)

555

1313 The SMTP service is not available - closing connection

1314 The command failed because the user's mailbox was unavailable

1315 The command failed because of a server error

1316 The command failed because of insufficient server storage

1318 The SMTP command failed with a 500 level error

1319 The SMTP command failed because mailbox was unavailable

2079 SMTP Authorization successful

2112 SMTP Authorization in progress

2113 SMTP Authorization required (A username/password is required)

2114 SMTP Authorization failed

A sample ICOBOL source that provides an interface to the new IC_SEND_MAIL builtin is available as sendmail.sr

in the examples directory.

In the example program, sendmail.sr, the environment variable ICSMTPSERVER is read and can be set. A message

can be composed and sent to people with both CC and BC addresses. An attachment can also be added.

Interactive COBOL Language Reference & Developer’s Guide - Part One

556

B.48. IC_SEND_MSG

The IC_SEND_MSG builtin allows the user to send a message to one, several, or all logged-on ICOBOL users,

either active or inactive on the same machine.

The IC_SEND_MSG builtin is enabled with the Message sending privilege in the Program Environment

configuration of the configuration file (.cfi). If not enabled, the call will fail with an Exception Status 221 "The

operation is not permitted.".

Two modes are available.

Mode 1 (Interactive Mode)

For mode 1, the syntax is:

CALL "IC_SEND_MSG"

Upon invocation, a terminal status window of all logged on terminals is displayed. You are then prompted for the

message that you wish to send. You are then prompted for the terminal number to send the message to. If none, the

message is sent to all logged-on users.

For more on IC_SEND_MSG in mode 1 see the Message Broadcast utility in the Utilities Manual.

Mode 2 (Program Mode)

For mode 2, the syntax is:

CALL "IC_SEND_MSG" USING term-number, message [, line-no, col-no]

Where

term-number

is a PIC 9(4) COMP that specifies the terminal number to send the message to. A value of 65535 sends the

message to all users.

message

is a PIC X(n) string of the message to be sent. Trailing spaces and nulls are removed. If longer than 60 the

string is truncated.

line-no

is a numeric that specifies the row (0-255) of where to place the message on the terminal

 col-no

is a numeric that specifies the column (0-255) of where to place the message on the terminal

NOTE: For line and column 0,0 is the upper-left corner of the terminal.

If n is an invalid terminal number or is not currently active, an Exception Status 228 "The terminal is not logged on"

is returned. If n is a terminal which is not enabled, Exception Status 229 "The terminal is not configured into the

system" is returned.

When the line and column format is specified, the message can include DG attribute characters like reverse, blink,

dim-on, dim-off, etc. On the specified terminal, all attributes will be reset at the end of the message and the cursor

position will be returned to its starting position.

BUILTIN (IC_SERIAL_NUMBER)

557

B.49. IC_SERIAL_NUMBER

The IC_SERIAL_NUMBER builtin returns the ICOBOL runtime license serial number, as determined by the

license manager (ICPERMIT) from the current license activation key.

The syntax is:

CALL "IC_SERIAL_NUMBER" USING argument

Where

argument

is a PIC 9(8) into which the license serial number will be stored.

Interactive COBOL Language Reference & Developer’s Guide - Part One

558

B.50. IC_SET_ENV (Added in 3.13)

The IC_SET_ENV builtin allows an environment entry to be set.

The syntax is:

CALL "IC_SET_ENV" USING name, value

Where

name

is a string that specifies the name of the environment variable to be set.

value

is a string that specifies the data value for the environment entry. Trailing spaces are ignored.

Possible errors include:

Parameter mismatch

Invalid Data

No memory

BUILTIN (IC_SET_TIMEOUT)

559

B.51. IC_SET_TIMEOUT

The IC_SET_TIMEOUT builtin allows default timeouts to be enabled and disabled for ACCEPT and STOP literal

statements.

The syntax is:

CALL "IC_SET_TIMEOUT" [USING timeout]

Where

timeout

is a PIC 9(4) COMP that specifies the default timeout in tenths of seconds. 65535 disables timeout, 65534

says to use that specified as the global timeout (ICTIMEOUT), while a number between 0 and 63000 will

set the timeout to that value.

If no argument is specified, wait forever is set. The timeout value remains in effect whenever this program is active.

I.E., if a CALL statement is made, while in the new program the timeout is reset to that specified by the global

timeout (ICTIMEOUT) for the new program. Upon returning to the calling program, the timeout is restored to be

the value that was set before the CALL.

When an ACCEPT statement times out, ESCAPE KEY is set to 99 and no data is moved to the particular item (just

as when an ESC key is pressed).

Interactive COBOL Language Reference & Developer’s Guide - Part One

560

B.52. IC_SET_USERNAME

The IC_SET_USERNAME builtin allows a program to set or change the name that is returned from the ACCEPT

FROM USER NAME statement. On Windows, it also changes the owner and printed-by names used by the Printer

Control Utility. This call does not change any identification of the user known to the operating system. In particular,

the UNIX user-id for the process remains unchanged. (Hence, the permissions required on UNIX to perform certain

Printer Control Utility functions remain unchanged after making this call.)

The syntax is:

CALL "IC_SET_USERNAME" USING username

Where

username

is a PIC X(n) string (1 <= n <= 15) containing the new username. The new username will consist of the

characters from this string up through the first space or null.

On UNIX, Exception Status 13 "Invalid data", is returned if the name string does not represent a name of at least one

character, i.e., you may not eliminate the username entirely.

Any username case conversion specified on the ICRUN command line will be applied to the username supplied to

this builtin.

BUILTIN (IC_SHUTDOWN)

561

B.53. IC_SHUTDOWN (Added in 3.00)

The IC_SHUTDOWN builtin terminates the runtime system. The IC_SHUTDOWN call is enabled with the System

Shutdown privilege in the Program Environment configuration of the configuration file (.cfi). If the optional

argument is specified the value is returned to the runtime system’s parent process as an exit code.

The syntax is:

CALL "IC_SHUTDOWN" [USING exit-code]

Where

exit-code

is a PIC 9(n). Exit-code may be zero, or any value between 10 and 255 inclusive. Values 1 thru 9 are

reserved for runtime use.

Any error is stored into Exception Status and the ON EXCEPTION clause, if present, is executed. Exception status

13 “Invalid data” is returned if the exit-code is out of range.

Interactive COBOL Language Reference & Developer’s Guide - Part One

562

B.54. IC_SYS_INFO (Updated in 3.22/3.35)

The IC_SYS_INFO builtin is supported in ICOBOL to allow internal status information for the entire ICOBOL

system to be viewed or read. The optional argument was added in 3.22.

The IC_SYS_INFO builtin is enabled with the System Information privilege in the Program Environment

configuration of the configuration file (.cfi). If not enabled, the call will fail with an Exception Status 203 "Program

not found.".

The syntax is:

CALL "IC_SYS_INFO" [USING sys-info-struc].

Where

sys-info-struc

is a structure with the following format:

 01 SYS-INFO-STRUCTURE.
 02 REV PIC 9(4) COMP.
 02 PROCESSES.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 TERMINALS.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 RPTERMINALS.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 DTTERMINALS.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 ANTERMINALS.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 SEQ-FILES.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 REL-FILES.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 IND-FILES.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 REC-LOCKS.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 OS-FILES.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 PRN-FILES.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 PCQ-FILES.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.

BUILTIN (IC_SYS_INFO)

563

 02 PCQ-JOBS.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 SER-FILES.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 CON-FILES.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 BUFFERS.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 03 IN-LRU PIC 9(4) COMP.
 03 MIN-LRU PIC 9(4) COMP.
 03 SIZE-BYTES PIC 9(4) COMP.
 02 DEVICES.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 NEWBUFFERS. Added in 3.35 (rev 2)
 03 FILLER PIC 9(4) COMP.
 03 IN-USE PIC 9(9) COMP.
 03 MAX-USED PIC 9(9) COMP.
 03 TOTAL-COUNT PIC 9(9) COMP.
 03 IN-LRU PIC 9(9) COMP.
 03 MIN-LRU PIC 9(9) COMP.
 03 SIZE-BYTES PIC 9(9) COMP.

In the optional argument is given then it is filled in with the appropriate information. If the argument is not given,

then a screen of statistical information about various ICOBOL parameters is shown.

For the named resource, three numbers are provided. These are:

Value Description

In Use The number currently in use

MaxUsed The most this has ever been,
for this invocation

Max The maximum number configured

The MaxUsed values can be used to either raise or lower individual System Parameters in the configuration file

(.cfi), the CONFIG.SYS file (on Windows), or in the UNIX Kernel (on UNIX) to provide a better-tuned system.

In the sys-info-structure, REV will contain a 2 when used with ICRUN 3.35 and up, and a 1 with previous versions.

Note that the SYS-INFO-STRUCTURE has been upgraded in 3.35 to handle the larger buffer structure added in

3.30.

The rev returned will now be 2.

The previous BUFFER section of PIC 9(4) COMP values will be set to zero.

A new BUFFER section has been added at the end of the structure and all the sizes will be PIC 9(9) COMP.

The new structure is now 136 bytes long.

When passed an old strucuture, the new buffer information will NOT be stored.

Interactive COBOL Language Reference & Developer’s Guide - Part One

564

01 WATCH-FUNC-STRUC.
 02 FUNCTION-CODE PIC 99 COMP.
 02 STATUS-LINE-CODE PIC 99 COMP.

B.55. IC_TERM_CTRL

The IC_TERM_CTRL builtin allows the user to view the status of all terminals and optionally perform some

operation on one or more selected terminals.

- Users with the Message sending privilege can send messages to one or more terminals.

- Users with the Abort terminal privilege can abort or kill a terminal.

- Users with the Watch other terminals privilege can view the screen of a selected terminal and optionally

control the selected terminal's keyboard.

The IC_TERM_CTRL builtin is enabled with the Terminal status privilege in the Program Environment

configuration of the configuration file (.cfi). If not enabled an Exception Status 221 "This operation is not

permitted" will be given. The Abort terminal, Console Interrupt, Message sending, and Watch privileges enable the

commands available to the user.

The syntax is:

CALL "IC_TERM_CTRL" [USING term-num, watch-func-struc].

Where

term-num

is a PIC 9(4) COMP that holds the terminal number of the terminal to be accessed.

watch-func-struc

is a structure holding the requested function and status-line setting for the session. It looks like:

Valid settings for FUNCTION-CODE are:

0=Watch term-num

1=Control term-num

Valid settings for STATUS-LINE-CODE are:

0=no status line

1=status line at the top of the screen starting in col 1

2=status line at the top of the screen starting in col 41

When the optional parameters are given, the IC_TERM_CTRL screen is never seen, the appropriate function is

executed and on exit control is returned to the calling program.

All terminals running ICOBOL on this machine are available.

For more on IC_TERM_CTRL see the Terminal Control Utility in the Utilities manual.

BUILTIN (IC_TERM_STAT)

565

01 STAT-STRUC.
 02 STRUC-REV PIC 9(4) COMP.
 02 TERM-NUM PIC 9(4) COMP.
 02 PROC-PID PIC 9(9) COMP.
 02 PROC-NUM PIC 9(4) COMP.
 02 PGM-STATE PIC 9(4) COMP.
 02 PGM-PC PIC 9(4) COMP.
 02 SP2-SRV-FLAG PIC X.
 02 CHAR-SRV-FLAG PIC X.
 02 USERNAME PIC X(16).
 02 PGMNAME PIC X(30).
 02 FLAGS.
 03 MASTER-FLAG PIC X.
 03 BATCH-FLAG PIC X.
 03 ABORT-FLAG PIC X.
 03 BREAK-FLAG PIC X.
 03 DEBUG-FLAG PIC X.
 03 SYS-INFO-FLAG PIC X.
 03 MSG-FLAG PIC X.
 03 BACK-FLAG PIC X.
 03 PRINTER-FLAG PIC X.
 03 PRT-MGR-FLAG PIC X.
 03 SHUTDOWN-FLAG PIC X.
 03 TERM-FLAG PIC X.
 03 EXEC-FLAG PIC X.
 03 WATCH-FLAG PIC X.
 03 XWATCH-FLAG PIC X.
 03 FILLER PIC X(3).

B.56. IC_TERM_STAT

The IC_TERM_STAT builtin is enabled with the Terminal status privilege in the Program Environment

configuration of the configuration file (.cfi). If not enabled, the call will fail with an Exception Status 221 "This

operation is not permitted.".

The syntax is:

CALL "IC_TERM_STAT" [USING term-num, stat-struc]

Where

term-num

is a PIC 9(4) COMP that holds the terminal number of a particular console of which status information is

required. 65535 means do a terminal status on the current console.

stat-struc

is a structure holding specific status information for the given terminal. The structure looks like:

Terminal Status allows the user to view the status of all ICOBOL users on the machine as well as current system

information.

For more on IC_TERM_STAT with no arguments see the Terminal Status utility in the Utilities Manual.

STRUCT-REV returns a 3 using the above description.

TERM-NUM is the terminal number of the console (it is the same as term-num or the current console number if

term-num was set to 65535.

PROC-PID is the pid of the stated terminal.

PROC-NUM is the internal ICOBOL process number.

PGM-STATE is the current state of the process: 0=unused, 1=logging on/off, 2=inactive, 3=active, 4=stopped,

5=while debugging, 6=pushed to shell/executable, 7=watching, 8=defunct.

PGM-PC is always zero.

Interactive COBOL Language Reference & Developer’s Guide - Part One

566

Previous to ICOBOL 3.30 the two bytes after the PGM-PC were filler bytes. With 3.30 and up they hold the

following flags:

 02 SP2-SRV-FLAG PIC X.
 02 CHAR-SRV-FLAG PIC X.

If the process is using ICTHINS then the first flag (SP2-SRV_FLAG) will be set to "Y", if the process is using

ICRUNRS then the second flag (CHAR-SRV-FLAG) will be set to "Y".

USERNAME is the name of the user of the terminal.

PGMNAME is the currently executing COBOL program.

Each of the flags is either Y or N indicating that the console is the master, is a batch job, or has a specific privilege.

The XWATCH-FLAG was added in 3.30.

BUILTIN (IC_TRIM)

567

B.57. IC_TRIM (Added in 3.34)

The IC_TRIM builtin takes a string and returns the starting position in the string of the first non-blank character and

the actual length of the string NOT including trailing spaces.

The syntax is:

CALL "IC_TRIM" USING string, num-start, num-len

Where

string

specifies a PIC X(n) that holds the string.

num-start

 is a PIC 9(n) to which is returned the starting position in string for the first non-blank character.

num_len

 is a PIC 9(n) to which is returned the actual length of the string NOT including trailing spaces.

NOTE: Num-len and num-start can return 0.

Examples:

For string " abcd " num-start would return 3 and num-len would return 4.

For string " " num-start and num-len would return 0.

For string "abc d ", num-start would return 1 and num-len would return 5.

The ‘trimmed’ string can then be extracted with reference modification. (I.E., string (start:len))

Interactive COBOL Language Reference & Developer’s Guide - Part One

568

B.58. IC_UPPER

The IC_UPPER builtin converts the specified string to all upper-case characters.

The syntax is:

CALL "IC_UPPER" USING string

Where

string

specifies a PIC X(n) that holds the data to be converted to upper-case.

NOTE: For ANSI 74 and ANSI 85, a more efficient way of accomplishing this task is by using the

UPPER-CASE intrinsic function:

MOVE FUNCTION UPPER-CASE (string) TO string.

BUILTIN (IC_VERSION)

569

01 RUNTIME-VERSION PIC X(16).
...
CALL "IC_VERSION" USING RUNTIME-VERSION.
DISPLAY QUOTE, RUNTIME-VERSION, QUOTE.

B.59. IC_VERSION

The IC_VERSION builtin allows a program to obtain the revision number of the runtime system which is executing

the current program.

The syntax is:

CALL "IC_VERSION" USING version-string

Where

version-string

specifies a PIC X(n) item which will receive the revision number of the string. n >= 16 is suggested. The

version string will be of the form x.xx[.xx][Beta x] where each x represents a digit and parts within

brackets are present only if the runtime is an update and/or Beta test version.

The following exception status codes may be returned:

209 (Parameter mismatch on call) Too many or too few USING arguments

In the following example, a runtime system with revision 2.51 Beta 1 would display "2.51 Beta 1 ", and the 3.00

final release would display “3.00 “.

Interactive COBOL Language Reference & Developer’s Guide - Part One

570

B.60. IC_WINDOW_TITLE

The IC_WINDOW_TITLE builtin allows the caller to set the title bar of the GUI icrunw or icrunrc screen. This title

remains in effect until another call to IC_WINDOW_TITLE. This call is available under Windows and when

running ThinClient Client (icrunrc) under Windows.

The syntax is:

CALL "IC_WINDOW_TITLE" USING fmt [, string-1]...

Where

fmt

specifies a PIC X(n) that holds a format string on how to display the title.

String-1

specifies a PIC X(n) that provides a series of character strings to be applied to the format.

The format string may contain any characters which will be literally used in the title. It may also contain any of the

following:

Format string
Characters Description

%% Insert a per cent sign at this location

%C Insert the name of the COBOL program at this loca-
tion (only allowed once)

%D Insert today’s date at this location

%P Insert the process name at this location

%S Insert the next string argument at this location

%T Insert the current time at this location

Any other character following the % will be treated as invalid. Trailing spaces or low-values will be trimmed from

the format string.

Without this call, the default is”%P - %C”.

The string values are used to satisfy the %S format directive. They are inserted in their entirety, including trailing

spaces, unless a LOW-VALUE is encountered in which case the string ends at the preceeding character.

The following exception status codes may be returned:

Exception status Description

209 - Parameter mismatch on call - Too few arguments
- more string parameters than %S directives

13 - Invalid data - bad format string

39 - Out of disk space - constructed string exceeds buffer size

When this builtin is NOT available in the Thinclient case, an error 231 - "Unsupported feature for the current

terminal type" will be given.

BUILTIN (IC_WINDOW_TITLE)

571

01 FORMAT PIC X(50) VALUE “%S: My application (%C)”.
01 STRING-1 PIC X(10) VALUE “My company”.

CALL “ic_window_title” USING FORMAT, STRING-1 ON EXCEPTION

Example:

Suppose these lines appear in the program MYPROG.SR:

The window title would be set to:

"My Company: My Application (myprog)".

The program name (myprog) would change as your application calls different COBOL programs.

Interactive COBOL Language Reference & Developer’s Guide - Part One

572

B.61. IC_WINDOWS_MSG_BOX

The IC_WINDOWS_MSG_BOX builtin allows a COBOL program to display a message box using the Windows

MessageBox function when the console is on a Windows machine either with Gui runtime (icrunw) orThinCleint

(icrunrc).

The syntax is:

 CALL "IC_WINDOWS_MSG_BOX" USING msg-text, msg-title, msg-ctrl, msg-button

Where

 msg-text

specifies a PIC X(n) item containing the message to be displayed. Trailing spaces are ignored.

msg-title

specifies a PIC X(n) item containing the title for the dialog box. Windows does not automatically break the

lines to fit in the message box so the message string must contain new lines to break the lines at the

appropriate places. Trailing spaces are ignored.

msg-ctrl

specifies a PIC X(3) item which controls the appearance and behavior of the message box

The first character controls the type of message box that will be displayed, i.e., the number of buttons and

their legends. The valid character values and their meanings are:

1st character Number of buttons to display Legends for the buttons

SPACE one push button OK

"0" one push button OK

"1" two push buttons OK and Cancel

"2" two push buttons Retry and Cancel

"3" two push buttons Yes and No

"4" three push buttons Yes, No, and Cancel

"5" three push buttons Abort, Retry, and Ignore

The second character controls which of the buttons will be the default. The selected button must

correspond to one of the buttons that is available as a result of the value entered in the first character

position. If the Enter key is pressed this button is selected. The valid selections follow:

2nd character Default button

SPACE First button on the message box

"A" Abort button

"C" Cancel button

"I" Ignore button

"N" No button

"O" OK button

"R" Retry button

"Y" Yes button

BUILTIN (IC_WINDOWS_MSG_BOX)

573

 01 MSG-TEXT PIC X(32) VALUE "The account number is not valid.".
 01 MSG-TITLE PIC X(29) VALUE "Error: Invalid account number".
 01 MSG-CTRL PIC X(3) VALUE "2RX".
 ...
 CALL "IC_WINDOWS_MSG_BOX" USING MSG-TEXT, MSG-TITLE, MSG-CTRL,

MSG-BUTTON.

The third character controls the icon which is displayed in the message box. Valid selections are as

follows:

3rd character Icon to display in message box

SPACE No icon

"!" An exclamation point

"?" A question mark

"I" Icon consists of the lower case letter i

"X" A stop sign icon

msg-button

specifies a PIC X(1) item which is returned to from the call. This value identifies which button was

selected. If the message box has a Cancel button, pressing ESC is equivalent to selecting the Cancel button.

Value returned
from the call

Meaning
(which button
was selected)

"A" Abort button

"C" Cancel button

"I" Ignore button

"N" No button

"O" OK button

"R" Retry button

"Y" Yes button

The following exception status codes may be returned

Exception status Description

209 (Parameter mismatch on call) Too many or too few USING arguments, or invalid length
for argument

13 (Invalid data) One or more values in msg-ctrl is not valid

8 (Insufficient memory) Not enough memory to execute call

When this builtin is NOT available in the Thinclient case, an error 231 - "Unsupported feature for the current

terminal type" will be given.

Example:

Suppose the following code appears in a program running on Windows:

A message box will appear containing 2 buttons -- retry and cancel. The box will have the title "Error: Invalid

account number" and contain a stop sign icon and the text "The account number is not valid." as shown in the

next image.

Interactive COBOL Language Reference & Developer’s Guide - Part One

574

BUILTIN (IC_WINDOWS_SETFONT)

575

B.62. IC_WINDOWS_SETFONT (Added in 3.13)

The IC_WINDOWS_SETFONT builtin allows the current font and font-size to be changed when running the GUI

Windows runtime or ThinClient Client (icrunrc). This call will also run on UNIX platforms when using the

ThinClient client (icrunrc) on Windows. (Added in 3.30)

The syntax is:

CALL "IC_WINDOWS_SETFONT" [USING fontname, fontsize]

Where

fontname

is a string that specifies the name of a fixed font to which the font should be set. If not specified, the default

usually "Courier New" will be used. The name of the selected font will be returned into this location if the

call is successful.

fontsize

is an integer that specifies the font point size from 2 to 99, or is an integer that specifies the font point size

in deci-points from 20 to 999 as the number 1020 thru 1999, or a zero which will cause the Windows

ChooseFont Dialog box to be shown to the user.

This call acts just like the ICFONT and ICFONTSIZE environment entries when ICRUNW is started.

This call is available only on Windows when running on a graphic desktop and using the GUI runtime (icrunw) or

when running the ThinClient (icrunrc). (It does not matter if the ICRUNRC is connected to a UNIX server.)

If no parameters are specified, the default ChooseFont dialog will be displayed. (Added in 3.56)

Possible errors include:

Parameter mismatch Invalid Data

Program not found No memory

Path not found Invalid Format

Invald operation

When this builtin is NOT available in the Thinclient case, an error 231 - "Unsupported feature for the current

terminal type" will be given.

Interactive COBOL Language Reference & Developer’s Guide - Part One

576

B.63. IC_WINDOWS_SHELLEXECUTE (Windows only) (Added in 3.11)

The IC_WINDOWS_SHELLEXECUTE performs an operation on a specified file.

The syntax is:

CALL "IC_WINDOWS_SHELLEXECUTE" USING lpverb, lpFile, lpParameters,
lpDirectory, nShowCmd

Where

lpverb

Is a string, referred to as a verb, that specifies the action to be performed. The set of available verbs

depends on the particular file or folder. Generally the actions available from an object's context menu are

available verbs. The following verbs are commonly used:

edit Launches an editor and opens the document for editing.

explore Explores the folder specified by lpFile.

find Initiates a search starting from the specified directory.

open Opens the file specified by lpFile.

print Prints the document specified by lpFile.

properties Displays the file or folder's properties.

If set to spaces, then NULL is passed to the Windows function which defaults to the "default" verb or an

open.

 lpFile

is a string that specifies the file or object on which to execute the specified verb.

 lpParameters

is a string that is a string of parameters to be passed to the application specified by lpFile if lpFile is an

executable. If lpFile is a document then lpParameters should be spaces.

 lpDirectory

is a string that specifies the default directory. If set to spaces the current directory is used. (NULL is

passed to the Windows call.)

 nShowcmd

is a Numeric with a value as given under IC_WINDOWS_SHOW_CONSOLE as cmd.

If the Windows ShellExecute call returns with a value greater than 32 than IC_WINDOWS_SHELLEXECUTE

returns a success. Otherwise, it is an error and an exception is generated and the ON EXCEPTION clause is

executed, if provided.

This call is available only on Windows when running on a graphic desktop.

More on this can be seen by looking at the Microsoft call "ShellExecute".

Possible errors include:

Parameter mismatch Invalid Data

Program not found No memory

Path not found Invalid Format

Access Denied Sharing violation

Invalid operation

This call can be used to:

A) start Internet Explorer by giving a valid URL address (www.egns.com)

B) start an e-mail by giving "mailto: <name>".

C) start a find file by giving the verb "find" with lpFile set to a directory specifier.

Basically you should be able to do all the actions associated with an object that can be seen by using Explorer to

view the file and then right-clicking on the object. The top entry in the list is the default selection.

BUILTIN (IC_WINDOWS_SHOW_CONSOLE)

577

B.64. IC_WINDOWS_SHOW_CONSOLE

The IC_WINDOWS_SHOW_CONSOLE builtin specifies how the window is to be shown when running with the

GUI runtime or the Windows ThinClient (icrunrc) screen..

The syntax is:

CALL "IC_WINDOWS_SHOW_CONSOLE" USING cmd

Where

cmd

specifies a PIC 9(2) COMP item with one of the following values:

Value Command Description

1 Hide Hides the window.

2 Maximize Maximizes the window.

3 Minimize Minimizes the window and activates the next
top-level window in the z-order.

4 Restore Activates and displays the window. If the window
is minimized or maximized, the system restores it
to its original size and position. An applica-
tion should specify this flag when restoring a
minimized window.

5 Show Activates the window and displays it in its
current size and position.

6 ShowDefault Sets the show state based on how the program was
started.

7 ShowMaximized Activates the window and displays it as a maxi-
mized window.

8 ShowMinimized Activates the window and displays it as a mini-
mized window.

9 ShowMinNoActive Displays the window as a minimized window. The
active window remains active.

10 ShowNA Displays the window in its current state. The
active window remains active.

11 ShowNoActivate Displays a window in its most recent size and
position. The active window remains active.

12 ShowNormal Activates and displays a window. If the window
is minimized or maximized, the system restores it
to its original size and position.

NOTE: An Active window is where keyboard input is directed.

The following exception status codes may be returned

Exception status code Description

209 (Parameter mismatch on call) Too many or too few USING arguments,
or invalid length for argument

13 (Invalid data) Cmd is not valid

When this builtin is NOT available in the Thinclient case, an error 231 - "Unsupported feature for the current

terminal type" will be given.

Interactive COBOL Language Reference & Developer’s Guide - Part One

578

MOVE 1 TO WINDOW-CMD.
CALL "IC_WINDOWS_SHOW_CONSOLE" USING WINDOW-CMD.

Example:

Suppose the following code appears in a program running on Windows:

The current window will be hidden. If you had used a 3 (minimize), the current window would be minimized.

This builtin is useful with Sp2 programs since it can be used to hide the runtime system’s main window if it is not

needed and restored if it is needed.

INTRINSIC FUNCTIONS (GENERAL DESCRIPTION)

579

VIII. INTRINSIC FUNCTIONS (Added in 3.00)

A. General Description

Each intrinsic function definition specifies:

1) the name and description of the function

2) the type of the function

3) the general format of the function

4) the arguments, if any

5) the returned value.

See Page 129, Function-identifier, for rules and explanations on the referencing of functions.

A.1. Types of Functions

Types of intrinsic functions are:

1) Alphanumeric functions. These are of the class and category alphanumeric. The number of character

positions in this data item is specified in the function definition. Alphanumeric functions have an implicit usage

display. Unless stated otherwise in the definition of a function, the data item is represented in the alphanumeric

coded character set in effect when the function is referenced at runtime.

2) Numeric functions. These are of the class and category numeric. A numeric function has an operational sign.

3) Integer functions. These are of the class and category numeric. An integer function has an operational sign

and no digits to the right of the decimal point.

4) Index functions. These are of the class and category index.

A.2. Arguments

Arguments specify values used in the evaluation of a function. Arguments are specified in the function-

identifier. The definition of a function specifies the number of arguments required, which may be zero, one, or more.

For some functions, the number of arguments may be variable. The order in which arguments are specified in a

function-identifier determines the interpretation given to each value in arriving at the function value.

Arguments may be required to have a certain class or a subset of a certain class, to be a keyword, a type

declaration, or a mnemonic-name. The types of argument are:

1) Alphabetic. An elementary data item of the class alphabetic or an alphanumeric literal containing only

alphabetic characters shall be specified. The size associated with the argument may be used in determining the value

of the function.

2) Alphanumeric. A data item of the class alphabetic or alphanumeric or an alphanumeric literal shall be

specified. The size associated with the argument may be used in determining the value of the function.

3) Index. An index data item shall be specified. The size associated with the argument may be used in

determining the value of the function.

Interactive COBOL Language Reference & Developer’s Guide - Part One

580

4) Integer. An arithmetic expression that will always result in an integer value or an integer data item shall be

specified. The value of the arithmetic expression, including operational sign, is used in determining the value of the

function.

5) Numeric. An arithmetic expression or a numeric data item shall be specified. The value of the arithmetic

expression is used in determining the value of the function.

6) Pointer. A pointer identifier shall be specified. The size associated with the argument may be used in

determining the value of the function.

NOTE: Permissible value errors return 0 for numeric and integer functions as well as raise the SIZE error

condition. It is advisable to use arithmetic statements with SIZE ERROR checks when assigning

function values if there is any possibility that improper arguments are supplied or if a size error could

occur.

A.3. Returned values

The evaluation of a function produces a returned value in a temporary elementary data item. The type of a

function identifies the type of the returned value as specified in the section, Types of functions, on Page 579.

The returned value rules for certain integer and numeric intrinsic functions contain one or more equivalent

arithmetic expressions. An equivalent arithmetic expression is a formal definition that defines the relationship

among a function, its arguments, and its returned value. In the presentation of the equivalent arithmetic expressions

where there is a variable number of occurrences of an argument, the rules may contain an equivalent arithmetic

expression for one, two, and n occurrences.

The returned value of numeric and integer functions depends on whether an equivalent arithmetic expression is

specified for the function.

The returned value for numeric and integer functions is contained in a temporary standard intermediate data

item. With the exception of the CURRENT-DATE function, DATE-TO-YYYYMMDD function, the

DAY-TO-YYYYDDD function, the RANDOM function when no argument is specified, and the YEAR-TO-YYYY

function, the returned value shall be the same for all instances of a given function within a single execution of the

runtime element so long as the value and order of the arguments are the same.

When an equivalent arithmetic expression is specified:

1) the returned value shall equal the value of the equivalent arithmetic expression.

NOTE — As a result, the relation condition

function-identifier = equivalent-arithmetic-expression

will evaluate to true.

A.4. Date conversion functions

The Gregorian calendar is used in the date conversion functions. The starting date of Monday, January 1, 1601,

was chosen to establish a simple relationship between the Standard Date and DAY-OF-WEEK: integer date 1 was a

Monday, DAY-OF-WEEK 1.

INTRINSIC FUNCTIONS (SUMMARY TABLE)

581

A.5. Summary of functions

The following table summarizes the intrinsic functions that are available.

The "arguments" column defines argument type and the "type" column defines the type of the function, as

follows:

Alph means alphabetic
Anum means alphanumeric
Ind means index
Int means integer
Num means numeric
Ptr means pointer

NOTE — Num in the arguments column includes Int. Both Int and Num are listed in the arguments column

when the type of the argument determines the type of the function.

Intrinsic-function-name Arguments Type Value returned

ABS Int1 or
Num1

Depends
upon
argument

The absolute value of argument

ACOS Num1 Num Arccosine of Num1

ANNUITY Num1, Int2 Num Ratio of annuity paid for Int2 periods at
interest of Num1 to initial investment of one

ASIN Num1 Num Arcsine of Num1

ATAN Num1 Num Arctangent of Num1

BYTE-LENGTH Alph1 or
Anum1 or
Ind1 or
Num1 or
Ptr1

Int Length of argument in number of bytes

CHAR Int1 Anum Character in position Int1 of the alphanumeric
program collating sequence

COS Num1 Num Cosine of Num1

CURRENT-DATE Anum Current date and time and difference from
Coordinated Universal Time

DATE-OF-INTEGER Int1 Int Standard date equivalent (YYYYMMDD) of
integer date

DATE-TO-YYYYMMDD Int1, Int2 Int Argument-1 converted from YYMMDD to
YYYYMMDD based on the value of argument-2

DAY-OF-INTEGER Int1 Int Julian date equivalent (YYYYDDD) of integer
date

DAY-TO-YYYYDDD Int1, Int2 Int Argument-1 converted from YYDDD to YYYYDDD
based on the value of argument-2

E Num Value of e, the natural base

EXP Num1 Num e raised to the power Num1

EXP10 Num1 Num 10 raised to the power Num1

FACTORIAL Int1 Int Factorial of Int1

FRACTION-PART Num1 Num Fraction part of Num1

HIGHEST-ALGEBRAIC Int1 or
Num1 or
Anum1

Int
Num

Greatest algebraic value that may be repre-
sented in the argument

INTEGER Num1 Int The greatest integer not greater than Num1

INTEGER-OF-DATE Int1 Int Integer date equivalent of standard date
(YYYYMMDD)

INTEGER-OF-DAY Int1 Int Integer date equivalent of Julian date
(YYYYDDD)

Interactive COBOL Language Reference & Developer’s Guide - Part One

Intrinsic-function-name Arguments Type Value returned

582

INTEGER-PART Num1 Int Integer part of Num1

LENGTH Alph1 or
Anum1 or
Ind1 or
Num1 or
Ptr1

Int Length of argument in number of character
positions

LOG Num1 Num Natural logarithm of Num1

LOG10 Num1 Num Logarithm to base 10 of Num1

LOWER-CASE Alph1 or
Anum1

Depends
upon
argu-
ment*

All letters in the argument are set to lower-
case

LOWEST-ALGEBRAIC Int1 or
Num1 or
Anum1

Int
Num

Lowest algebraic value that may be represented
in the argument.

MAX Alph1 ...
or
Anum1 ...
or
Ind1 ... or
Int1 ... or
Num1 ...

Depends
upon
argu-
ments*

Value of maximum argument

MEAN Num1 ... Num Arithmetic mean of arguments

MEDIAN Num1 ... Num Median of arguments

MIDRANGE Num1 ... Num Mean of minimum and maximum arguments

MIN Alph1 ...
or
Anum1 ...
or
Ind1... or
Int1 ... or
Num1 ...

Depends
upon
argu-
ments*

Value of minimum argument

MOD Int1, Int2 Int Int1 modulo Int2

NUMVAL Anum1 Num Numeric value of simple numeric string

NUMVAL-C Anum1 or
Anum2

Num Numeric value of numeric string with optional
commas and currency sign

NUMVAL-F Anum1 Num Numeric value of numeric string representing a
floating-point number

ORD Alph1 or
Anum1

Int Ordinal position of the argument in collating
sequence

ORD-MAX Alph1 ...
or
Anum1 ...
or
Ind1 or
Num1 ...

Int Ordinal position of maximum argument

ORD-MIN Alph1 ...
or
Anum1 ...
or
Ind1 or
Num1 ...

Int Ordinal position of minimum argument

PI Num The value of pi

PRESENT-VALUE Num1,
Num2 ...

Num Present value of a series of future period-end
amounts, Num2, at a discount rate of Num1

RANDOM Int1 Num Random number

RANGE Int1 ... or
Num1 ...

Depends
upon
argument

Value of maximum argument minus value of
minimum argument

REM Num1, Num2 Num Remainder of Num1/Num2

REVERSE Alph1 or
Anum1

Depends
upon
argu-
ment*

Reverse order of the characters of the argument

INTRINSIC FUNCTIONS (SUMMARY TABLE)

Intrinsic-function-name Arguments Type Value returned

583

SIGN Num1 Int The sign of Num1

SIN Num1 Num Sine of Num1

SQRT Num1 Num Square root of Num1

STANDARD-DEVIATION Num1 ... Num Standard deviation of arguments

SUM Int1 ... or
Num1 ...

Depends
upon
argu-
ments

Sum of arguments

TAN Num1 Num Tangent of Num1

TEST-DATE-YYYYMMDD Int1 Int 0 if Int1 is a valid standard date;
otherwise identifies the sub-field in error

TEST-DAY-YYYYDDD Int1 Int 0 if Int1 is a valid Julian date;
otherwise identifies the sub-field in error

TEST-NUMVAL Anum1 Int 0 if argument-1 conforms to the requirements of
the NUMVAL function; otherwise identifies the
character in error

TEST-NUMVAL-C Anum1 or
Anum2 or
Key2
Key3

Int 0 if argument-1 conforms to the requirements of
the NUMVAL-C function; otherwise identifies the
character in error

TEST-NUMVAL-F Anum1 Int 0 if argument-1 conforms to the requirements of
the NUMVAL-F function; otherwise identifies the
character in error

UPPER-CASE Alph1 or
Anum1

Depends
upon
argu-
ment*

All letters in the argument are set to upper-
case

VARIANCE Num1 ... Num Variance of argument

WHEN-COMPILED Anum Date and time compilation unit was compiled

YEAR-TO-YYYY Int1, Int2 Int Argument-1 converted from YY to YYYY based on
the value of argument-2

* A function that has only alphabetic arguments is type alphanumeric.

TABLE 36. Summary of Intrinsic Functions

Interactive COBOL Language Reference & Developer’s Guide - Part One

584

01 A PIC S999 VALUE -987.
01 B PIC S999V99 VALUE -876.98.
01 C PIC S999V99 VALUE 0.
01 D PIC S999V99.

 COMPUTE D = FUNCTION ABS (A).
 IF D = 987
 PERFORM CORRECT-VALUE.

 COMPUTE D = FUNCTION ABS (B).
 IF D = 876.98
 PERFORM CORRECT-VALUE.

 COMPUTE D = FUNCTION ABS (C).
 IF D = 0
 PERFORM CORRECT-VALUE.

B. Intrinsic Functions

B.1. ABS

The ABS function returns the absolute value of the argument.

The type of this function depends on the argument type as follows:

Argument type Function type
Integer Integer
Numeric Numeric

B.1.1 General format

FUNCTION ABS (argument-1)

B.1.2 Arguments

1) Argument-1 shall be class numeric.

B.1.3 Returned values

1) The equivalent arithmetic expression shall be as follows:

a) When the value of argument-1 is zero or positive,

(argument-1)

b) When the value of argument-1 is negative,

(– argument-1)

B.1.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 29. ABS function

INTRINSIC FUNCTIONS (ACOS)

585

01 B PIC S9(10) VALUE 4.
01 WS-NUM PIC S9(5)V9(6).
01 MIN-RANGE PIC S9(5)V9(7).
01 MAX-RANGE PIC S9(5)V9(7).

 MOVE ZERO TO WS-NUM.
 MOVE 0.000000 TO MIN-RANGE.
 MOVE 0.000020 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION ACOS(1.0).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

 EVALUATE FUNCTION ACOS(0)
 WHEN 1.57076 THRU 1.57082
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-NUM.
 MOVE -0.000040 TO MIN-RANGE.
 MOVE 0.00004 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION ACOS(IND (B) - 2).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

B.2. ACOS

The ACOS function returns a numeric value in radians that approximates the arccosine of argument-1.

The type of this function is numeric.

B.2.1 General format

FUNCTION ACOS (argument-1)

B.2.2 Arguments

1) Argument-1 shall be class numeric.

2) The value of argument-1 shall be greater than or equal to –1 and less than or equal to +1.

B.2.3 Returned values

1) The returned value is the approximation of the arccosine of argument-1 and is greater than or equal to zero

and less than or equal to pi.

B.2.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 30. ACOS function

Interactive COBOL Language Reference & Developer’s Guide - Part One

586

B.3. ANNUITY

The ANNUITY function (annuity immediate) returns a numeric value that approximates the ratio of an annuity paid

at the end of each period for the number of periods specified by argument-2 to an initial investment of one. Interest

is earned at the rate specified by argument-1 and is applied at the end of the period, before the payment.

The type of this function is numeric.

B.3.1 General format

FUNCTION ANNUITY (argument-1, argument-2)

B.3.2 Arguments

1) Argument-1 shall be class numeric.

2) The value of argument-1 shall be greater than or equal to zero.

3) Argument-2 shall be a positive integer.

B.3.3 Returned values

1) The equivalent arithmetic expression shall be as follows:

a) When the value of argument-1 is zero,

(1 / argument-2)

b) When the value of argument-1 is not zero,

(argument-1 / (1 – (1 + argument-1)** (–argument-2)))

INTRINSIC FUNCTIONS (ANNUITY)

587

01 WS-NUM PIC S9(5)V9(6).
01 MIN-RANGE PIC S9(5)V9(7).
01 MAX-RANGE PIC S9(5)V9(7).

 EVALUATE FUNCTION ANNUITY(2.9, 4)
 WHEN 2.91252 THRU 2.91264
 PERFORM CORRECT-VALUE
 WHEN OTHER
 PERFORM BAD-VAL.
 MOVE ZERO TO WS-NUM.
 MOVE 0.576553 TO MIN-RANGE.
 MOVE 0.576599 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION ANNUITY(
 FUNCTION ANNUITY(0, 3), 3).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-NUM.
 MOVE 4.49978 TO MIN-RANGE.
 MOVE 5.50022 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION ANNUITY(0, 2) + 5.
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

B.3.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 31. ANNUITY function

Interactive COBOL Language Reference & Developer’s Guide - Part One

588

01 PI PIC S9V9(17) VALUE 3.141592654.
01 WS-NUM PIC S9(5)V9(6).
01 MIN-RANGE PIC S9(5)V9(7).
01 MAX-RANGE PIC S9(5)V9(7).

 EVALUATE FUNCTION ASIN(0.5)
 WHEN 0.523588 THRU 0.523609
 PERFORM CORRECT-VALUE
 WHEN OTHER
 PERFORM BAD-VAL.

 MOVE ZERO TO WS-NUM.
 MOVE -1.52610 TO MIN-RANGE.
 MOVE -1.52604 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION ASIN(-.999).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-NUM.
 MOVE 0.142546 TO MIN-RANGE.
 MOVE 0.142558 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION ASIN(FUNCTION ASIN(PI - 3)).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

B.4. ASIN

The ASIN function returns a numeric value in radians that approximates the arcsine of argument-1.

The type of this function is numeric.

B.4.1 General format

FUNCTION ASIN (argument-1)

B.4.2 Arguments

1) Argument-1 shall be class numeric.

2) The value of argument-1 shall be greater than or equal to –1 and less than or equal to +1.

B.4.3 Returned values

1) The returned value is the approximation of the arcsine of argument-1 and is greater than or equal to –pi/2

and less than or equal to +pi/2.

B.4.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 32. ASIN function

INTRINSIC FUNCTIONS (ATAN)

589

01 B PIC S9(10) VALUE 2.
01 SQRT3 PIC S9V9(17) VALUE 1.732050808.
01 ARR VALUE "40537".
 02 IND OCCURS 5 TIMES PIC 9.
01 WS-NUM PIC S9(5)V9(6).
01 MIN-RANGE PIC S9(5)V9(7).
01 MAX-RANGE PIC S9(5)V9(7).

 MOVE ZERO TO WS-NUM.
 MOVE -0.785414 TO MIN-RANGE.
 MOVE -0.785382 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION ATAN(-1).
 IF (WS-NUM >= MIN-RANGE) AND (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-NUM.
 MOVE -0.000020 TO MIN-RANGE.
 MOVE 0.000020 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION ATAN(IND(B)).
 IF (WS-NUM >= MIN-RANGE) AND (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-NUM.
 MOVE 0.522827 TO MIN-RANGE.
 MOVE 0.522869 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION ATAN((1 / SQRT3) - .001).
 IF (WS-NUM >= MIN-RANGE) AND (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

B.5. ATAN

The ATAN function returns a numeric value in radians that approximates the arctangent of argument-1.

The type of this function is numeric.

B.5.1 General format

FUNCTION ATAN (argument-1)

B.5.2 Arguments

1) Argument-1 shall be class numeric.

B.5.3 Returned values

1) The returned value is the approximation of the arctangent of argument-1 and is greater than –pi/2 and less

than +pi/2.

B.5.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 33. ATAN function

Interactive COBOL Language Reference & Developer’s Guide - Part One

590

B.6. BYTE-LENGTH

The BYTE-LENGTH function returns an integer equal to the length of the argument in bytes.

The type of the function is integer.

B.6.1 General format

FUNCTION BYTE-LENGTH (argument-1)

B.6.2 Arguments

1) Argument-1 shall be an alphanumeric literal or a data item of any class or category.

B.6.3 Returned values

1) If argument-1 is an elementary data item or a literal, the returned value shall be an integer equal to the length

of argument-1 in bytes.

2) If argument-1 is a group data item:

a) If argument-1 or any data item subordinate to argument-1 is described with the DEPENDING phrase of

the OCCURS clause, the returned value shall be an integer equal to the length of argument-1 in bytes, as a sending

operand, determined by evaluation of the data item specified in the DEPENDING phrase in accordance with the

rules of the OCCURS clause. The contents of the data item specified in the DEPENDING phrase are used at the

time the BYTE-LENGTH function is evaluated.

b) Otherwise, the value returned shall be an integer equal to the length of argument-1 in bytes.

c) The returned length shall include the number of implicit FILLER positions, if any, in argument-1.

B.6.4 Example

The following code fragments illustrate the use of this function.

INTRINSIC FUNCTIONS (BYTE-LENGTH)

591

01 DATA-BLOCK.
 03 DATA-ARRAY OCCURS 1 TO 5 TIMES DEPENDING ON I.
 05 DATA-ELEMENTS OCCURS 65535 TIMES.
 07 DATA-COUNTER PIC 9(18).
 07 ARRAY-VALUE PIC 9(18).
 07 FILL-A-BYTE PIC X(15).

01 A PIC S999 VALUE -999.
01 B PIC -999.99.
01 C PIC 9(9) COMP.
01 I PIC 99 VALUE 3.
01 NO-BYTES PIC 9(10).

 COMPUTE NO-BYTES = FUNCTION BYTE-LENGTH (A).
 IF NO-BYTES = 3 PERFORM CORRECT-VALUE.

 COMPUTE NO-BYTES = FUNCTION BYTE-LENGTH (B).
 IF NO-BYTES = 7 PERFORM CORRECT-VALUE.

 COMPUTE NO-BYTES = FUNCTION BYTE-LENGTH (C).
 IF NO-BYTES = 4 PERFORM CORRECT-VALUE.

 COMPUTE NO-BYTES = FUNCTION BYTE-LENGTH (DATA-BLOCK).
 IF NO-BYTES = 10026855 PERFORM CORRECT-VALUE.

 MOVE 5 TO I.
 COMPUTE NO-BYTES = FUNCTION BYTE-LENGTH (DATA-BLOCK).
 IF NO-BYTES = 16711425 PERFORM CORRECT-VALUE.

 COMPUTE NO-BYTES = FUNCTION BYTE-LENGTH (DATA-ARRAY (1)).
 IF NO-BYTES = 3342285 PERFORM CORRECT-VALUE.

 COMPUTE NO-BYTES = FUNCTION BYTE-LENGTH (DATA-ELEMENTS (1, 1)).
 IF NO-BYTES = 51 PERFORM CORRECT-VALUE.

 COMPUTE NO-BYTES = FUNCTION BYTE-LENGTH (FILL-A-BYTE (1, 1)).
 IF NO-BYTES = 15 PERFORM CORRECT-VALUE.

EXAMPLE 34. BYTE-LENGTH function

Interactive COBOL Language Reference & Developer’s Guide - Part One

592

01 D PIC S9(10) VALUE 100.
01 ARR VALUE "066037100070044".
 02 IND OCCURS 5 TIMES PIC 9(3).
01 WS-ANUM PIC X.

 MOVE SPACE TO WS-ANUM.
 MOVE FUNCTION CHAR(37) TO WS-ANUM.
 IF WS-ANUM = "$" THEN
 PERFORM OK.

 MOVE SPACE TO WS-ANUM.
 MOVE FUNCTION CHAR(IND(5)) TO WS-ANUM.
 IF WS-ANUM = "+" THEN
 PERFORM OK.

 MOVE SPACE TO WS-ANUM.
 MOVE FUNCTION CHAR(D) TO WS-ANUM.
 IF WS-ANUM = "c" THEN
 PERFORM OK.

B.7. CHAR

The CHAR function returns a one-character alphanumeric value that is a character in the alphanumeric program

collating sequence having the ordinal position equal to the value of argument-1. Since ICOBOL uses the ASCII

collating sequence, these values are 1 through 256.

The type of this function is alphanumeric.

B.7.1 General format

FUNCTION CHAR (argument-1)

B.7.2 Arguments

1) Argument-1 shall be an integer.

2) The value of argument-1 shall be greater than zero and less than or equal to the number of positions in the

alphanumeric program collating sequence.

B.7.3 Returned values

1) The returned value shall be the character in the alphanumeric program collating sequence having the ordinal

position specified by argument-1.

B.7.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 35. CHAR function

INTRINSIC FUNCTIONS (COS)

593

01 PI PIC S9V9(17) VALUE 3.141592654.
01 MINUSPI PIC S9V9(17) VALUE -3.141592654.
01 WS-NUM PIC S9(5)V9(6).
01 MIN-RANGE PIC S9(5)V9(7).
01 MAX-RANGE PIC S9(5)V9(7).

 MOVE ZERO TO WS-NUM.
 MOVE -1.00000 TO MIN-RANGE.
 MOVE -0.999980 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION COS(MINUSPI).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-NUM.
 MOVE -0.000040 TO MIN-RANGE.
 MOVE 0.000040 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION COS(PI / 2).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-NUM.
 MOVE 0.999980 TO MIN-RANGE.
 MOVE 1.00000 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION COS(0).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

B.8. COS

The COS function returns a numeric value that approximates the cosine of an angle or arc, expressed in radians, that

is specified by argument-1.

The type of this function is numeric.

B.8.1 General format

FUNCTION COS (argument-1)

B.8.2 Arguments

1) Argument-1 shall be class numeric.

B.8.3 Returned values

1) The returned value is the approximation of the cosine of argument-1 and is greater than or equal to –1 and

less than or equal to +1.

B.8.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 36. COS function

Interactive COBOL Language Reference & Developer’s Guide - Part One

594

B.9. CURRENT-DATE

The CURRENT-DATE function returns a 21-character alphanumeric value that represents the calendar date, time of

day, and local time differential factor provided by the system on which the function is evaluated.

The type of this function is alphanumeric.

B.9.1 General format

FUNCTION CURRENT-DATE

B.9.2 Returned values

1) The character positions returned, numbered from left to right, are:

Character
Positions

Contents

1-4 Four numeric digits of the year in the Gregorian calendar.

5-6 Two numeric digits of the month of the year, in the range 01 through 12.

7-8 Two numeric digits of the day of the month, in the range 01 through 31.

9-10 Two numeric digits of the hours past midnight, in the range 00 through 23.

11-12 Two numeric digits of the minutes past the hour, in the range 00 through 59.

13-14 Two numeric digits of the seconds past the minute, in the range 00 through 59.

15-16 Two numeric digits of the hundredths of a second past the second, in the range 00
through 99. The value 00 is returned if the system on which the function is
evaluated does not have the facility to provide the fractional part of a second.

17 Either the character '–', the character '+', or the character '0'. The character '–' is
returned if the local time indicated in the previous character positions is behind
Coordinated Universal Time. The character '+' is returned if the local time
indicated is the same as or ahead of Coordinated Universal Time. The character
'0' is returned if the system on which this function is evaluated does not have the
facility to provide the local time differential factor.

18-19 If character position 17 is '–', two numeric digits are returned in the range 00
through 12 indicating the number of hours that the reported time is behind
Coordinated Universal Time. If character position 17 is '+', two numeric digits are
returned in the range 00 through 13 indicating the number of hours that the
reported time is ahead of Coordinated Universal Time. If character position 17 is
'0', the value 00 is returned.

20-21 Two numeric digits are returned in the range 00 through 59 indicating the number
of additional minutes that the reported time is ahead of or behind Coordinated
Universal Time, depending on whether character position 17 is '+' or '–', respec-
tively. If character position 17 is '0', the value 00 is returned.

B.9.3 Example

The following code fragments illustrate the use of this function.

INTRINSIC FUNCTIONS (CURRENT-DATE)

595

01 TODAYS-INFO.
 03 TODAYS-YEAR PIC 9(4).
 03 TODAYS-MONTH PIC 99.
 03 TODAYS-DAY PIC 99.
 03 TODAYS-HOUR PIC 99.
 03 TODAYS-MIN PIC 99.
 03 TODAYS-SEC PIC 99.
 03 TODAYS-HSEC PIC 99.

 MOVE SPACES TO TODAYS-INFO.
 MOVE FUNCTION CURRENT-DATE TO TODAYS-INFO.

EXAMPLE 37. CURRENT-DATE function

Interactive COBOL Language Reference & Developer’s Guide - Part One

596

01 A PIC S9(10) VALUE 400.
01 C PIC S9(10) VALUE 300.
01 D PIC S9(10) VALUE 1.
01 ARG1 PIC S9(10) VALUE 1.
01 ARR VALUE "40537".
 02 IND OCCURS 5 TIMES PIC 9.
01 TEMP PIC S9(5)V9(5).
01 WS-DATE PIC 9(8).

 MOVE ZERO TO WS-DATE.
 COMPUTE WS-DATE = FUNCTION DATE-OF-INTEGER(730).
 IF WS-DATE = 16021231 THEN
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-DATE.
 COMPUTE WS-DATE = FUNCTION DATE-OF-INTEGER(1).
 IF WS-DATE = 16010101 THEN
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-DATE.
 COMPUTE WS-DATE = FUNCTION DATE-OF-INTEGER(145655).
 IF WS-DATE = 19991016 THEN
 PERFORM CORRECT-VALUE.

B.10. DATE-OF-INTEGER

The DATE-OF-INTEGER function converts a date in the Gregorian calendar from integer date form to standard date

form (YYYYMMDD).

The type of this function is integer.

B.10.1 General format

FUNCTION DATE-OF-INTEGER (argument-1)

B.10.2 Arguments

1) Argument-1 is a positive integer that represents a number of days succeeding December 31, 1600, in the

Gregorian calendar. It shall not exceed the value of FUNCTION INTEGER-OF-DATE(99991231), which is

3,067,671.

B.10.3 Returned values

1) The returned value represents the ISO standard date equivalent of the integer specified in argument-1.

2) The returned value is in the form (YYYYMMDD) where YYYY represents a year in the Gregorian calendar;

MM represents the month of that year; and DD represents the day of that month.

B.10.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 38. DATE-OF-INTEGER function

INTRINSIC FUNCTIONS (DATE-TO-YYYYMMDD)

597

B.11. DATE-TO-YYYYMMDD

The DATE-TO-YYYYMMDD function converts argument-1 from the form YYmmdd to the form YYYYmmdd.

Argument-2, when added to the year at the time of execution, defines the ending year of a 100-year interval, or

sliding window, into which the year of argument-1 falls.

The type of the function is integer.

B.11.1 General format

FUNCTION DATE-TO-YYYYMMDD (argument-1 [, argument-2])

B.11.2 Arguments

1) Argument-1 shall be zero or a positive integer less than 1000000.

NOTE — This function does not check argument-1 to ensure that it is a valid date. The
returned value can be an argument to the TEST-DATE-YYYYMMDD function to check its
validity.

2) Argument-2 shall be an integer.

3) If argument-2 is omitted, the function shall be evaluated as though 50 were specified.

4) The sum of the year at the time of execution and the value of argument-2 shall be less than 10000 and greater

than 1699.

B.11.3 Returned values

1) The equivalent arithmetic expression shall be as follows:

(FUNCTION YEAR-TO-YYYY (YY, argument-2) * 10000 + mmdd)

where

YY = FUNCTION INTEGER (argument-1/10000)

mmdd = FUNCTION MOD (argument-1, 10000)

and where argument-1 of the INTEGER and MOD functions and argument-2 of the YEAR-TO-YYYY

function are the same as argument-1 and argument-2 of the DATE-TO-YYYYMMDD function itself.

NOTES

1 — In the year 2002 the returned value for FUNCTION DATE-TO-YYYYMMDD (851003, 10) is 19851003. In the year
1994 the returned value for FUNCTION DATE-TO-YYYYMMDD (981002, (–10)) is 18981002.

2 — This function supports a sliding window algorithm. See the notes for the YEAR-TO-YYYY function for a discussion of
how to specify a fixed window.

Interactive COBOL Language Reference & Developer’s Guide - Part One

598

77 WS-DATE PIC 9(8).

 COMPUTE WS-DATE = FUNCTION DATE-TO-YYYYMMDD (700615, 5).
 IF WS-DATE = 19700615 THEN
 PERFORM CORRECT-VALUE.

 COMPUTE WS-DATE = FUNCTION DATE-TO-YYYYMMDD (490615).
 IF WS-DATE = 20490615 THEN
 PERFORM CORRECT-VALUE.

 COMPUTE WS-DATE = FUNCTION DATE-TO-YYYYMMDD (040615, -10).
 IF WS-DATE = 19040615 THEN
 PERFORM CORRECT-VALUE.

B.11.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 39. DATE-TO-YYYYMMDD function

INTRINSIC FUNCTIONS (DAY-OF-INTEGER)

599

77 WS-DATE PIC 9(7).
77 A PIC S9(10) VALUE 400.

 COMPUTE WS-DATE = FUNCTION DAY-OF-INTEGER (145732).
 IF WS-DATE = 2000001 THEN
 PERFORM CORRECT-VALUE.

 EVALUATE FUNCTION DAY-OF-INTEGER(A)
 WHEN 1602035
 PERFORM CORRECT-VALUE.

 COMPUTE WS-DATE = FUNCTION DAY-OF-INTEGER(1).
 IF WS-DATE = 1601001 THEN
 PERFORM CORRECT-VALUE.

B.12. DAY-OF-INTEGER

The DAY-OF-INTEGER function converts a date in the Gregorian calendar from integer date form to Julian date

form (YYYYDDD).

The type of this function is integer.

B.12.1 General format

FUNCTION DAY-OF-INTEGER (argument-1)

B.12.2 Arguments

1) Argument-1 is a positive integer that represents a number of days succeeding December 31, 1600, in the

Gregorian calendar. It shall not exceed the value of FUNCTION INTEGER-OF-DATE(99991231).

B.12.3 Returned values

1) The returned value represents the Julian equivalent of the integer specified in argument-1.

2) The returned value is an integer of the form (YYYYDDD) where YYYY represents a year in the Gregorian

calendar and DDD represents the day of that year.

B.12.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 40. DAY-OF-INTEGER function

Interactive COBOL Language Reference & Developer’s Guide - Part One

600

B.13. DAY-TO-YYYYDDD

The DAY-TO-YYYYDDD function converts argument-1 from the form YYnnn to the form YYYYnnn. Argument-

2, when added to the year at the time of execution, defines the ending year of a 100-year interval, or sliding window,

into which the year of argument-1 falls.

The type of the function is integer.

B.13.1 General format

FUNCTION DAY-TO-YYYYDDD (argument-1 [, argument-2])

B.13.2 Arguments

1) Argument-1 shall be zero or a positive integer less than 100000.

Note — This function does not check argument-1 to ensure that it is a valid date. The returned value can be

an argument to the TEST-DAY-YYYYDDD function to check its validity.

2) Argument-2 shall be an integer.

3) If argument-2 is omitted, the function shall be evaluated as though 50 were specified.

4) The sum of the year at the time of execution and the value of argument-2 shall be less than 10000 and greater

than 1699.

B.13.3 Returned values

1) The equivalent arithmetic expression shall be as follows:

(FUNCTION YEAR-TO-YYYY (YY, argument-2) * 1000 + nnn)

where

YY = FUNCTION INTEGER (argument-1/1000)

nnn = FUNCTION MOD (argument-1, 1000)

and where argument-1 of the INTEGER and MOD functions and argument-2 of the YEAR-TO-YYYY

function are the same as argument-1 and argument-2 of the DAY-TO-YYYYDDD function itself.

NOTES

1) In the year 2002 the returned value for FUNCTION DAY-TO-YYYYDDD (10004, 20) is 2010004. In the year 2013
the returned value for FUNCTION DAY-TO-YYYYDDD (95005, (–10)) is 1995005.

2) This function supports a sliding window algorithm. See the notes for the YEAR-TO-YYYY function for a discussion
of how to specify a fixed window.

INTRINSIC FUNCTIONS (DAY-TO-YYYYDDD)

601

01 YEARVAL PIC 9(7).

DISPLAY "FUNCTION DAY-TO-YYYYDDD " NO ADVANCING.
COMPUTE YEARVAL = FUNCTION DAY-TO-YYYYDDD (10004, 20)
IF YEARVAL = 2010004
 PERFORM CORRECT-VALUE.

COMPUTE YEARVAL = FUNCTION DAY-TO-YYYY (85005, (-10))
IF YEARVAL = 1985005
 PERFORM CORRECT-VALUE.

B.13.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 41. DAY-TO-YYYYDDD function

Interactive COBOL Language Reference & Developer’s Guide - Part One

602

77 A PIC S9V9(17).

 COMPUTE A = FUNCTION E.
 IF A = 2.71828182845904523
 PERFORM CORRECT-VALUE.

B.14. E

The E function returns an approximation of e, the base of natural logarithms.

The type of the function is numeric.

B.14.1 General format

FUNCTION E

B.14.2 Returned values

1) The equivalent arithmetic expression shall be

(2 + .718281828459045235)

B.14.3 Example

The following code fragments illustrate the use of this function.

EXAMPLE 42. E function

INTRINSIC FUNCTIONS (EXP)

603

77 A PIC S999 VALUE -5.
77 RESULT PIC S9(9)V9(9).

 COMPUTE RESULT = FUNCTION EXP (3).
 IF RESULT = 20.085536923
 PERFORM CORRECT-VALUE.

 COMPUTE RESULT = FUNCTION EXP (A).
 IF RESULT = 0.006737946
 PERFORM CORRECT-VALUE.

 COMPUTE RESULT = FUNCTION EXP (14.5)
 IF RESULT = 1982759.263537568
 PERFORM CORRECT-VALUE.

B.15. EXP

The EXP function returns an approximation of the value of e raised to the power of the argument.

The type of the function is numeric.

B.15.1 General format

FUNCTION EXP (argument-1)

B.15.2 Arguments

1) Argument-1 shall be class numeric.

B.15.3 Returned values

1) The equivalent arithmetic expression shall be:

(FUNCTION E ** argument-1)

B.15.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 43. EXP function

Interactive COBOL Language Reference & Developer’s Guide - Part One

604

77 A PIC S999 VALUE -5.
77 RESULT PIC S9(9)V9(9).
77 RESULTA PIC S9(18).

 COMPUTE RESULT = FUNCTION EXP10 (3).
 IF RESULT = 1000.00000
 PERFORM CORRECT-VALUE.

 COMPUTE RESULT = FUNCTION EXP10 (A).
 IF RESULT = 0.000010000
 PERFORM CORRECT-VALUE.

 COMPUTE RESULT = FUNCTION EXP10 (14.5).
 IF RESULTA = 316227766016837
 PERFORM CORRECT-VALUE.

B.16. EXP10

The EXP10 function returns an approximation of the value of 10 raised to the power of the argument.

The type of the function is numeric.

B.16.1 General format

FUNCTION EXP10 (argument-1)

B.16.2 Arguments

1) Argument-1 shall be class numeric.

B.16.3 Returned values

1) The equivalent arithmetic expression shall be:

(10 ** argument-1)

B.16.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 44. EXP10 function

INTRINSIC FUNCTIONS (FACTORIAL)

605

01 B PIC 9(10) VALUE 2.
01 ARR VALUE "40537".
 02 IND OCCURS 5 TIMES PIC 9.
01 RESULT PIC 9(18).

 COMPUTE RESULT = FUNCTION FACTORIAL (1).
 IF RESULT = 1 PERFORM CORRECT-VALUE.

 COMPUTE RESULT = FUNCTION FACTORIAL (IND (B)).
 IF RESULT = 1 PERFORM CORRECT-VALUE.

 COMPUTE RESULT = FUNCTION FACTORIAL (B + 7).
 IF RESULT = 362880 PERFORM CORRECT-VALUE.

 COMPUTE RESULT = FUNCTION FACTORIAL (B).
 IF RESULT = 2 PERFORM CORRECT-VALUE.

B.17. FACTORIAL

The FACTORIAL function returns an integer that is the factorial of argument-1.

The type of this function is integer.

B.17.1 General format

FUNCTION FACTORIAL (argument-1)

B.17.2 Arguments

1) Argument-1 shall be an integer greater than or equal to zero.

B.17.3 Returned values

1) The equivalent arithmetic expression shall be as follows:

a) When the value of argument-1 is 0 or 1,

(1)

b) When the value of argument-1 is 2,

(2)

c) When the value of argument-1 is n,

(n * (n – 1) * (n – 2) * ... * 1)

B.17.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 45. FACTORIAL function

Interactive COBOL Language Reference & Developer’s Guide - Part One

606

77 WS-FRACTION PIC -99.999

 COMPUTE WS-FRACTION = FUNCTION FRACTION-PART(6.3 - (4.2 / 2)).
 IF WS-FRACTION = .2
 PERFORM CORRECT-VALUE.

 COMPUTE WS-FRACTION =
 FUNCTION FRACTION-PART(1.35) - FUNCTION FRACTION-PART(2.85).
 IF WS-FRACTION = -.5
 PERFORM CORRECT-VALUE.

 EVALUATE FUNCTION FRACTION-PART (123.7890675)
 WHEN .7890675
 PERFORM CORRECT-VALUE.

B.18. FRACTION-PART

The FRACTION-PART function returns a numeric value that is the fraction portion of the argument.

The type of the function is numeric.

B.18.1 General format

FUNCTION FRACTION-PART (argument-1)

B.18.2 Arguments

1) Argument-1 shall be of the class numeric.

B.18.3 Returned values

1) The equivalent arithmetic expression shall be:

(argument-1 – FUNCTION INTEGER-PART (argument-1))

where the argument for the INTEGER-PART function is the same as for the FRACTION-PART function

itself.

NOTE — If the value of argument-1 is +1.5, +0.5 is returned. If the value of argument-1 is –1.5, –0.5 is returned.

B.18.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 46. FRACTION-PART function

INTRINSIC FUNCTIONS (HIGHEST-ALGEBRAIC)

607

B.19. HIGHEST-ALGEBRAIC

The HIGHEST-ALGEBRAIC function returns a value that is equal to the greatest algebraic value that may be

represented in argument-1.

The type of this function depends upon the argument types as follows:

Argument type Function type
Integer Integer
Numeric Numeric
Numeric-edited Numeric

B.19.1 General format

FUNCTION HIGHEST-ALGEBRAIC (argument-1)

B.19.2 Arguments

1) Arguments-1 shall be an elementary data item of category numeric or numeric-edited.

B.19.3 Returned values

1) The value returned is equal to the positive algebraic value of greatest magnitude that may be represented in

argument-1.

NOTE — The following illustrates the expected results for some values of argument-1.

Argument-1
characteristics Value returned

S999 +999
S9(4) BINARY +9999
99V9(3) +99.999
$**,**9.99BCR +99999.99
$**,**9.99 +99999.99

B.19.4 Example

The following code fragments illustrate the use of this function.

77 A PIC S9(5)V9(3).
77 B PIC S9(16) COMP.
77 C PIC $$$$$$$9.99.
77 RESULT PIC 9(18).

 COMPUTE RESULT = FUNCTION HIGHEST-ALGEBRAIC (A).
 IF RESULT = 99999
 PERFORM CORRECT-VALUE.

 COMPUTE RESULT = FUNCTION HIGHEST-ALGEBRAIC (B).
 IF RESULT = 36028797018963967
 PERFORM CORRECT-VALUE.

 COMPUTE RESULT = FUNCTION HIGHEST-ALGEBRAIC (C).
 IF RESULT = 9999999
 PERFORM CORRECT-VALUE.

EXAMPLE 47. HIGHEST-ALGEBRAIC function

Interactive COBOL Language Reference & Developer’s Guide - Part One

608

B.20. INTEGER

The INTEGER function returns the greatest integer value that is less than or equal to the argument.

The type of this function is integer.

B.20.1 General format

FUNCTION INTEGER (argument-1)

B.20.2 Arguments

1) Argument-1 shall be class numeric.

B.20.3 Returned values

1) Argument-1 is not rounded.

2) The returned value is the greatest integer less than or equal to the value of argument-1

NOTE — For example, if the value of argument-1 is –1.5, –2 is returned. If the value of argument-1 is +1.5, +1 is
returned.

B.20.4 Example

The following code fragments illustrate the use of this function.

77 WS-INT PIC S9(10).

 COMPUTE WS-INT = FUNCTION INTEGER (-9.763).
 IF WS-INT = -10
 PERFORM CORRECT-VALUE.

 COMPUTE WS-INT = FUNCTION INTEGER (230492.4828).
 IF WS-INT = 230492
 PERFORM CORRECT-VALUE.

 COMPUTE WS-INT = FUNCTION INTEGER (0.00032).
 IF WS-INT = 0
 PERFORM CORRECT-VALUE.

EXAMPLE 48. INTEGER function

INTRINSIC FUNCTIONS (INTEGER-OF-DATE)

609

77 WS-INT PIC 9(10).

 COMPUTE WS-INT = FUNCTION INTEGER-OF-DATE (20000101).
 IF WS-INT = 145732 PERFORM CORRECT-VALUE.

 COMPUTE WS-INT = FUNCTION INTEGER-OF-DATE (16010101).
 IF WS-INT = 1 PERFORM CORRECT-VALUE.

 MOVE 16010101 TO WS-INT.
 PERFORM DATEOFINT-TEST
 UNTIL FUNCTION INTEGER-OF-DATE(WS-INT) > 10.
 IF WS-INT = 16010111 PERFORM CORRECT-VALUE.

DATEOFINT-TEST.
 COMPUTE WS-INT = WS-INT + 1.

B.21. INTEGER-OF-DATE

The INTEGER-OF-DATE function converts a date in the Gregorian calendar from standard date form

(YYYYMMDD) to integer date form.

The type of this function is integer.

B.21.1 General format

FUNCTION INTEGER-OF-DATE (argument-1)

B.21.2 Arguments

1) Argument-1 shall be an integer of the form YYYYMMDD, whose value is obtained from the calculation

(YYYY * 10,000) + (MM * 100) + DD.

a) YYYY represents the year in the Gregorian calendar. It shall be an integer greater than 1600 and less

than 10000.

b) MM represents a month and shall be a positive integer less than 13.

c) DD represents a day and shall be a positive integer less than 32 provided that it is valid for the specified

month and year combination.

B.21.3 Returned values

1) The returned value is an integer that is the number of days the date represented by argument-1 succeeds

December 31, 1600, in the Gregorian calendar.

B.21.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 49. INTEGER-OF-DATE function

Interactive COBOL Language Reference & Developer’s Guide - Part One

610

01 A PIC S9(10) VALUE 1602035.
01 ARR VALUE "16010011602035".
 02 IND OCCURS 2 TIMES PIC 9(7).
01 WS-INT PIC 9(10).
 EVALUATE FUNCTION INTEGER-OF-DAY(A)
 WHEN 400
 PERFORM CORRECT-VALUE.

 IF FUNCTION INTEGER-OF-DAY(IND(1)) = 1 THEN
 PERFORM CORRECT-VALUE.

 COMPUTE WS-INT = FUNCTION INTEGER-OF-DAY(A) + 10.
 IF WS-INT = 410 THEN
 PERFORM CORRECT-VALUE.

B.22. INTEGER-OF-DAY

The INTEGER-OF-DAY function converts a date in the Gregorian calendar from Julian date form (YYYYDDD) to

integer date form.

The type of this function is integer.

B.22.1 General format

FUNCTION INTEGER-OF-DAY (argument-1)

B.22.2 Arguments

1) Argument-1 shall be an integer of the form YYYYDDD, whose value is obtained from the calculation

(YYYY * 1000) + DDD.

a) YYYY represents the year in the Gregorian calendar. It shall be an integer greater than 1600 and less

than 10000.

b) DDD represents the day of the year. It shall be a positive integer less than 367 provided that it is valid

for the year specified.

B.22.3 Returned values

1) The returned value is an integer that is the number of days the date represented by argument-1 succeeds

December 31, 1600, in the Gregorian calendar.

B.22.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 50. INTEGER-OF-DAY function

INTRINSIC FUNCTIONS (INTEGER-PART)

611

77 WS-INTEGER PIC -99.999

 COMPUTE WS-INTEGER =
FUNCTION INTEGER-PART(6.3 - (4.2 / 2)).

 IF WS-INTEGER = 4 PERFORM CORRECT-VALUE.

 COMPUTE WS-INTEGER =
FUNCTION INTEGER-PART(1.35) -

 FUNCTION INTEGER-PART(2.85).

 IF WS-INTEGER = 0 PERFORM CORRECT-VALUE.

 EVALUATE FUNCTION INTEGER-PART (123.7890675)
 WHEN 123
 PERFORM CORRECT-VALUE.

B.23. INTEGER-PART

The INTEGER-PART function returns an integer that is the integer portion of argument-1.

The type of this function is integer.

B.23.1 General format

FUNCTION INTEGER-PART (argument-1)

B.23.2 Arguments

1) Argument-1 shall be class numeric.

B.23.3 Returned values

1) The equivalent arithmetic expression shall be:

(FUNCTION SIGN (argument-1) * FUNCTION INTEGER (FUNCTION ABS (argument-1)))

where the arguments for the SIGN and ABS functions are the same as for the INTEGER-PART function

itself.

NOTE — If the value of argument-1 is +1.5, +1 is returned; if the value of argument-1 is –1.5, –1 is

returned; and if the value of argument-1 is zero, zero is returned.

B.23.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 51. INTEGER-PART function

Interactive COBOL Language Reference & Developer’s Guide - Part One

612

B.24. LENGTH

The LENGTH function returns an integer equal to the length of the argument in alphanumeric character positions.

The type of this function is integer.

B.24.1 General format

FUNCTION LENGTH (argument-1)

B.24.2 Arguments

1) Argument-1 shall be alphanumeric literal or a data item of any class or category.

B.24.3 Returned values

1) If argument-1 is an elementary data item or an alphanumeric literal, the returned value shall be an integer

equal to the length of argument-1 in alphanumeric character positions.

2) If argument-1 is a group data item:

a) If argument-1 or any data item subordinate to argument-1 is described with the DEPENDING phrase

of the OCCURS clause, the returned value shall be an integer equal to the length of argument-1 in

alphanumeric character positions, as a sending operand, determined by evaluation of the data item

specified in the DEPENDING phrase in accordance with the rules of the OCCURS clause. The

contents of the data item specified in the DEPENDING phrase are used at the time the LENGTH

function is evaluated.

b) Otherwise, the returned value shall be an integer equal to the length of argument-1 in alphanumeric

character positions.

c) The returned length shall include the number of implicit FILLER positions, if any, in argument-1.

INTRINSIC FUNCTIONS (LENGTH)

613

B.24.4 Example

The following code fragments illustrate the use of this function.

01 DATA-BLOCK.
 03 DATA-ARRAY OCCURS 1 TO 5 TIMES
 DEPENDING ON I.
 05 DATA-ELEMENTS OCCURS 65535 TIMES.
 07 DATA-COUNTER PIC 9(18).
 07 ARRAY-VALUE PIC 9(18).
 07 FILL-A-BYTE PIC X(15).
01 A PIC S999 VALUE -999.
01 B PIC -999.99.
01 C PIC 9(9) COMP.
01 I PIC 99 VALUE 3.
01 NO-BYTES PIC 9(10).

 COMPUTE NO-BYTES = FUNCTION LENGTH (A).
 IF NO-BYTES = 3
 PERFORM CORRECT-VALUE.

 COMPUTE NO-BYTES = FUNCTION LENGTH (B).
 IF NO-BYTES = 7
 PERFORM CORRECT-VALUE.

 COMPUTE NO-BYTES = FUNCTION LENGTH (C).
 IF NO-BYTES = 4
 PERFORM CORRECT-VALUE.

 COMPUTE NO-BYTES = FUNCTION LENGTH (DATA-BLOCK).
 IF NO-BYTES = 10026855
 PERFORM CORRECT-VALUE.

 MOVE 5 TO I.
 COMPUTE NO-BYTES = FUNCTION LENGTH (DATA-BLOCK).
 IF NO-BYTES = 16711425
 PERFORM CORRECT-VALUE.

 COMPUTE NO-BYTES = FUNCTION LENGTH (DATA-ARRAY (1)).
 IF NO-BYTES = 3342285
 PERFORM CORRECT-VALUE.

 COMPUTE NO-BYTES = FUNCTION LENGTH (DATA-ELEMENTS (1, 1)).
 IF NO-BYTES = 51
 PERFORM CORRECT-VALUE.

 COMPUTE NO-BYTES = FUNCTION LENGTH (FILL-A-BYTE (1, 1)).
 IF NO-BYTES = 15
 PERFORM CORRECT-VALUE.

EXAMPLE 52. LENGTH function

Interactive COBOL Language Reference & Developer’s Guide - Part One

614

01 E PIC S9(1)V9(9) VALUE 2.718281828.
01 WS-NUM PIC S9(5)V9(6).
01 MIN-RANGE PIC S9(5)V9(7).
01 MAX-RANGE PIC S9(5)V9(7).

 MOVE ZERO TO WS-NUM.
 MOVE 0.999980 TO MIN-RANGE.
 MOVE 1.00002 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION LOG(E).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-NUM.
 MOVE 0.632497 TO MIN-RANGE.
 MOVE 0.632547 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION LOG(3.2 / 1.7).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-NUM.
 MOVE 1.48569 TO MIN-RANGE.
 MOVE 1.48581 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION LOG(E + 1.7).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

B.25. LOG

The LOG function returns a numeric value that approximates the logarithm to the base e (natural log) of

argument-1.

The type of this function is numeric.

B.25.1 General format

FUNCTION LOG (argument-1)

B.25.2 Arguments

1) Argument-1 shall be class numeric.

2) The value of argument-1 shall be greater than zero.

B.25.3 Returned values

1) The returned value is the approximation of the logarithm to the base e of argument-1.

B.25.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 53. LOG function

INTRINSIC FUNCTIONS (LOG10)

615

01 ARG1 PIC S9(5)V9(5) VALUE 10.00.
01 WS-NUM PIC S9(5)V9(6).
01 MIN-RANGE PIC S9(5)V9(7).
01 MAX-RANGE PIC S9(5)V9(7).

 MOVE ZERO TO WS-NUM.
 MOVE -0.000020 TO MIN-RANGE.
 MOVE 0.000020 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION LOG10(1).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

 MOVE -2.00004 TO MIN-RANGE.
 MOVE -1.99996 TO MAX-RANGE.
 IF (FUNCTION LOG10(.01) >= MIN-RANGE) AND
 (FUNCTION LOG10(.01) <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

 PERFORM LOG10-TEST
 UNTIL FUNCTION LOG10(ARG1) < 0.30.
 PERFORM CORRECT-VALUE.

LOG10-TEST.
 COMPUTE ARG1 = ARG1 - 1.00.

B.26. LOG10

The LOG10 function returns a numeric value that approximates the logarithm to the base 10 of argument-1.

The type of this function is numeric.

B.26.1 General format

FUNCTION LOG10 (argument-1)

B.26.2 Arguments

1) Argument-1 shall be class numeric.

2) The value of argument-1 shall be greater than zero.

B.26.3 Returned values

1) The returned value is the approximation of the logarithm to the base 10 of argument-1.

B.26.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 54. LOG10 function

Interactive COBOL Language Reference & Developer’s Guide - Part One

616

01 WS-ANUM PIC X(10).

 MOVE SPACES TO WS-ANUM.
 IF FUNCTION LOWER-CASE("highnLOW") = "highnlow" THEN
 PERFORM CORRECT-VALUE.

 MOVE FUNCTION LOWER-CASE("figure") TO WS-ANUM.
 IF WS-ANUM = "figure" THEN
 PERFORM CORRECT-VALUE.

 MOVE SPACES TO WS-ANUM.
 MOVE FUNCTION LOWER-CASE("95") TO WS-ANUM.
 IF WS-ANUM = "95" THEN
 PERFORM CORRECT-VALUE.

B.27. LOWER-CASE

The LOWER-CASE function returns a character string that is the same length as argument-1 with each uppercase

letter replaced by the corresponding lowercase letter.

The type of the function depends on the argument type as follows:

Argument Type Function Type
Alphabetic Alphabetic
Alphanumeric Alphanumeric

B.27.1 General format

FUNCTION LOW ER-CASE (argument-1)

B.27.2 Arguments

1) Argument-1 shall be class alphabetic or alphanumeric and shall be at least one character position in length.

B.27.3 Returned values

1) The same character string as argument-1 is returned, except that each uppercase letter shall be replaced by

the corresponding lowercase letter.

2) The character string returned has the same length as argument-1.

B.27.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 55. LOWER-CASE function

INTRINSIC FUNCTIONS (LOWEST-ALGEBRAIC)

617

77 A PIC S9(5)V9(3).
77 B PIC S9(7) COMP.
77 C PIC $$$$$$$9.99.
77 RESULT PIC S9(18).

 COMPUTE RESULT = FUNCTION LOWEST-ALGEBRAIC (A).
 IF RESULT = -99999 PERFORM CORRECT-VALUE.

 COMPUTE RESULT = FUNCTION LOWEST-ALGEBRAIC (B).
 IF RESULT = -2147483648 PERFORM CORRECT-VALUE.

 COMPUTE RESULT = FUNCTION LOWEST-ALGEBRAIC (C).
 IF RESULT = 0 PERFORM CORRECT-VALUE.

B.28. LOWEST-ALGEBRAIC

The LOWEST-ALGEBRAIC function returns a value that is equal to the lowest algebraic value that may be

represented in argument-1.

The type of this function depends upon the argument types as follows:

Argument type Function type
Integer Integer
Numeric Numeric
Numeric-edited Numeric

B.28.1 General format

FUNCTION LOW EST-ALGEBRAIC (argument-1)

B.28.2 Arguments

1) Argument-1 shall be an elementary data item of category numeric or numeric-edited.

B.28.3 Returned values

1) The value returned is equal to the lowest algebraic value that may be represented in argument-1.

NOTE — The following illustrates the expected results for some values of argument-1.

Argument-1
characteristics Value returned
S999 –999
S9(4) BINARY –9999
99V9(3) 0
$**,**9.99BCR –99999.99
$**,**9.99 0

B.28.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 56. LOWEST-ALGEBRAIC function

Interactive COBOL Language Reference & Developer’s Guide - Part One

618

B.29. MAX

The MAX function returns the content of the argument-1 that contains the maximum value.

The type of this function depends upon the argument types as follows:

Argument type Function type
Alphabetic Alphanumeric
Alphanumeric Alphanumeric
Index Index
All arguments integer Integer
Numeric (some arguments may be integer) Numeric

B.29.1 General format

FUNCTION MAX ({ argument-1 }...)

B.29.2 Arguments

1) Argument-1 shall not be of class pointer.

2) All arguments shall be of the same class with the exception that mixing of arguments of alphabetic and

alphanumeric classes is allowed.

B.29.3 Returned values

1) The returned value is the content of the argument-1 having the greatest value. The comparisons used to

determine the greatest value are made according to the rules for simple conditions. (See Page 233, Simple

conditions.)

2) If the value of more than one argument-1 is equal to the greatest value, the content of the argument-1

returned is the leftmost argument-1 having that value.

3) If the type of the function is alphanumeric, the size of the returned value is the same as the size of the

selected argument-1.

INTRINSIC FUNCTIONS (MAX)

619

01 WS-NUM PIC S9(6)V9(6).
01 WS-ANUM PIC X.

 MOVE ZERO TO WS-NUM.
 COMPUTE WS-NUM = FUNCTION MAX(-4.3, 10.2, -0.7, 3.9).
 IF (WS-NUM >= 10.1998) AND (WS-NUM <= 10.2002)
 PERFORM CORRECT-VALUE.

 MOVE SPACES TO WS-ANUM.
 MOVE FUNCTION MAX("R", “I”, "I", "a") TO WS-ANUM.
 IF WS-ANUM = "a" THEN
 PERFORM CORRECT-VALUE.

 COMPUTE WS-NUM = FUNCTION MAX(A * B, (C + 1) / 2, 3 + 4).
 IF (WS-NUM >= MIN-RANGE) AND (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

B.29.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 57. MAX function

Interactive COBOL Language Reference & Developer’s Guide - Part One

620

B.30. MEAN

The MEAN function returns a numeric value that is the arithmetic mean (average) of its arguments.

The type of this function is numeric.

B.30.1 General format

FUNCTION MEAN ({ argument-1 }...)

B.30.2 Arguments

1) Argument-1 shall be class numeric.

B.30.3 Returned values

1) The equivalent arithmetic expression shall be as follows:

a) For one occurrence of argument-1,

(argument-1)

b) For two occurrences of argument-1,

1 2((argument-1 + argument-1) / 2)

c) For n occurrences of argument-1,

1 2 n((argument-1 + argument-1 +... + argument-1) / n)

B.30.4 Example

The following code fragments illustrate the use of this function.

INTRINSIC FUNCTIONS (MEAN)

621

01 A PIC S9(10) VALUE 5.
01 B PIC S9(10) VALUE 7.
01 C PIC S9(5)V9(5) VALUE 34.26.
01 WS-NUM PIC S9(6)V9(6).
01 MIN-RANGE PIC S9(5)V9(7).
01 MAX-RANGE PIC S9(5)V9(7).

 EVALUATE FUNCTION MEAN(3.9, -0.3, 8.7, 100.2)
 WHEN 28.1244 THRU 28.1256
 PERFORM CORRECT-VALUE.
 MOVE ZERO TO WS-NUM.
 MOVE 20.6896 TO MIN-RANGE.
 MOVE 20.6904 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION MEAN(C, 9 * A, 0, B / 2).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.
 MOVE ZERO TO WS-NUM.
 MOVE 4.49991 TO MIN-RANGE.
 MOVE 4.50009 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION MEAN(FUNCTION MEAN(4, 2), 6).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

EXAMPLE 58. MEAN function

Interactive COBOL Language Reference & Developer’s Guide - Part One

622

B.31. MEDIAN

The MEDIAN function returns the content of the argument whose value is the middle value in the list formed by

arranging the arguments in sorted order.

The type of this function is numeric.

B.31.1 General format

FUNCTION MEDIAN ({ argument-1 }...)

B.31.2 Arguments

1) Argument-1 shall be class numeric.

B.31.3 Returned values

1) When the number of occurrences of argument-1 is odd, the returned value shall be such that at least half of

the occurrences referenced by argument-1 are greater than or equal to the returned value and at least half are less

than or equal. For the purposes of the equivalent arithmetic expression, the middle value is referred to as

argument-a.

The equivalent arithmetic expression shall be

(argument-a)

2) When the number of occurrences of argument-1 is even, the returned value is the arithmetic mean of the two

middle values. For the purposes of the equivalent arithmetic expression, the two middle values are referred to as

argument-b and argument-c.

The equivalent arithmetic expression shall be

((argument-b + argument-c) / 2)

3) The comparisons used to arrange the argument-1 values in sorted order are made according to the rules for

simple conditions. (See Page 233, Simple conditions.)

B.31.4 Example

The following code fragments illustrate the use of this function.

INTRINSIC FUNCTIONS (MEDIAN)

623

01 A PIC S9(10) VALUE 5.
01 B PIC S9(10) VALUE 7.
01 C PIC S9(5)V9(5) VALUE 34.26.
01 WS-NUM PIC S9(6)V9(7).
01 MIN-RANGE PIC S9(5)V9(7).
01 MAX-RANGE PIC S9(5)V9(7).

 EVALUATE FUNCTION MEDIAN(3.9, -0.3, 8.7, 100.2)
 WHEN 6.29987 THRU 6.30013
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-NUM.
 MOVE 34.2593 TO MIN-RANGE.
 MOVE 34.2607 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION MEDIAN(C, 9 * A, B / 2).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-NUM.
 COMPUTE WS-NUM = FUNCTION MEDIAN(10.2, -0.2, 5.6, -15.).
 IF (WS-NUM >= 2.69995) AND
 (WS-NUM <= 2.70005)
 PERFORM CORRECT-VALUE.

EXAMPLE 59. MEDIAN function

Interactive COBOL Language Reference & Developer’s Guide - Part One

624

B.32. MIDRANGE

The MIDRANGE (middle range) function returns a numeric value that is the arithmetic mean (average) of the values

of the minimum argument and the maximum argument.

The type of this function is numeric.

B.32.1 General format

FUNCTION MIDRANGE ({ argument-1 }...)

B.32.2 Arguments

1) Argument-1 shall be class numeric.

B.32.3 Returned values

1) The equivalent arithmetic expression shall be

((FUNCTION MAX (argument-1) + FUNCTION MIN (argument-1)) / 2)

where the arguments for the MAX and MIN functions are the same as the arguments for the MIDRANGE

function itself.

INTRINSIC FUNCTIONS (MIDRANGE)

625

01 A PIC S9(10) VALUE 5.
01 B PIC S9(10) VALUE 7.
01 C PIC S9(5)V9(5) VALUE 34.26.
01 WS-NUM PIC S9(6)V9(7).
01 MIN-RANGE PIC S9(5)V9(7).
01 MAX-RANGE PIC S9(5)V9(7).

 EVALUATE FUNCTION MIDRANGE(3.9, -0.3, 8.7, 100.2)
 WHEN 49.9490 THRU 49.9510
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-NUM.
 MOVE 22.4995 TO MIN-RANGE.
 MOVE 22.5004 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION MIDRANGE(C, 9 * A, 0, B / 2).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.
 MOVE ZERO TO WS-NUM.
 MOVE 3.49993 TO MIN-RANGE.
 MOVE 3.50007 TO MAX-RANGE.
 COMPUTE WS-NUM =
 FUNCTION MIDRANGE(FUNCTION MIDRANGE(1, 3), 5).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

B.32.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 60. MIDRANGE function

Interactive COBOL Language Reference & Developer’s Guide - Part One

626

B.33. MIN

The MIN function returns the content of the argument-1 that contains the minimum value.

The type of this function depends upon the argument types as follows:

Argument Type Function type
Alphabetic Alphanumeric
Alphanumeric Alphanumeric
Index Index
All arguments integer Integer
Numeric (some arguments may be integer) Numeric

B.33.1 General format

FUNCTION MIN ({ argument-1 }...)

B.33.2 Arguments

1) Argument-1 shall not be of class pointer.

2) All arguments shall be of the same class with the exception that mixing of arguments of alphabetic and

alphanumeric classes is allowed.

B.33.3 Returned values

1) The returned value is the content of the argument-1 having the least value. The comparisons used to

determine the least value are made according to the rules for simple conditions. (See Page 233, Simple conditions.)

2) If the value of more than one argument-1 is equal to the least value, the content of the argument-1 returned is

the leftmost argument-1 having that value.

3) If the type of the function is alphanumeric, the size of the returned value is the same as the size of

the selected argument-1.

B.33.4 Example

The following code fragments illustrate the use of this function.

INTRINSIC FUNCTIONS (MIN)

627

01 A PIC S9(10) VALUE 5.
01 B PIC S9(10) VALUE 7.
01 C PIC S9(5)V9(5) VALUE 34.26.
01 WS-NUM PIC S9(5)V9(6).
01 MIN-RANGE PIC S9(5)V9(7).
01 MAX-RANGE PIC S9(5)V9(7).

 IF (FUNCTION MIN(4.3, 2.6, 7.3, 9.1) >= 2.59995) AND
 (FUNCTION MIN(4.3, 2.6, 7.3, 9.1) <= 2.60005) THEN
 PERFORM CORRECT-VALUE.
 MOVE ZERO TO WS-NUM.
 MOVE 1.99996 TO MIN-RANGE.
 MOVE 2.00004 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION MIN(A * B, (3 + 1) / 2, 3 + 4).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.
 MOVE ZERO TO WS-NUM.
 MOVE 4.99990 TO MIN-RANGE.
 MOVE 5.00010 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION MIN(FUNCTION MIN(14, A), E, 50).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

EXAMPLE 61. MIN function

Interactive COBOL Language Reference & Developer’s Guide - Part One

628

B.34. MOD

The MOD function returns an integer value that is argument-1 modulo argument-2.

The type of this function is integer.

B.34.1 General format

FUNCTION MOD (argument-1, argument-2)

B.34.2 Arguments

1) Argument-1 and argument-2 shall be integers.

2) The value of argument-2 shall not be zero.

B.34.3 Returned values

1) The equivalent arithmetic expression shall be

(argument-1 – (argument-2 * FUNCTION INTEGER (argument-1 / argument-2)))

where argument-1 and argument-2 for the INTEGER function are the same as the arguments for the MOD

function itself.

NOTE — The following illustrates the expected results for some values of argument-1 and argument-2.

Argument-1 Argument-2 Return
 11 5 1
–11 5 4
 11 –5 –4
–11 –5 –1

B.34.4 Example

The following code fragments illustrate the use of this function.

INTRINSIC FUNCTIONS (MOD)

629

01 A PIC S9(10) VALUE 5.
01 B PIC S9(10) VALUE 7.
01 WS-NUM PIC S9(5)V9(6).
01 MIN-RANGE PIC S9(5)V9(7).
01 MAX-RANGE PIC S9(5)V9(7).

 EVALUATE FUNCTION MOD(11, 5)
 WHEN 1 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-NUM.
 COMPUTE WS-NUM = FUNCTION MOD(-11, 5).
 IF WS-NUM = 4 THEN
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-NUM.
 MOVE 6.99986 TO MIN-RANGE.
 MOVE 7.00014 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION MOD(FUNCTION INTEGER(A - B), 9).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

EXAMPLE 62. MOD function

Interactive COBOL Language Reference & Developer’s Guide - Part One

630

B.35. NUMVAL

The NUMVAL function returns the numeric value represented by the character string specified by argument-1.

Leading and trailing spaces are ignored.

The type of this function is numeric.

B.35.1 General format

FUNCTION NUMVAL (argument-1)

B.35.2 Arguments

1) Argument-1 shall be an alphanumeric literal or an alphanumeric data item whose content has one of the

following two formats:

or

where

space-string is a string of one or more space characters and digit is a string of one to 18 digits. If

argument-1 is alphanumeric, CR or DB, if specified, shall be uppercase, lowercase or a combination thereof

from the computer's alphanumeric character set.

2) The total number of digits in argument-1 shall not exceed 18.

3) If the DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-NAMES paragraph, a comma

shall be used in argument-1 rather than a decimal point.

B.35.3 Returned values

1) The returned value is the numeric value represented by argument-1.

2) The number of digits returned is 18.

3) If argument-1 contains CR, DB, or the minus sign, the returned value is negative.

INTRINSIC FUNCTIONS (NUMVAL)

631

B.35.4 Example

The following code fragments illustrate the use of this function.

01 TEMP PIC S9(5)V9(5).

 IF (FUNCTION NUMVAL (".935") >= 0.934981) AND
(FUNCTION NUMVAL (".935") <= 0.935019)

 PERFORM CORRECT-VALUE.

 MOVE ZERO TO TEMP.
 COMPUTE TEMP = FUNCTION NUMVAL ("+394.2").
 IF (TEMP >= 394.192) AND
 (TEMP <= 394.208)
 PERFORM CORRECT-VALUE.

 COMPUTE TEMP = FUNCTION NUMVAL (" 200.0002 - ").
 IF (TEMP >= -200.0042) AND
 (TEMP <= -199.9962)
 PERFORM CORRECT-VALUE.

EXAMPLE 63. NUMVAL function

Interactive COBOL Language Reference & Developer’s Guide - Part One

632

B.36. NUMVAL-C

The NUMVAL-C function returns the numeric value represented by the character string specified by argument-1.

The currency sign, if any, and any grouping separators preceding the decimal separator are ignored. Optionally,

the currency sign may be specified by argument-2.

The type of this function is numeric.

B.36.1 General format

FUNCTION NUMVAL-C (argument-1 [, argument-2])

B.36.2 Arguments

1) Argument-1 shall be of class alphanumeric.

2) Argument-2, if specified, shall be of the same class as argument-1. Argument-2 shall contain exactly one

non-space character. Argument-2 shall not contain any of the digits 0 through 9; characters '*', '+', '–', ',' ,'.' or space.

Argument-2 specifies a currency sign that may appear in argument-1.

3) If argument-2 is not specified, there shall be only one currency sign for the compilation unit, either the

default currency sign or one specified in the SPECIAL-NAMES paragraph.

4) Argument-1 shall have one of the following two formats:

or

where

— digits is a string of one or more of the digits 0 through 9;

— except for currency, uppercase letters and the corresponding lowercase letters are equivalent;

— space is a string of zero or more spaces;

— currency is a string of one or more characters matching the currency sign in argument-2, if

specified, or matching the default currency sign if argument-2 is not specified;

5) If the DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-NAMES paragraph, the decimal

separator is a comma and the grouping separator is the decimal point.

6) The total number of digits in argument-1 shall not exceed 18.

B.36.3 Returned values

1) The returned value is the numeric value represented by argument-1.

2) The number of digits returned is 18.

3) The returned value is negative if argument-1 contains CR, DB, or a minus sign.

INTRINSIC FUNCTIONS (NUMVAL-C)

633

01 NUMVALC PIC S9(7)V9(5).

COMPUTE NUMVALC = FUNCTION NUMVAL-C ("90") + 10.
IF NUMVALC = 100 THEN PERFORM CORRECT-VALUE.

COMPUTE NUMVALC = FUNCTION NUMVAL-C ("$924.93", "$").
IF NUMVALC = 924.912 PERFORM CORRECT-VALUE.

COMPUTE NUMVALC = FUNCTION NUMVAL-C ("$93,021", "$").
IF NUMVALC = 93021 PERFORM CORRECT-VALUE.

B.36.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 64. NUMVAL-C function

Interactive COBOL Language Reference & Developer’s Guide - Part One

634

01 NUMVALF PIC S9(7)V9(5).

COMPUTE NUMVALF = FUNCTION NUMVAL-F ("35").
IF NUMVALF = 35 PERFORM CORRECT-VALUE.

COMPUTE NUMVALF = FUNCTION NUMVAL-F ("3E2").
IF NUMVALF = 300 PERFORM CORRECT-VALUE.

COMPUTE NUMVALF = FUNCTION NUMVAL-F ("3E-2").
IF NUMVALF = .03 PERFORM CORRECT-VALUE.

B.37. NUMVAL-F

The NUMVAL-F function returns the value or an approximation of the value represented by the character string

specified by argument-1. Leading, trailing, and embedded spaces are ignored.

The type of this function is numeric.

B.37.1 General format

FUNCTION NUMVAL-F (argument-1)

B.37.2 Arguments

1) Argument-1 shall be an alphanumeric literal or an alphanumeric data item whose

content has the following format:

where space is a string of zero or more spaces; n is one, two, or three digits representing the exponent; and

digit is a string of one to 18 digits. If argument-1 is alphanumeric, E shall be either an uppercase or lowercase

E in the computer's alphanumeric character set.

2) The total number of digits in the significand shall not exceed 18.

3) If the DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-NAMES paragraph, a comma

shall be used in argument-1 rather than a decimal point.

B.37.3 Returned values

1) Leading, trailing, and embedded spaces are ignored.

2) The returned value is the numeric value represented by argument-1, assuming that it can be expressed within

18 decimal digits.

B.37.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 65. NUMVAL-F function

INTRINSIC FUNCTIONS (ORD)

635

01 ORDINT PIC S9(10).
01 A PIC X VALUE “F”.

IF FUNCTION ORD("5") = 54 THEN
PERFORM CORRECT-VALUE.

COMPUTE ORDINT = FUNCTION ORD(A).
IF ORDINT = 71 THEN
 PERFORM CORRECT-VALUE.

B.38. ORD

The ORD function returns an integer value that is the ordinal position of argument-1 in the program collating

sequence. The lowest ordinal position is 1.

The type of this function is integer.

B.38.1 General format

FUNCTION ORD (argument-1)

B.38.2 Arguments

1) Argument-1 shall be of one character position in length and shall be of class alphabetic or alphanumeric.

B.38.3 Returned values

1) The returned value shall be the ordinal position of argument-1 in the current program collating sequence.

B.38.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 66. ORD function

Interactive COBOL Language Reference & Developer’s Guide - Part One

636

01 ORDMAX PIC S9(10).
01 A PIC S9(10) VALUE 5.
01 B PIC S9(10) VALUE 7.
01 C PIC S9(10) VALUE 4.

COMPUTE ORDMAX = FUNCTION ORD-MAX(5, 3, 2, 8, 3, 1).
IF ORDMAX = 4 THEN PERFORM CORRECT-VALUE.
COMPUTE ORDMAX = FUNCTION ORD-MAX (A, B, C).
IF ORDMAX = 4 THEN PERFORM CORRECT-VALUE.

B.39. ORD-MAX

The ORD-MAX function returns a value that is the ordinal number of the argument-1 that contains the maximum

value.

The type of this function is integer.

B.39.1 General format

FUNCTION ORD-MAX ({ argument-1 }...)

B.39.2 Arguments

1) Argument-1 shall not be of class pointer.

2) All arguments shall be of the same class with the exception that mixing of arguments of alphabetic and

alphanumeric classes is allowed.

B.39.3 Returned values

1) The returned value is the ordinal number that corresponds to the position of the argument-1 having the

greatest value in the argument-1 series.

2) The comparisons used to determine the greatest valued argument are made according to the rules for simple

conditions. (See Page 233, Simple conditions.)

3) If the value of more than one argument-1 is equal to the greatest value, the number returned corresponds to

the position of the leftmost argument-1 having that value.

B.39.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 67. ORD-MAX function

INTRINSIC FUNCTIONS (ORD-MIN)

637

01 ORDMIN PIC S9(10).

01 A PIC S9(10) VALUE 5.
01 B PIC S9(10) VALUE 7.
01 C PIC S9(10) VALUE 4.
01 D PIC S9(10) VALUE 10.

COMPUTE ORDMIN = FUNCTION ORD-MIN(5, 3, 2, 8, 3, 1).
IF ORDMIN = 6 THEN
 PERFORM CORRECT-VALUE.

COMPUTE ORDMIN = FUNCTION ORD-MIN(A, B, D).
IF ORDMIN = 1 THEN
 PERFORM CORRECT-VALUE.

B.40. ORD-MIN

The ORD-MIN function returns a value that is the ordinal number of the argument that contains the minimum value.

The type of this function is integer.

B.40.1 General format

FUNCTION ORD-MIN ({ argument-1 }...)

B.40.2 Arguments

1) Argument-1 shall not be of pointer.

2) If more than one argument-1 is specified, all arguments shall be of the same class with the exception that

mixing of arguments of alphabetic and alphanumeric classes is allowed.

B.40.3 Returned values

1) The returned value is the ordinal number that corresponds to the position of the argument-1 having the least

value in the argument-1 series.

2) The comparisons used to determine the least valued argument-1 are made according to the rules for simple

conditions. (See Page 233, Simple conditions.)

3) If the value of more than one argument-1 is equal to the least value, the number returned corresponds to the

position of the leftmost argument-1 having that value.

B.40.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 68. ORD-MIN function

Interactive COBOL Language Reference & Developer’s Guide - Part One

638

01 PI-NUM PIC 9.9(5).
01 EXP-PI PIC 9V9(5) VALUE 3.14159.
01 EXP-DISP-PI PIC 9.9(5).

MOVE FUNCTION PI TO PI-NUM.
MOVE EXP-PI TO EXP-DISP-PI.
IF PI-NUM = EXP-DISP-PI
 PERFORM CORRECT-VALUE.

B.41. PI

The PI function returns a value that is an approximation of pi, the ratio of the circumference of a circle to its

diameter.

The type of this function is numeric.

B.41.1 General format

FUNCTION PI

B.41.2 Returned values

1) The equivalent arithmetic expression shall be

(3 + .141592653589793238)

B.41.3 Example

The following code fragments illustrate the use of this function.

EXAMPLE 69. PI function

INTRINSIC FUNCTIONS (PRESENT-VALUE)

639

B.42. PRESENT-VALUE

The PRESENT-VALUE function returns a value that approximates the present value of a series of future period-end

mounts specified by argument-2 at a discount rate specified by argument-1.

The type of this function is numeric.

B.42.1 General format

FUNCTION PRESENT-VALUE (argument-1, { argument-2 }...)

B.42.2 Arguments

1) Argument-1 and argument-2 shall be of the class numeric.

2) The value of argument-1 shall be greater than –1.

B.42.3 Returned values

1) The equivalent arithmetic expression shall be as follows:

a) For one occurrence of argument-2,

(argument-2 / (1 + argument-1))

b) For two occurrences of argument-2,

1 2(argument-2 / (1 + argument-1) + argument-2 / (1 + argument-1) ** 2)

c) For n occurrences of argument-2, the equivalent arithmetic expression shall be

(FUNCTION SUM (

1(argument-2 / (1 + argument-1) ** 1)

...

n(argument-2 / (1 + argument-1) ** n)))

iwhere argument-1 and argument-2 in the terms of the SUM function are the same as the arguments for

the PRESENT-VALUE function itself.

Interactive COBOL Language Reference & Developer’s Guide - Part One

640

01 PV-NUM PIC S9(5)V9(6).

MOVE 43.9991 TO MINVAL.
MOVE 44.0009 TO MAXVAL.
COMPUTE PV-NUM = FUNCTION PRESENT-VALUE(0, 23, 12, 9).
IF (PV-NUM >= MINVAL) AND
 (PV-NUM <= MAXVAL) THEN
 PERFORM CORRECT-VALUE.

MOVE 65.9974 TO MINVAL.
MOVE 66.0026 TO MAXVAL.
COMPUTE PV-NUM = FUNCTION PRESENT-VALUE
 (-.5, (2 + 3), (6 / 3), (9 - 3)).
IF (PV-NUM >= MINVAL) AND
 (PV-NUM <= MAXVAL) THEN
 PERFORM CORRECT-VALUE.

B.42.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 70. PRESENT-VALUE function

INTRINSIC FUNCTIONS (RANDOM)

641

01 RANDNUM PIC S9(5)V9(6).

COMPUTE RANDNUM = FUNCTION RANDOM.
IF (RANDNUM >= 0) AND
 (RANDNUM < 1) THEN
 PERFORM CORRECT-VALUE.

COMPUTE RANDNUM = FUNCTION RANDOM(2) + 1.
IF (RANDNUM >= 1) AND
 (RANDNUM < 2) THEN
 PERFORM CORRECT-VALUE.

B.43. RANDOM

The RANDOM function returns a numeric value that is a pseudo-random number from a rectangular distribution.

The type of this function is numeric.

B.43.1 General format

FUNCTION RANDOM [(argument-1)]

B.43.2 Arguments

1) If argument-1 is specified, it shall be zero or a positive integer. It is used as the seed value to generate a

sequence of pseudo-random numbers.

2) If a subsequent reference specifies argument-1, a new sequence of pseudo-random numbers is started.

3) If the first reference to this function in the run unit does not specify argument-1, the seed value is zero.

4) In each case, subsequent references without specifying argument-1 return the next number in the current

sequence.

B.43.3 Returned values

1) The returned value is greater than or equal to zero and less than one.

2) For a given seed value on a given implementation, the sequence of pseudo-random numbers will always be

the same.

3) The subset of the domain of argument-1 values that will yield distinct sequences of pseudo-random numbers

is 0 through 2 -2.31

B.43.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 71. RANDOM function

Interactive COBOL Language Reference & Developer’s Guide - Part One

642

01 RANGENUM PIC S9(7)V9(7).
01 A PIC S9(10) VALUE 6.
01 B PIC S9(10) VALUE 8.
01 C PIC S9(10) VALUE -5.
01 D PIC S9(10) VALUE 12.

COMPUTE RANGENUM = FUNCTION RANGE(5, -2, -14, 0).
IF RANGENUM = 19 THEN
 PERFORM CORRECT-VALUE.

IF FUNCTION RANGE(A, B, C, D) = 17 THEN
 PERFORM CORRECT-VALUE.

B.44. RANGE

The RANGE function returns a value that is equal to the value of the maximum argument minus the value of the

minimum argument.

The type of this function depends upon the argument types as follows:

Argument type Function type
All arguments integer Integer
Numeric (some arguments may be integer) Numeric

B.44.1 General format

FUNCTION RANGE ({ argument-1 }...)

B.44.2 Arguments

1) Argument-1 shall be class numeric.

B.44.3 Returned values

1) The equivalent arithmetic expression shall be

(FUNCTION MAX (argument-list) – FUNCTION MIN (argument-list))

where argument-list is the argument-1 list for the RANGE function itself.

B.44.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 72. RANGE function

INTRINSIC FUNCTIONS (REM)

643

01 REMNUM PIC S9(5)V9(6).
01 A PIC S9(10) VALUE 5

.

COMPUTE REMNUM = FUNCTION REM(-11, -5).
IF REMNUM = -1 THEN
 PERFORM CORRECT-VALUE.

COMPUTE REMNUM = FUNCTION REM(A, 2).
IF REMNUM = 1 THEN
 PERFORM CORRECT-VALUE.

B.45. REM

The REM function returns a numeric value that is the remainder of argument-1 divided by argument-2.

The type of this function is numeric.

B.45.1 General format

FUNCTION REM (argument-1, argument-2)

B.45.2 Arguments

1) Argument-1 and argument-2 shall be class numeric.

2) The value of argument-2 shall not be zero.

B.45.3 Returned values

1) The equivalent arithmetic expression shall be

(argument-1 – (argument-2 * FUNCTION INTEGER-PART (argument-1 / argument-2)))

where argument-1 and argument-2 of the INTEGER-PART function are the same as the arguments for the

REM function itself.

B.45.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 73. REM function

Interactive COBOL Language Reference & Developer’s Guide - Part One

644

01 REVSNUM PIC X(10).

MOVE FUNCTION REVERSE("figure") TO REVSNUM.
IF REVSNUM = "erugif" THEN
 PERFORM CORRECT-VALUE.

B.46. REVERSE

The REVERSE function returns a character string of exactly the same length as argument-1 and whose characters

are exactly the same as those of argument-1, except that they are in reverse order.

The type of the function depends on the argument type as follows:

Argument type Function type
Alphabetic Alphanumeric
Alphanumeric Alphanumeric

B.46.1 General format

FUNCTION REVERSE (argument-1)

B.46.2 Arguments

1) Argument-1 shall be of class alphabetic or alphanumeric and shall be at least one character position in length.

B.46.3 Returned values

1) If argument-1 is a character string of length n, the returned value is a character string of length n such that for

1 # j # n, the character in position j of the returned value is the character from position n – j + 1 of argument-1.

B.46.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 74. REVERSE function

INTRINSIC FUNCTIONS (SIGN)

645

01 VAL PIC S9(1).
01 EXP-VAL1 PIC S9(1) VALUE -1.
01 EXP-VAL2 PIC S9(1) VALUE 0.
01 EXP-VAL3 PIC S9(1) VALUE 1.

MOVE -34431 TO NUM1.
COMPUTE VAL = FUNCTION SIGN (NUM1).
IF VAL = EXP-VAL1 THEN PERFORM CORRECT-VALUE.

MOVE 0 TO NUM1.
COMPUTE VAL = FUNCTION SIGN (NUM1).
IF VAL = EXP-VAL2 THEN PERFORM CORRECT-VALUE.

MOVE 34431 TO NUM1.
COMPUTE VAL = FUNCTION SIGN (NUM1).
IF VAL = EXP-VAL3 THEN PERFORM CORRECT-VALUE.

B.47. SIGN

The SIGN function returns +1, 0, or –1 depending on the sign of the argument.

The type of the function is integer.

B.47.1 General Format

FUNCTION SIGN (argument-1)

B.47.2 Arguments

1) Argument-1 shall be class numeric.

B.47.3 Returned Values

1) The equivalent arithmetic expression shall be as follows:

a) When the value of argument-1 is positive,

(1)

b) When the value of argument-1 is zero,

(0)

c) When the value of argument-1 is negative,

(–1)

B.47.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 75. SIGN function

Interactive COBOL Language Reference & Developer’s Guide - Part One

646

01 SINNUM PIC S9(5)V9(6).

MOVE ZERO TO SINNUM.
MOVE -0.000020 TO MINVAL.
MOVE 0.000020 TO MAXVAL.

COMPUTE SINNUM = FUNCTION SIN(0).
IF (SINNUM >= MINVAL) AND
 (SINNUM <= MAXVAL) THEN
 PERFORM CORRECT-VALUE.
MOVE 0.865990 TO MINVAL.
MOVE 0.866060 TO MAXVAL.

COMPUTE SINNUM = FUNCTION SIN(PI / 3).

IF (SINNUM >= MINVAL) AND
 (SINNUM <= MAXVAL) THEN
 PERFORM CORRECT-VALUE.

B.48. SIN

The SIN function returns a numeric value that approximates the sine of an angle or arc, expressed in radians, that

is specified by argument-1.

The type of this function is numeric.

B.48.1 General format

FUNCTION SIN (argument-1)

B.48.2 Arguments

1) Argument-1 shall be class numeric.

B.48.3 Returned values

1) The returned value is the approximation of the sine of argument-1 and is greater than or equal to –1 and less

than or equal to +1.

B.48.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 76. SIN function

INTRINSIC FUNCTIONS (SQRT)

647

01 SQRTNUM PIC S9(5)V9(7).

MOVE 0.000000 TO MINVAL.
MOVE 0.000020 TO MAXVAL.
COMPUTE SQRTNUM = FUNCTION SQRT(0).
IF (SQRTNUM >= MINVAL) AND
 (SQRTNUM <= MAXVAL)
 PERFORM CORRECT-VALUE.

MOVE 0.316214 TO MINVAL.
MOVE 0.316240 TO MAXVAL.
COMPUTE SQRTNUM = FUNCTION SQRT(9 - 8.9).
IF (SQRTNUM >= MINVAL) AND
 (SQRTNUM <= MAXVAL) THEN
 PERFORM CORRECT-VALUE.

B.49. SQRT

The SQRT function returns a numeric value that approximates the square root of argument-1.

The type of this function is numeric.

B.49.1 General format

FUNCTION SQRT (argument-1)

B.49.2 Arguments

1) Argument-1 shall be class numeric.

2) The value of argument-1 shall be zero or positive.

B.49.3 Returned values

1) Argument-1 is not rounded.

2) The returned value shall be the absolute value of the exact square root of argument-1 truncated to 19 digits.

B.49.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 77. SQRT function

Interactive COBOL Language Reference & Developer’s Guide - Part One

648

01 STDNUM PIC S9(5)V9(6).

MOVE 6.92 TO MINVAL.
MOVE 7.02 TO MAXVAL.
COMPUTE STDNUM =
 FUNCTION STANDARD-DEVIATION(5, -2, -14, 0).
IF (STDNUM >= MINVAL) AND
 (STDNUM <= MAXVAL) THEN
 PERFORM CORRECT-VALUE.

MOVE 11.7995 TO MINVAL.
MOVE 11.8005 TO MAXVAL.
COMPUTE STDNUM =
 FUNCTION STANDARD-DEVIATION(2.6 + 30, 4.5 * 2).

IF (STDNUM >= MINVAL) AND
 (STDNUM <= MAXVAL) THEN
 PERFORM CORRECT-VALUE.

B.50. STANDARD-DEVIATION

The STANDARD-DEVIATION function returns a numeric value that approximates the standard deviation of its

arguments.

The type of this function is numeric.

B.50.1 General format

FUNCTION STANDARD-DEVIATION ({ argument-1 }...)

B.50.2 Arguments

1) Argument-1 shall be class numeric.

B.50.3 Returned values

1) The equivalent arithmetic expression shall be as follows:

(FUNCTION SQRT (FUNCTION VARIANCE (argument-list)))

where argument-list is the argument-1 list for the STANDARD-DEVIATION function itself.

B.50.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 78. STANDARD-DEVIATION function

INTRINSIC FUNCTIONS (SUM)

649

B.51. SUM

The SUM function returns a value that is the sum of the arguments.

The type of this function depends upon the argument types as follows:

Argument type Function type
All arguments integer Integer
Numeric (some arguments may be integer) Numeric

B.51.1 General format

FUNCTION SUM ({ argument-1 }...)

B.51.2 Arguments

1) Argument-1 shall be class numeric.

B.51.3 Returned values

1) The equivalent arithmetic expression shall be as follows:

a) For one occurrence of argument-1,

(argument-1)

b) For two occurrences of argument-1,

1 2(argument-1 + argument-1)

c) For n occurrences of argument-1,

1 2 n(argument-1 + argument-1 + ... + argument-1)

B.51.4 Example

The following code fragments illustrate the use of this function.

01 SUMNUM PIC S9(6)V9(7).

COMPUTE SUMNUM = FUNCTION SUM(5, -2, -14, 0).
IF SUMNUM = -11 THEN
 PERFORM CORRECT-VALUE.
MOVE 41.5992 TO MINVAL.
MOVE 41.6008 TO MAXVAL.
COMPUTE SUMNUM = FUNCTION SUM(2.6 + 30, 4.5 * 2).
IF (SUMNUM >= MINVAL) AND
 (SUMNUM <= MAXVAL) THEN
 PERFORM CORRECT-VALUE.

EXAMPLE 79. SUM function

Interactive COBOL Language Reference & Developer’s Guide - Part One

650

01 TAN-NUM PIC S9(5)V9(7).

MOVE -0.000020 TO MINVAL.
MOVE 0.000020 TO MAXVAL.
COMPUTE TAN-NUM = FUNCTION TAN(0).
IF (TAN-NUM >= MINVAL) AND
 (TAN-NUM <= MAXVAL) THEN
 PERFORM CORRECT-VALUE.

MOVE 0.999960 TO MINVAL.
MOVE 1.00004 TO MAXVAL.
COMPUTE TAN-NUM = FUNCTION TAN(PI / 4).
IF (TAN-NUM >= MINVAL) AND
 (TAN-NUM <= MAXVAL) THEN
 PERFORM CORRECT-VALUE.

B.52. TAN

The TAN function returns a numeric value that approximates the tangent of an angle or arc, expressed in radians,

that is specified by argument-1.

The type of this function is numeric.

B.52.1 General format

FUNCTION TAN (argument-1)

B.52.2 Arguments

1) Argument-1 shall be class numeric.

B.52.3 Returned values

1) The returned value is the approximation of the tangent of argument-1.

B.52.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 80. TAN function

INTRINSIC FUNCTIONS (TEST-DATE-YYYYMMDD)

651

B.53. TEST-DATE-YYYYMMDD

The TEST-DATE-YYYYMMDD function tests whether a date in standard date form (YYYYMMDD) is a valid date

in the Gregorian calendar. Argument-1 of the INTEGER-OF-DATE function is required to be in standard date form.

The type of this function is integer.

B.53.1 General Format

FUNCTION TEST-DATE-YYYYMMDD (argument-1)

B.53.2 Arguments

1) Argument-1 shall be an integer.

B.53.3 Returned values

1) The returned value is:

a) If the value of argument-1 is less than 16010000 or greater than 99999999,

(1)

Note 1 — The year is not within the range 1601 to 9999.

a) Otherwise, if the value of FUNCTION MOD (argument-1 10000) is less than 100 or greater than

1299,

(2)

Note 2 — The month is not within the range 1 through 12.

c) Otherwise, if the value of FUNCTION MOD (argument-1 100) is less than 1 or greater than the

number of days in the month determined by FUNCTION INTEGER (FUNCTION MOD (argument-1

10000) / 100) of the year determined by FUNCTION INTEGER (argument-1 / 10000),

(3)

Note 3 — The day is not valid for the given year and month.

d) Otherwise,

(0)

Note 4 — The date is valid.

Interactive COBOL Language Reference & Developer’s Guide - Part One

652

 01 DATE-VAL PIC 9.

 ACCEPT SYSTEM-DATE FROM DATE YYYYMMDD.
 COMPUTE DATE-VAL = FUNCTION TEST-DATE-YYYYMMDD (SYSTEM-DATE).
 IF DATE-VAL = 0 THEN
 PERFORM CORRECT-VALUE.

 *** year out of range.
 COMPUTE DATE-VAL = FUNCTION TEST-DATE-YYYYMMDD (14000000).
 IF DATE-VAL = 1 THEN
 PERFORM CORRECT-VALUE.

 *** month out of range.
 COMPUTE DATE-VAL = FUNCTION TEST-DATE-YYYYMMDD (20000000).
 IF DATE-VAL = 2 THEN
 PERFORM CORRECT-VALUE.

B.53.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 81. TEST-DATE-YYYYMMDD function

INTRINSIC FUNCTIONS (TEST-DAY-YYYYDDD)

653

B.54. TEST-DAY-YYYYDDD

The TEST-DAY-YYYYDDD function tests whether a date in Julian date form (YYYYDDD) is a valid date in the

Gregorian calendar. Argument-1 of the INTEGER-OF-DAY function is required to be in Julian date form.

The type of this function is integer.

B.54.1 General Format

FUNCTION TEST-DAY-YYYYDDD (argument-1)

B.54.2 Arguments

1) Argument-1 shall be an integer.

B.54.3 Returned values

1) The returned value is:

a) If the value of argument-1 is less than 1601000 or greater than 9999999,

(1)

Note 1 — The year is not within the range 1601 to 9999.

b) Otherwise, if the value of FUNCTION MOD (argument-1 1000) is less than 1 or greater than the

number of days in the year determined by FUNCTION INTEGER (argument-1 / 1000),

(2)

Note 2 — The day is not valid in the given year.

c) Otherwise,

(0)

Note 3 — The date is valid.

Interactive COBOL Language Reference & Developer’s Guide - Part One

654

01 DAY-VAL PIC 9.

ACCEPT SYSTEM-DAY FROM DAY YYYYDDD.
COMPUTE DAY-VAL = FUNCTION TEST-DAY-YYYYDDD (SYSTEM-DAY)
IF DAY-VAL = 0 THEN
 PERFORM CORRECT-VALUE.

**** year out of range
COMPUTE DAY-VAL = FUNCTION TEST-DAY-YYYYDDD (1400000).
IF DAY-VAL = 1 THEN
 PERFORM CORRECT-VALUE.

**** day out of range
COMPUTE DAY-VAL = FUNCTION TEST-DAY-YYYYDDD (1700462).
IF DAY-VAL = 2 THEN
 PERFORM CORRECT-VALUE.

B.54.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 82. TEST-DAY-YYYYDDD function

INTRINSIC FUNCTIONS (TEST-NUMVAL)

655

B.55. TEST-NUMVAL

The TEST-NUMVAL function verifies that the contents of argument-1 conform to the specification for argument-1

of the NUMVAL function.

The type of this function is integer.

B.55.1 General Format

FUNCTION TEST-NUMVAL (argument-1)

B.55.2 Arguments

1) Argument-1 shall be an alphanumeric literal or an alphanumeric data item.

B.55.3 Returned values

1) The returned value is:

a) If the content of argument-1 does not conform to the argument rules for the NUMVAL function, the

returned value shall be the position of the first character in error, from (1) to (FUNCTION LENGTH

(argument-1) + 1)

b) Otherwise:

(0)

NOTES

1 — The returned value is (FUNCTION LENGTH (argument-1) + 1) if argument-1 is zero-length or

contains only spaces or a string such as “ +.”.

2 — The returned value is (3) if a three-character argument contains a string such as “0 1”.

3 — The returned value identifies the position of the 19th digit if the total number of digits exceeds 18.

Interactive COBOL Language Reference & Developer’s Guide - Part One

656

B.55.4 Example

The following code fragments illustrate the use of this function.

01 TST-NUMV PIC 9.

COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL ("35").
IF TST-NUMV = 0 THEN
 PERFORM CORRECT-VALUE.
COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL ("$35").
IF TST-NUMV = 1
 PERFORM CORRECT-VALUE.
COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL ("35+").
IF TST-NUMV = 0
 PERFORM CORRECT-VALUE.
COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL ("35$").
IF TST-NUMV = 3
 PERFORM CORRECT-VALUE.

EXAMPLE 83. TEST-NUMVAL function

INTRINSIC FUNCTIONS (TEST-NUMVAL-C)

657

B.56. TEST-NUMVAL-C

The TEST-NUMVAL-C function verifies that the contents of argument-1 conform to the specification for

argument-1 of the NUMVAL-C function.

The type of this function is integer.

B.56.1 General Format

FUNCTION TEST-NUMVAL-C (argument-1 [, argument-2])

B.56.2 Arguments

1) Argument-1 shall be of class alphanumeric.

2) Argument-2, if specified, shall be of the same class as argument-1. Argument-2 shall contain exactly one

non-space character. Any leading or trailing spaces in argument-2 are ignored. Argument-2 shall not contain any of

the digits 0 through 9; the characters '*', '+', '–', ',' , and '.' or space. Argument-2 specifies a curency sign that may

appear in argument-1.

B.56.3 Returned values

1) The returned value is:

a) If the content of argument-1 does not conform to the argument rules for argument-1 of the NUMVAL-C

function, the returned value shall be the position of the first character in error, from (1) to (FUNCTION LENGTH (

argument-1) + 1)

b) Otherwise:

(0)

NOTES

1 — The returned value is (FUNCTION LENGTH (argument-1) + 1) if argument-1 is zero-length or

contains only spaces or a string such as “ +.”.

2 — The returned value is (3) if a three-character argument contains a string such as “0 1”.

3 — The returned value identifies the position of the 19 digit if the total number of digits exceeds 18.th

Interactive COBOL Language Reference & Developer’s Guide - Part One

658

01 TST-NUMV PIC 9.

COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL-C ("35").
IF TST-NUMV = 0
 PERFORM CORRECT-VALUE.

COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL-C ("$35", "$").
IF TST-NUMV = 0
 PERFORM CORRECT-VALUE.

COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL-C ("35E").
IF TST-NUMV = 3
 PERFORM CORRECT-VALUE.

COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL-C ("3 E 3").
IF TST-NUMV = 3
 PERFORM CORRECT-VALUE.

COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL-C ("35,433$", "$").
IF TST-NUMV = 7
 PERFORM CORRECT-VALUE.

COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL-C (A).
IF TST-NUMV = 0
 PERFORM CORRECT-VALUE.

B.56.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 84. TEST-NUMVAL-C function

INTRINSIC FUNCTIONS (TEST-NUMVAL-F)

659

B.57. TEST-NUMVAL-F

The TEST-NUMVAL-F function verifies that the contents of argument-1 conform to the specification for

argument-1 of the NUMVAL-F function.

The type of this function is integer.

B.57.1 General Format

FUNCTION TEST-NUMVAL-F (argument-1)

B.57.2 Arguments

1) Argument-1 shall be an alphanumeric literal or an alphanumeric data item.

B.57.3 Returned values

1) The returned value is:

a) If the content of argument-1 does not conform to the argument rules for the NUMVAL-F function, the

returned value shall be the position of the first character in error, from (1) to (FUNCTION LENGTH (argument-1)

+ 1)

b) Otherwise, if the numeric value represented by argument-1 cannot be represented in a floating-point data

item because of exponent overflow:

(–1)

c) Otherwise, if the numeric value represented by argument-1, cannot be represented in a floating-point data

item because of exponent underflow:

(–2)

d) Otherwise:

(0)

NOTES

1 — The returned value is (FUNCTION LENGTH (argument-1) + 1) if argument-1 is zero-

length or contains only spaces or a string such as “1.5E”.

2 — The returned value is (3) if a three-character argument contains a string such as “0 1”.

3 — If the total number of digits in the significand exceeds 18, the returned value identifies the

position of the 19th digit.

4 — If the total number of digits in the exponent exceeds 3, the returned value identifies the

position of the 4th digit.

5 — If the exponent has no sign, the returned value identifies the position of the first exponent

digit.

Interactive COBOL Language Reference & Developer’s Guide - Part One

660

01 TST-NUMV PIC 9.

COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL-F ("35").
IF TST-NUMV = 0 THEN
 PERFORM CORRECT-VALUE.

COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL-F ("3E2").
IF TST-NUMV = 0 THEN
 PERFORM CORRECT-VALUE.

COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL-F ("3E-2").
IF TST-NUMV = 0 THEN
 PERFORM CORRECT-VALUE.

COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL-F ("35$").
IF TST-NUMV = 3 THEN
 PERFORM CORRECT-VALUE.

COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL-F ("3,433").
IF TST-NUMV = 2 THEN
 PERFORM CORRECT-VALUE.

B.57.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 85. TEST-NUMVAL-F function

INTRINSIC FUNCTIONS (UPPER-CASE)

661

01 ANY-CHANGE-ANSWER PIC X(7).

MOVE "abcdefg" TO ANY-CHANGE-ANSWER.
MOVE FUNCTION UPPER-CASE (ANY-CHANGE-ANSWER)

TO ANY-CHANGE-ANSWER.
IF ANY-CHANGE-ANSWER = "ABCDEFG" THEN
 PERFORM CORRECT-VALUE.

B.58. UPPER-CASE

The UPPER-CASE function returns a character string that is the same length as argument-1 with each lowercase

letter replaced by the corresponding uppercase letter.

The type of the function depends on the argument type as follows:

Argument type Function type
Alphabetic Alphabetic
Alphanumeric Alphanumeric

B.58.1 General format

FUNCTION UPPER-CASE (argument-1)

B.58.2 Arguments

1) Argument-1 shall be of class alphabetic or alphanumeric and shall be at least one character position

in length.

B.58.3 Returned values

1) The same character string as argument-1 is returned, except that each lowercase letter is replaced by the

corresponding uppercase letter.

2) The character string returned has the same length as argument-1.

3) If the computer's character set does not include uppercase letters, no changes take place in the character

string.

B.58.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 86. UPPER-CASE function

Interactive COBOL Language Reference & Developer’s Guide - Part One

662

B.59. VARIANCE

The VARIANCE function returns a numeric value that approximates the variance of its arguments.

The type of this function is numeric.

B.59.1 General format

FUNCTION VARIANCE ({ argument-1 }...)

B.59.2 Arguments

1) Argument-1 shall be class numeric.

B.59.3 Returned values

1) The equivalent arithmetic expression shall be as follows:

a) For one occurrence of argument-1,

(0)

b) For two occurrences of argument-1,

1(((argument-1 – FUNCTION MEAN (argument-list)) ** 2 +

2(argument-1 – FUNCTION MEAN (argument-list)) ** 2) / 2)

c) For n occurrences of argument-1,

(FUNCTION SUM (

1((argument-1 – FUNCTION MEAN (argument-list)) ** 2)

...

n((argument-1 – FUNCTION MEAN (argument-list)) ** 2)) / n)

iwhere argument-list is the argument-1 list for the VARIANCE function itself and argument-1 is the ith

argument of the argument-1 list for the VARIANCE function itself.

INTRINSIC FUNCTIONS (VARIANCE)

663

01 VARNUM PIC S9(5)V9(6).

MOVE 48.6865 TO MINVAL.
MOVE 48.6885 TO MAXVAL.
COMPUTE VARNUM = FUNCTION VARIANCE(5, -2, -14, 0).
IF (VARNUM >= MINVAL) AND
 (VARNUM <= MAXVAL) THEN
 PERFORM CORRECT-VALUE.

MOVE 139.234 TO MINVAL.
MOVE 139.245 TO MAXVAL.
COMPUTE VARNUM = FUNCTION VARIANCE(2.6 + 30, 4.5 * 2).
IF (VARNUM >= MINVAL) AND
 (VARNUM <= MAXVAL) THEN
 PERFORM CORRECT-VALUE.

B.59.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 87. VARIANCE function

Interactive COBOL Language Reference & Developer’s Guide - Part One

664

B.60. WHEN-COMPILED

The WHEN-COMPILED function returns the date and time the compilation unit was compiled as provided by the

system on which the compilation unit was compiled.

The type of this function is alphanumeric.

B.60.1 General format

FUNCTION W HEN-COMPILED

B.60.2 Returned values

1) The character positions returned, numbered from left to right, are:

Character

Positions Contents

1-4 Four num eric digits of the year in the Gregorian calendar.

5-6 Two num eric digits of the m onth of the year, in the range 01 through 12.

7-8 Two num eric digits of the day of the m onth, in the range 01 through 31.

9-10 Two num eric digits of the hours past m idnight, in the range 00 through 23.

11-12 Two num eric digits of the m inutes past the hour, in the range 00 through 59.

13-14 Two num eric digits of the seconds past the m inute, in the range 00 through 59.

15-16 Two num eric digits of the hundredths of a second past the second, in the range 00 through 99.

The value 00 is returned if the system on which the compilation was done does not have the

facility to provide the fractional part of a second.

17 Either the character '–', the character '+', or the character '0'. The character '–' is returned if the

local tim e indicated in the previous character positions is behind Coordinated Universal Tim e.

The character '+' is returned if the local tim e indicated is the same as or ahead of Coordinated

Universal Tim e. The character '0' is returned if the system on which the compilation was done

does not have the facility to provide the local tim e differential factor.

18-19 If character position 17 is '–', two num eric digits are returned in the range 00 through 12 indicating

the number of hours that the reported tim e is behind Coordinated Universal Tim e. If character

position 17 is '+', two num eric digits are returned in the range 00 through 13 indicating the number of

hours that the reported tim e is ahead of Coordinated Universal Tim e. If character position 17 is '0',

the value 00 is returned.

20-21 Two num eric digits are returned in the range 00 through 59 indicating the number of additional

m inutes that the reported tim e is ahead of or behind Coordinated Universal Tim e, depending on

whether character position 17 is '+ ' or '–', respectively. If character position 17 is '0', the value 00 is

returned.

2) The returned value is the date and time of compilation of the compilation unit that contains this function. The

returned value in a contained source unit is the compilation date and time associated with the compilation unit in

which it is contained.

3) The returned value shall denote the same time as the compilation date and time if provided in the listing and

in the generated object code, although their representations and precision may differ.

INTRINSIC FUNCTIONS (WHEN-COMPILED)

665

01 TEMP1 PIC X(21).
01 WS-DATE.
 02 WS-YEAR PIC 9999.

88 COM-YEAR VALUE 1990 THRU 9999.
 02 WS-MONTH PIC 99.
 88 COM-MONTH VALUE 01 THRU 12.
 02 WS-DAY PIC 99.
 88 COM-DAY VALUE 01 THRU 31.
 02 WS-HOUR PIC 99.
 88 COM-HOUR VALUE 00 THRU 23.
 02 WS-MIN PIC 99.
 88 COM-MIN VALUE 00 THRU 59.
 02 WS-SECOND PIC 99.
 88 COM-SEC VALUE 00 THRU 59.
 02 WS-HUNDSEC PIC 99.
 88 COM-HUNDSEC VALUE 00 THRU 99.
 02 WS-GREENW PIC X.
 88 COM-GREENW VALUE "-", "+", "0".
 02 WS-OFFSET PIC 99.
 88 COM-OFFSET VALUE 00 THRU 13.

MOVE FUNCTION WHEN-COMPILED TO TEMP1.
MOVE TEMP1 TO WS-DATE.
IF COM-YEAR AND
 COM-MONTH AND
 COM-DAY AND
 COM-HOUR AND
 COM-MIN AND
 COM-SEC AND
 COM-HUNDSEC AND
 COM-GREENW AND
 COM-OFFSET THEN
 PERFORM CORRECT-VALUE.

B.60.3 Example

The following code fragments illustrate the use of this function.

EXAMPLE 88. WHEN-COMPILED function

Interactive COBOL Language Reference & Developer’s Guide - Part One

666

B.61. YEAR-TO-YYYY

The YEAR-TO-YYYY function converts argument-1, the two low-order digits of a year, to a four-digit year.

Argument-2, when added to the year at the time of execution, defines the ending year of a 100-year interval, or

sliding window, into which the year of argument-1 falls.

The type of the function is integer.

B.61.1 General format

FUNCTION YEAR-TO-YYYY (argument-1 [, argument-2])

B.61.2 Arguments

1) Argument-1 shall be a nonnegative integer that is less than 100.

2) Argument-2 shall be an integer.

3) If argument-2 is omitted, the function shall be evaluated as though 50 were specified.

4) The sum of the year at the time of execution and the value of argument-2 shall be less than 10000 and greater

than 1699.

B.61.3 Returned values

1) Maximum-year shall be calculated as follows:

(FUNCTION NUMVAL (FUNCTION CURRENT-DATE (1:4)) + argument-2)

where argument-2 of the NUMVAL function is the same as argument-2 of the YEAR-TO-YYYY function

itself.

2) The equivalent arithmetic expression shall be as follows:

a) When the following condition is true

FUNCTION MOD (maximum-year, 100) >= argument-1

The equivalent arithmetic expression shall be

(argument-1 + 100 * (FUNCTION INTEGER (maximum-year/100)))

b) Otherwise, the equivalent arithmetic expression shall be

(argument-1 + 100 * (FUNCTION INTEGER (maximum-year/100) – 1))

NOTES

1 — In the year 1995, the returned value for FUNCTION YEAR-TO-YYYY (4, 23) is 2004. In the

year 2008 the returned value for FUNCTION YEAR-TO-YYYY (98, (–15)) is 1898.

2 — The YEAR-TO-YYYY function implements a sliding window algorithm. To use it for a fixed

window, argument-2 can be specified as follows, where fixed-maximum-year is the maximum year in

the fixed 100-year interval:

INTRINSIC FUNCTIONS (YEAR-TO-YYYY)

667

01 YEARVAL PIC 9(4).

DISPLAY "FUNCTION YEAR-TO-YYYY " NO ADVANCING.
COMPUTE YEARVAL = FUNCTION YEAR-TO-YYYY (4, 23).
IF YEARVAL = 2004
 PERFORM CORRECT-VALUE.

COMPUTE YEARVAL = FUNCTION YEAR-TO-YYYY (98, (-15))
IF YEARVAL = 1898
 PERFORM CORRECT-VALUE.

(fixed-maximum-year – FUNCTION NUMVAL (FUNCTION CURRENT-DATE (1:4)))

If the fixed window is 1973 through 2072, then in 2009 argument-2 shall have the value of 63 and in

2019, the value of 53.

B.61.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 89. YEAR-TO-YYYY function

Interactive COBOL Language Reference & Developer’s Guide - Part One

668

Screen Handler

669

IX. SCREEN HANDLER

A. General Description

The ICOBOL SCREEN HANDLER implements a subset of Threshold, Inc.'s SCREEN DEMON calls, which use

the CALL mechanism. ICSDMODE instructs ICOBOL how to enable the SCREEN HANDLER

A. 1. Enabling the SCREEN HANDLER

By default, the SCREEN HANDLER is disabled in the ICOBOL configuration file (.cfi). ICSDMODE is set by

using the configuration file (.cfi) or with an environment setting. Any ICSCMODE environment setting overrides

the setting in the Program Environment section of the configuration file (.cfi).

The syntax is:

ICSDMODE=disabled | underline | 0 | reverse | 1 | drawlines | 2

Where

disabled

Disables the SCREEN HANDLER

0 or underline

Run in standard SCREEN DEMON format, which is to underline the row above the box and underline the

last row in the box for the top and bottom lines, and use reverse video for the sides.

1 or reverse

Use reverse video for the entire box. This means that two (2) more lines than in standard mode are hidden

under the box.

2 or drawlines

Use the line-drawing character set of a terminal for the entire box. As with the previous setting, two (2)

more lines than in standard mode are hidden under the box. If a particular terminal does not have a

line-drawing character set, then “+”, “-”, and “|” are used for the corners, horizontal, and vertical portions of

the box, respectively. Currently, only the terminal types ibm, xenix, 386ix, pcbios, and pcwindow support

the line-drawing characters by default.

The ICSDMODE selection does not affect SD_DRAW_HLINE or SD_DRAW_VLINE or the value of the height of

a box or the value of the top-left-line entry.

SCREEN DEMON is an enhancement product for AOS/VS available from its developer, Threshold, Inc., Auburn,

AL. Phone (334) 821-0075.

Interactive COBOL Language Reference & Developer’s Guide - Part One

670

A. 2. Summary of Calls

The table below summarizes the ICOBOL SCREEN HANDLER calls that are available when the SCREEN

HANDLER feature is enabled. A description of each argument, as well as details for the calls, follow the table.

FUNCTION ARGUMENTS

SD_DRAW_BOX USING top-left-line, top-left-column, height, width [, label]

SD_DRAW_HLINE USING top-left-line, top-left-column, width

SD_DRAW_VLINE USING top-left-line, top-left-column, height

SD_ERROR_MESSAGE USING msg-string [, top-left-line, top-left-column]

SD_GET_IMAGE USING image-buffer

SD_GET_POS USING position

SD_MESSAGE USING msg-string [, top-left-line, top-left-column [, label]]

SD_MESSAGE_ONLY USING msg-string [, top-left-line, top-left-column [, label]]

SD_NEW_WINDOW [USING top-left-line, top-left-column, height, width [, label]]

SD_POP_UP_MENU USING menu-packet [, label]

SD_POP_UP_MENU2 USING menu-packet [, label]

SD_READ_CHAR USING char-field [, time-out-value]

SD_REDRAW (none)

SD_REMOVE_WINDOW (none)

SD_RETURN_INPUT USING data-string, string-size

SD_SET_ACCEPT_TIMEOUT USING time-out-value

SD_SYS_ERROR_MESSAGE USING error-code [, msg-string [, top-left-line, top-left-column]]

TABLE 37. Summary of Screen Handler Calls

NOTE: The following are included only for compatibility purposes, and executing them has no impact on how the

screen handler operates even though they may set or clear some flags which are otherwise not used. (If these calls

were implemented, as they are in the real Screen Demon, they would alter the performance characteristics of your

program.) These calls will fail if the ICSDMODE environment variable has not been set. They will also fail if the

call interface (i.e., number of arguments or argument size) is invalid. Otherwise, the calls will always succeed (and

do nothing).

CALL "SD_CONTROL" USING control
CALL "SD_DISABLE"
CALL "SD_ENABLE"
CALL "SD_FLUSH"
CALL "SD_GET_CONTROL USING control
CALL "SD_TURBO_FULL"
CALL "SD_TURBO_OFF"
CALL "SD_TURBO_PARTIAL"

NOTE: In SD_CONTROL and SD_GET_CONTROL, the data item control is defined as PIC 9(4) COMP.

Screen Handler (Error Handling)

671

A.3. Error Handling

The following Exception Status codes may be returned.

Exception
Code

Description

241 “The argument is too long to process”

203 "Program not found" if ICSDMODE is not set

076 "Device timeout" when SD_POP_UP_MENU exits due to a timeout
set by SD_SET_ACCEPT_TIMEOUT

013 "Invalid data" when a parameter is invalid; i.e., line or
column is out of range, string too long for box, etc.

008 "Insufficient memory" when there is no more memory available
for screen images.

001 "Invalid operation" when trying to perform an option that is
not currently valid; i.e., trying to do a SD_REMOVE_WINDOW
when nothing is pushed.

The ICOBOL SCREEN HANDLER runs in a mode similar to the SCREEN DEMON partial turbo, i.e., the user's

screen is updated at the end of every operation.

The ICOBOL SCREEN HANDLER cannot be disabled while under ICOBOL.

The calls SD_GET_IMAGE and SD_GET_POS are only defined for screens with 24 lines and 80 columns. If either

is called on a larger size screen, SD_GET_IMAGE will return the upper left 24 by 80 quadrant and SD_GET_POS

will generate an Exception Status 13.

For menu items there is a limit of 21 items otherwise an Invalid Data is given.

Interactive COBOL Language Reference & Developer’s Guide - Part One

672

B. Calls

B.1. SD_DRAW_BOX

This call provides the ability to draw a box on the terminal. The area inside the box is cleared to spaces.

The syntax is:

CALL "SD_DRAW_BOX" USING top-left-line, top-left-column, height, width
[, label]

Where

top-left-line

Specifies a PIC 9(4) COMP and defines the top left line position of a box or line. If <= 2, it will be

centered.

top-left-column

Specifies a PIC 9(4) COMP and defines the top left column position of a box or line. If <= 0, it will be

centered.

height

Specifies a PIC 9(4) COMP and defines how high (in lines) a box or line should extend from the top left

position. The height does not include the top line.

width

Specifies a PIC 9(4) COMP and defines how wide (in columns) a box or line should extend from the top

left position. The width includes the edges of the box which are one space wide.

label

Specifies a PIC X(n) and defines a label to be placed on the top line of a box underlined and bright. The

label must be terminated with a null (LOW-VALUE).

Screen Handler (SD_DRAW_HLINE and SD_DRAW_VLINE)

673

NOTE: SD_DRAW_HLINE is only useful to set the underline attribute.

B.2. SD_DRAW_HLINE and SD_DRAW_VLINE

These calls allow for either a horizontal line (SD_DRAW_HLINE) or a vertical line (SD_DRAW_VLINE) to be

drawn on the terminal.

The syntax is:

CALL "SD_DRAW_VLINE" USING top-left-line, top-left-column, height

CALL "SD_DRAW_HLINE" USING top-left-line, top-left-column, width

Where

 top-left-line

Specifies a PIC 9(4) COMP and defines the top left line position of a box or line. If <= 2, it will be

centered.

top-left-column

Specifies a PIC 9(4) COMP and defines the top left column position of a box or line. If <= 0, it will be

centered.

height

Specifies a PIC 9(4) COMP and defines how high (in lines) a box or line should extend from the top left

position. The height does not include the top line.

width

Specifies a PIC 9(4) COMP and defines how wide (in columns) a box or line should extend from the top

left position. The width includes the edges of the box which are one space wide.

Interactive COBOL Language Reference & Developer’s Guide - Part One

674

 01 IMAGE-BUFFER.
 05 SCREEN-LINE OCCURS 24 TIMES PIC X(80).
 05 FILLER OCCURS 24 TIMES.
 07 CHAR-ATTRIBUTE OCCURS 80 TIMES PIC 9(2) COMP.
 05 CURSOR-POSITION PIC 9(4) COMP.
 05 CURRENT-ATTRIBUTES PIC 9(4) COMP.
 05 SCREEN-BUFFER-RESERVED PIC X(252).

B.3. SD_GET_IMAGE

This call transfers a copy of the current image buffer to a buffer defined in the program's WORKING STORAGE.

This call is only defined for a 24 by 80 screen. If called on a larger screen only the first 24 rows by 80 columns will

be returned and the cursor position will be reported as (line-1)*80 + (column-1).

The syntax is:

CALL "SD_GET_IMAGE" USING image-buffer

Where

image-buffer

Specifies a structure of the following format:

char-attribute

Is defined as:

bit attribute

1 DIM

2 BLINK

4 UNDERSCORE

8 REVERSED

16 Alternate character set

Screen Handler (SD_GET_POS)

675

B.4. SD_GET_POS

This call provides the program the ability to determine the cursor's current position on the screen. This call is only

defined for a 24 by 80 screen. If called on a larger screen when the cursor is beyond the 24 by 80 area the call will

fail with an Exception Status 13.

The syntax is:

CALL "SD_GET_POS" USING cursor-position

Where

cursor-position

Specifies a PIC 9(4) COMP in which the cursor position is stored as (linenumber-1)*80 +

(columnnumber-1). Thus when positioned to the home position (line 1, col 1), the cursor-position would be

zero(0).

Interactive COBOL Language Reference & Developer’s Guide - Part One

676

B.5. SD_MESSAGE, SD_ERROR_MESSAGE, SD_MESSAGE_ONLY

These calls provide the ability to display a message. SD_MESSAGE and SD_ERROR_MESSAGE wait for an

operator to acknowledge the message, but SD_MESSAGE_ONLY does not.

The syntax is:

CALL "SD_MESSAGE" USING msg-string [, top-left-line, top-left-column
[, label]]

CALL "SD_ERROR_MESSAGE" USING msg-string [, top-left-line,
top-left-column]

CALL "SD_MESSAGE_ONLY" USING msg-string [, top-left-line, top-left-column
[, label]]

Where

msg-string

Specifies a PIC X(n) and contains a message to be displayed within a box. The msg-string must be termi-

nated with a null (LOW-VALUE). A bar | symbol will cause the message to wrap to a new line.

 top-left-line

Specifies a PIC 9(4) COMP and defines the top left line position of a box or line. If <= 0, it will be

centered vertically.

top-left-column

Specifies a PIC 9(4) COMP and defines the top left column position of a box or line. If <= 0, it will be

centered horizontally.

label

Specifies a PIC X(n) and defines a label to be placed on the top line of a box underlined and bright. The

label must be terminated with a null (LOW-VALUE).

If neither line nor column is included or both are set to <= 0, the message box will be centered on the screen.

If label is not included, no label will be provided.

SD_ERROR_MESSAGE is equivalent to calling SD_MESSAGE with the label set to "Error!".

Screen Handler (SD_NEW_WINDOW)

677

B.6. SD_NEW_WINDOW

This call saves the current image in a push-down image stack that can later be restored with the

SD_REMOVE_WINDOW call. Each call to SD_NEW_WINDOW will cause the current image to be pushed onto

the image stack and a new image buffer will start to receive all subsequent output to the screen.

Calling SD_NEW_WINDOW with the optional parameters is short-hand for an SD_NEW_WINDOW followed by

an SD_DRAW_BOX.

The syntax is:

CALL "SD_NEW_WINDOW" [USING top-left-line, top-left-column, height, width
[, label]]

Where

top-left-line

Specifies a PIC 9(4) COMP and defines the top left line position of a box or line. If <= 2, it will be

centered.

top-left-column

Specifies a PIC 9(4) COMP and defines the top left column position of a box or line. If <= 0, it will be

centered.

height

Specifies a PIC 9(4) COMP and defines how high (in lines) a box or line should extend from the top left

position. The height does not include the top line.

width

Specifies a PIC 9(4) COMP and defines how wide (in columns) a box or line should extend from the top

left position. The width includes the edges of the box which are one space wide.

label

Specifies a PIC X(n) and defines a label to be placed on the top line of a box underlined and bright. The

label must be terminated with a null (LOW-VALUE).

Interactive COBOL Language Reference & Developer’s Guide - Part One

678

01 MENU-PACKET.
 05 MENU-LINE PIC 9(4) COMP.
 05 MENU-COLUMN PIC 9(4) COMP.
 05 DEFAULT-ITEM PIC 9(4) COMP.
 05 SELECTED-ITEM PIC 9(4) COMP.
 05 SELECTED-STRING PIC X(30).
 05 MENU-ITEMS-STRING PIC X(n).

B.7. SD_POP_UP_MENU

This call provides the ability to display a simple pop-up menu. The user can use the up-arrow and down-arrow keys

or the first letter of a selection to position to an item. A newline selects that item and exits the menu while an ESC

exits the menu with no selection. The screen area under the pop-up menu is restored upon exiting from the menu.

The syntax is:

CALL "SD_POP_UP_MENU" USING menu-packet [, label]

Where

menu-packet

Specifies a structure of the following format:

label

Specifies a PIC X(n) and defines a label to be placed on the top line of a box underlined and bright. The

label must be terminated with a null (LOW-VALUE).

The line and column arguments specify the top-left-line and top-left-column for the box containing the pop-up menu

(just as documented under SD_DRAW_BOX). If these are set to zero, the menu is centered. The menu-items-string

is the list of options to be displayed in the pop-up menu. This string should contain the string for each selection-item

separated by a vertical bar (|) and ending with two vertical bars (||). For example:

"First selection|Second selection|Third selection||".

The default-item specifies the default item, i.e., the item to which the cursor will be positioned initially. The

selected-item and selected-string are the returned item number and string when exiting the pop-up menu. If an ESC

was hit, a zero(0) and spaces will be returned.

Within the pop-up menu, the user can use the up-arrow and down-arrow keys to position to the previous or next

selection or the first letter of a selection to move to the next selection starting with that letter.

If a default timeout has been specified by SD_SET_ACCEPT_TIMEOUT and no input is entered within that time,

the CALL returns with an Exception Status 76 "Device timeout", and the SELECTED-ITEM and

SELECTED-STRING are set as if an ESC had been typed.

Screen Handler (SD_POP_UP_MENU2)

679

01 MENU-PACKET.
 05 MENU-LINE PIC 9(4) COMP.
 05 MENU-COLUMN PIC 9(4) COMP.
 05 DEFAULT-ITEM PIC 9(4) COMP.
 05 SELECTED-ITEM PIC 9(4) COMP.
 05 SELECTED-STRING PIC X(30).
 05 MENU-ITEMS-STRING PIC X(n).

B.8. SD_POP_UP_MENU2

This call provides the ability to display a simple pop-up menu and accepts function keys as terminators. The user

can use the up-arrow and down-arrow keys or the first letter of a selection to position to an item. A newline selects

that item and exits the menu while an ESC exits the menu with no selection. The screen area under the pop-up menu

is restored upon exiting from the menu. This function differs from SD_POP_UP_MENU in that it allows function

keys to successfully select and return a menu option. The value of ESCAPE KEY is set to indicate which terminator

was pressed. (The COBOL program can query this value with the “ACCEPT FROM ESCAPE KEY” statement.)

Pressing ESC exits the menu with no selection, but it also updates ESCAPE KEY.

The syntax is:

CALL "SD_POP_UP_MENU2" USING menu-packet [, label]

Where

menu-packet

Specifies a structure of the following format:

label

Specifies a PIC X(n) and defines a label to be placed on the top line of a box underlined and bright. The

label must be terminated with a null (LOW-VALUE).

The line and column arguments specify the top-left-line and top-left-column for the box containing the pop-up menu

(just as documented under SD_DRAW_BOX). The menu-items-string is the list of options to be displayed in the

pop-up menu. This string should contain the string for each selection-item separated by a vertical bar (|) and ending

with two vertical bars (||). For example:

"First selection|Second selection|Third selection||".

The default-item specifies the default item, i.e., the item to which the cursor will be positioned initially. The

selected-item and selected-string are the returned item number and string when exiting the pop-up menu. If an ESC

was hit, a zero(0) and spaces will be returned.

Within the pop-up menu, the user can use the up-arrow and down-arrow keys to position to the previous or next

selection or the first letter of a selection to move to the next selection starting with that letter.

If a default timeout has been specified by SD_SET_ACCEPT_TIMEOUT and no input is entered within that time,

the CALL returns with an Exception Status 76 "Device timeout", and the SELECTED-ITEM and

SELECTED-STRING are set as if an ESC had been typed. ESCAPE KEY is set to 99.

Interactive COBOL Language Reference & Developer’s Guide - Part One

680

B.9. SD_READ_CHAR

This call allows the program to read a single keystroke with or without a timeout. Any 7-bit character read is passed

through unchanged. If a timeout is given and no keystroke is received within that time frame, the character 128 is

returned. If a function key is pressed a value from the following table is returned. Any 8-bit character has its high-

order bit stripped, and the 7-bit value is returned.

Key normal Shift Ctrl Ctrl-Shift

F1 241 225 177 161

F2 242 226 178 162

F3 243 227 179 163

F4 244 228 180 164

F5 245 229 181 165

F6 246 230 182 166

F7 247 231 183 167

F8 248 232 184 168

F9 249 233 185 169

F10 250 234 186 170

F11 251 235 187 171

F12 252 236 188 172

F13 253 237 189 173

F14 254 238 190 174

F15 240 224 176 160

C1 220 216

C2 221 217

C3 222 218

C4 223 219

right-arow 24 152

left-arrow 25 153

up-arrow 23 151

down-arrow 26 154

home 8 136

newline 10

ESC 27

The syntax is:

CALL "SD_READ_CHAR" USING char-field [, time-out-value]

Where

char-field

Specifies a PIC X(1) and returns the read character if less than 8-bit, a 128 if a timeout occurred, or a

number from the above table for a function key.

timeout-value

Specifies a PIC 9(4) COMP specifying the number of seconds to wait before terminating the READ. If not

specified, the READ will wait forever. If set to 0 or >= 65535 then the timeout is set to wait forever, if set

> 6300 it is set to 6300, otherwise if between 1 - 6300 it is set to that number of seconds.

Screen Handler (SD_READ_CHAR)

681

If a timeout had previously been specified by SD_SET_ACCEPT_TIMEOUT, the new value will override the

previous value for this call.

NOTE: The IC_GET_KEY builtin provides a more complete and terminal independent method of reading

individual keystrokes.

Interactive COBOL Language Reference & Developer’s Guide - Part One

682

B.10. SD_REDRAW

This call instructs the SCREEN HANDLER to clear the screen and redisplay the entire contents of the current

image-buffer.

The syntax is:

CALL "SD_REDRAW"

Screen Handler (SD_REMOVE_WINDOW)

683

B.11. SD_REMOVE_WINDOW

This call restores the image-buffer that is on the top of the image-buffer stack. SD_REMOVE_WINDOW

effectively removes all data that had been displayed since the last SD_NEW_WINDOW call and replaces it with the

data that was on the screen at that time.

A STOP RUN or a CALL PROGRAM to a new program will always clear all pushed image buffers.

The syntax is:

CALL "SD_REMOVE_WINDOW"

Interactive COBOL Language Reference & Developer’s Guide - Part One

684

MOVE "1234567890" TO DATA-STRING.
MOVE 10 TO DATA-ARRAY(11).
MOVE 11 TO STRING-SIZE.
CALL "SD_RETURN_INPUT" USING DATA-STRING, STRING-SIZE.

B.12. SD_RETURN_INPUT

This call provides the ability to place keystrokes into the terminal's input buffer such that the next ACCEPT will read

them as if they had been typed from the keyboard.

Up to 256 characters can be returned, provided the internal input buffer is empty, i.e., characters are not still left

from previous SD_RETURN_INPUT calls. If all the data will not fit into the input buffer, an Exception Status 241

is returned.

A STOP RUN will empty the input buffer.

The syntax is:

CALL "SD_RETURN_INPUT" USING data-string, string-size

Where

data-string

Specifies a PIC X(n) and holds data to be placed into the input buffer for this terminal. This item cannot be

larger than 256 bytes. All entered data is treated like it came from a DG terminal. I.E., to enter a function

key enter the 2-byte DG sequence even when on a non-DG terminal.

string-size

Specifies a PIC 9(4) COMP that specifies the number of bytes to use out of data-string. It must be less than

or equal to the size of data-string.

To enter data into an empty 10 character field, the following could be used:

Where

DATA-STRING

Specifies a PIC X(256).

DATA-ARRAY

Specifies a PIC 99 COMP array defined over DATA-STRING.

STRING-SIZE

Specifies a PIC 9(4) COMP.

Which would enter the characters "1234567890" followed by a newline into the next ACCEPT from the keyboard.

NOTE: The SD_RETURN_INPUT function is useful for returning information from a hotkey program into the

field from which the hotkey was launched.

Screen Handler (SD_SET_ACCEPT_TIMEOUT)

685

NOTE: This call serves a different function than the SCREEN DEMON call.

B.13. SD_SET_ACCEPT_TIMEOUT

This call provides the ability to set a default timeout value for all subsequent SCREEN HANDLER calls that read

from the keyboard. These include SD_POP_UP_MENU, SD_POP_UP_MENU2, SD_READ_CHAR,

SD_MESSAGE, SD_ERROR_MESSAGE, and SD_SYS_ERROR_MESSAGE. If no input is done for the specified

number of seconds the input will be terminated with Exception Status set to 76. To disable timeout, a value of 65535

must be provided as the time-out-value. The initial default timeout value is forever (i.e., 65535).

This timeout only affects SCREEN HANDLER reads, normal I/O is not affected. The standard IC_SET_TIMEOUT

does not affect any SCREEN HANDLER reads.

The syntax is:

CALL "SD_SET_ACCEPT_TIMEOUT" USING time-out-value

Where

time-out-value

Specifies a PIC 9(4) COMP specifying the number of seconds to wait before terminating a read. If set to 0

or >= 65535 then the timeout is set to wait forever, if set > 6300 it is set to 6300, otherwise if between 1 -

6300 it is set to that number of seconds.

Interactive COBOL Language Reference & Developer’s Guide - Part One

686

B.14. SD_SYS_ERROR_MESSAGE

This call provides the ability to display a system error message as defined by the system. The message is displayed

in a box with an optional user message and an operator acknowledge is sought. The error-code should be a valid

Exception Status.

The syntax is:

CALL "SD_SYS_ERROR_MESSAGE" USING error-code [, msg-string
[, top-left-line, top-left-column]]

Where

error-code

Specifies a PIC 9(4) COMP and should be a valid system Exception Status code.

msg-string

Specifies a PIC X(n) and contains a message to be displayed within a box. The msg-string must be termi-

nated with a null (LOW-VALUE). A bar | symbol will cause the message to wrap to a new line.

 top-left-line

Specifies a PIC 9(4) COMP and defines the top left line position of a box or line. If <= 2, it will be

centered.

top-left-column

Specifies a PIC 9(4) COMP and defines the top left column position of a box or line. If <= 0, it will be

centered.

687

PART TWO - DEVELOPER’S GUIDE

Interactive COBOL Language Reference & Developer’s Guide - Part Two

688

Introduction (Overview)

689

X. INTRODUCTION TO THE DEVELOPER’S GUIDE

A. Overview

ICOBOL provides the ability to compile and execute COBOL programs in the UNIX and Windows environments.

This allows the developer to use the most cost-effective platforms (UNIX or Windows) for both program

development and program installation.

B. Operating Environment

B.1. General Concepts

The ICOBOL system has been designed to provide an application operating environment that works as consistently

as possible among several different operating system environments. This consistency is expressed in a few key

concepts that have their roots in the UNIX and Windows operating systems. If you are using one of these operating

systems, the concepts may already be familiar to you.

B.1.1 Communication with the Operating System

The first concept is that programs communicate with their operating environment through three input/output streams

or files: standard input (stdin), standard output (stdout), and standard error (stderr). Programs can read data to be

processed from stdin, process it in some way, and write the results to stdout. They report errors to stderr. By

default, most systems connect stdin to the console keyboard and both stdout and stderr to the console display.

Many utilities, especially in the COBOL environment, must process complex data files that do not fit this simple

model and so they do not often use stdin for the data to process. However, the stdout and stderr files are still very

useful. They allow the utility to logically separate error reporting from reporting the results of processing. For

example, the ICSTAT utility reports statistics about an ICISAM files. It reports these statistics to stdout. If an error

occurs, for example one of the command arguments does not exist, the error is reported to stderr.

B.1.2 I-O Redirection

The second concept is the ability to redirect I-O files from the default files to another file or device. The UNIX and

Windows systems provide a very simple way to redirect these standard files in the command processor by using the

special characters `<' and `>'. When stdout is redirected to a file, it provides a simple mechanism to capture the

output of a utility. See your operating system command processor documentation for more on this concept.

B.1.3 Environment Variables

The third major concept is the ability to customize the operation of specific programs by setting information in items

called Environment Variables. Environment variables have a name and a value like program variables or data items.

The difference is that these variables are managed by the command processor. The utility programs can ask the

operating system whether a particular environment variable is set or not, and what its value is. They are most often

used to set default operating options, or the locations of important files. For example, all ICOBOL command-line

programs look for the environment variable ICROOT as the base directory for finding the system files nd help files.

UNIX and Windows both provide environment variables. ICROOT and other common environment variables used

by ICOBOL are described in more detail beginning on page 696.

Environment variables are maintained in the command processor (or shell). Environment variables are set up with a

command like:

On Windows On UNIX
SET ICROOT=C:\Program Files\Icobol ICROOT=/usr/cobol360

Interactive COBOL Language Reference & Developer’s Guide - Part Two

690

B.2. Directory Structure

On UNIX, the ICOBOL software is installed in a directory with the name cobolnnn, where nnn corresponds to the

revision level. For example, ICOBOL Revision 3.60 will be in a directory named cobol360 by default. This

directory can be installed wherever is most appropriate or convenient for your system and can be renamed as needed.

On Windows, the ICOBOL software is installed in a directory with the name icobol in the program files directory by

default..

The main directory contains: all of the command-line programs, the readme file(s), and supplied COBOL executable

programs. One subdirectory is called help. The help subdirectory contains help (.hf) files, for all the command-line

programs defined as <command>.hf. Interactive programs have their own subdirectories under the help directory.

There may be additional directories with other miscellaneous files, see the appropriate readme file(s) for a list of all

the actual files.

Main Sub-
Directory Directories Description
cobol<rev> - cgicobol Cgiruntime, scripts, examples

- examples Various examples

- help Help files (.hf)

- link_kit (Dev) Interface to install user-written
subroutines into runtime

- messages Sample Message text files

- print Printer translation files (.pti)

- term Terminal description files (.tdi)

- tcs ThinClient server files

- user_lib (Dev) Interface to ICISAM files
(ICAPI)for non-COBOL use

- main executables and needed files

FIGURE 9. ICOBOL Directory Structure (UNIX)

Introduction (Operating Environment)

691

Main Sub-
Directory Directories Description
icobol - cgicobol Cgiruntime, scripts, examples

- examples Various examples

- help Help files (.hf)

- link_kit (Dev) Interface to install user-written
subroutines into runtime

- messages Sample Message text files

- print Printer translation files (.pti)

- qpr (Dev) Gui-printer development
(Formprint)(ICQPRW)

- sentinel Rainbow sentinel device files

- sp2 (Dev) Gui-screen development (ICSP2)

- term Terminal description files (.tdi)

- tcs ThinClient server files

- user_lib (Dev) Interface to ICISAM files
(ICAPI)for non-COBOL use

- main executables, .dlls, and needed files

FIGURE 10. ICOBOL Directory Structure (Windows)

Command-line programs require the corresponding help file to be available in order to display their help text. If it is

not available, an error message will be displayed that it could not find the help file. There are two methods for

finding the help file: by using the ICROOT environment variable or by passing a partial pathname to the operating

system.

B.3. ICEXEC Control Program

The ICOBOL system uses a control program called ICEXEC to coordinate multi-user access to system resources.

The runtime system (ICRUN) requires the ICEXEC program to be running in order to operate. All other ICOBOL

executables can operate with or without ICEXEC.

On UNIX, ICEXEC is required to provide an exclusive open capability since UNIX does not provide that capability.

When ICEXEC is not running, an exclusive open is emulated by posting a write-lock on the whole file. A non-

exclusive open posts a read-lock on the whole file. Thus, two programs can detect whether a file is opened or open-

exclusively by using this mechanism. Care should be exercised when moving from no-ICEXEC to ICEXEC-

running, as utilities that started in the no-ICEXEC mode will keep running in that mode until they terminate.

B.4. ICPERMIT License Program

The license manager, ICPERMIT, is used to provide licensing information to any executable that requires an

authorization either on a single machine or over a TCP/IP-based network. This includes the ICOBOL compiler

(ICOBOL), the runtime (ICRUN), ICNETD surrogates, the ICsp2 editor, the ICQPRW editor, sp2 runtimes,

ICODBC driver, programs built with the user library, the ICIDE, and the remote logging surrogate (ICLOGS).

ICPERMIT must be running and authorizing the proper license before any of these programs can operate. Other-

wise, an error message occurs, stating the program could not connect with the license server and so is not authorized

to execute.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

692

C. Command-line Conventions

Another aspect of providing a consistent system across multiple operating platforms is in the command-line

interface. The command-line programs use a common command-line syntax across all platforms, and they adhere to

the following standard conventions:

C.1. Switches

1) all switches are composed of a single letter or digit preceded by a hyphen (-) (or optionally a forward slash (/)

on Windows);

2) the switches are order independent;

3) the switches ARE case sensitive;

4) lower-case switches imply an action or modification of an action, e.g., `-h' for help;

5) UPPER-CASE switches imply an action with a required argument that must follow with an intervening

space, e.g., `-A audit.log' for setting up an auditfile called audit.log.

6) multiple lower-case switches can be combined with one hyphen, e.g., `-aew' for `-a -e -w'.

C.2. Conventions for Defining Syntax

The following shows how the various conventions for defining syntax are represented in the ICOBOL documenta-

tion:

Convention Meaning

[] Brackets enclose optional portions of a format. One of the options contained
within the brackets may be explicitly specified or that portion may be omitted.

{ } Braces enclosing a portion of a format means that one of the options contained
within the braces must be specified.

| Bar will be used to separate choices when multiple choices are allowed.

... Ellipsis indicates that the previous item can be repeated one or more times.

italic-lower-case Indicates a generic term representing a value that is defined as indicated.

TABLE 38. Common Command-line Syntax Conventions

C.3. Filename Case (upper or lower)

UNIX systems support case-sensitive filenames as opposed to Windows, where they are case-insensitive. All

released ICOBOL on UNIX files are lower-case, which is in keeping with most UNIX systems. By default, the

ICOBOL on UNIX runtime will convert all COBOL filenames, including program names, to lower-case before

looking up that file in UNIX. Although ICOBOL on UNIX can support UPPER-CASE only or mixed-case, we

recommend using only one case for filenames to ease portability to case-insensitive environments.

With this in mind, this document will still use upper-case names in the text for specific programs but will always use

lower-case in examples and when showing what needs to be entered from the keyboard to run a program.

On UNIX, all examples assume the Bourne shell is being run.

D. Common Switches

D.1. Overall

There are several switches that are common to all ICOBOL command-line programs except for ICINFO. These are

described in detail in the following sections and will be referenced later, in the discussions of each program.. The

ICOBOL command-line switch processor scans all the command-line switches, checking for errors. Any errors

Introduction (Common Switches)

693

display an abbreviated startup banner (the program name and revision) to stdout before displaying the error message

to stderr and then exiting with a non-zero exit code. If there are no errors to terminate processing prematurely, the

common switches are processed. First, if the Help switch is given, an abbreviated startup banner and help text are

displayed to stdout after which the program exits normally (i.e., no other switches or arguments are processed).

Next, if the Audit switch is given, auditing is enabled. Finally, the Quiet switch, if given, is processed. The program

then begins its specific processing by emitting a startup banner, consisting of the program name, revision level,

system, and the copyright notice. When it finishes processing, it will emit a trailer message indicating that it is done.

D.2. Audit Switch

The Audit switch will be shown in the syntax as:

-a[:a|b|d|p|t|u] | -A file|dir[:a|b|d|p|t|u]

Where

a Append. Do not truncate the file, just append to the current file.

b Backup. If a previous log file (.lg) exists, rename it to *.lgb and then open a new .lg file. On UNIX, this

will break hard links.

d Date. Add date in the form of _YYYYMMDD before the .lg extension.

p PID. Add pid in the form of _NNNN before the .lg extension.

t Time. Add time in the form of _YYYYMMDDHHmmsshh before the .lg extension. (YYYY-year,

MM-month, DD-day of the month, HH-hour, mm-minute, ss-second, hh-hundredths of seconds.)

u Username. Add username in the form _name before the .lg extension.

NOTE:

1) On Windows, the option "-A c:a" will be treated as open file "c" in append mode in the current directory.

Previously this would have been open file "a" in the current directory of drive C:. To get the old behavior,

enter

"-A c:.\a"

The audit flags (a,b,d,p,t,u) instruct the Audit processing to take a different action then the default for the audit file.

The default action is the same as usual, truncate the file to zero on startup.

Note that:

-a Audit to the default file for this command.

-A file Audit to the specified file.

-A dir Audit to default file in the specified directory.

Audit files contain a copy of any output that was sent to either stdout or stderr, in the same order as it was emitted at

execution time (i.e., it may be interspersed). The programs handle this internally, so stdout and stderr can still be

redirected. The audit file can be specified to use the default name in the current directory (-a), a user specified name

(-A file), or the default name in a specified directory (-A dir). An audit file is always created if it does not already

exist. If it does exist, it is truncated to zero, unless the ‘a’ option on the audit switch is used (e.g., ‘-a:a’).

The default audit file name is <command>.lg.

D.3. Quiet Switch

The Quiet switch will be shown in the syntax as:

-q

Interactive COBOL Language Reference & Developer’s Guide - Part Two

694

The Quiet switch works by suppressing all output that is emitted to stdout. The most obvious effect is that it

suppresses the usual banner and trailer messages that are emitted to stdout as the program starts and terminates.

Because it is suppressing stdout, the Quiet switch may also suppress other parts of the usual output.

D.4. Help Switch

The Help switch will be shown in the syntax as:

-h|-?

The Help switch displays a summary of the command-line syntax, the switches and what they do, and the applicable

environment variables.

E. Filename Extensions

ICOBOL requires that extensions for certain types of files match those in the following table except for those

marked defacto. Those marked defacto are only the most commonly used extensions for these purposes and are not

required. All ICOBOL release files will conform to these defacto standards.

d Those extensions marked as this sentence is marked are extensions in some older revision of ICOBOL or ICHOST

d but are handled in some special cases by current ICOBOL utilities.

Introduction (Filename Extensions)

695

Common extensions used by ICOBOL include:

.cd Old ICHOST COBOL program file

.cf Old Configuration file (pre-3.30)

.cfi Configuration file

.cl Library file

.co COBOL Source program (ANSI card format) (defacto)

.cx COBOL Program file

.er Error file (defacto)

.fa File attribute file

.fp Failsafe protection file

.hf ICOBOL help files

.icp ICIDE project files

.lg Audit / Log file (defacto)

.lgb previous Audit / Log file

.lk Link file

.ls List file (defacto)

.ms Message file

.od,.nt Pair of files, ICPACK data and index temporary files

.pd,.dd Pair of files, older revision COBOL program file (program and data)
(pre-ICOBOL 2)

.pq Printer control file

.pt Old Printer translation file (pre-3.30)

.pti Printer translation file (.ini format)

.sd ICRUN Sort data file (temporary)

.sr COBOL Source program (free-form format) (defacto)

.st ICRUN Sort tag file (temporary)

.sy COBOL Symbol table file

.td Old Terminal description file (pre-3.30)

.tdi Terminal description file (.ini format)

.tmp Temporary file (defacto)

.xd,.nx Pair of files, COBOL ICISAM file (date and index portion)

.xdb ICODBC database definition file (.ini format)

.xdt ICODBC table definition file (.ini format)

.xl Log file

.xlg Generation log file

TABLE 39. Common Filename Extensions used by ICOBOL

On UNIX, all ICOBOL utilities support mixed-case filenames. If a utility needs to add an extension, e.g., .xd/.nx,

etc., it searches back from the end of the simple filename for the first alphabetic character. If it finds an upper-case

alphabetic, it will use an upper-case extension, otherwise a lower-case extension is used. For example

"iccheck DATAbase1" and "iccheck 12345" would use the lower-case extensions `.xd' and `.nx' for the ICISAM

file, while "iccheck dataBASE52" would use the upper-case extensions `.XD' and `.NX'.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

696

F. Exit Codes

All command-line programs return exit codes that provide an indication of the success or failure of the program.

These are returned through the appropriate OS-specific mechanism (e.g., into ERRORLEVEL on Windows and the

exit code on UNIX). In general, the following codes will be returned:

Exit
code

Description

0 The program completed without errors.

1 The program ran, but some items it processed had errors. For
example, ICCHECK checked a series of files, and some of them
were corrupt.

2 The program was running, but was terminated by an operator
interrupt or external abort.

3 The program was running, but was terminated by some fatal
internal error. For example, the compiler was running but
detected that its virtual memory manager had run out of
memory unexpectedly.

4 There were command-line errors and so the program did not
perform any of the requested function(s).

5 The user was not authorized to execute the program or perform
a requested operation, so the program did not run.

6 The program experienced an error during its initialization
phrase and could not execute. For example, it could not
allocate sufficient memory to perform its function.

7 Help was requested

8-9 Reserved for future `common' errors.

10 These codes are specific to each program and will be docu-
mented with each program.

NOTE: All of the programs support exit codes 0 through 9 with the
meaning described above.

G. Common Environment Variables

G.1. Overall

There are several common environment entries that most command-line programs use. These are described in detail

in this section, which will be referenced in each section describing the ICOBOL command-line programs. Other

environment variables that are more program specific will be described under each ICOBOL command-line

program.

All ICOBOL command-line programs accept an environment variable specific to themselves called uppercase-

command-line-program-name. These specific environment variables can be used to set up options that are always

used.

G.2. ICROOT

ICROOT specifies the ICOBOL root directory. ICROOT is used to find needed files and subdirectories like the

help directory, print directory, and the term directory.

The syntax is:

ICROOT=dir

Introduction (Common Environment Variables)

697

Where

dir

Specifies the directory where to find the ICOBOL help and term directories. Usually this should be set the

current revision directory.

If ICROOT is not set, the current directory is used.

G.3. ICTMPDIR

ICTMPDIR specifies a directory to which programs may write any temporary files.

The syntax is:

ICTMPDIR=dir

Where

dir

Specifies a valid pathname for the directory in which any needed temporary files are to be written.

If ICTMPDIR is not set, the current directory is used.

Some of the programs that look for the ICTMPDIR environment variable are the ICOBOL compiler, ICLIB,

ICRUN, ICSORT, and ICREV.

On Windows in particular, ICTMPDIR should be used when the current directory is a network drive to set the

temporary directory to be on a local drive to improve performance.

G.4. Executable-Name Environment Variable

All command-line utilities support an environment variable of the same name as the utility in upper-case. For

example, the 'iccheck' utility will recognize the variable ICCHECK. The environment variable can contain command

line options for the utility which will be processed prior to any options actually present on the command line. If such

an environment variable is present, the utility will display the complete set of options at startup.

G.5. TZ (Windows only)

On Windows, TZ specifies the time zone and number of hours past Greenwich mean time (GMT) for this location.

The syntax is:

TZ=tttn[ttt]

Where

ttt

Specifies a time zone of three letters. The second time zone should be given if daylight-saving time applies

at this location.

n

Specifies a positive (west) or negative (east) integer number of hours difference from Greenwich mean time

(GMT). Up to two digits can be specified.

If no TZ is specified, ICOBOL assumes all times are Greenwich mean time (GMT). If the second time zone is

specified, ICOBOL assumes that daylight-saving time starts and stops based on the same schedule as used in the

USA.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

698

An example for Raleigh, North Carolina, USA would be:

SET TZ=EST5EDT

TZ is used for the command-line programs to accurately report date and time, and to accurately set date and time

information in file headers. It sets the time zone and number of hours past Greenwich mean time (GMT) for this

location.

COMPILER (ICOBOL)

699

XI. COMPILER (ICOBOL)

A. Overview

The ICOBOL Compiler (ICOBOL) is available for the UNIX and Windows environments. The compiler works the

same in all environments except as stated in this manual. The following sections describe the requirements for the

various operating environments.

The ICOBOL compiler provides the following features:

! a number of compile-time optimizations, including the detection and elimination of unreferenced data

and unused code

! warnings about non-standard features or misuse of ANSI 85 features when compiling for ANSI COBOL

74

! the ability to select the ICOBOL dialect (ANSI 74, ANSI 85, or VXCOBOL)

! enhanced compilation performance

! the ability to create a cross-reference listing

The ICOBOL compiler requires an ICOBOL Development license to be available from the license manager

(ICPERMIT).

To execute the ICOBOL compiler, an ICPERMIT must be installed and be running. Please see your Installing and

Configuring ICOBOL on UNIX, or Installing and Configuring ICOBOL on Windows manuals on how to install and

use ICPERMIT to allow the ICOBOL compiler to be authorized.

The ICOBOL compiler generates a COBOL executable file with the .cx extension. This .cx file when used in

conjunction with the runtime system (icrun) allows the COBOL program to be executed in any environment in which

the runtime is available.

B. Syntax

The syntax for the ICOBOL compiler is:

icobol [-a[:aflag]|-A file|dir[:aflag]] [-B 1|2|4] [-c] [-C copydir]...
[-D ic|vx|85] [-e|-E erdir] [-F f|c] [-G {6|a|b|d|e|g|h|i|n|p|q|s}...]
[-h|-?] [-H cnt] [-i] [-I {g|m|p|x}...] [-l|-L lsdir] [-M dddir]
[-N {h|p|s|u}...] [-o|-O rev] [-P cxdir] [-q] [-R rev] [-s] [-w]
[-X “string”] [-Z sydir] { infile }...

Where

-a[:aflag] or -A file|dir[:aflag] (Audit)

Enables auditing (default icobol.lg). Where aflag is a|b|d|p|t|u. Aflags are a-append, b-backup, d-date,

p-pid, t-time, u-username.

-B 1|2|4 (Byte alignment)

Where to align 01 & 77 level items. Options are: 1-byte, 2-byte, or 4-byte. Default is 2-byte.

-c (Copy source directory)

Add the directory of the main source file to the COPY list.

-C copydir (Copy directory)

Add copydir to COPY searchlist. A maximum of 16 directories can be added this way.

-D ic|vx|85 (Dialact)

Select ICOBOL dialect. Dialects are:

ic=icobol (traditional ANSI 74 with extensions),

vx=icobolvx (VXCOBOL),

Interactive COBOL Language Reference & Developer’s Guide - Part Two

700

85=strict (ANSI 85).

Default is ic.

-e | -E erdir (Error)

Specify error file. Redirect messages to infile.er for -e, or to erdir/infile.er for -E.

-F c|f (Format source)

Select source format. Options are c=card or f=free-form. Default is f.

-G {6|a|b|d|e|g|h|i|n|p|q|s}... (General)

General switch allows various options to be specified. Multiple options may be specified. Options are:

6=V6 ICISAM

a=ANSI (VXCOBOL)

b=COMP size check by bytes (ANSI 85 and VXCOBOL)

d=compile debug lines

e=ISO screen behavior

g=GO TO from/to/among declaratives is warning

h=require ANSI SEARCH ALL rules (VXCOBOL)

i=imply DUPLICATES

n=allow <nnn> lits

p=COMP size check by PIC (ANSI 74)

q=allow ISQL support

s=single-key is ICISAM (VXCOBOL)

-h | -? (Help)

Display help text.

-H cnt (Hard error limit)

Halt compile of each program after cnt errors. Default is to compile till end-of-file or a Fatal Error.

-i (Info)

Put out messages of category “information”

-I {g|m|p|x}... (Include in listing)

Include in listing options. Multiple options may be specified. Options are:

g=use global line numbers,

m=show metacode & pc,

p=show only the pc,

x=cross reference.

-l | -L lsdir (Listing file)

Specify listing file. Produce a listing in infile.ls for -l, or to lsdir/infile.ls for -L.

-M dddir (Make ICODBC data definition files)

Create ICODBC definition files: dddir*.xd[t|b]. Works with the ICODBC options (-X string) switch.

-N {h|p|s|u}... (NO)

NO options. Multiple options may be specified. Options are:

h=No - to $ translation

p=No check or recovery for missing period

s=No space needed in comma or semicolon separators

u=No USE, INVALID KEY or AT END required.

-o|-O rev (OEM version)

 Set OEM version in .cx to be the compiler's version(-o) or 'rev' (limit 8 characters).

-P cxdir (Program files)

Specify location of .cx program files in cxdir\infile.cx

-q (Quiet)

Specify quiet operation.

-R rev (Revision)

Specify the code revision to be compiled. Valid revisions are 1 (3.0x), 2 (3.2x), 3 (3.4x), or 4 (3.5x). The

default is 4.

-s (Stats)

Put out statistics.

-w (Warnings)

Put out Warning messages.

-X "string" (ICODBC options)

Options for ICODBC definition file creation.

COMPILER (Syntax)

701

-Z sydir (Debug)

Causes the symbol files needed for debugging to be generated. The program symbol file (infile.sy) will be

created in the directory given by sydir. The path for the symbol file(s) will also need to be passed to the

runtime using the same switch value or -z for the current directory.

infile

is one or more COBOL source files or a template representing source files to compile.

Options for -X “string” above:

-F 1|2|3|4 (ICODBC Format)

Column format:

1=exactly as in source,

2=exactly as in source with '_' replacing hyphen,

3=initial caps after hyphens with hyphens removed,

4=initial caps after hyphens with '_' replacing hyphen. (default is 3)

-G p (ICODBC General)

General options: p=COMP items have precision based on size.

-I f (ICODBC Include)

Include options: f=filler items are included.

-L min:max (ICODBC Level numbers)

Include only items with level numbers between min and max.

-n (ICODBC Not overwrite)

Do not overwrite existing .xdb and .xdt files.

-N {g|n|r|s}... (ICODBC No)

NO options:

g=no group items are included,

n=no RENAMES (level 66) items included,

r=no REDEFINES items included,

s=no secondary record definitions included.

{-P old[:new]}... (ICODBC Prefix)

Replace the prefix 'old-' with 'new-' in column names. If 'new ' is not specified, remove 'old-' . Multiple

ICODBC Prefix (-P) switches may be specified.

B.1. Rules

(a) The compile switches may be specified in any order.

(b) For the General switch (-G) and No switch (-N), one or more of the option values may be specified and they

may be specified in any order.

(c) On Windows, the `/' can be used in place of the `-' as long as it is used consistently throughout the

command-line.

(d) For infile, if the source name does not have an extension and a file by that name is NOT found, an extension

of the appropriate case is appended. First, a `.co' or `.CO' extension (`.cob’ or `.COB’ if using VXCOBOL)

is appended and sought, but if that name is NOT found, a `.sr' or `.SR' extension is appended to the original

filename and sought.

NOTE: If both foo.co and foo.sr exist in the same directory, specifying

icobol foo

will only compile 'foo.co' since the .co extension is sought first.

(e) On UNIX, the extension case is determined based on the last alphabetic character in the simple part of the

filename. If the last alphabetic character is upper-case, then the extension will be upper-case, otherwise a

lower-case extension will be used. The recommendation is to always use lowercase filenames.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

702

(f) If multiple source files are given, each file is compiled separately as though it was the only source file

given.

(g) The input filename can specify a template. The valid template characters are `?' and `*' and match any one

character or series of characters, respectively.

(h) If the ICOBOL compiler detects an error while compiling, no program file (.CX) is generated and the

compiler returns with a non-zero exit code when it terminates. If there is an existing program file, it is not

modified.

(i) On UNIX, copy files are always sought in lower-case. If files must be converted from upper-case to lower-

case the makelow script, in the examples sub-directory of the release, can be used.

B.2. Environment Variables

The ICOBOL compiler looks for the following environment variables in addition to ICROOT and ICTMPDIR:

ICOBOL sets standard switches. The contents of ICOBOL are treated like switches from the command

line that are processed before the command line. The environment variable may only contain

switches, no input file arguments. Since the contents of the environment variable contains

spaces, it must be enclosed in quotes in most UNIX shells.

For example to compile using the strict ANSI 85 dialect (-D 85), always produce a listing (-l), include warnings (-w),

and search copy_dir for COPY files, the environment variable ICOBOL can be set as follows:

On Windows:

> SET ICOBOL=-D 85 -l -w -C copy_dir

On UNIX with the Bourne shell:

$ ICOBOL="-D 85 -l -w -C copy_dir"
$ export ICOBOL

This setup of the ICOBOL environment variable can be included in your AUTOEXEC.BAT, in the ‘Environment’

tab of the System Properties sheet, or in your .profile file on UNIX.

C. Switches

C.1. Overview

All ICOBOL compiler switches start with a dash `-' followed by the switch with no spaces. Each individual switch

must be separated by a space or spaces from the other switches. Switches are case-sensitive. On Windows , the

slash `/' can be used in place of the dash as long as it is used consistently throughout the command line.

The general standard for switches is that a lower-case switch is only an ON or OFF switch. An UPPER-CASE

switch implies that an additional argument, delimited by spaces, follows this switch.

In addition to the following switches, which are unique to the ICOBOL compiler, also see the Common Switches

section, beginning on page 692.

COMPILER (Switches)

703

C.2. Byte Alignment Switch (-B 1|2|4)

This switch instructs the compiler to align 01 level and 77 level items on a specific boundary. The valid values are

1, 2, and 4. A value of 1 causes the compiler to allocate 01 or 77 level items on a byte boundary, i.e., there is no

specific alignment. A value of 2, the default, causes the compiler to allocate the items on a 2-byte (word) boundary.

A value of 4 causes the compiler to allocate the items on a 4-byte (double-word) boundary. As a general rule, the

default value is recommended unless a specific alignment is needed in order to interface with a linked-in routine.

C.3. COPY Sourcedir Switch (-c)

This switch specifies to the compiler to add the source directory for the main source file to the list of directories that

will be searched for COPY files if the file is NOT found in the current working directory. This directory is added IN

FRONT of the directories specified by the -C dir switch.

C.4. COPY Path Switch (-C copydir)

This switch specifies to the compiler that, in addition to the current directory, the specified copydir directory will be

searched for any COPY files with non-full pathnames (simple or relative). I.E., both the names “source1" and

“dir1\source1" would be sought using the extra copydir’s, but “\dir1\source1" would not since it has a full-

pathname. Up to sixteen directories can be specified in this manner with the -C switch in front of each directory.

For example:

-C directory1 -C directory2 -C directory3 -C directory4

would specify four additional directories to search for COPY files after looking in the current directory. The

directories will be searched in the order specified on the command line.

The name specified as the input file is not sought along the COPY Path set of directories.

C.5. Dialect Switch (-D ic|vx|85)

This switch selects the ICOBOL dialect. Valid dialects are:

ic

The fundamental dialect. It is consistent with traditional ICOBOL, and uses ANSI 74 file status codes and

file-handling semantics. This is the default.

vx

This dialect is consistent with the syntax and semantics used by Data General’s AOS/VS COBOL and by

Envyr Corporation’s VXCOBOL.

85

This is the stricter ANSI 85 dialect. It is consistent with ICOBOL2 code compiled with the (now obsolete)

-M 85 option. It uses ANSI 85 file status codes and file handling semantics.

C.6. Error File Switch (-e | -E erdir)

The -e and -E switches are mutually exclusive.

The -e switch specifies that the name of the error file is to be the name of the source program (infile) with the `.er'

extension (i.e., infile.er). If infile has an extension, the extension is removed before `.er' is appended. When used

with multiple source files or a template, each individual source program will have its own error file.

The -E erdir switch specifies that the error file should be the source file with the `.er' extension and that the file

should be placed in the directory specified by erdir.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

704

C.7. Format Switch (-F c|f)

This switch specifies the format of the source program being compiled.

Where

c is ANSI Card format

f is Free-form format (also known as CRT format)

All COPY files in the program must have the same format as the program that uses them.

C.8. General Switch (-G {6|a|b|d|e|g|h|i|k|n|p|q|s}...)

This switch provides a mechanism to enable a particular enhanced feature of the ICOBOL compiler. The switch

options that are available are:

6 (Version 6 ICISAM) Use ICISAM version 5/6 limitations (4 alternate keys, 100 byte keys, and 4096

byte records) instead of version 7 limitations. This option is useful ONLY if you are using

ICISAM version 5 or 6..

a (ANSI) (VXCOBOL). Causes COMP items to be stored based on picture, IS NUMERIC test is strict

ANSI (item must be USAGE DISPLAY and spaces are not allowed), and OPEN OUTPUT of a

sequential file will delete and recreate.

b (COMP size check by bytes) (ANSI 85 and VXCOBOL) This is the default for ANSI 74. By default,

ANSI 85 and VXCOBOL size checks by picture.

d (With DEBUGGING) causes the compiler compile all debugging lines. If not given, debugging lines are

treated as comment lines.

e (ISO screen behavior) causes the compiler to invoke ISO screen behavior. This option is useful when

migrating to ICOBOL from certain other COBOL products. When specified on the compilation,

runtime behavior is altered as follows: (1) BLANK LINE erases the entire line, (2) ERASE LINE

erases from the cursor to the end of the line, and (3) ERASE SCREEN erases from the cursor to the end

of the screen.

g (GO TO from/to/among declaratives is warning) Normally this is an error and we recommend against the

use of this option.

h (Require ANSI SEARCH ALL rules) (VXCOBOL) Requires that the SEARCH ALL statement conform to

ANSI syntax. Without this switch, SEARCH ALL syntax is identical to SEARCH.

i (Imply DUPLICATES) Specifies that the ALTERNATE KEY clause should ALWAYS imply the WITH

DUPLICATES phrase.

n (Numbers) (VXCOBOL) allow the constructs <nnn> or <onnn> or (ANSI 74/85) allow the constructs

<nnn>, <onnn>, <dnnn>, and <xnn> in nonnumeric literals to specify a byte value represented by the

nnn or nn numbers. In the case of <nnn> and <onnn>, nnn represents an octal value, in <dnnn> nnn

represents a decimal value, and in <xnn> nn represents a hex value. Upper and lower case `o', `d', and

`x' can be used to specify octal, decimal, or hex. In hex mode, upper and lower case `a' - `f' can be

used. The value for any byte must be in the range 0 - 255 (decimal). For octal and decimal no more

than three digits can be specified and for hex no more than two digits can be specified. <1> is treated

as <001>. The construct << can be used to enter a single < when the General number switch (-G n) has

been specified. Only one byte can be specified per <> pair.

p (COMP size check by PIC) (ANSI 74) This is the default for ANSI 85 and VXCOBOL. ANSI 74 size

check by bytes.

q (ISQL Support) Allow Integrated SQL support, including SQL data types and new SQL statements.

Enables the ISQL feature-set.

s (Single-key is ICISAM) (VXCOBOL) For VXCOBOL, the default for a single-key indexed file is to use

INFOS. Specifying this switch will cause ICISAM files to be used.

COMPILER (Switches)

705

C.9. Hard Error Limit Switch (-H cnt)

This switch provides a mechanism to instruct the compiler to stop compiling a file after a certain number of errors

are encountered. Normally the compiler continues to process the file until a Fatal Error is encountered or the end-of-

file is reached. Valid values for cnt can be from 1 to 65535.

For example, if "-H 10" were given on the compile line then after the tenth error is encountered a message would be

given that the maximum number of errors has been reached and that this compile is terminating.

Cnt is only for a single compile. If multiple compiles are being done, the error counter is reset at the start of each

compilation.

C.10. Information Switch (-i)

This switch causes the compiler to display all information messages. The default is to not display information

messages.

C.11. Include listing options Switch (-I {g|m|p|x}...)

This switch allows the programmer to select from the following options to include in the compiler output listing.

One or more options may be specified in any order.

Where

g Specifies that global line numbers be included in the output listing. By default, each copy file starts a new

set of line numbers for that source.

m Specifies that metacode and pc be included in the output listing.

p Specifies that the pc be included in the output listing.

x Specifies that a cross-reference be included in the output listing.

If not specified, none of the above is done. If the Listing File Switch is not specified, it is implied.

C.12. Listing File Switch (-l | -L lsdir)

The -l and -L switches are mutually exclusive.

The -l switch specifies that the name of the list file is to be the name of the source program (infile) with the `.ls'

extension (i.e., infile.ls). When used with multiple source files or a template, each individual source program will

have its own list file.

The -L lsdir switch specifies that the list file should be the source file with the `.ls' extension and that the file should

be placed in the directory specified by lsdir. When used with multiple source files or a template each individual

source program will have its own list file in the lsdir directory.

The listing file will show any dialect, format source, or compile options. Each source line will be shown with its line

number, whether the line came from a COPY file (c), a flag character (<, >, or *), and a space preceding each actual

source line.

The results of a COPY ... REPLACING statement are clearly shown. Lines (or parts of lines) which are removed are

indicated with a < next to the line number. Lines (or parts of lines) which are being inserted are marked with a >

next to the line number. For each replacement, the listing will show the text word or words being removed (<) and

those, if any, being inserted (>).

The following example shows a COPY file included without any replacement (at line 23) and the same copy file

(included at line 25) with 3 items replaced. Note that the positions of the inserted text are displayed at the location in

which they appeared in the COPY statement.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

706

23 < COPY "TESTFILE.FD".
 1c FD TESTFILE.
 2c 01 TESTFILE-REC.
 3c 04 FILLER PIC X(25).
 4c 04 TESTFILE-STUFF PIC X(25).
24
25 < COPY "TESTFILE.FD" REPLACING TESTFILE BY TESTFILE2
26 < TESTFILE-REC BY TESTFILE2-REC
27 < TESTFILE-STUFF BY TESTFILE2-STUFF.
 1c FD
 1c< TESTFILE
 > TESTFILE2
 1c .
 2c 01
 2c< TESTFILE-REC
 > TESTFILE2-REC
 2c .
 3c 04 FILLER PIC X(25).
 4c 04
 4c< TESTFILE-STUFF
 > TESTFILE2-STUFF
 4c PIC X(25).

C.13. Make ICODBC Data Definition Files Switch (-M dddir)

This switch creates ICODBC definition files: dddir\ *.xdt and dddir*.xdb. The -X string switch is used to pass

options for creating ICODBC definition files. See the ICODBC Section later in this chapter (starting on page 717),

for more information on this support. This option requires symbol files so if no Debug Switch is specified, the

symbol files (.sy) are placed in the same dddir directory.

C.14. No Switch (-N {h|p|s|u}...)

This switch provides a mechanism to disable particular default features of the ICOBOL compiler. Valid option

values for the No switch are:

h (No dollar signs) do not replace “-“ with “$” for a generated external name as specified in the Language

Reference manual, in the Default Filenames table that is included in the section describing the ASSIGN

clause of the SELECT statement.

p (No check or recovery for missing Periods). In certain cases, the compiler attempts to recover from missing

periods. This option suppresses that behavior.

s (No check for Space) no space needed in comma or semicolon separators.

u (No USE, INVALID KEY, or AT END required). Certain statements require a coded method of error

checking. Use this option only if you code error checks in-line after each statement.

To disable any of these features, use the No switch (-N) followed by a space and then the switch values, in any order,

of the features to be disabled (without spaces).

For example, ‘ -N hp’:

(1) will NOT replace “-“ with “$” in generated external filenames, and

(2) will NOT check for or fix missing periods.

C.15. OEM Version Switch (-o | -O rev)

The -o switch instructs the compiler to set the OEM version in the .cx file to be the compiler’s version.

The -O switch instructs the compiler to set the OEM version in the .cx file to be ‘rev’ (limited to 3 characters).

COMPILER (Switches)

707

C.16. Program Output File Switch (-P cxdir)

This switch specifies that the .cx program output file(s) should be placed in the directory specified by cxdir.

C.17. Revision Switch (-R 1|2|3|4)

The -R 1 switch instructs the compiler to allow only syntax that generates code of the specified .CX revision or less.

The compiler will not allow syntax that generates code above the revision level specified. This switch is useful to

generate program files to run on older systems. The compiler will set the .CX revision to the specified value when

generating code.

The -R 1 switch instructs the compiler to produce revision 1 .CX files (ICOBOL 3.00).

The -R 2 switch instructs the compiler to produce revision 2 .CX files (ICOBOL 3.20). Revision 2 supports new

functionality for ACCEPT and DISPLAY.

The -R 3 switch instructs the compiler to produce revision 3 .CX files (ICOBOL 3.40). Revision 3 supports the

ISQL data types and statements (when used with the -G q switch) along with some minor performance enhancement

opcodes. Programs compiled at this level require at least a 3.40 runtime in order to execute, even if no new opcodes

are generated. If you must be able to run a program on a previous version of the runtime make sure that the revision

is set correctly.

The -R 4 switch instructs the compiler to produce revision 4 cx files (ICOBOL 3.50) Revision 4 cx files support up

to 255 operands in a FETCH statement. This will now allow 255 columns to be fetched. The previous limit was 100.

If no -R switch is given, -R 4 is the default.

C.18. Statistics Switch (-s)

This switch instructs the compiler to put out statistics that include the a) start and stop time, b) number of lines and

lines per minute, c) the number of errors, warnings, and information messages encountered, and d) a blank line for

each individual source compiled.

C.19. Warnings Switch (-w)

This switch instructs the compiler to put out Warning messages. The default is no Warnings.

C.20. ICODBC Options Switch (-X “string”)

Options for ICODBC definition files are in “string”. Valid options are:

-F 1|2|3|4 (ICODBC Column format)

This option specifies how column names are to be created from the COBOL data names. Options are:

1=exactly as in source,

2=exactly as in source with '_' replacing hyphen,

3=initial caps after hyphens with hyphens removed,

4=initial caps after hyphens with '_' replacing hyphen

(default is 3)

-G p (ICODBC General options)

p=COMP items have precision based on size, rather than picture

-I f (ICODBC Include options)

 f=filler items are included (i.e., a column definition is created for each FILLER item)

Interactive COBOL Language Reference & Developer’s Guide - Part Two

708

-L min:max (ICODBC Level)

COMPILER (Messages - Overview)

709

Only include column definitions for data items with level numbers between min and max: 1 <= min <=

max <= 49. (Level 66 items must be explicitly excluded with the -N n option.) If no -L is specified, all

levels are included.

-n (ICODBC No overwrite)

Do not overwrite existing .xdb and .xdt files

-N {g|n|r|s}... (ICODBC NO options)

Specifies data items which are NOT to be included in the column definitions. Valid options are:

g=no group items are included,

n=no RENAMES (level 66) items included,

r=no REDEFINES items included,

s=no secondary record definitions included

{-P old[:new]}... (ICODBC Prefix)

Replace the prefix 'old-' with 'new-' in column names. If 'new' is not specified, remove 'old-'. Multiple

ICODBC Prefix (-P) switches may be specified.

These options are only used if the Make ICODBC Definition files switch (-M) is given. See the ICODBC Section

later in this chapter (starting on page 717), for more information on this support.

C.21. Debug Switch (-Z sydir)

This switch instructs the compiler to generate the needed symbol file(s) for use when debugging. The symbol file

(infile.sy) will be generated in the directory sydir. The symbol file information must be specified to the runtime

using its -Z or -z switch also.

D. Messages

D.1. Overview

The ICOBOL compiler generates four levels of messages. These are:

(1) Fatal errors, which cause the compilation to halt.

(2) Errors, which cause the compiler to attempt to continue the compilation but no program files will be

generated.

(3) Warnings, which will generally imply a construct that:

a) will not compile under 1.xx ICOBOL compilers,

b) is not standard in comparison to the ANSI COBOL 85 standard, or

c) is ignored or has behavior which might not be expected.

Warnings will not suppress the creation of a program file.

(4) Information messages which will help the programmer to clean up his program. For example to indicate

that a data item is never referenced or a piece of code is never executed.

D.1.1 Format

Messages from the compiler are shown in three different formats depending on where the message is being placed:

the screen (stdout), the error file, or the listing file.

When coming to the screen (stdout) messages are displayed in a one line format as shown below :

** source-file (line-number, col-num): Msg-type: Msg-text

Interactive COBOL Language Reference & Developer’s Guide - Part Two

710

Where

source-file

is the fully resolved name of the appropriate source filename

line-num

is the local line number in the source-file of the condition.

col-num

is the column of the start of the token that caused the condition.

Msg-type

Is Fatal, Error, Warning, or Info.

Msg-text

Is the actual text for this particular message.

When going to the error file, messages are displayed in a five line format as shown below:

Line # of filename
<actual COBOL line from the source file>
a circumflex (^) is positioned at the place which caused the message to be generated
Msg-type: Msg text
 (blank line)

Where

#

Is the appropriate local line number.

filename

Is the fully resolved name of the appropriate source file.

Msg-type

Is Fatal, Error, Warning, or Info.

Msg-text

Is the actual text for this particular message.

When going to the listing file, messages are displayed after the affected line of text in a three-line format as shown

below:

<actual COBOL line from the source file>
a circumflex (^) is positioned at the place which caused the message to be generated
Msg-type: Msg text
 (blank line)

Where

Msg-type

Is Fatal, Error, Warning, or Info.

Msg-text

Is the actual text for this particular message.

A blank line is always inserted to more easily allow the messages to be viewed.

COMPILER (Messages - Examples)

711

D.1.2 Examples

Two examples of the messages are given below:

Example 1 to screen:

** C:\test200\logon.sr (1662,1): Info: This item is never referenced.

Example 2 to screen:

** C:\test200\logon.sr (1185,24): Info: Code was generated the same as 1.xx ICOBOL (which
resets the TALLY variable to zero).

Example 1 to error file:

Line 1662 of C:\test200\logon.sr
DETERMINE-TERMINAL.
^
Info: This item is never referenced.

Example 2 to error file:

Line 1185 of C:\test200\logon.sr
INSPECT F-STR TALLYING LOW-CTR FOR ALL LOW-VALUES.
 ^
Info: Code was generated the same as 1.xx ICOBOL (which resets the TALLY variable to zero).

D.1.3. Rules

(1) Information messages are displayed only when the Info switch (-i) is given.

(2) Warning messages are displayed only when the Warning switch (-w) is given.

(3) Fatal Errors and Errors are always displayed.

D.2. Error Messages

The ICOBOL compiler provides a level of messages for those features of ICOBOL that are in error. Generally

errors result from improperly coded COBOL code where either a syntax rule or general rule has been violated.

There are some errors that can occur on a file that compiles correctly with previous (usually Data General) ICOBOL

compilers. These generally are places where the previous ICOBOL compiler did not check for the error. This

compiler will give an error in these cases and will not generate a program file. These must be fixed in order to

compile successfully.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

712

Some examples of these types of error are given below with the Message text that you will see on the Error line

followed by a description of what causes the message:

1. This option may only be used with a group, TO clause, or USING clause.

Some previous compilers allowed the AUTO clause on a FROM clause, although it makes no sense and was

prohibited in the documentation.

2. The JUSTIFIED clause may only be specified with a FROM clause or USING clause.

In the SCREEN Section, previous compilers ignored the JUSTIFIED clause on items with the TO clause

even though it was prohibited in the documentation.

3. The JUSTIFIED clause may not be specified for a numeric or edited item.

Some previous compilers ignored the JUSTIFIED clause on a numeric or edited item even though it was

prohibited in the documentation and by the ANSI COBOL 74 and ANSI COBOL 85 standards.

4. A GO TO statement may not branch between declarative and non-declarative procedures.

Previous compilers allowed this construct, even though it was prohibited in the documentation and by the

ANSI COBOL 74 and ANSI COBOL 85 standards. This construct can eventually lead to a "Perform

stack overflow" error at runtime, since a perform is pushed onto the stack when the declarative section is

executed, but is never popped off again. (This error can be turned into a warning with the -G w switch, but

this is not recommended.)

5. Syntax error. (on a PICTURE in a level 88)

Previous compilers ignored the PICTURE clause on a level 88 even though it is prohibited in the

documentation and by the ANSI COBOL 74 and ANSI COBOL 85 standards. The PICTURE clause

should be removed.

6. This item must refer to an elementary integer data item.

Previous compilers allowed an alphanumeric item to be used in a GO TO DEPENDING ON, even though it

was prohibited in the documentation and by the ANSI COBOL 74 and ANSI COBOL 85 standards. This

must be changed to an integer.

D.3. Warning Messages

When not running in ANSI 85 mode (-D 85), the ICOBOL compiler provides a level of warning messages for those

features of ICOBOL that do not meet the ANSI COBOL 85 standard. These warnings are provided to encourage

the programmer to clean-up and/or fix these areas such that the code will still work in the ICOBOL environment but

meet ANSI 85 requirements.

Some examples of these types of warnings are given below with the Message text that you will see on the Warning

line, followed by a description of what causes the warning:

1. This item must be an elementary item, not a group item.

In the flagged statement this particular item must be an elementary item. ICOBOL allows group items here

if they are only 1-byte in length.

2. The RECORDING MODE clause is valid only for a SEQUENTIAL file. (Self explanatory.)

COMPILER (Information Messages)

713

3. The composite of operands is greater than 18 digits.

Previous compilers did not detect when more than 18 digits of total precision are used in an ADD,

SUBTRACT, MULTIPLY, or DIVIDE statement. This compiler detects this. These should either be fixed

or changed to COMPUTE statements, which do not check the precision.

Example: An ADD of a PIC 9.9 to a PIC 9(18) would create a 19 digit precision. (i.e., PIC 9(18).9).

Previous compilers treated index-names and index data items just like a PIC 9(5) COMPUTATIONAL item. As

a result, index-names and index data items can be totally misused from what the standard allows. The next

several messages all pertain to the use (or misuse) of index-names, index data items, and/or the SET and MOVE

statements.

4. The value must be an integer value greater than zero.

Previous compilers allowed a SET index-name to 0. This is prohibited by the ANSI COBOL 74 and ANSI

COBOL 85 standards since 0 is NEVER a valid occurrence number.

5. This index-name is not listed in a corresponding INDEXED BY list.

Previous compilers allowed any index-name to be used to subscript any table. The ANSI COBOL 74 and

ANSI COBOL 85 standards only allow the index-name to be used with the table with which it is associated

in the INDEXED BY phrase.

6. The operand is the wrong class or type for the operation.

The ANSI COBOL 74 and ANSI COBOL 85 standards define index-names and index data items to be

separate types that are NOT numeric. The SET statement only allows specific combinations of index-name,

index data item, and numeric data items or literals.

7. This is an invalid use of an index-name or index data item.

Previous compilers allowed index-names and index data items to be used in arithmetic and MOVE

statements. This is prohibited by the ANSI COBOL 74 and ANSI COBOL 85 standards.

8. A numeric item or index-name is required.

This message usually appears in a PERFORM VARYING using an index data item, which previous

compilers allowed, but which is prohibited by the ANSI COBOL 74 and ANSI COBOL 85 standards.

9. This item must refer to an elementary integer data item.

Previous compilers allowed index-names and index data items to be used in a GO TO DEPENDING ON,

even though it was prohibited in the documentation and by the ANSI COBOL 74 and ANSI COBOL 85

standards.

D.4. Information Messages

The ICOBOL compiler provides a level of messages that inform the programmer about certain aspects of the code or

data of which he may not otherwise be aware. These messages also may indicate what the compiler is doing about a

particular data item or code sequence. In most cases, these messages are about unreferenced data items and

unexecutable code.

Some examples of these types of messages are given below, with the Message text that you will see on the Info line

followed by a description of what causes the message:

1. This item is never referenced.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

714

NOTE: This does not occur when the -G s switch is used, since size check is then based on the number of

digits, not the binary value.

This message indicates that the level 01 data name (and every sub-item) or 77 data name or the paragraph

name is never referenced. The compiler will not include these items in the program file.

2. This section is unreachable; the entire section has been eliminated.

3. This paragraph is unreachable; the entire paragraph has been eliminated.

4. This statement is unreachable; it (and possibly others following) has been eliminated.

5. This paragraph is the end of a PERFORM range, but the end of the paragraph is unreachable.

6. This word is a reserved word in some other compatibility mode.

This message is given when a user-defined word has been defined that will conflict with the VXCOBOL

Reserved Word list or with a Reserved Word in another COBOL compiler. Changing this word to a new

name will allow for an easier future migration.

The first five of these messages say the particular piece of code can never be executed and thus is being eliminated

from the program file. These messages can be used as a guide to detect unexecutable portions of code.

In addition, #5 implies that you could use a GO TO statement rather than a PERFORM, since the PERFORM will

never return.

The following messages are generated as part of detecting invalid code versus the ANSI COBOL 74 or ANSI

COBOL 85 standards. These messages can be moved to warnings by using the General Bad code switch (-G b).

1. Code was generated the same as 1.xx ICOBOL.

On storing into a Signed COMPUTATIONAL item, ICOBOL does not account for the sign bit when

detecting size error.

Example: For a PIC S9(2) COMPUTATIONAL item (i.e., 1 byte) a store of 129 will succeed, but give

the value -127. It should have been a size error since the value 129 will not fit in the item.

2. Code was generated the same as 1.xx ICOBOL (which generates incorrect code).

This message is generated in the following cases:

(a) on a comparison between a numeric integer and a figurative constant other than ZEROS (i.e.,

HIGH-VALUES, LOW-VALUES), 1.xx ICOBOL generates an alphanumeric to alphanumeric

comparison, and the proper operation is to generate a numeric to alphanumeric comparison.

(b) on a MOVE of a figurative constant other than ZEROS (i.e., HIGH-VALUES or LOW-VALUES)

to a numeric or numeric edited item 1.xx ICOBOL generates an alphanumeric move. The proper

operation is to generate a numeric to numeric or numeric edited move, treating the alphanumeric

items as an unsigned integer.

3. Code was generated the same as 1.xx ICOBOL (which resets the TALLY variable to zero)

ICOBOL (in ANSI 74 mode) always resets the tallying counter in an INSPECT statement to zero before it

starts tallying. The standard says that the tallying counter is ONLY incremented, i.e., if a zero was in the

variable when the INSPECT started it would execute just like 1.xx ICOBOL, otherwise the variable would

come out with a different result.

COMPILER (Information Messages)

715

>icobol logon
icobol Revision 3.40 (Windows)
Copyright (C) 1987-2004, Envyr Corporation.All Rights Reserved.
Compiling C:\test200\logon.sr
1 file/argument was processed
No files/arguments had errors
icobol is finished.

>

>icobol -s logon
icobol Revision 3.40
Copyright (C) 1987-2004,Envyr Corporation.All Rights Reserved.
Compiling C:\test200\logon.sr
Start: Aug-15-2000 07:34:34.62 Stop: Aug-15-2000 07:34:35.61
2719 lines compiled in 0.99 seconds (164787 lines per minute)
No errors, 1 warning, 16 info messages

1 file/argument was processed
No file/arguments had errors
icobol is finished.

>

4. Code was generated the same as 1.xx ICOBOL (which ignores S in the picture)

ICOBOL accepts an S in the PICTURE clause of Screen Section entries and ignores it unless the SIGN IS

clause is also specified. If the SIGN IS clause is absent, it is preferable to either remove the S, thereby

making the entry unsigned, or to use the plus (+) or minus (-) PICTURE characters.

E. Example Output

Two examples of what the output of an ICOBOL compiler invocation looks like are given below:

Example 1

Example 2

Interactive COBOL Language Reference & Developer’s Guide - Part Two

716

F. Cross Reference Output

The cross reference output at attached at the end of the listing file and will have the following format:

Start of Cross Reference

IDENTIFICATION DIVISION Symbols:
...

ENVIRONMENT DIVISION (CONFIGURATION SECTION) Symbols:
...

ENVIRONMENT DIVISION (INPUT-OUTPUT SECTION) Symbols:
...

DATA DIVISION (FILE SECTION) Symbols:
...

DATA DIVISION (WORKING-STORAGE SECTION) Symbols:
...

DATA DIVISION (LINKAGE SECTION) Symbols:
...

DATA DIVISION (SCREEN SECTION) Symbols:
...

PROCEDURE DIVISION Symbols:
...

End of Cross Reference

Each symbol is displayed in the following format:

 SYMBOLNAME symbol-type, symbol-type-info,

 level number (when needed), address (in data) or pc (in code), size (bytes), and occurs (for

tables), segment count, also count, and occurs for key-names.

[sourcename] xxx <howused>

Where

sourcename

Is the simple filename to which the following line numbers belong and is only given when there are COPY

files.

symbol-type and

symbol-type-info

Are defined below in Table 38.

xxx

Is the line number in the source where this entry is used.

<howused>

COMPILER (ICODBC Support)

717

How the symbol is used at this linenumber can include any of the following:

(dead) Usage occurs in dead code

(implied) Usage is implied by an operation

Begin Procedure referenced as beginning of PERFORM range

CLOSE File referenced in a CLOSE statement

Definition Item is defined.

DELETE FILE File referenced in a DELETE FILE statement

End Procedure referenced as end of PERFORM range

GO TO Procedure referenced in GO TO

Modified Data item is modified and then the statement type (ACCEPT, ...)

OPEN File referenced in an OPEN statement

READ File referenced in a READ statement

Referenced Data item is referenced and then the statement type (ACCEPT, ...)

REWRITE File referenced in a REWRITE statement

Used Item is used in another item's definition

WRITE File referenced in a WRITE statement

The Used is given for an item used for example with a REDEFINES, a SCREEN TO/FROM/USING clause, a

SCREEN LINE/COL, FILE STATUS clause in the FD, file-name in SELECT statement, KEY clause and

ALTERNATE KEY clause.

The definition is the first line shown and then the remaining numbers are in the same order the source was processed.

symbol-type symbol-type-info

 file-name SEQUENTIAL, RELATIVE, INDEXED

 data-name group, alphabetic, alphanumeric,
numeric-edited, numeric integer
[USAGE COMP [3|5]], numeric
[USAGE COMP [3|5]], POINTER

 screen-name group, alphabetic, alphanumeric,
numeric-edited

 section-name [declaratives] pc

 paragraph-name [declaratives] pc

 program-name

 index-name

 key-name

 condition-name

TABLE 40. Cross Reference Symbol Types

Filenames; Primary-, Alternate-, and Relative- Keys; and File Status symbols that are used in a SELECT show the

line number of the FD instead of the SELECT.

G. ICODBC Support

By using the Make ICODBC Definition Files switch (-M) the compiler can be used to create a Database Definition

File (.XDB) and one or more Table Definition Files (.XDT) for use with the ICODBC Driver. The compiler creates

a single Database Definition File (.XDB) and a Table Definition File (.XDT) for each Indexed File that is contained

in the corresponding source program.

As each indexed file described in the program is processed, a column definition will be created for every data item

described in the record definition or definitions. This will be a complete picture of the indexed file, and via the

ICODBC Driver, it will enable an ODBC-enabled application (Microsoft Access, Crystal Reports, etc.) to select,

read, and format any data in the indexed file. However, this may be more capability than is required and the .XDT

and .XDB files can be edited with a text editor to remove and/or modify any columns that are not needed.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

718

Several options for ICODBC definition files are supported via the -X switch to assist in narrowing the number of

columns created for each table and formatting options that allow table names and column names to be created from

identifiers in the COBOL program in a variety of forms.

Using the Make ICODBC Definition Files switch does not necessarily create what you would like as a finished set of

Database Definition Files or Table Definition Files. However, it does remove the drudgery of mapping data types

and of determining the positions and lengths of each data item required as a column in the table. The output from

this option should be considered as a good starting point from which to create your definition files with a text editor.

For each source file that includes indexed file definitions, a single Database Definition File (.XDB) and one or more

Table Definition File (.XDT) will be created. Each of these files is created in the directory specified by the -M

switch. If the -n switch is given in the -X switch, then an error will be generated if it needs to create a file and the

file already exists. If the -n switch is NOT given in the -X switch, any existing file(s) will be overwritten.

The name of the Database Definition File (.xdb) is derived from the simple name of the source file and adding the

.XDB extension. The name of each Table Definition File (.xdt) is derived from information in the original COBOL

program in the following manner:

(1) If the indexed file's external filename was specified as a literal, then a .XDT extension is appended to the

simple name of the file specified by the literal.

(2) If the indexed file's external filename was specified as an identifier and that identifier has a VALUE clause,

then a .XDT extension is appended to the simple name of the file specified by the contents of the VALUE

clause.

(3) Otherwise, the internal (COBOL) filename is used with every hyphen (-) being converted to a dollar sign ($).

Table and column names are created from identifier names. There are two steps involved in the name creation. The

first step is to apply prefix replacement. The second step is to apply the formatting option.

When ICODBC Prefix replacement (-P switch) is specified, each prefix specified is compared against each data item

in the record. If the prefix matches, it is replaced with the new prefix specified or removed if no new prefix was

specified. If it does not match, the next prefix specified on the command line is compared to the data item and so on.

Only the first matching prefix is applied. For example, if the command line specified the switch -P AR:AP and the

data item AR-TOTAL was a field in the data record being processed, AR-TOTAL would be converted to

AP-TOTAL. If the command line option was -P AR, the AR-TOTAL would be converted to TOTAL. Any

replacement is done prior to application of formatting options.

If an ICODBC Formatting option (-F switch) is specified, each data item from the record is formatted according to

fixed rules as described above in the syntax. Consider the following examples starting with the data item

AR-TOTAL-ON-ORDER:

-F value Column Name Generated With -P AR:ACCOUNT also

 1 AR-TOTAL-ON-ORDER ACCOUNT-TOTAL-ON-ORDER

 2 AR_TOTAL_ON_ORDER ACCOUNT_TOTAL_ON_ORDER

 3 ArTotalOnOrder AccountTotalOnOrder

 4 Ar_Total_On_Order Account_Total_On_Order

The following rules apply with regard to the inclusion or exclusion of data items when columns are being generated:

(1) FILLER items are included only if requested with the -I f switch. When included, their column name is

generated as if the FILLER item had been named ICMAKEDB-FILLER-n where n is an integer increasing

in value by one for each FILLER encountered.

(2) The primary key for the file is always included. This includes all segments for a suffixed key. No option

may override this rule.

(3) Secondary record definitions, group items, data items with a REDEFINES clause, data items with a

RENAMES clause, and data items with level numbers outside of a specific range may be excluded by

specifying one of the -N switch options or the -L switch. These items are included unless explicitly

excluded with a switch.

COMPILER (ICODBC Support)

719

(4) No data item which has an OCCURS clause or which is subordinate to an OCCURS clause will be included.

No option may override this rule.

(5) No item whose PICTURE includes the P character will be included. No option may override this rule.

For each column, a section in the .XDT file is created containing the data type, position in the record, and length of

the data. For numeric types it will also generate the precision and scale of the data item. For any column which is an

alternate record key, segment of an alternate record key or an ALSO key, a Suppress directive will be generated

using the same character defined in the SUPPRESS WHEN clause for the alternate key.

ICOBOL data types are mapped to those used by the ICODBC Driver according to the following table.

Data Description Type Length Precision Scale

PIC A(n) ALPHABETIC n n/a n/a

PIC X(n) ALPHANUMERIC n n/a n/a

group item ALPHANUMERIC varies n/a n/a

alphanumeric edited items ALPHANUMERIC varies n/a n/a

numeric edited items ALPHANUMERIC varies n/a n/a

PIC X(n) or group used in a
key or key-segment with sub-
ordinated items of non-
DISPLAY usage

BYTE n n/a n/a

PIC 9(l)V9(r) USAGE DISPLAY UNSIGNED DISPLAY l+r l+r r

PIC S9(l)V9(r) USAGE DISPLAY DISPLAY l+r l+r r

PIC S9(l)V9(r) USAGE DISPLAY
SIGN LEADING

LEADING OVERPUNCH l+r l+r r

PIC S9(l)V9(r) USAGE DISPLAY
SIGN LEADING SEPARATE

LEADING SEPARATE l+r+1 l+r r

PIC S9(l)V9(r) USAGE DISPLAY
SIGN TRAILING

TRAILING OVERPUNCH l+r l+r r

PIC S9(l)V9(r) USAGE DISPLAY
SIGN TRAILING SEPARATE

TRAILING SEPARATE l+r+1 l+r r

PIC 9(l)V9(r) USAGE COMP UNSIGNED COMP varies l+r r

PIC 9(l)V9(r) USAGE COMP-3 UNSIGNED COMP-3 varies l+r r

PIC 9(l)V9(r) USAGE COMP-5 UNSIGNED COMP-5 varies l+r r

PIC 9(l)V9(r) USAGE BINARY UNSIGNED COMP varies l+r r

PIC 9(l)V9(r) USAGE PACKED UNSIGNED COMP-3 varies l+r r

PIC S9(l)V9(r) USAGE COMP COMP varies l+r r

PIC S9(l)V9(r) USAGE COMP-3 COMP-3 varies l+r r

PIC S9(l)V9(r) USAGE COMP-5 COMP-5 varies l+r r

PIC S9(l)V9(r) USAGE BINARY COMP varies l+r r

PIC S9(l)V9(r) USAGE PACKED COMP-3 varies l+r r

USAGE INDEX COMP 4 9 0

USAGE POINTER COMP-5 4 10 0

TABLE 41. ICOBOL Data Types to ODBC Data Types

More on ICODBC can be found in the ICODBC Driver Chapter starting on page 771.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

720

Debugging

721

XII. DEBUGGING

A. Introduction

The ICOBOL runtime system incorporates a high-level (source code) debugger. This high-level debugger is

available whenever a symbol file (.sy) can be accessed for a particular COBOL program. Sources are available in

this mode if the source file(s) can be accessed. The ICOBOL compiler generates symbol files through the use of the

-Z switch. To start the runtime in debug mode use the -z or -Z switch.

ICOBOL programs are compiled into a pseudo-code (or p-code) that corresponds to the types of operations found in

the COBOL language. The runtime system `executes' this pseudo-code when it runs the COBOL programs.

The debugger supports the following features:

Breakpoints can be set on a particular type of instruction or operation. Several examples are: Break Perform

will set a breakpoint on all PERFORM statements; Break I-o will set a breakpoint on all non-screen I/O;

and Break I-o Screen will set a breakpoint on all screen I/O.

Breakpoints can be set at the start or end of particular programs. Thus, if an application has hundreds of

programs, but only a certain program has a problem, the debugger can be set to stop only when a particular

program is executed allowing just that program to be debugged.

Breakpoints are remembered for individual programs. If a program is canceled or is exited, the breakpoints are

remembered. Thus, if the program is ever reactivated by a CALL or CALL PROGRAM, the breakpoints

are reset before the program begins running.

The current status of active and inactive CALLs and PERFORMs can be displayed.

The number of open files, their names, file type, and open mode can be displayed.

The debugger keeps two screen images, the debug screen and the COBOL screen. The debugger automatically

switches to the COBOL screen when the COBOL program is run and back to the debug screen when re-

entering the debugger. While in the debugger you can switch to the COBOL screen and back again to view

the output from the COBOL program. You can also select a portion of the COBOL screen to always have

displayed in the debugger screen.

The ICOBOL compiler generates individual symbol files (.sy) for each compiled program for debugging by using

the -Z switch (-Z). The symbol file includes all line offsets that have code, all information about data items, and the

names of source files used in the compilation. The debugger requires the symbol file to support the following

additional features:

Breakpoints can be set at a line number, at the beginning or end of a procedure, and whether a particular data-

item has been changed.

Data-items can be viewed and set to new values using their names.

Up to 8 breakpoints (with no more than 1KB of data) can be set to test if particular data items change their

values. (Some other debuggers refer to this type of breakpoint as a "watchpoint").

If sources are available, the actual COBOL programs can be viewed as needed to track the program. In

addition, the Find command can be used to search for a particular <string> in the COBOL source.

Symbol files (.sy) used by the debugger must be in the correct byte order for the machine on which the debugger is

running. (i.e., they must have been compiled on the same type of machine (big-endian versus little-endian.)

Sources are sought as specified in the .sy file, in the current directory, or as specified with the -z or -Z switch..

B. Invocation

To start the debugger enter ICRUN with the -Z or -z switch. The -Z sydir switch specifies the location of the symbol

files(.sy) that were created by the ICOBOL compiler using the same switch. If -z is given, the current directory is

used. For example, the following would start ICOBOL in the debugger and instruct the debugger to look for symbol

files in the symboldir directory.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

722

 1084 END DECLARATIVES
 1085
 1086 MAIN-LOGIC SECTION.
 1087 ONLY-AT-START.
 1088 * PD/DD Revision 7 feature
**> 1089+ ACCEPT ENVIR-STRUCTURE FROM ENVIRONMENT.
 1090+ INSPECT OEM-REV-STRING REPLACING ALL LOW-VALUES BY SPACES.
 1091+ ACCEPT LINE-NUMBER FROM LINE.
 1092+ ACCEPT USERNAME FROM USER NAME.

icrun Revision 3.40 (os)
Stopped at line 1089 in "logon": The initial program is loaded.

> _

 1084 END DECLARATIVES
 1085
 1086 MAIN-LOGIC SECTION.
 1087 ONLY-AT-START.
 1088 * PD/DD Revision 7 feature
**> 1089+ ACCEPT ENVIR-STRUCTURE FROM ENVIRONMENT.

icrun Revision 3.40 (os)
Stopped at line 1089 in "logon": The initial program is loaded.

> _

icrun -Z symboldir

If not enabled, the SCREEN OPTIMIZER will automatically be placed in partial mode (ICSCROPT=partial).

C. Usage

A snapshot of the default debug screen when loading LOGON whose source files(s) and symbol file are present is

shown in SCREEN 1.

SCREEN 1. Default Debugging SCREEN

A snapshot of the same debug screen with the display view enabled is shown in SCREEN 2.

SCREEN 2. Debugging SCREEN (all views enabled)

Debugging

723

 1084 ??
 1085 ??
 1086 ??
 1087 ??
 1088 ??
**> 1089+ ??
 1090+ ??
 1091+ ??
 1092+ ??

icrun Revision 3.40 (os)
Error: The file was not found: logon.sr
Stopped at line 1089 in "logon": The initial program is loaded.

> _

Source view is not available for this program

icrun Revision 3.20 (os)
Error: Unable to open symbol file for logon: The file was not found.
Stopped at line unknown in "logon": The initial program is loaded.

> _

A snapshot of the same initial debug screen with no symbol file available for LOGON is shown in SCREEN 3.

SCREEN 3. Debugging SCREEN (no symbol file)

A snapshot of the default debug screen when loading LOGON where the symbol file is available but the initial

source file is not available is shown in SCREEN 4.

SCREEN 4. Debugging SCREEN (symbols but no source)

The `??' symbols in the source window indicate for this line number the source line is not available.

The debug screen is split into up to four(4) windows. The number of lines within each window is determined

dynamically based on the number of lines supported by the console and the number of enabled windows. The

command window is always present with two lines.

Source window (the top)

If the symbol file is not found, the source window will shrink to one line, and no debugger commands that use source

will be allowed.

If the symbol file is found and the source for the current program can be opened, the actual program source with line

numbers is shown. If the source can not be found, a message indicating that will be displayed in the output window

and in the source window a `??' will be used to indicated that no source is available for this line. In scrolling through

the source a COPY file may be encountered whose source is available and then the actual source lines will be

displayed.

If a source line has code associated with it a `+' will be displayed after the line number. Location breakpoints can

only be set on lines marked with a `+'. Location breakpoints are indicated by a `B' after the line number. A `==>' to

the left of the line number indicates the current execution line. A `-->' to the left of the line number is the current

location of the cursor in the source file. A `**>' to the left of the line number indicates that the current execution line

and the current line in the source file are the same.

The source window is enabled by default.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

724

The source window is scrollable with the View and Zoom commands. The View and Zoom commands can be used

even if the window is not enabled.

Display window

The display window shows lines from the current COBOL program screen output.

The display window is not enabled by default, it must be enabled with the View ON Display command.

The display window is scrollable (within the content of one screen) with the View and Zoom commands. The View

and Zoom commands can be used even if the window is not enabled.

Output window

All user commands and debugger responses are shown in the output window. The output window is scrollable by

using the View and Zoom commands, allowing positioning anywhere in the current output from the start of this debug

session to the last displayed message.

The output window is the main work area for the debugger and is enabled by default.

Command window (bottom two lines)

The bottom two lines of the debug screen form the command window. The command window is always enabled.

The first line holds the debugger prompt `> ', while the second line provides a message text string. The debugger

keeps a circular `history' of the last twenty (20) commands that have been entered. These are accessible by using the

up- and down-arrow keys. This makes it fairly easy to repeat a sequence of commands. One-character commands

are not saved.

Whenever the debugger is entered, an appropriate reason will be displayed in the output window just above the

command window. The reason will include the current line number and program name.

Several possible reasons are given below:

The run unit is finished:

The runtime is ready to exit back to the operating system with the incoming reason code. If the reason is

cleared, the system will restart with a Run. If the reason is not cleared, it will be returned as the error code and

the system terminated with a Run.

Break:

The program has stopped for a breakpoint. There is no incoming reason code. Exception Status may be set.

Interrupt:

The program has stopped for a program interrupt. The interrupt code is the reason code, it is what will happen

with a Run or Step unless cleared. The Exception Status is not set to this code. An Error Reset will clear the

reason code.

The initial program is loaded:

Break After "name":

Break Before "name":

The program has stopped for the beginning of a statement for the initial startup, the before or after "name"

breakpoint, or single-stepping. There is no incoming reason code.

Debugging

725

Break Global Perform (Use):

The program has stopped at the start of a perform operation. There is no incoming reason code.

Break Global eXit:

The program has stopped at the start of an exit perform operation. There is no incoming reason code.

Break Call "name" (program or |):

The program has stopped at the start of a call [|] operation. There is no incoming reason code.

Break Call Program "name" (program or #):

The program has stopped at the start of call program [#] operation. There is no incoming reason code.

Break eXit Program:

The program has stopped at the start of a exit perform operation. There is no incoming reason code.

Break I-o:

Break I-o Screen:

The program has stopped at the start of an I/O or Screen I/O operation. There is no incoming reason code.

Break Stop:

The program has stopped at some type of stop-run situation. The incoming reason code should indicate the

reason.

Break Error Call:

The program has stopped for an error from Call to a COBOL program. Exception Status is the same as

incoming reason code. A failure will always still be in the original program.

Break Error I-o:

Break Error I-o Screen:

The program has stopped for an I/O or Screen I/O error. Exception Status is the same as incoming reason code.

The File Status has been set up according to the error (unless ACCEPT or DISPLAY).

Break Error Stop:

The program has stopped for a fatal error. Exception Status is not set to the fatal error although the reason code

is.

On Windows, a Ctrl-C will show an Exception Status 193 "Program terminated by console interrupt".

On UNIX, the UNIX Quit key will show an Exception Status 255 "The process was terminated" here. The UNIX

Intr will show an Exception Status 193 "Program terminated by console interrupt".

The incoming reason code is important when using the Break Error features, since it is the error that will be used

when resuming execution with the Run command, unless cleared with Error Reset.

For the Break Call type breakpoints, the reason shows the call argument as a quoted string. If the string is too long

to fit, it is followed by an ellipsis (...).

When first started, the debugger is entered after loading the initial program. The message "The initial program

`name' is loaded" is displayed in the Output window. For other cases of when the debugger is entered please see the

section on the Break command.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

726

D. Commands

D.1. Overview

At the debugger prompt the following commands are available:

Audit Echo commands to a command file

Break Manage breakpoints

Command Execute a host operating system command

Dump Display data values

Error Reset Reset the incoming reason code

eXecute Execute a command file

Find Search for a specific string in a source file

Go Go to a different pc in the program

Help or ? Show help information

Info Provide information on various items

List List a text file

Move Allow data values to be changed

Quit Quit the debugger and exit the runtime

RERUN Run the program again from the beginning

Run Run the program

Step Single-step source into CALL/PERFORM

Type Formatted breakdown of the contents of data items

View View a particular window or enabled/disable a particular window

Zoom Zoom a particular window to full size

All commands and keywords can be abbreviated as indicated by the uppercase letters, typically the first letter of the

command or keyword. If a keyword is all uppercase, it cannot be abbreviated. Words that are completely in

lowercase and italic represent generic items, like a number or a string of text.

The command syntax below uses the following conventions:

{} for required choices and

[] for optional choices.

Debugging

727

D.2. AUDIT

The Audit command controls the echoing of commands to an audit file. It provides a simple mechanism for creating

command files that can then be run with the eXecute command. You can look at command files with the List

command.

The syntax is:

 > Audit

Where

"filename" specifies a text file.

Below is a description for each valid syntax.

Audit "filename" Recreates an existing file or creates a new one to echo debugger commands.

Audit Extend "filename" Appends to an existing file or creates a new one to echo debugger commands.

Audit Close Closes the audit file.

There can be at most one audit file active at a time. All debugger commands that pass the syntax checks and are

executed will be audited to the file except the Audit Close command and the eXecute command. While the eXecute

command itself is not audited, the commands from the eXecute file are audited as they are processed.

D.3. BREAK

The Break command encompasses all aspects of breakpoint management including setting, deleting, listing, and

temporarily disabling and reenabling breakpoints.

Unless specific breakpoints are set the debugger is entered in one of four ways:

1) The debugger is entered after loading the initial program. The message "The initial program `name' is

loaded" will be displayed in the Output window.

2) The debugger is entered after the last program terminates. The message `The run unit is finished` will be

displayed in the Output window. Entering Run or Quit will cause the runtime to terminate.

3) If program interrupts are enabled, pressing Ctrl-C (on Windows) or the Intr or Quit keys (on UNIX) while

running the COBOL program will cause the debugger to be entered. The message "Interrupt at . . . in

`program-name'" will be displayed in the Output window along with the appropriate Exception Status.

4) The debugger is entered after an ICEXEC command Abort has been done on the pid or a `kill -15 ' or

`kill -SIGUSR1' on the pid. The message "Interrupt at . . . in `program-name'" will be displayed in the

Output window along with the appropriate Exception Status.

If the program was in an ACCEPT operation when one of the interrupts in #3 or #4 occurs, the debugger is entered

with the reason "Console Interrupt in screen read". Execution will resume in the screen read. Only a Run can be

done at this point to continue the program.

When breakpoints are enabled, the debugger is usually entered because of a breakpoint. The reason information will

show which breakpoint caused entry into the debugger.

The following descriptions are grouped into several categories. Note that location and test breakpoints can only be

set for the current active program

Interactive COBOL Language Reference & Developer’s Guide - Part Two

728

The syntax is:

Setting location breakpoints:

 > Break [COUNT=counter [RESET]]

Setting global breakpoints:

 > Break [COUNT=counter [RESET]]

Setting data change breakpoint (only one allowed):

 > Break Test identifier [COUNT=counter [RESET]]

Setting error breakpoints:

 > Break Error [COUNT=counter [RESET]]

Deleting, Enabling/Disabling, Listing Breakpoints:

 > Break

 > Break [List]

Where

Debugging

729

breaknumber is a specific breakpoint number. Each breakpoint has a unique breakpoint number assigned to

it.

counter is an integer and represents the number of times this breakpoint must be encountered before

executing the breakpoint.

exception is valid exception value to watch for.

identifier is a valid data-item in this program. The default format is the storage type of the item.

(Requires a symbol file.)

line must be a valid line number in the current program. (Requires a symbol file.)

"name" must be a simple program name enclosed in double-quotes.

procedure must be a valid section or paragraph name in this COBOL program. (Requires a symbol file.)

Below is a description for each type of breakpoint that can be set with the command on the left and the action on the

right.

Location Breakpoints

Break AT procedure Set a breakpoint at the first executable line in the given paragraph or section

Break END procedure Set a breakpoint at the end of the given paragraph or section if it ends a PERFORM or at

the first line of the next paragraph for a paragraph that is not an ending paragraph.

Break line Set a breakpoint at the specified linenumber

Location breakpoints are indicated in the source window by a `B' following the line number.

Global Breakpoints

Break After "name" Break after subprogram "name" has finished and returned to the calling program.

Break After Any Break after every subprogram has finished and returned to its calling program. The Any

form overrides all "name" form breakpoints, but the "name" ones are remembered, so if

Any is cleared, the "name" breakpoints will be reset.

Break Before "name" Break before program "name" begins execution each time it is started by a CALL or

CALL PROGRAM.

Break Before Any Break before every program or subprogram begins execution. The Any form overrides all

"name" form breakpoints, but the "name" ones are remembered, so if Any is cleared, the

"name" breakpoints will be reset.

Break Call Break at every CALL of a subprogram or builtin function.

Break Call | Break at every CALL of an operating system call.

Break Call Program Break at every CALL PROGRAM of a COBOL program.

Break Call Program # Break at every CALL PROGRAM # system call.

Break eXit Break at every exit from a PERFORM that will exit, i.e., for PERFORM n TIMES, it

breaks at the exit from the last of the n times.

Break eXit Program Break at every EXIT PROGRAM in a subprogram.

Break Perform Break at every PERFORM statement, including the implicit perform of a USE PROCE-

DURE, although excluding in-line PERFORMs other than an in-line PERFORM n

TIMES.

Break I-o Break at every I/O operation, excluding ACCEPT and DISPLAY.

Break I-o Screen Break at every screen I/O operation (ACCEPT and DISPLAY).

Break I-o Indexed Break at every indexed I/O operation (CLOSE, DELETE, OPEN, READ, REWRITE,

START, UNLOCK, and WRITE).

Break I-o Relative Break at every relative I/O operation (CLOSE, DELETE, OPEN, READ, REWRITE,

START, UNLOCK, and WRITE).

Break I-o seQuential Break at every sequential I/O operation (CLOSE, OPEN, READ, REWRITE, START,

and WRITE).

Break I-o iNfos Break at every INFOS I/O operation (CLOSE, DELETE, EXPUNGE, OPEN, READ,

RETRIEVE, REWRITE, START, SUB-INDEX operations, UNLOCK, and WRITE).

Break I-o sqL Break at every ISQL statement (COMMIT, CONNECT, DEALLOCATE, DISCON-

NECT, EXECUTE, EXECUTE IMMEDIATE, FETCH, PREPARE, ROLLBACK, and

SET CONNECTION).

Interactive COBOL Language Reference & Developer’s Guide - Part Two

730

Break Stop Break at every STOP RUN and at every STOP "lit" in which the user has chosen to stop

(i.e., hit ESC).

Data Change Breakpoint

Break Test identifier Break if the storage associated with identifier has changed.

Error Breakpoints

Break Error exception Break after every operation that returns the Exception Status specified by `exception '.

Only one Break Error exception is allowed; exception cannot be 0.

Break Error Any Break after every operation that returns a non-zero exception code.

Break Error Call Break after every CALL of a subprogram that returns with an error.

Break Error Call | Break after every CALL of an operating system call that returns an error.

Break Error Call Program Break after every CALL PROGRAM of a COBOL program that returns an error.

Break Error Call Program # Break after every CALL PROGRAM # system call that returns an error.

Break Error I-o Break after every I/O operation that returns an error, excluding ACCEPT and

DISPLAY), including DELETE FILE, EXPUNGE, START, UNDELETE,

UNLOCK, and STOP "lit".

Break Error I-o Screen Break after every screen I/O operation that returns an error (ACCEPT and

DISPLAY).

Break Error I-o sqL Break after any ISQL statement that returns an error (SQLSTATE not = 0).

Miscellaneous

Break [List [ALL]] List ALL breakpoints.

Break Delete breaknumber Clears the given breakpoint number.

Break Delete "name" Clears all Location type breakpoints in the program specified by "name".

Break Delete ALL Clears ALL breakpoints in the debugger!!

Break OFF ALL Temporarily disable ALL breakpoints.

Break ON ALL Reenable ALL temporarily disabled breakpoints.

Break OFF breaknumber Temporarily disable the given breakpoint number.

The keywords AT, END, OFF, ON, and ALL cannot be abbreviated.

All breakpoints are persistent. The debugger remembers breakpoints even when a program has been CANCELed

from the run-unit or replaced by a CALL PROGRAM. If the program ever becomes part of the run-unit again

through a CALL or CALL PROGRAM, the debugger resets the breakpoints. In order to delete breakpoints, use the

Break Delete command.

Location and Test breakpoints can only be set while in the applicable program.

Up to 8 Break Test breakpoints can be set.

D.4. COMMAND

The Command command is used to process commands through to the host operating system command line

processor, shell, or CLI.

The syntax is:

 > Command ["string"]

Where

string is a particular string of commands to pass to the host command processor to be executed, after

which it returns automatically. If no string is given, the debugger pushes to the command

processor in interactive mode.

Debugging

731

When the host operating system command line processor returns to the debugger, the prompt "Press any key to

continue" is given. If an error is returned from the command processor an Info message is given showing the actual

error returned.

D.5. DUMP

The Dump command displays storage for particular data items. It can show the data in one of several formats.

The syntax is:

 > Dump [identifier]

Where

identifier is a valid data-item in this program. The default format is the storage type of the item.

Below is a description for several valid syntaxes:

Dump identifier Displays the content of the data-item in a format appropriate to the type of the data-item.

Dump identifier Hex Displays the data at the address and length as specified for the given identifier in hex.

Dump Display the next data area in the same format as the previous area if the identifier was a

table element. The address immediately follows the item from the previous display and

the length used is the same.

The Decimal, Hex, or Octal format specifiers display data in a dump format that has the address in the left margin,

followed by a numeric decoding of ten-bytes of data in the selected numeric format, followed by a decoding of the

ten-bytes as ASCII characters. In the ASCII dump, unprintable characters are shown as periods.

Unsigned numeric items are shown with no sign. Signed numeric items are shown with either a `+' or `-'. In an

identifier numeric dump, a decimal point is displayed when appropriate based on the PICTURE and actual value of

the item.

The Alphanumeric type will display data as a quoted string, using the <nnn> octal notation for unprintable

characters.

If the data item is a table element, you must supply valid subscripts the first time entered. After that a Dump with no

arguments will increment the subscript(s) as needed to dump the next value..

D.6. ERROR RESET

The Error Reset command is used to clear the incoming reason code, which will be used by the program when it

resumes.

The syntax is:

 > Error Reset

See the Step and Run commands for the implications of using Error Reset.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

732

D.7. EXECUTE

The eXecute command is used to run a series of debugger commands stored in a text file.

The syntax is:

 > eXecute "filename"

Where

"filename" is a text file that holds valid debugger commands to be executed. The commands from "filename"

are echoed to the screen as they are executed. If the Audit command is active, the eXecute

command itself is not echoed, but the commands are.

D.8. FIND

The Find command is used to find a string of text in the source of the current program. Find requires that the source

file be available for the current program.

The syntax is:

 > Find [“string”]

Where

"string" is a string of text to search for in the current program source.

The First specifier indicates that the search is to start at the beginning of the program and proceed in the forward

direction.

The Last specifier indicates that the search is to start at the end of the program and proceed backwards.

The Next and Previous specifiers start at the location of the last find and proceeds forward or backward respectively.

The string argument is required for the first Find command. If not specified on subsequent Find commands, the

most recently specified value is used.

Find without any arguments repeats the most recent Find command.

D.9. GO

The Go command moves the COBOL PC to a new location. It does not start execution.

The syntax is:

 > Go

Where

procedure must be a valid section or paragraph name in the current COBOL program. (Requires a symbol

file.)

line must be a valid line number in the current COBOL program. (Requires a symbol file.)

Below is a description of valid combinations:

Go TO procedure The current PC is moved to the first executable line in the given procedure.

Go line The current PC is moved to the start of the given linenumber.

Debugging

733

Go eXit The current PC is moved to the return address in the current (topmost) perform, and the

perform stack is popped a level.

This command does not cause the program to run, but it does change the location where execution will occur the next

time that execution resumes with a Run or Step.

The view in the source window will be adjusted appropriately.

You should be careful about moving the location from within a PERFORM or into a PERFORM as it could confuse

the runtime with its PERFORM stack.

D.10. HELP

The Help command provides general help or help for a specific debugger command.

The syntax is:

 > Help [command]

 > ? [command]

 > command ?

Where

command must be a valid debugger command

If no command is given, a general help is given showing all possible debugger commands.

If command is given, detailed help will be displayed for that particular debugger command only.

Help is also available from the command-line by pressing F1. If the command name (or its abbreviation) has already

been typed in, help will be provided for that command.

All help information is shown is a separate zoomed help window. While in the zoomed window, the cursor up,

cursor down, F2 (page up), and F3 (page down) can be used to position up and down in the window to view the

contents.

Pressing ESC will cause the command to exit.

D.11. INFO

The Info command is used to display specific information about the state of the program or various program

elements.

The syntax is:

 > Info

Where

qualified-name is a valid item in the current COBOL program. (Requires a symbol file.)

count is an integer value indicating to only show the topmost count items of the selected values.

exception is a valid Exception Status.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

734

Each particular Info command provides specific information about the indicated item.

Info On qualified-name provides a description of the item including its class and category, size, and address.

Info Call displays the active call list. If count is given only the topmost count programs will be displayed.

Info Detail provides detailed information about the internal state of the runtime system that provides the following:

A. (line 1) the Program name and dialect compiled with,

B. (line 2) the ESCAPE KEY, the Exception Status, the File Status, the INFOS Status,

C. (Optional) if the exception status has an embedded os error message and extra line showing

“Exception register [INFO on:] OS-err:

Along with any severity of the error will be given.

D. (line 3/4) the number of Performs active (for this program); Open files (for this program); number of Active

programs; the number of Inactive programs (for this process), and the program counter (PC);

A sample for Info Detail is shown below:

Name: ussteel Dialect: icobol
ESC: 00 EXC: 00000 FileStatus: '00' InfosStatus: '000000000000'
Perform: 01 Open: 01 Active: 01 Inactive: 00 PC: 13523

Info Error displays the text associated with the current Exception Status or if a particular exception code it given

then the text for that exception is displayed.

Info Open displays a list of the files currently open by this program with their name, type, and open mode.

Info Perform displays the Perform stack. If count is given only the topmost count performs will be displayed.

Info eXit displays the inactive call list. If count is given only the topmost count programs will be displayed.

Info sqL displays ISQL information about active SQL connections. A sample would look like:

SQLState: 02000 SQLText: [Envyr Corporation][icrun] No data was affected by..
Connection: TestDSN
 String: TestDSN
 Statement: 1
 Cols: 3 PREPAREd: Y EXECUTEd: Y

D.12. LIST

The List command is used to list the contents of any text file.

The syntax is:

 > List "filename"

Where

"filename" is a valid text file to be opened and listed.

line is a valid line number in the given file.

The First, Last, and line options provide a default starting position in the file.

The indicated text file is listed in a zoomed list window. The First, Last, and line options provide a default starting

position in the file. If no default starting position is given the First line is used.

While in a zoomed window the cursor up, cursor down, F2 (page up), and F3 (page down) can be used to position up

and down in the window to view the contents.

Debugging

735

Pressing ESC will cause the command to exit.

D.13. MOVE

The Move command allows storage to be changed to a new value.

The syntax is:

> Move TO identifier

Where

identifier must be a valid identifier in this COBOL program. (Requires the symbol file.)

literal must be a valid COBOL literal.

The Move is just like the MOVE statement in COBOL.

String literals may have imbedded octal, decimal, or hex values using the construct <nnn>, <onnn>, <dnnn>, and

<xnn> to specify a byte value represented by the nnn or nn numbers. In the case of <nnn> and <onnn>, nnn

represents an octal value, in <dnnn>, nnn represents a decimal value, and in <xnn>, nn represents a hex value.

Upper and lower case `o', `d', and `x' can be used to specify octal, decimal, or hex. In hex mode, upper and lower

case `a' - `f' can be used. The value for any byte must be in the range 0 - 255 (decimal). For octal and decimal, no

more than three digits can be specified and for hex no more than two digits can be specified. <1> is treated as

<001>. The construct << can be used to enter a single <. Only one byte can be specified per <> pair.

D.14. QUIT

The Quit command performs an implicit STOP RUN (closing all files) and exits the debugger.

The syntax is:

 > Quit

After a STOP RUN, only Quit and Rerun are allowed.

D.15. RERUN

The RERUN command is used to restart the debug session. An implicit STOP RUN (closing all files) is done and

the initial program is reloaded. All breakpoint information is retained, and all the programs that had become part of

the memory image are retained in a canceled state.

The syntax is:

 > RERUN

After a STOP RUN, only Quit and RERUN are allowed.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

736

D.16. RUN

The Run command resumes program execution and optionally set a temporary location breakpoint.

The syntax is:

 > Run

Where

procedure must be a valid section or paragraph in the current COBOL program. (Requires a symbol file.)

line must be a valid line number in the current COBOL program. (Requires a symbol file.)

A more detailed description for each combination is given below:

Run Resumes program execution.

Run TO procedure Sets a temporary breakpoint at the first executable line in the given paragraph or section and

then Resumes program execution

Run line Sets a temporary breakpoint at the given linenumber and then Resumes program execution.

The Run command is used to resume program execution. The program resumes execution with the incoming reason

code, as shown in the Output window, unless the Error Reset command was used to clear the reason code. In cases

where the debugger was entered on a Break Error type breakpoint, it is usually better to run with the incoming

reason code so that the program continues as it would normally. In some cases, resetting the reason code can lead to

erroneous program behavior, e.g., if a READ statement failed, the record area may be corrupt. However, if the

program was entered by an external interrupt, e.g., the Intr key, it is often advantageous to reset the error so that the

program will continue to run rather than terminating, as is the normal result.

If the debugger had been entered by pressing the Interrupt key, the Error Reset command must be used before

resuming, or else the program will be terminated with a console interrupt.

If you are in an ACCEPT operation, the ACCEPT will be resumed when Run is entered. (The reason is "Console

Interrupt within a screen read".)

If the run-unit has terminated, issuing an Error Reset followed by Run will start the original program over again.

This can also be done with a RERUN.

If after setting a temporary breakpoint, any other breakpoints are encountered during the course of running other than

the temporary breakpoint, the debugger will stop at that breakpoint and the temporary breakpoint will be cleared.

The Run command automatically switches to the COBOL screen before starting execution.

D.17. STEP

The Step command single steps to the next statement. Step follows CALL and out-of-line PERFORM's to their

targets.

The syntax is:

 > Step [count]

Where

count is the number of steps to be performed.

If any other breakpoints are encountered during the course of stepping, the debugger will stop at that breakpoint and

the Step operation will be canceled.

Debugging

737

Instead of using the count option it is often better to use the "RUN xxx" form of the Run command where xxx is the

line-number.

Step Single steps by one statement. If the current instruction is a CALL or PERFORM the debugger

will stop at the first statement or instruction in the target of the CALL or PERFORM.

Step 10 Single steps by 10 statements. If the current statement is a CALL or PERFORM the debugger will

stop at the 10th statement inside the CALL or PERFORM.

Step, just like Run, continues execution with the incoming reason code unless it has been cleared with the Error

Reset command. See the Run command for additional information on how this affects program behavior.

D.18. TYPE

The Type command is used to show the contents of data items. It breaks down group items into their composite data

items. Type requires that a symbol file be available.

The syntax is:

 > Type [identifier]

Where

identifier is a valid data-item in the program.

This command displays a formatted breakdown of the contents of identifier. The output contains the level number,

identifier name, and its current value. For a group item, it shows the contents of each elementary data item in a

format appropriate for the data type.

When no arguments are supplied, the results depend on the identifier of the previously executed Type command. If

the preceding Type command was a display of a table item, the next element of the table is displayed. The debugger

will automatically increment the subscripts. If the preceding Type was of a simple data item, the command will

return an error.

An example of the output from this command follows:

> type group-item
01 GROUP-ITEM
 05 EMP-NAME
 10 EMP-NAME-FIRST = "Joe "
 10 EMP-NAME-LAST = "Programmer "
 05 EMP-AGE = 47
 05 EMP-PHONE = 8005551212

D.19. VIEW

The View command is used to control which windows are active on the screen and to position to a particular window

to browse.

The syntax is:

 > View

 > View Reset

When the debugger initially starts the source, output, and command windows are enabled by default. The View

command can be used to enable others or disable current windows.

The windows are always positioned in order from the top of the screen, with Source first, Display second, Output

third, and Command fourth. The View ON and View OFF commands can have multiple arguments to change

Interactive COBOL Language Reference & Developer’s Guide - Part Two

738

multiple windows at the same time. When ON or OFF is omitted, only a single window is allowed. A View

command with no arguments positions to the Output view by default.

When positioned to a window, the cursor up, cursor down, F2 (page up), and F3 (page down) can be used to position

up and down in the data displayed in the window. ESC will return you to the command prompt.

The View Reset command resets the source window to be positioned around the current program execution location.

It is useful for quickly returning these views to their default state after using the View or Zoom commands to look at

some other areas of the program.

D.20. ZOOM

The Zoom command is used to zoom a particular window to full size.

The syntax is:

 > Zoom

The Zoom command without any argument zooms the Output window. A zoomed window expands to the whole

screen minus the 2-line command window.

While in a zoomed window the cursor up, cursor down, F2 (page up), and F3 (page down) can be used to position up

and down in the window to view the contents.

Pressing ESC will cause the command to exit.

E. Performance Considerations

When running programs in the debugger, performance is degraded. The degradation is in the 10 to 25% range. Use

of the Break Test breakpoint causes a dramatic performance degradation as this test must be performed at the start of

every opcode to detect changes from a preceding opcode.

Setting ICSCROPT=full instead of ICSCROPT=partial will provide for better screen optimization as the screens will

not actually be re-painted unless there is an actual change to the screen. This is especially helpful when using the

Step command.

Debugging

739

F. Quick Reference

? [command]

command ?

Audit

Break [COUNT=counter [RESET]]

Break [COUNT=counter [RESET]]

Break Test identifier [COUNT=counter [RESET]]

Break Error [COUNT=counter [RESET]]

Break [List]

Break

Command ["string"]

Dump [identifier]

Error Reset

eXecute "filename"

Find [“string”]

Interactive COBOL Language Reference & Developer’s Guide - Part Two

740

Go

Help [command]

Info

List "filename"

Move TO identifier

Quit

RERUN

Run

Step [count]

Type identifier

View

View Reset

Zoom

Where

breaknumber is a specific breakpoint number. Each breakpoint has a unique breakpoint number assigned to

it.

command is a valid debugger command.

count is an integer.

counter is an integer that represents the number of times this breakpoint must be encountered before

executing the breakpoint.

exception is a valid Exception Status.

"filename" is a text filename enclosed in double-quotes.

identifier is a valid data-item in the current COBOL program. (Requires a symbol file.)

line is a valid line number in the current COBOL program. (Requires a symbol file.)

"name" is a simple program name enclosed in double-quotes.

procedure is a valid section or paragraph name in the current COBOL program. (Requires a symbol

file.)

"string" is an alphanumeric string enclosed in double quotes.

ICREVSET

741

XIII. ICREVSET

A. Introduction

The ICREVSET utility is used to set the programmer (or supplier) revision field in a file. This utility is separate

from the ICREV utility so that it can be removed from the end-user's system, thereby preventing the end-user from

modifying his revision information. This utility can set the programmer revision field in any type of standard-header

file.

The OEM Version switch (-o|-O rev) of the compiler can also be used to set the OEM revision of .CX files at file

creation.

The ACCEPT FROM ENVIRONMENT statement can be used in a COBOL program to extract the programmer

revision field from the executing program.

B. Syntax

The standard syntax is:

icrevset [-a[:aflag]|-A file|dir[:aflag]] [-h|-?] [-L file] [-q] [-v] rev
{ infile }...

Where

-a[:aflag]|-A path[:aflag] (audit)

Audit to icdump.lg, aflag: a=append, b=backup, d=datestamp, p=process-id, t=timestamp, u=username

-A path[:flag] (audit)

Audit to path, or path\icrevset.lg if path is a directory

-h|-? (Help)

Display help text.

-L file (Library)

Use the specified COBOL library to find the specified files.

-q (Quiet)

Enables quiet operation.

-v (Verbose)

The name of each file will be displayed as it is processed, as well as the file type and the prior value of the

revision field. Otherwise, a simple summary of the number of files processed is displayed.

rev

Specifies a string of up to 8 characters containing the text the programmer (or supplier) desires in the

programmer revision field.

infile

Specifies a filename or template. The filenames or templates must specify an extension to determine the

type of file to modify. If the filename argument specifies a library file, the revision field is set in the library

file itself.

C. General Rules

ICREVSET looks for the common environment variables ICROOT and ICTMPDIR.

On UNIX, when using the library switch, if a template is to be specified for infile, it may need to be quoted to

prevent it from being expanded by the shell.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

742

ICDUMP

743

XIV. ICDUMP

A. Introduction

The Dump utility (ICDUMP) allows the user (usually the programmer) to dump a .CX file or a .PD file to look at a

particular COBOL PC for debugging purposes.

B. Syntax

The syntax is:

icdump [-a[:aflag]|-A path[:aflag]] [-c] [-d] [-f] [-h|-?] [-l] [-n] [-q]
[-r] [-x] { filename }...

Where

-a[:aflag]|-A path[:aflag] (audit)

Audit to icdump.lg, aflag: a=append, b=backup, d=datestamp, p=process-id, t=timestamp, u=username

-A path[:flag] (audit)

Audit to path, or path\icdump.lg if path is a directory

-c (Code)

Display a dump of the Code area

-d (Data)

Display a dump of the Data area

-f (File)

Display a dump of the file info (Rev 5 CX and later)

-h|-? (Help)

Display help text

-l (Literal)

Display a dump of the literal area (Rev 5 CX and later)

-n (No-header)

Do not display the header dump

-q (Quiet)

Enable quiet operation.

-r (Reference)

Display a dump of the reference table

-x (External)

Display a dump of the external area (Rev 5 CX and later)

filename

Specifies the file to be dumped.

C. Rules

ICDUMP looks for the common environment variable ICROOT.

D. Example

The example below shows the output from an ICDUMP of f_pi.sr, a simple program. It shows the information from

the file headers, the program code, the reference table, and the program data segment.

The command line for this example is:

icdump -crdfx f_pi

Interactive COBOL Language Reference & Developer’s Guide - Part Two

744

icdump Revision 3.60 (Windows)
Copyright (C) 1987-2007, Envyr Corporation. All rights reserved.

Processing f_pi.cx

Decoding of File Headers

Standard Header:
 ICOBOL Executable File Revision 5.00 (byteswapped)
 Created: Jun-30-2000 08:01:29.00 by icobol 3.00 (Windows 9X/NT/2000)
 Modified: Jun-30-2000 08:01:29.00 by icobol 3.00 (Windows 9X/NT/2000)
 Supplier Revision: none

File Header:
 Revision: 5.00
 PROGRAM-ID: F-PI
 Currency Char: $
 Decimal Char: .
 Comma Char: ,
 Is Initial: No
 COBOL Type: ANSI-74+
 Source Format: Free format
 Parse options: (00000000) None
 Start PC: 1 End PC: 21
 Use Input Beg: 0 Use Input End: 0
 Use Output Beg: 0 Use Output End: 0
 Use IO Beg: 0 Use IO End: 0
 Use Extend Beg: 0 Use Extend End: 0
 Code Start: 268 Code Size: 22
 PicLits Offset: 22
 Init Start: 292 Init Size: 2
 Ref Start: 296 Ref Count: 2
 D-V Start: 312 D-V Count: 0
 File Start: 0 File Count: 0
 Using Start: 0 Using Count: 0
 External Start: 0 External Size: 0
 Data Size: 24 CONTENT Size: 0
 External Count: 0 Total Using: 0

Decoding of Program Code
Copyright (C) 1987-2007, Envyr Corporation All rights reserved.

 PC Operation Operands

%00001 Compute x ->y... FUNCTION PI @0
%00007 Display Data Adv @0
%00011 Compute x ->y... FUNCTION PI @1
%00017 Display Data Adv @1
%00021 STOP RUN

The output for this example is shown in four different frames only for explanatory purposes. The above command

line produces one stream of output that includes all of the output.

The first frame shows the ICDUMP banner and the dump of the file headers.

EXAMPLE 90. ICDUMP of the Header (default)

This frame shows the dump of the program code segment.

EXAMPLE 91. ICDUMP of the Program Code (using the -c switch)

ICDUMP (Example)

745

Decoding of Program Reference Table

Ref # File or Data Type Type-specific Information
 Address (Relocation Information)

 0 Unsigned Display len: 18, cnt: 18, l: 1, r: 17
 0 (Data Segment)
 1 Unsigned Display len: 6, cnt: 6, l: 1, r: 5
 18 (Data Segment)
There are no files defined in this program.

Decoding of Program Data Segment

 The data segment is 24 bytes long
 Offset Hex Dump Char Dump

 0 00 00 00 00 00 00 00 00 00 00
 10 00 00 00 00 00 00 00 00 00 00
 20 00 00 00 00

There are no external data items
icdump is finished

This frame shows the dump of the program reference table.

EXAMPLE 92. ICDUMP of the Reference Table (using the -r switch)

This frame shows the dump of the program data segment.

EXAMPLE 93. ICDUMP of the Data (using the -d switch)

Interactive COBOL Language Reference & Developer’s Guide - Part Two

746

ICRUN

747

XV. RUNTIME (ICRUN)

A. Introduction

The ICOBOL runtime (ICRUN) is the environment (or soft machine) provided by the ICOBOL product that

executes COBOL programs. This chapter describes how the runtime works.

ICRUN insulates the COBOL program from many machine and operating system differences. However, where

differences are noted one should try to code for the least common denominator of the features. When that is not

possible, use the ACCEPT FROM ENVIRONMENT statement to allow the program to know exactly which machine

it is running on.

The command line and environment settings for ICRUN are described in the appropriate Installing and Configuring

manuals (for UNIX or Windows).

B. Printer Control Utility

The Printer Control utility is provided when enabled from the configuration file (.cfi). The Printer Control utility

provides for the spooling and separate printing of files. The Printer Control utility uses the printer control file to

hold the filenames that are currently in the printer control queue. By default, the printer control file is system.pq.

The printer control file can handle up to 1024 files based on what the configuration file (.cfi) has allowed. Once that

maximum is reached, an OPEN of a file that would have been placed in the printer control file will fail with a File

Status 99 (Exception Status 44).

The Printer Control subsystem can be configured to automatically print a file once it has been entered into the printer

control file or to allow each file to be queued separately to a printer by a user. To manually queue files to be printed,

the IC_PRINT_STAT builtin must be executed to start the Printer Control Utility. To automatically have files

printed, the AUTO option must be set in the configuration file (.cfi) for the particular queue.

At startup time, the printer control file is scanned and if an entry or file no longer exists on the disk, the entry is

removed from the system.pq file and the printer control queue.

On UNIX

The printer control file is read at ICEXEC startup to load the queue and is kept updated while running.

The UNIX print spooler, lp, is used to provide the actual printing of jobs. The following UNIX command is

executed to print a job:

lp -dpcqdest -tsimple-filename filename

where pcqdest is the destination defined for the particular printer control queue in the configuration file (.cfi),

simple-filename is the simple part of the filename as the title, and then the file to be printed. If the destination field

is blank the default queue is used.

On Windows

The Windows print spooler is used to provide the actual printing of jobs. ICEXEC reads the configuration file (.cfi)

and determines available print queues and matching Windows printers (except for a default (blank name) which is

still setup by the runtime system when it starts.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

748

C. Program Termination

If running in Program mode, ICOBOL will return to the shell (or parent process) on any of the following:

1) STOP RUN

2) CALL“IC_HANGUP”, “IC_SHUTDOWN”

3) CALL PROGRAM #H, #S, ##U

4) console interrupt

5) Fatal error.

C.1. Two Types of Termination

Two types of COBOL program termination are provided under ICOBOL when running in Logon mode.

C.1.1 Return to LOGON as Inactive

 The first type of program termination stops the COBOL program and returns control to the program LOGON as an

inactive terminal. This is done by:

Action Status

1) CALL "IC_LOGON" Set to Inactive

2) STOP RUN and then

press ENTER

 Set to Stopped

 Set to Inactive

3) Pressing the Intr key (if allowed by the configuration

file (.cfi)) and then press ENTER

 Set to Stopped

 Set to Inactive

4) Program errors that terminate the program, e.g., Fatal

COBOL I/O errors, and then press ENTER

 Set to Stopped

 Set to Inactive

NOTE: If a fatal I/O error is encountered and the program terminates, the current Exception Status is

displayed right after the COBOL PC as E=nnn.

C.1.2 Return to Parent Process

The second type of program termination terminates the ICOBOL process for that terminal and returns the user to the

parent process. This is done by one of the following:

CALL "IC_HANGUP"
CALL "IC_SHUTDOWN"

If the parent process was ICEXEC, then ICEXEC will cause the initial logon prompt to be re-displayed.

D. Device Support

D.1. Overview

The mapping from an ICOBOL logical device to a particular hardware device can be configured in the configuration

file (.cfi) under the Device Configuration menu.

It is recommended that only logical devices be used in a COBOL program so that it will be insulated from a

particular operating system and/or a particular hardware configuration.

The ICOBOL logical devices are:

ICRUN (Device Support)

749

• console devices (@CON0, @CON1, @CON2, and up),

• printer devices (@PRN0 through @PRN127),

• printer control queues (@PCQ0 through @PCQ127),

• serial devices (@SER0 through @SER127).

There are eight generic logical devices:

• @NUL always maps to the internal null device,

• @CON always maps to the current console,

• @PTS always maps to the current console with printer pass thru mode enabled for each WRITE operation,

• @PCQ, @PRN, and @SER can be configured, on a per console basis with the PCQ, PRN, or SER entries,

to point to any of their respective logical devices, e.g., PCQ=1 is used to set the generic @PCQ to point to

@PCQ1. If no entry is specified, the default values for @PCQ, @PRN, and @SER are @PCQ0, @PRN0,

and @SER0 respectively. (These can be set as environment variable(s) to override those defined in the

configuration file (.cfi).)

• @DATA maps to the current contents of the environment variable DATAFILE at runtime.

• @LIST maps to the current contents of the environment variable LISTFILE at runtime.

D.2. General Rules

(1) If ICOBOL detects any operating system name from the table below, it is replaced with the corresponding

ICOBOL name as shown. This replacement is not done if the name was mapped using the link file.

Operating
System Name

ICOBOL
Name

Operating
System Name

ICOBOL
Name

NUL @NUL @INPUT @CON
CON @CON @OUTPUT @CON
$TTI @CON @CONSOLE @CON
$TTO @CON @LPT @PCQ0
PRN @PRN0 @LPT1 @PCQ1
LPT1 @PRN0 @LPT2 @PCQ2
LPT2 @PRN1 @LPT3 @PCQ3
LPT3 @PRN2 @LPT4 @PCQ4
$LPT @PRN0 @LPT5 @PCQ5
$LPT1 @PRN1 @LPT6 @PCQ6

AUX @SER0 @LPT7 @PCQ7
COM1 @SER0 @LPT8 @PCQ8
COM2 @SER1 @LPT9 @PCQ9
COM3 @SER2
COM4 @SER3 @LPT2048 @OCQ2048
QTY:0 @CON1
QTY:1 @CON2
QTY:2 @CON3
... ...

TABLE 42. Device Mappings

All the device names in TABLE 42 are mapped in a case insensitive manner. D.G., `con', `CON', `Con', and `cOn'

all specify the same device name to ICOBOL. To override an ICOBOL name specify a pathname, i.e., `=con',

`./CON' or `./con', in which case ICOBOL will not find its device but will pass the name on through to the operating

system.

(2) ICOBOL does not open hardware devices it controls with the EXCLUSIVE option unless explicitly set.

(3) The logical filename @NUL is a special internal device. If you use @NUL as an input device, a read will

always generate an immediate end-of-file. As an output device, the write operations are simulated, but no data is

actually written.

(4) Each logical console device (@CONn) is either enabled or not. If enabled, the logical console device has a

character device (on UNIX ‘from /dev’), a blank for use with the Terminal number switch (-T) or when terminal

devices are not defined in the configuration file (.cfi), or a null for use with the IC_DETACH_PROGRAM builtin.

Logical consoles also have the ability to Run Programs if the Run Program option is set to Yes. If Run Programs is

set to Yes, the Program environment options are used. The line-number returned by the ACCEPT LINE statement of

a COBOL program is the number n of the @CONn logical console name. When ICOBOL starts if the ttyname for

Interactive COBOL Language Reference & Developer’s Guide - Part Two

750

the console cannot be found in the the configuration file (.cfi) Console table or if it is already in use, it will scan the

console table for an entry that is enabled, has a blank device, and is currently not in use as its console.

(5) Each logical printer control queue (@PCQn) has associated with it a standard UNIX print queue (on UNIX)

or a standard Windows printer (on Windows). These must be defined and enabled before ICOBOL can make use

of the @PCQn devices. Whenever an @PCQn logical device is opened, the output is routed to the particular print

queue (on UNIX) or printer (on Windows) defined for the destination as setup in the configuration file (.cfi).

On UNIX , this is done using the UNIX print spooler (lp) and is called intercept spooling. Thus if the COBOL

filename opened was `@PCQ1', ICOBOL would pipe the written output to

lp -dpcq1destination.

On Windows, this is done using standard Windows print routines to place the file in the Windows printer subsystem

and is called intercept spooling.

(6) Each logical printer device (@PRNn) has associated with it some printer options such as form-feed on open

and/or close upon printing.

On UNIX , you should be very careful when printing directly to a device that the UNIX print spooler is using as there

is no standard way to provide EXCLUSIVE access to that output device. You should either use printer control

queues (@PCQn), the Printer Control Utility, or use a device that is not being used by the UNIX print spooler.

(7) The logical serial devices (@SERn) are serial communication ports on which no programs can be run, but

serial input and/or output can be performed.

(8) If the hardware for a particular device is not installed in the system, not enabled, or set to None; a File

Status 91 is returned on the OPEN.

(9) On UNIX , standard UNIX character devices that reside in /dev can be used as appropriate for files.

D.3. Parallel Printer Ports

(1) Parallel printer ports are generally the lp0, lp1, and lp2 devices.

(2) On output to a parallel port, if a timeout value was not specified on the OPEN, the write will try forever. If

the timeout and message options are both set on an extended device open, the message displayed on the user's screen

will show the actual reason (like offline, out of paper, I/O error, etc.) that is causing the write to wait.

(3) On a CLOSE of a parallel port, if its buffer still has characters waiting to be written, the CLOSE will delay

up to 5 minutes to enable the buffer to be flushed. After that time the parallel port will be closed and the buffer reset.

D.4. Serial Ports

(1) The serial ports are generally the tty01, tty02, . . . or tty1a, tty1b, . . . devices.

(2) If an OPEN specifies a device with modem control enabled, the OPEN will wait until Data Carrier Detect

(DCD) is detected before preceding (this could wait forever). For all other operations, if DCD is not detected, a File

Status 30 (Exception Status 122) will be returned.

(3) If hardware errors, such as parity, are detected, a File Status 30 (Exception Status 13) is returned for the

operation in progress.

(4) Program lines cannot be opened by a program on another terminal. The other program will get a File Status

94 (file is exclusively opened).

ICRUN (Filenaming Conventions)

751

(5) On output to a serial line that is not the current console, if a timeout value was not specified on the OPEN,

the write will try forever. A timeout option along with a possible message option can be specified as an extended

device open option on the OPEN to change this behavior.

(6) On a CLOSE of a serial line, if a timeout value was not specified on the OPEN, the CLOSE will try forever.

If a timeout had been specified the CLOSE will complete in that time, the line closed, and the buffer reset.

E. Filenaming Conventions

E.1. Internal Filenames

An internal filename is assigned to an external file by using the SELECT clause in a COBOL program. The I/O

statements in the program then refer to this file by its internal name, as in OPEN INPUT FILE-ONE.

E.2. External Filenames

An external filename is the name by which a file is known to the operating system and/or ICOBOL environment.

This section, describes how ICOBOL handles COBOL external filenames. Also see the sections in the ICOBOL

Language Reference that discuss the COBOL builtins IC_RENAME_FILE, IC_GET_DISK_SPACE,

IC_DIR_LIST, IC_MOVE_FILE_DATA).

In the SELECT clause of a COBOL program, the external filename can be specified. If no external filename is

specified for a SELECT, the ICOBOL compiler generates a default external filename based on the ASSIGN TO

<device> clause as defined in Table 1 on page 100 Default External Filenames.

ICOBOL considers the following as legal characters in a filename:

Characters Description

a-z Lower-case letters

A-Z Upper-case letters

0-9 Digits

. Period

_ Underscore

$ Dollar sign

- Hyphen

! Exclamation

% Percent

& Ampersand

{} Left- and right-brace

() Left- and right-parenthesis

~ Tilde

TABLE 43. Legal characters in a filename

Interactive COBOL Language Reference & Developer’s Guide - Part Two

752

ICOBOL treats the following characters as illegal characters in a filename:

Character Description

‘ ’ Open- and close-single-quote

“ Double quote

[] Left- and right-bracket

* Asterisk

Pound-sign

+ Plus-sign

| Vertical-bar

< > Left- and right-angle-bracket

; Semicolon

? Question-mark

ALSO: Embedded spaces (only if the -N e option is used),
characters less than space, and characters greater than tilde.

TABLE 44. Illegal Characters in a Filename

In certain contexts, the following characters are allowed in a filename:

Character Description

equal (=) As the first character of a filename, an equal is replaced with the current directory

caret (^) As the first character of a filename, a caret is replaced with the parent directory

colon (:) All occurrences are converted to the appropriate directory separator

 - `\' on Windows - `/' on UNIX

NOTE: On Windows, : is not converted if immediately following a single letter

at the beginning of the name. (Drive-letter)

backslash (\) All occurrences are converted to the appropriate directory separator

 - `\' on Windows - `/' on UNIX)

forwardslash (/) Treated as a directory separator and converted to the appropriate directory separator

 - `\' on Windows

 - `/' on UNIX; except when given on a program name when single-character pro-

gram switches are stripped off the program name by scanning from the end

at-sign (@) As the first character of an ICOBOL logical device name specifier

TABLE 45. Characters Allowed in a Filename, in Certain Contexts

E.2.1 Rules

(1) ICOBOL always trims leading and trailing spaces before any other processing is done to a filename.

(2) A simple filename cannot be longer than 255 characters, and the pathname cannot be longer than 255 on

Windows and 1023 on UNIX. If it is, an error is given.

ICRUN - Filenaming Conventions (Program Names)

753

E.2.2 Program names

E.2.2.1 Overview

The simple portion of a program name in ICOBOL must be 30 characters or less; otherwise, an error is given.

In addition to length, there are other things ICOBOL considers when processing a program name, and the processing

is different for each of the operations that use program name:

• CALL statement

• CALL PROGRAM statement

• CANCEL statement

• IC_DETACH_PROGRAM builtin

The table below defines processes that are used in some of the operations listed above, as ICOBOL processes a

program name. The section that follows the table will describe how ICOBOL processes a program name for each of

the operations and will use the name of the definition from the table (e.g., Strip program switches) to simplify the

explanation.

Strip program switches:

When searching for program switches, the runtime first checks to see if the switches were delimited by a space, in

which case the switches are stripped to the right of the space with no other embedded space allowed. For example,

"/usr/a/b /c/d" would treat c and d as switches with the program name being "/usr/a/b". If not delimited by a space,

ICOBOL scans backward from the end of the string picking off "/character" pairs until either no more valid pairs

exist or the beginning of the name. For example, "/usr/a/b/c/d" would treat a, b, c, and d as switches with the

program name being "/usr". See page 304 for a complete description on program switch processing.

CALL check:

When searching for an active or inactive program during a CALL, ICOBOL uses the simple part of the filename in a

case-insensitive fashion. If there is already an active program with that name, it is an error (recursion). If there is

already an inactive program with that name, the program is activated. Otherwise, ICOBOL uses the name to activate

a new program.

Check ICCODEPATH:

ICCODEPATH specifies a list of directories and/or COBOL library files in which to look for COBOL programs

with simple names. If ICCODEPATH is not specified, the simple name is passed to the operating system. Which

will look in the current directory. If ICCODEPATH is specified, each directory and/or COBOL library is searched

sequentially to find the given program file.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

754

E.2.2.2 CALL Statement

Program name is processed as follows for a CALL statement:

1) On UNIX , check if this is a call to the operating system (`|' as the first character) and process accordingly;

2) Strip program switches;

3) On UNIX , convert the name to the case specified by ICOBOL (default lower-case);

4) Search for name in the link file and replace with new name if found;

5) If a simple name;

a) check for user-defined subroutines (calls added with the Link Kit) or builtins and process if found;

c) CALL check;

d) check for invalid characters;

e) append `.cx' and check ICCODEPATH. If not found, give an error.

6) If not a simple name;

a) CALL check;

b) check for invalid characters;

c) append `.cx', resolve the name, and look up the file in the operating system. If not found, give an error.

E.2.2.3 CALL PROGRAM Statement

Program name is processed as follows for a CALL PROGRAM statement:

1) Check if this is a system call (prefix of # or ##), process if so

2) Strip program switches

3) On UNIX, convert the name to the case specified by ICOBOL (default lower-case)

4) Search for name in the link file and replace with new name if found

5) Check for invalid characters

6) If a simple name, append `.cx' and check ICCODEPATH. If not found, give an error.

7) If not a simple name, append `.cx', resolve the name, and look up the file in the operating system. If not

found, give an error.

E.2.2.4 CANCEL Statement

Program name is processed as follows for a CANCEL statement:

1) Strip program switches

2) On UNIX , convert the name to the case specified by ICOBOL (default lower-case)

3) Search for name in the link file and replace with new name if found

4) Extract the simple name and check to see if there is already an active program with that name, if so give an

error (active), next check to see if there is already an inactive program with that name, if so, CANCEL the

program

5) Otherwise ignore.

E.2.2.5 IC_DETACH_PROGRAM builtin

Program name is processed as follows for an IC_DETACH_PROGRAM builtin:

1) Extract the program part of the name, (up to the first space),

2) Strip program switches

3) On UNIX , convert the name to the case specified by ICOBOL (default lower-case)

4) Search for name in the link file and replace with new name if found

5) Check for invalid characters

6) If a simple name, append `.cx' and check ICCODEPATH. If not found, give an error.

7) If not a simple name, append `.cx', resolve the name, and look up the file in the operating system. If not

found, give an error.

ICRUN - Filenaming Conventions (Sequential & ICISAM Filenames)

755

E.2.3 Sequential and ICISAM Filenames

E.2.3.1 Overview

There are several different operations for which ICOBOL needs to process a filename for a sequential or ICISAM

file, and for each operation the process is different. Here are the operations that use a sequential or ICISAM

filename:

• OPEN Statement

• DELETE FILE Statement, along with the IC_DIR_LIST, IC_GET_DISK_SPACE,

IC_MOVE_FILE_DATA builtins

• IC_RENAME builtin

The table below defines a process that is used in some of the operations listed above, as ICOBOL processes a

sequential or ICISAM filename. The section that follows the table will describe how ICOBOL processes a filename

for each of the operations and will use the name of the definition from the table (i.e., Check ICDATAPATH) to

simplify the explanation.

Check ICDATAPATH:

ICDATAPATH specifies a list of directories and/or COBOL library files in which to look for COBOL data files with

simple names. If ICDATAPATH is not specified, the simple name is passed to the operating system, which will look

in the current directory. If ICDATAPATH is specified, each directory and/or COBOL library is searched

sequentially to find the given file. If not found, and the creation attribute is specified, the file will always be created

in the current directory regardless of the ICDATAPATH.

E.2.3.2 OPEN Statement

Filename is processed as follows for an OPEN statement:

1) On UNIX, check for a pipe open ('|' as the first character); if so, process the OPEN.

2) Strip any extended open options (i.e., the comma-separated list)

3) On UNIX, convert name to the case specified by ICOBOL (default lower-case)

4) Search for name in the link file and, if found, replace with new name, otherwise, map all RDOS, AOS/VS,

and MS-DOS names to their ICOBOL logical name as defined in TABLE 42 on page 749.

5) On UNIX, check for a pipe open ('|' as the first character) if so process the OPEN.

6) Check for invalid characters

7) If a simple name, check ICDATAPATH appending ICISAM extensions if needed. If not found, give an error

or create in the current directory as required by the OPEN.

8) If not a simple name, append ICISAM extensions if needed, resolve the name, and look up the file in the

operating system. If not found, give an error or create in the specified directory as required by the OPEN.

9) Process the OPEN.

NOTE: A pipe open does not allow extended open options. Extended open options are discussed beginning on

page 756.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

756

E.2.3.3 DELETE FILE Statement along with IC_DIR_LIST, IC_GET_DISK_SPACE, IC_MOVE_FILE_DATA

builtins

Filename is processed as follows for a DELETE FILE statement and the above named builtins and system calls:

1) On UNIX, convert name to the case specified by ICOBOL (default lower-case)

2) Search for name in the link file and replace with new name if found

3) Check for invalid characters

4) Append ICISAM extensions if needed, resolve the name, and look up the file in the operating system. If not

found, give an error.

5) Process as specified.

E.2.3.4 IC_RENAME builtin

Filename is processed as follows for IC_RENAME builtin:

1) On UNIX, convert the name to the case specified by ICOBOL (default lower-case)

2) Check for invalid characters

3) Rename.

E.2.3.5 IC_DETACH_PROGRAM builtin (for the output file)

Filename is processed as follows for IC_DETACH_PROGRAM builtin:

1) If specified, extract the output filename

2) On UNIX, convert the name to the case specified by ICOBOL (default lower-case)

3) Search for name in the link file and, if found, replace with new name, otherwise, map all RDOS, AOS/VS,

and MS-DOS names to their ICOBOL logical name as defined in TABLE 42 on page 749.

4) Check for invalid characters

5) Resolve name to a fully qualified name

6) Process the OPEN.

F. Extended OPEN options

F.1. Overview

Extended open options are available to allow specification of certain items at open time that may not be known when

the COBOL program is written. The extended open options are a comma-separated list of options that allow the

COBOL programmer to tailor the reads, writes, rewrites, and closes based on information known only at runtime.

Within the extended open options, spaces are ignored.

The extended open options are specific to the file organization (sequential, relative, indexed or infos) and are

described in the following sections. ICOBOL checks the options for validity and will return an error for invalid

options or option value.

ICRUN - Extended OPEN Options (Sequential)

757

F.2. Extended Sequential Open

The extended open options for sequential files can be further sub-divided into the following three categories:

OPEN OPTION DESCRIPTION

Extended Device Open For all opens that resolve to direct access to a hardware
device.

Extended PCQ Open For all opens that will either be explicitly (OPEN "@PCQn")
or implicitly (ASSIGN TO PRINTER or PRINTER-1) placed into
the printer control file.

Extended Disk Open All other cases.

TABLE 46. Three Categories of Extended Open for Sequential Files

F.2.1 (Sequential) Extended Device Open

Extended device open options are allowed for all opens that resolve to direct access to a hardware device. The

attributes for any hardware device, including the current console, can be reset at open by using the extended device

open options.

F.2.1.1 ANSI 74 and ANSI 85 syntax is:

device [,t=timeout] [,e=retries] [,m=y|n] [,r=record-size] [,b=baud]
[,p=n|o|e] [,d=8|7] [,s=1|2] [,f=b|n|i|o]

F.2.1.2 VXCOBOL syntax:

device [,t=timeout] [,b=baud] [,p=n|o|e] [,d=8|7] [,s=1|2] [,f=b|n|i|o]

Where

device

Is any name that resolves to direct access to a hardware device. These can include the logical console,

serial, and printer devices of @CONn, @SERn, or @PRNn.

t=timeout

Sets the timeout in tenths of seconds. This is the maximum inter-character time to wait for the device to

respond before returning an exception on the I/O operation. For a CLOSE, it is the amount of time to wait

to flush buffers before closing the line and resetting the buffers. Valid values are 65535 to wait forever, and

0 - 63000 for that number of tenths of seconds. A File Status 9T (Exception Status 76 "Device timeout")

will be returned if the timeout is taken.

e=retries (ANSI 74 and ANSI 85)

Sets a retry count when writing data-sensitive records. Valid values are 0 - 63. If any one of the Exception

Status values above occurs on the write, the specified number of retries will be performed before the

exception is returned to the COBOL program.

m=y|n (ANSI 74 and ANSI 85)

Specifies that when performing an exception retry to display a message (with a beep) indicating which

exception occurred followed by "Retrying. . ." on the bottom of the user's screen. If the exception condition

is overcome before the retry count is exhausted, the message is erased. Otherwise, a "Retry failure. . ."

message will be displayed.

r=record-size (ANSI 74 and ANSI 85)

Overrides the record size specified at compile time for this FD. The new record-size must be less than or

equal to that specified in the COBOL FD. May not be specified for an EXTERNAL file. For variable-

length files the maximum record size is set.

b=baud

Sets the baud to one of following legal values, 110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400,

56000.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

758

p=n|o|e

Sets the parity to none, odd, or even

d=8|7

Sets the number of data bits to 8 or 7

s=1|2

Sets the number of stop bits to 1 or 2

f=b|n|i|o

Sets both Software Input Flow Control (SIFC) and Software Output Flow Control (SOFC), neither SIFC nor

SOFC, SIFC only, or SOFC only, respectively. When used on a program line, the console interrupt option

will be disabled.

F.2.1.3 Rules

(1) If an attribute is not given, its value is taken from the default set by the operating system.

(2) If a particular option is not applicable for the final hardware device, it is ignored, e.g., baud rate for a

parallel port.

(3) The timeout (t=), retries (e=), message (m=), and record-size (r=) are set on a per COBOL FD basis.

(4) The remaining options, baud (b=), parity (p=), data-bits (d=), stop-bits (s=) and flow control (f=), are the

hardware options and will affect all subsequent I/O on this device until a close is done, at which time the device is

reset to its default value. All closes of a device will reset it to its default state. Thus if you re-open your console

with a new baud rate, the new baud will be in effect until you close the file. Also if you re-open your console with a

flow-control option set the console interrupt option will be disabled until you close the file. For example

"@con,f=n" will open the current console with the current baud, parity, data-bits, and stop-bits while disabling

console interrupt and having both software flow control (SIFC and SOFC) options disabled. This is useful for doing

file transfer via a terminal emulator.

(5) A STOP RUN or any other program termination will do a CLOSE, forcing a reset of the options on the

current console to the default state.

(6) Mdm Ctl (modem control) and Hrd OFS (hardware output flow control) options are never reset due to an

extended device open.

(7) An example of the message retry count would be "...,t=3000,e=10" which specifies that the timeout be set to

5 minutes and the retry count set to 10. Thus before the program gets an error the WRITE will delay for 10 times 5

minutes or 50 minutes. While retrying, if the WRITE can continue, the message will be erased.

F.2.2 (Sequential) Extended PCQ Open (ANSI 74 and ANSI 85)

For all opens that will have entries either explicitly, with an OPEN "@PCQn", or implicitly, using an ASSIGN TO

PRINTER or PRINTER-1, placed into the printer control file, allow extended pcq open options to be specified.

The syntax is:

filename [,r=record-size] [,i=position] [,q=n] [,d=k|r|d] [,p=priority]
[,c=copies] [,n=y|n] [,a=y|n]

Where

filename

Is any disk filename or @PCQn.

r=record-size

Overrides the record size specified at compile time for this FD. The new record-size must be less than or

equal to that specified at compile time.

ICRUN - Extended OPEN Options (Relative)

759

i=position

Overrides the initial position to start performing I/O operations. With this option you can start reading at

any byte in the file. For example, "tmp,i=1024" would allow you to start reading or writing at the 1024th

byte. Zero is the beginning of file. If not specified, the default is beginning-of-file for all OPENs except

OPEN EXTEND, in which case it is end-of-file. This option may not be specified for an EXTERNAL file.

q=n

Places this file in the printer control file with its default queue set to n. n must be an enabled printer control

queue (0-2047) or else an error will be raised - file status 91, Exception Status 81 "Device is not available

or does not exist". (The QUEUE IS phrase of the file control entry may be used for the same purpose.)

d=k|r|d

Sets the disposition option to keep (k), remove (r), or delete (d) when this file is placed into the printer

control file.

p=priority

Sets the priority to this value when this file is placed into the printer control file. Valid values are 1 - 255.

c=copies

Sets the copies option to this value when this file is placed into the printer control file.

n=y|n

Sets the notify option to yes or no when this file is placed into the printer control file.

a=y|n

Sets the auto print option to yes or no when this file is placed into the printer control file.

F.2.3 (Sequential) Extended Disk Open (ANSI 74 and ANSI 85)

The extended disk open for all other sequential files has the following syntax:

filename [,r=record-size] [,i=position]

Where

filename

Is any disk filename.

r=record-size

Overrides the record size specified at compile time for this FD. The new record-size must be less than or

equal to that specified at compile time. This option may not be specified for an EXTERNAL file. For

variable-length files the maximum record size is set.

i=position

Overrides the initial position to start performing I/O operations. With this option you can start reading at

any byte in the file. For example, "tmp,i=1024" would allow you to start reading or writing at the 1024th

byte. Zero is the beginning of file. If not specified, the default is beginning-of-file for all OPENs except

OPEN EXTEND, in which case it is end-of-file.

F.3. Extended Relative Open (ANSI 74 and ANSI 85)

The extended open for relative files has the following syntax:

filename [,v=5|6|7] [,p=y|n] [,r=record-size]

Where

filename

Is any disk filename.

v=5|6|7

Specifies that if this particular file is to be created it should be created as an ICISAM version 5, 6, or 7 file.

Versions 5 and 6 may only be specified for ANSI 74.

p=y|n

Specifies the delete-is-physical attribute for version 7 files. This attribute is only valid for version 7 files

and the default is n(o), if not specified. This option may not be specified for an EXTERNAL file.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

760

r=record-size

Overrides the record size specified at compile time for this FD. The new record-size must be less than or

equal to that specified at compile time. This option may not be specified for an EXTERNAL file. For

variable-length files the maximum record size is set.

If an existing file is being opened, all of the specified new parameters must match the attributes of the current file.

F.4. Extended Indexed Open

The extended open for indexed files has the following syntax:

ANSI 74 and ANSI 85

filename [,v=5|6|7] [,b=c|b|i] [,r=record-size] [,n=number-keys] [,p=y|n]
[,o=offset]... [,l=length]... [,d=y|n]... [,u=y|n]...

VXCOBOL

filename [,b=c|b|i]

Where

filename

Is any disk filename.

b=c|i|b

Specifies the record manager to use. To use ICISAM (which is always available) use i. On Windows to

use BTRIEVE, use `b'. On UNIX to use C-ISAM, use `c'. The default is that specified to the runtime with

the Brand switch (-B) when it started. BTRIEVE is only available on Windows when a valid BTRIEVE

engine is present and a BTRIEVE option is provided to the runtime license. C-ISAM is only available on

UNIX when a C-ISAM option is provided to the runtime license.

v=5|6|7

Specifies that if this particular file is to be created it should be created as an ICISAM version 5, 6, or 7 file.

Versions 5 and 6 may only be specified for ANSI 74.

r=record-size

Overrides the record size specified at compile time for this FD. The new record-size must be less than or

equal to that specified at compile time. This option may not be specified for an EXTERNAL file. For

variable-length files the maximum record size is set.

n=keys

Overrides the number of keys specified at compile time for this FD. The new number of keys must be less

than or equal to that specified at compile time. This option may not be specified for an EXTERNAL file.

p=y|n

Specifies the delete-is-physical attribute for version 7 files. This attribute is only valid for version 7 files

and the default is n(o), if not specified. This option may not be specified for an EXTERNAL file.

o=offset

Overrides the offset for each of the keys specified in the order primary, alternate-1, alternate-2, etc. Offset

is zero(0) based, thus o=0 means the first byte in the record. The new offset must be within the old record

size and within the new record size, if specified. This option may not be specified for an EXTERNAL file.

l=length

Overrides the length of each of the keys in the specified order primary, alternate-1, alternate-2, etc. The

length must not be larger than 100 and the key area must be completely contained within the old and new

record areas. This option may not be specified for an EXTERNAL file.

d=y|n

Overrides whether duplicates are allowed or not for a key. No duplicates set are only allowed for version 7

indexed files. This option may not be specified for an EXTERNAL file.

u=y|n

Specifies whether to convert all key entries for this key to upper-case. The default is no. Upper-case is

only allowed for version 7 indexed files. This option may not be specified for an EXTERNAL file.

ICRUN (ICISAM Information)

761

NOTES:

1. The o, l, d, and u options can be repeated for the number of keys specified by the n option, or by the

number of keys defined in the FD at compile time.

2. The o, l, d, and u options may also be specified as:

[,o=offset,l=length,d=y|n,u=y|n]...

It is easier to see what is being done with this syntax.

3. The offset (o) and length (l) options may not be used with keys whose file control entry specifies the

PLUS, ALSO, or OCCURS clause.

With these options, it is possible to write programs that do not know the format of a particular file. The format can

be entered or read from a table to allow a generic program to read an ICISAM file and create a report. The first key

offset, length, duplicate is the primary key, the second key offset, length, duplicate, is the first alternate, the third set

is the second alternate, and so on. There is NO re-ordering of the alternate keys like the compiler performs.

If an existing file is being opened, all of the specified new parameters must match the attributes of the current file.

G. ICISAM Information

G.1. Overview

ICOBOL supports three versions of indexed and relative files (5, 6, and 7). All ICISAM files consist of two

separate files. The .XD file contains a header along with all the actual data. The .NX file contains a header along

with all the index b-trees for the specified keys to look up records in the .XD part of the file. These two files are

both required to successfully use an ICISAM file.

All ICISAM files are created as version 7 files unless the extended open option is used to explicitly specify version 5

or 6.

G.2. ICISAM Versions

Version 7 indexed files are compatible with revisions 3.30 and higher of ICHOST. Indexed blocks are allocated as

2048-byte entries. The headers in the .XD and the .NX contain duplicated data allowing for verification at open time

and allow the entire file to be rebuilt using only the .XD portion. Version 7 indexed files support the ability to

physically delete records, i.e., a DELETE places the record on a reuse chain such that the next WRITE will use that

record position rather than allocate a new record area. UNDELETEs cannot be performed when a record has been

physically deleted. The default for revision 7 indexed file is for delete-is-physical to be disabled.

Version 7 indexed files support up to 16 alternate keys, each alternate can allow or not allow duplicates, have a

maximum record size of 16384 bytes (16KB), and a maximum key size of 255 bytes. Version 7 indexed files also

allow a particular key path to be set to only add and lookup key entries in upper-case. When set to upper-case mode,

all key entries for this key are converted to upper-case before being added or looked up in the index. Version 7

indexed files also support descending keys, suffixed keys, multiple locations per key, suppressed key values, etc.

Version 7 indexed files keep a deleted record count in the header.

Version 7 indexed files and relative files are the recommended versions to use unless a compatibility issue is

involved. By default, ICOBOL3 creates version 7 files but can access any version. ANSI 74 can create versions 5

and 6 with the ,v= extended open option. The ICCREATE utility can also be used to create files of any version.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

762

ICISAM version 5 files are compatible with pre-1.50 versions of ICOBOL. Index blocks are allocated as 512-byte

entries. Version 5 files are limited to a 32MB .NX file. Since index blocks are so small, the maximum number of

index levels of 6 could be hit with large keys. Version 5 files should only be used for compatibility.

ICISAM version 6 files are compatible with post-1.50 versions of ICOBOL. Index blocks are allocated as 2048-

byte entries. Hitting the maximum number of index levels is much harder even with large keys. Version 6 relative

files also have a relative indicator in the header versus the version 5 relative files which looked like an indexed file.

Both version 5 and version 6 indexed files support up to 4 alternate keys, always allow duplicates on alternate keys,

have a maximum record size of 4096 bytes (4KB), and a maximum key size of 100 bytes. All deletes are logical

deletes, i.e., a record can be undeleted. Version 6 files keep a deleted record count in the header.

Both version 5 and 6 relative files support up to 65535 entries using a 2-byte relative key that can go from 0 to

65534. Internally these are implemented as a single-key indexed file whose key is not in the record specified by the

user. Version 7 relative files use a 4-byte relative key that can go from 0 to 4,294,967,294.

NOTE: VXCOBOL always uses ICISAM for ANSI alternate keyed indexed files and for relative files.

VXCOBOL uses ICISAM for single-keyed files if the -G s switch is specified to ICOBOL when using the

VXCOBOL dialect (-D vx).

G.3. ICISAM Reliability

ICOBOL’s file reliability system helps to insure the logical structure of ICISAM files.

The .XD header of each ICISAM file contains two flag bits, one for the .XD file and one for the .NX file. For an

open ICISAM file, the appropriate flag is set by ICOBOL when that portion of the ICISAM file has been modified

and the modification has not been flushed to disk. These reliability flags are only cleared by ICOBOL when it is

sure the disk image for the file is logically correct. This is done whenever the file is CLOSE’d by any program, an

index root node splits, or a WRITE or REWRITE with the IMMEDIATE option is performed.

If for some reason the system terminates while either one or both of the reliability flags are set, neither ICOBOL nor

most of its utilities will be allowed to OPEN the ICISAM file. The ICCHECK utility must be run on the file to

determine if there really is a problem and if so what the problem is. If no problem exists, ICCHECK will clear the

reliability flags.

G.4. ICISAM Key Ordering

The ordering of alternate keys that ALLOW DUPLICATES can be slightly different between version 5 and 6

ICISAM files and a version 7 ICISAM file. This order is used for sequential access (READ NEXT and READ

PREVIOUS) when using that alternate key path.

In ICISAM versions 5 and 6, the order of alternate keys with the same key is the order in which the record itself is

positioned in the .XD portion of the file. This is generally the order in which the record was "first" written to the

file.

In ICISAM version 7, the order of alternate keys with the same key is the order in which the key-itself was written to

the file. It has nothing to do with the order in which the record physically resides in the data portion of the file.

The order for both version 5/6 and version 7 will be the same for records that have been written to the file for the

first time. The order may be different if REWRITE's are done to the record CHANGING the particular alternate key

value. Version 7 will position this changed value at the end of the duplicate key path for that alternate.

ICREORG's on any ICISAM file has the possibility to CHANGE the order that alternate keys with the same value

will be positioned in the alternate key path since the record and the key will have been rewritten in the order

specified by the ICREORG. (Default is primary key order which is not necessarily the original order.)

ICRUN (Notes & Warnings)

763

Example

Record-A (primary=1 alternate=dave)

Record-B (primary=3 alternate=mary)

Record-C (primary=5 alternate=dave)

Record-D (primary=7 alternate=albert)

Record-E (primary=9 alternate=mary)

** EXAMPLE 1 **

Write records A, B, C, D, E (to an empty file)

Read next on alternate (version 6): records D, A, C, B, E

Read next on alternate (version 7): records D, A, C, B, E

Rewrite record D changing alternate to mary

Read next on alternate (version 6): records A, C, B, D, E

Read next on alternate (version 7): records A, C, B, E, D

ICREORG the above version 7 file to a new version 7 file using just the defaults will re-order the alternate to the

version 6 way.

icreorg filea fileb

Read next on alternate (version 6): records A, C, B, D, E (using fileb)

Read next on alternate (version 7): records A, C, B, D, E (using fileb)

** EXAMPLE 2 **

Write records C, A, B, D, E (to an empty file)

Read next on alternate (version 6): records D, C, A, B, E

Read next on alternate (version 7): records D, C, A, B, E

Rewrite record D changing alternate to mary

Read next on alternate (version 6): records C, A, B, D, E

Read next on alternate (version 7): records C, A, B, E, D

ICREORG the above version 7 file to a new version 7 file using just the defaults will re-order the alternate to the

version 6 way.

icreorg filea fileb

Read next on alternate (version 6): records A, C, B, D, E (using fileb)

Read next on alternate (version 7): records A, C, B, D, E (using fileb)

In ICOBOL 3, to create a version 5 or 6 file the extended open option of ",v=5" or ",v=6" must be added to the

filename at OPEN.

H. Notes and Warnings

Many early versions of ICOBOL detect SIZE ERROR incorrectly when the receiving item is SIGNED COMP (and

the ANSI switch was NOT used on the 1.xx Interactive COBOL compiler). Current versions of ICOBOL determine

SIZE ERROR based on whether the binary value of the absolute value of the result will fit in the number of bytes.

For example, a PIC S99 COMP takes 1-byte and can store (in binary) -128 to 127.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

764

On UNIX

ICOBOL handles the following UNIX signals with the given action:

UNIX signal Action
SIGHUP (01) Terminate ICOBOL
SIGINT (02) ICOBOL console interrupt UNIX Intr key (usually Ctrl-Del)
SIGQUIT(03) Terminate ICOBOL UNIX Quit key (usually Ctrl-\)
SIGPIPE(13) Terminate ICOBOL
SIGTERM(15) Terminate ICOBOL
SIGUSR1(16) Abort the ICOBOL program
SIGPWR (19) Terminate ICOBOL

The UNIX Intr and Quit keys can be viewed or changed to different values by using the UNIX stty command.

I. UNIX Pipe Opens

I.1. Overview

An OPEN INPUT and an OPEN OUTPUT/EXTEND can accept pipelines to and from the UNIX shell when

opening sequential files. The format for specifying a pipeline as a filename is:

"|>command" (pipe to a command - OPEN OUTPUT/EXTEND)

"|<command" (pipe from a command - OPEN INPUT)

Where

command

Is any valid Bourne shell syntax.

I.2. Rules

(1) If a file is sequentially organized, you can direct OPEN to open a pipe to either standard input or standard

output of the command. When the runtime system encounters the pipe command format while a COBOL OPEN

statement is executing, the system opens a pipe to command. The shell then interprets command as though you had

entered the string sh -c command. Each pipe file requires the creation of an additional process.

(2) If the first two characters of the pipeline are "|>", then the OPEN mode must be OUTPUT or EXTEND and

the output written to the COBOL file by the runtime system becomes standard input of command. If the first two

characters of the pipeline are "|<", then the OPEN mode must be INPUT and the standard output of command

becomes the data read from the COBOL file by the runtime system. If you don't use the correct open mode, the

OPEN fails with a FILE STATUS 91.

(3) When you open a pipe to or from a shell command, the shell looks for the command in the PATH variable,

not ICCODEPATH.

(4) The DELETE FILE statement has no effect in these cases. When you close a file that has been opened this

way, the CLOSE statement halts the writing to the pipe and tells the runtime system to wait for the process on the

other end of the pipe to terminate.

(5) This syntax is allowed on the right hand side in the linkfile produced by ICLINK. Thus, the following

syntax can be used to open a pipe to the UNIX print spooler.

In the linktextfile:

$lpt |>lp -dprinter1 -onobanner

ICRUN (BTRIEVE)

765

J. BTRIEVE Support (Windows only)

J.1. Overview

On Windows only, the runtime system and ICREORG support BTRIEVE as an alternative to ICISAM for

implementing the COBOL INDEXED file organization.

In order to use BTRIEVE, a BTRIEVE option must be added to the ICOBOL Runtime License and either a

BTRIEVE Requestor and/or a BTRIEVE Client Engine must be running on the workstation to allow the runtime to

support BTRIEVE files. In addition, if a BTRIEVE Requestor is used, a BTRIEVE server must be available on the

specified server.

If you are running with a Novell network, the BTRIEVE Requestor (TSR) and BTRIEVE Server NLM are provided

as part of the Novell release. You must ensure that BTRIEVE support has been enabled on the server and the

BTRIEVE Requestor has been loaded on the workstation.

If you wish to run BTRIEVE locally or on another network, you must purchase the appropriate BTRIEVE Client

package. This can be done by contacting Pervasive Software (www.pervasive.com) (Austin, TX, USA) at

1-800-287-4383. Customers outside the continental U.S. and Canada can call 512-231-6000 (FAX 512-794-1763).

Other than ICREORG, no other ICISAM utility can be used on BTRIEVE files. Instead the appropriate BTRIEVE

utility should be used.

All BTRIEVE support has been directed at the functionality that is available in BTRIEVE version 6.15.

J.2. Runtime

When the runtime starts, if the BTRIEVE option is available from ICPERMIT, the runtime checks to see if a

BTRIEVE Requestor and/or Client are available. If not available, a Warning is given and, if available, an Info

message is given.

The runtime makes it possible to use both ICISAM and BTRIEVE simultaneously, with ICISAM being the default

record manager. The use of BTRIEVE can be requested for a particular file by attaching the extended open option

to specify the file brand (",b=b") to the end of the filename. Extended open options are discussed beginning on page

756.

The runtime system can also be made to default to BTRIEVE, thus eliminating the need for the extended open

option, by specifying the default file Brand switch (-B b) on the ICRUN starting command line. In this mode, a

BTRIEVE Requestor and/or Client must be available or else an error is given and the runtime terminates. The use of

ICISAM can be requested for a particular file by attaching the extended open option to specify the file brand (",b=i")

to the end of the filename.

J.2.1 Rules

(1) To open an existing BTRIEVE file, its file specifications must match an indexed structure that ICOBOL

can handle (i.e., you cannot open a file whose number of keys exceed the 17 supported by ICOBOL).

(2) The runtime system does not common BTRIEVE file opens. If a main program and a sub-program both

have the file open, two opens will be posted to BTRIEVE.

(3) When creating a BTRIEVE file the default page size can be specified by using the extended index open

option x, which specifies the data element size in 512-byte blocks. If not specified, a default of 4 (2048-bytes) is

used.

http://(www.pervasive.com)

Interactive COBOL Language Reference & Developer’s Guide - Part Two

766

(4) The runtime system maps the most commonly occurring BTRIEVE status codes to existing Exception Status

and File Status codes (e.g., 9:"The operation encountered an end-of-file mark" maps to EXCEPTION 37, FILE

STATUS 10). However, the following Exception Status codes are specific to BTRIEVE:

EXCEPTION
STATUS

FILE
STATUS

BTRIEVE
STATUS

ERROR
MESSAGE

166 23 10 Attempt to modify an unmodifiable key.

167 94 80 Attempt to rewrite a record which has been modified
since it was read.

168 94 78 Attempt to perform an operation which would lead to
a deadlock situation.

416 30 N/A BTRIEVE initialization failed

417 20 The BTRIEVE Record Manager or Requester is inactive.

418 30 53 The BTRIEVE Record Manager or Requester interface is
invalid.

419 30 N/A BTRIEVE does not implement the required capability.

420 30 33,70,75,89 BTRIEVE returned a reserved status code.

421 30 1,2,6,7,14-17,
19,23-25,30-32,
34,36-45,48-50,
52,54-56,60-69,
71-74,76,79,83,
92,93,98,
102-107

BTRIEVE returned a generic status code.

422 30 N/A BTRIEVE returned an undefined status code.

TABLE 47. BTRIEVE-specific Exception Status Codes

(5) There are several notable semantic differences in the runtime system between BTRIEVE and ICISAM:

a. UNDELETE file-name RECORD is not supported and generates Exception Status 418.

b. For files in random or dynamic access mode, REWRITE will behave as if the file were in the sequential

access mode with regard to the rule that the value of the primary record key of the record to be replaced

must be equal to the value of the primary record key of the last record read from the file.

c. When the file has been OPEN'ed for INPUT only, you cannot read records that have been locked on

another handle.

d. Filenames are not expanded to their full network name (or UNC name) or truncated to the MS-DOS 8.3

restrictions.

e. BTRIEVE file opens are not commoned. If a main program and a sub-program both have the file open,

two opens will be posted to BTRIEVE.

(6) The runtime system uses ICDATAPATH to find BTRIEVE files.

J.3. ICREORG

ICREORG supports BTRIEVE files for both Input and Output by using the "b" file-type.

J.4. ICNETD

ICNETD does NOT support BTRIEVE files.

ICRUN (C-ISAM)

767

K. C-ISAM Support (UNIX only)

K.1. Overview

On UNIX only, the runtime system and ICREORG support C-ISAM as an alternative to ICISAM for implementing

the COBOL INDEXED file organization.

In order to use C-ISAM, a C-ISAM option must be added to the ICOBOL Runtime License and a valid C-ISAM

license should be in hand.

If you wish to run C-ISAM, you must purchase the appropriate C-ISAM package. This can be done by contacting

INFORMIX Software, Inc. (www.informix.com) (Menlo Park, CA. USA) at 1-415-926-6300.

K.2. Runtime

The runtime makes it possible to use both ICISAM and C-ISAM simultaneously, with ICISAM being the default

record manager. The use of C-ISAM can be requested for a particular file by attaching the extended open option to

specify the file brand (",b=c") to the end of the filename.

The runtime system can also be made to default to C-ISAM, thus eliminating the need for the extended open option,

by specifying the default file Brand switch (-B c) on the ICRUN starting command line. The use of ICISAM can be

requested for a particular file by attaching the extended open option to specify the file brand (",b=i") to the end of

the filename.

K.2.1 Rules

(1) To open an existing C-ISAM file, its file specifications must match an indexed structure that ICOBOL can

handle (i.e., you cannot open a file whose number of keys exceed the 17 supported by ICOBOL).

(2) There is one notable semantic difference in the runtime system between C-ISAM and ICISAM:

a) UNDELETE file-name RECORD is not supported and generates Exception Status 418.

(3) The runtime system does NOT use ICDATAPATH to find C-ISAM files.

K.3. ICREORG

ICREORG supports C-ISAM files for both Input and Output by using the "c" file-type.

K.4. ICNETD

ICNETD does NOT support C-ISAM files.

L. HOT KEYS

L.1. Introduction

Hot keys are available in Interactive COBOL to allow a specific program (a hotkey program) to be run when a

particular key is pressed without changing the currently running program. For example, to provide a pop-up

calculator or calendar.

http://www.informix.com

Interactive COBOL Language Reference & Developer’s Guide - Part Two

768

Hot keys are defined in the terminal description file (.tdi). Enter the Configure Keyboard selection under Terminal

Descriptions and change the Type for an input key to "Hot Key Function" and the Code to the particular hotkey

program to be run. Available hotkey programs are "hotkey00" thru "hotkey99".

Keys that are described as "Hot Key Function" can never be seen by an application. For this reason, although there

are no restrictions imposed by Interactive COBOL, printable characters, standard delimiter keys (newline,

carriage-return, ESC, Tab (used by Print Utility), F1 - F3, and screen edit keys (Ctrl-A, Ctrl-R, Ctrl-V, etc.) should

be avoided. Particular function keys needed by the current COBOL application should also be avoided.

If the particular hotkey program is not available or otherwise gets an error while loading, a beep will be given.

To link a particular program to a hotkey program you can either rename the program to the particular hotkey name,

"hotkey00", "hotkey01", etc. or use the linking facility (ICLINK) to provide for runtime linking of the hotkey

program name to the actual COBOL program.

L.2. Construction

Hotkey programs are most useful when they use the SCREEN HANDLER functions to save and restore screens,

even though hotkey programs do not require the SCREEN HANDLER. Hotkey programs should be designed to

detect whether the SCREEN HANDLER is running and perform the appropriate functions.

We suggest that the hotkey program should perform an SD_NEW_WINDOW when it first starts and an

SD_REMOVE_WINDOW just before it exits. It can then freely use the screen to interact with the user. When it

exits, the screen will be restored. The hotkey program can also be used to perform lookups and return data to the

ACCEPT field with the SD_RETURN_INPUT call.

If your application uses an initial program to allow the user to logon via a username and password type scheme, you

should make sure that any hotkey program that is installed disallows its use if the user has not properly logged on.

Hotkey programs should also insure that they do not do a STOP RUN or CALL PROGRAM or get a Fatal Error

since that will stop the entire run unit. A hotkey program should be written like a CALL subprogram such that it will

always return to its calling program.

The builtin functions IC_ENABLE_HOTKEY and IC_DISABLE_HOTKEY provide the ability to selectively allow

or disallow access to a hotkey program.

L.3. Restrictions

Hot keys cannot be used while in a builtin or system call.

Hotkey programs must abide by the same subprogram rules (recursion) as normal subprograms.

Hot keys are only recognized during an ACCEPT operation on the current console.

If the hotkey program was started initially by a hot key then it is automatically CANCEL'ed on exit. If the hotkey

program was already loaded (via a CALL) it is not CANCEL'ed on exit. I.E., a hotkey

 program will always start in its initial state if it was not previously loaded with a CALL.

If a hotkey program CALL's a program that was not already loaded it will not be automatically CANCEL'ed when it

exits. The hotkey program must explicitly cancel subprograms that it initiates.

Up to 100 unique hotkey programs can be configured, "hotkey00" thru "hotkey99".

There is no mechanism to pass parameters to a hotkey program.

ICRUN (Hot Keys)

769

Hotkey programs can be any program (including builtins) that can be CALL'ed from a COBOL program, but not an

operating system program although you can build a COBOL stub program that in turn calls an operating system

program.

L.3. Example

The program sysserve in the examples directory in the Runtime release is a sample HotKey program that provides a

System Services screen. If the SCREEN HANDLER is available it uses it to save the initial screen that will be

restored when it exits. If no SCREEN HANDLER is available the screen is blanked when it exits.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

770

ICODBC Driver

771

XVI. ICODBC Driver

A. Introduction

The Interactive COBOL ODBC Driver (ICODBC32.DLL) for Windows is a 32-bit ODBC Driver that provides an

ODBC-compliant interface via icodbc32.dll. It is accessible from 32-bit ODBC-enabled applications.

The Interactive COBOL ODBC Driver (ICODBC.SO) for UNIX is a 32-bit ODBC Driver that provides an

ODBC-compliant interface via icodbc.so. This interface can be used with the unixODBC Driver Manager. One

program in particular that makes use of this interface is the JDBC-ODBC Bridge under the Java Runtime.

ICODBC is a fully functional ODBC Driver (SQL-92 Entry level compliant) providing access to Interactive COBOL

data records stored in INDEXED ORGANIZATION files. Through this mechanism it is possible for ODBC-enabled

programs (e.g., Crystal Reports, Visual Basic, PowerBuilder, Microsoft Access, etc...) to use SQL to access legacy

Interactive COBOL INDEXED file data records as if they were rows of a table in an SQL relational database.

B. General Information

On Windows, for the purpose of buffering file data within an application, multiple opens of the same local/redirected

file are commoned by using the lower case rendition of the file name supplied to the driver. It is important to always

specify the identical filename (or alias) and not a different alias to refer to a particular file. This applies to database

and table definition files as well as data (INDEXED) file names. On UNIX, the inode number is used so the name is

not important for buffering.

The ICODBC Driver optionally connects to the shared memory area created and initialized by the Interactive

COBOL System Executive Program (ICEXEC). Multi-user file sharing, buffering, and record locking are handled

more efficiently through this mechanism as opposed to a stand-alone (single-user) environment.

C. Using the Driver

In order for the ICODBC driver to provide for the INDEXED to SQL data translation, the application builder must

supply information regarding the database, the tables comprising the database, and the rows and columns comprising

each table. Simply speaking, an INDEXED file can be viewed as a table (or tables) comprised of a set of rows

(records), each one specifying a value for a column (field).

The ICODBC driver utilizes two ASCII text files, which are formatted according to Microsoft Windows

initialization (.ini) file conventions, to describe the appropriate view of a database and the tables which it contains.

The two files are the .xdb (Database definition) file, which describes a database; and the .xdt (Table Definition) file,

which describes a table. Note that the key names are case-sensitive, and must appear in the file exactly as

specified below.

For a given database, the .xdb file explicitly specifies the number of tables comprising that database, defining the

name, the INDEXED file, and the Table definition file for each one. Although there is an obvious relationship

between an INDEXED file and a Table Definition file, there is no forced association required by the driver. Thus, it

is possible to describe different databases using the same Table Definitions paired with different instances of

INDEXED files.

For a table, the .xdt file explicitly specifies the number of columns comprising the table, defining the name, the

position, size, and type of the data field corresponding to each. Although there may be obvious relationships

between the data fields of a record and the columns of a table, the driver does not enforce a particular correspon-

dence. Thus it is possible to describe different columns of a table using the same data field, or to describe the

columns of a table using only some of the data fields available. In many cases it may be necessary to have one

column that is the whole row (record), along with individual columns that may or may not duplicate other columns in

the row (record).

Interactive COBOL Language Reference & Developer’s Guide - Part Two

772

D. Creating .XDB and XDT Files

The ICOBOL compiler (when started with the Make ICODBC Definition Files switch (-M)) can be used to create a

preliminary Database Definition file (.xdb) and Table Definition File(s) (.xdt) as it compiles a source program.

These preliminary files can provide a starting point for tailoring the definitions of your database and tables. The

ICODBC Options switch (-X string) on the compiler can be used to set specific ICODBC generation options. See

page 707 in the Compiler Chapter for more on the compiler ICODBC Options switch.

For the Database Definition file (.xdb), the compiler will create the [Database] section with the NumTables key and

then will generate the [Tables] section and individual [<table-names>] sections based on the number of Indexed files

found in the program.

For the Table Definition file(s) (.xdt), the compiler will create the [Table] section with NumColumns,

MaxRecordSize, and MinRecordSize keys, the [Primary Key] section, the [Columns] section, and finally the

[<column-names>] sections with Type, Position, Length keys along with any other key that is needed for the

particular Type, for each of the columns that were detected in the record definition of the COBOL program..

In the descriptions below, note that the characters ‘[‘ and ‘]’ are required (they are not part of an optional definition).

These definition “Section Names” in the file. Within Sections are “keys” which have a value associated with them.

Leading spaces are ignored and blank lines are ignored. Bold lines are required.

The Database Definition File (.xdb)

XDB Syntax

[Database]
NumTables=<number-of-tables>
OpenMode=<open-mode>
BaseYear=<base-year-value>
BaseYearPivot=<base-year-pivot-value>
EpochYear=<epoch-year-value>
EpochDay=<epoch-day-value>
EpochTick=<epoch-tick-value>
ProxyDate=<date-value>
ProxyTime=<time-value>
ProxyTimestamp=<timestamp-value>

[Tables]
<table-name-1>
...
<table-name-n>

[<table-name-1>]
TableFile=<table-definition-file-name>
DataFile=<data-file-name>
...

[<table-name-n>]
TableFile=<table-definition-file-name>
DataFile=<data-file-name>

XDB General Rules

* "NumTables" key is required and the value of <number-of-tables> must match the number of table names listed

in the [Tables] section and the number of [<table-name-i>] sections.

* "OpenMode" key is optional and specifies the open mode for the data files comprising the database. The value of

<open-mode> must be one of either "INPUT", "OUTPUT", "I-O", or "EXTEND". If this key is not specified, a

default value of "INPUT" is implied. If the value of <open-mode> is either "OUTPUT", "I-O", or "EXTEND",

the "WRITE" option must be present in the license authorizing the driver. This value can be overridden by the

presence of an "OpenMode" key in the [Table] section of the individual Table Definition files (see below).

ICODBC Driver (Creating .XDB and .XDT Files)

773

* "BaseYear" key is optional and specifies the century year to be added to the two or three digit year values of the

DAY and DATE data types described below. The value of <base-year-value> must be a valid numeric edited

string literal, and must specify a year greater than or equal to 1600 (up to 32700) that is a century (i.e., divisible

by 100). If this key is not specified, a default value of 1900 is implied.

* "BaseYearPivot" key is optional and specifies the two-digit year value of the DAY and DATE data types

described below, to which, if less than, a century (i.e., 100 years) will be added, in addition to the value of

<base-year-value>. The value of <base-year-pivot-value> must be a valid numeric edited string literal, and

must be greater than 0 and less than 99. If this key is not specified, a default value of 0 is implied.

* "EpochYear" key is optional and specifies the starting year of time (as represented by a zero value) for the

corresponding epoch data types described below. The value of <epoch-year-value> must be a valid numeric

edited string literal, and must specify a year greater than (up to 32767) or equal to 1601. If this key is not

specified, a default value of 1601 is implied.

* "EpochDay" key is optional and specifies the starting day of time (as represented by a zero value) for the

corresponding epoch data types described below. The value of <epoch-day-value> must be a valid numeric

edited string literal, and must specify a day greater than or equal to 1 and less than or equal to 365 (or 366 if

<epoch-year-value> represents a leap year). If this key is not specified, a default value of '01-01' (i.e.,

January 1) is implied.

* "EpochTick" key is optional and specifies the discrete unit of time that passes between single value increments of

epoch data types described below. The value of <epoch-tick-value> must be must be one of either "SECOND",

"BISECOND", "MINUTE", or "DAY". If this key is not specified, a default value of "SECOND" is implied.

* "ProxyDate" key is optional and specifies a particular value to be substituted for otherwise invalid values when

retrieving SQL_DATE data. The value of <date-value> must be of the form 'yyyy-mm-dd' (e.g. "0001-01-01").

* "ProxyTime" key is optional and specifies a particular value to be substituted for otherwise invalid values for

SQL_TIME data. The value of <time-value> must be of the form 'hh:mm:ss' (e.g. "00:00:00").

* "ProxyTimestamp" key is optional and specifies a particular value to be substituted for otherwise invalid values

for SQL_TIMESTAMP data. The value of <timestamp-value> must be of the form 'yyyy-mm-dd hh:mm:ss.ff'

(e.g. "0001-01-01 00:00:00.00").

* There must be an identically named section for each <table-name-i> specified in the [Tables] section. At least

one Table is required.

* <table-definition-file-name> must be a valid pathname specifying a valid Table Definition (.xdt) file, although

the ".xdt" extension must not be present. It may be a 'relative' (as opposed to 'absolute') pathname, in which case

the pathname specifier for the Database Definition (.xdb) file in the Data Source will be automatically prefixed

to it. It may also be a URL specification as documented for ICNETD in the Interactive COBOL Utilities

Manual. It may contain a single variable name reference to be substituted with an assigned value when a

connection to the database is established. Variable names are delimited by a leading and trailing percent

character ('%').

* <data-file-name> must be a valid pathname specifying an ICOBOL INDEXED file. It may be a 'relative' (as

opposed to 'absolute') pathname, in which case the pathname specifier for the Database Definition (.xdb) file in

the Data Source will be automatically prefixed to it. It may also be a URL specification as documented for

ICNETD in the Interactive COBOL Utilities Manual. It may contain a single variable name reference to be

substituted with an assigned value when a connection to the database is established. Variable names are

delimited by a leading and trailing percent character ('%').

Interactive COBOL Language Reference & Developer’s Guide - Part Two

774

The Table Definition File (.xdt)

XDT Syntax

[Table]
NumColumns=<number-of-columns>
MaxRecordSize=<maximum-data-record-size>
MinRecordSize=<minimum-data-record-size>
OpenMode=<open-mode>
PrimaryKeyName=<primary-key-name>
NumSelectors=<number-of-selectors>

[Primary Key]
<column-name-p1>
...
<column-name-pN>

[Columns]
<column-name-1>
...
<column-name-n>

[<column-name-1>]
Type=<data-storage-type>
Position=<data-byte-position>
Length=<data-byte-length>
Precision=<data-digits-of-precision>
Scale=<data-digits-of-scale>
Picture=<data-storage-picture>
Suppress=<data-byte-suppress-when-value>
Padding=<data-byte-padding-value>
Default=<data-value>

...

[<column-name-n>]
Type=<data-storage-type>
Position=<data-byte-position>
Length=<data-byte-length>
Precision=<data-digits-of-precision>
Scale=<data-digits-of-scale>
Picture=<data-storage-picture>
Suppress=<data-byte-suppress-when-value>
Padding=<data-byte-padding-value>
Default=<data-value>

[Selector]
Type=<data-storage-type>
Position=<data-byte-position>
Length=<data-byte-length>
Precision=<data-digits-of-precision>
Scale=<data-digits-of-scale>
Value=<data-value>
Relation=<data-record-selector-relation>

[Selectors]
<selector-name-1>
...
<selector-name-n>

[<selector-name-1>]
Type=<data-storage-type>
Position=<data-byte-position>
Length=<data-byte-length>
Precision=<data-digits-of-precision>
Scale=<data-digits-of-scale>
Value=<data-value>
Relation=<data-record-selector-relation>

...

ICODBC Driver (Creating .XDB and .XDT Files)

775

[<selector-name-n>]
Type=<data-storage-type>
Position=<data-byte-position>
Length=<data-byte-length>
Precision=<data-digits-of-precision>
Scale=<data-digits-of-scale>
Value=<data-value>
Relation=<data-record-selector-relation>

[Foreign Keys]
<foreign-key-table-name-f1>=<foreign-key-name-1>
...
<foreign-key-table-name-fN>=<foreign-key-name-n>

[<foreign-key-name-j>]
<column-name-fj0>
...
<column-name-fjN>

General Rules

* "NumColumns" key is required and specifies the number of columns in the table. The value of

<number-of-columns> must match the number of column names listed in the [Columns] section and the number

of [<column-name-i>] sections.

* <maximum-data-record-size> and <minimum-data- record-size> values must respectively match the actual

maximum and minimum record sizes of the INDEXED file; and they must be the same if the records are

fixed-length.

* "OpenMode" key is optional and specifies the open mode for the data file of the table. The value of

<open-mode> must be one of either "INPUT", "OUTPUT", "I-O", or "EXTEND". If this key is not specified,

the value specified by the "OpenMode" key in the [Database] section of the Database Definition file is implied.

* "PrimaryKeyName" key is optional and specifies the primary key for the purposes of foreign key reference.

* "NumSelectors" key is optional and specifies the number of record selectors for the table. A record selector

specifies a subset of the records in the INDEXED file which are to be considered as rows in the table. The value

of <number-of-selectors> must match the number of selector names listed in the [Selectors] section and the

number of [<selector-name-i>] sections.

* [Primary Key] section is optional and specifies the column(s) of the table which comprise the primary key. This

section must be specified, and all of the columns specified must be either "ALPHABETIC" or

"ALPHANUMERIC", in order for the Microsoft Jet Database Engine (see above) to be able to create a dynaset

over rows of the table. In general specifying this column will allow faster access to the data.

* [Foreign Keys] section is optional and identifies the tables whose primary keys are referenced by foreign keys

from the table.

* There must be an identically named <table-name-j> key in the [Tables] section of the Database Definition (.xdb)

file be for each <foreign-key-table-name-i>.

* There must be an identically named section in the Table Definition (.xdt) file for each <foreign-key-name-i>.

These sections serve to identify the columns of the table which comprise the foreign key.

* [Selector] section is optional and specifies the simple definition of only one record selector for the table. It may

not be present when the "NumSelectors" key is present.

* There must be an identically named section for each <column- name-i> specified in the [Columns] section.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

776

* "Type" key is required for the [Selector], [<selector-name-i>], or the [<column-name-i>] section if specified,

and specifies the data storage type of the item.

* <data-storage-type> value must be one of either "BYTE", "ALPHABETIC", "ALPHANUMERIC",

"DISPLAY", "TRAILING OVERPUNCH", "TRAILING SEPARATE", "LEADING OVERPUNCH",

"LEADING SEPARATE", "UNSIGNED DISPLAY", "COMP", "UNSIGNED COMP", "COMP-3",

"UNSIGNED COMP-3", "COMP-5", "UNSIGNED COMP-5", "DAY", "COMP DAY", "DATE",

"COMP DATE", "COMP DATE GROUP", "TIME", "COMP TIME", "COMP TIME GROUP",

"FULLDATE", "EPOCH TIMESTAMP", or "COMP EPOCH TIMESTAMP", matching the ICOBOL data

type of the corresponding field.

* "Value" key is required for the [Selector] or [<selector-name-i>] section if specified, and specifies the value to

be used in determining the desired subset.

* <data-value> value may be any character string literal (unquoted) if the <data-storage-type> of the item is

"ALPHABETIC" or "ALPHANUMERIC". Otherwise, if the <data-storage-type> of the item is "BYTE", the

value of <data-value> must be a valid hexadecimal string literal (unquoted). Otherwise, if the

<data-storage-type> of the item is "DISPLAY", "TRAILING OVERPUNCH", "TRAILING SEPARATE",

"LEADING OVERPUNCH", "LEADING SEPARATE", "UNSIGNED DISPLAY", "COMP",

"UNSIGNED COMP", "COMP-3", "UNSIGNED COMP-3", "COMP-5", or "UNSIGNED COMP-5", the value

of <data-value> must be a valid numeric edited string literal. Otherwise, if the <data-storage-type> of the item

is "DAY", "COMP DAY", "DATE", "COMP DATE", or "COMP DATE GROUP", the value of <data-value>

must be a character string literal (unquoted) of the form 'yyyy-mm-dd'. Otherwise, if the <data-storage-type>

of the item is "TIME", "COMP TIME", or "COMP TIME GROUP", the value of <data-value> must be a

character string literal (unquoted) of the form 'hh:mm:ss'. Otherwise, if the <data-storage-type> of the item is

"FULLDATE", "EPOCH TIMESTAMP", or "COMP EPOCH TIMESTAMP", the value of <data-value> must

be a character string literal (unquoted) of the form 'yyyy-mm-dd hh:mm:ss.ff'.

* "Relation" key is optional for the [Selector] or [<selector-name-i>] section if specified, and specifies the a

comparison operation to be applied in determining the desired subset. The value of

<data-record-selector-relation> must be one of either "EQ", "NE", "GT", "GE", "LT", or "LE" and specifies

the relationship between the value of the selector in a record and <data-record-selector-value> which must be

true for a record to be included in the desired subset. If this key is not specified, a default value of "EQ" is

implied (i.e., records for which the value of their selector field is equal to the value of

<data-record-selector-value> are included in the subset).

* "Position" key is required for the [Selector], [<selector-name-i>], or the [<column-name-i>] section if specified,

and specifies the data byte position of the item.

* <data-byte-position> value must be the byte position (one-based) within a record to the data field corresponding

to the column.

* "Length" key is required for either the [Selector] or the [<column-name-i>] section if specified, and specifies the

data byte length of the item.

* <data-byte-length> value must be the length in bytes within a record of the data field corresponding to the

column.

* For a section where the value of <data-storage-type> is "BYTE", "ALPHABETIC" or "ALPHANUMERIC",

neither the "Precision" key nor the "Scale" key may be present.

* For a section where the value of <data-storage-type> is not "BYTE", "ALPHABETIC" or "ALPHANUMERIC",

the "Precision" key must be present.

* For a section where the value of <data-storage-type> is "DAY", "COMP DAY", "DATE", "COMP DATE",

"COMP DATE GROUP", "TIME", "COMP TIME", "COMP TIME GROUP", "FULLDATE",

"EPOCH TIMESTAMP", or "COMP EPOCH TIMESTAMP" the "Scale" key must not be present.

ICODBC Driver (Creating .XDB and .XDT Files)

777

* For a section where the value of <data-storage-type> is "COMP DATE GROUP" or "COMP TIME GROUP",

the value of <data-digits-of-precision> must be the total number of decimal digits in all the elementary items of

the group.

* <data-digits-of-precision> value must be the total number of decimal digits to the left and right of the decimal

point defined for the data field corresponding to the column. (e.g., if the field is defined as "PIC 9999V99", the

value is 6).

* <data-digits-of-scale> value must be the number of decimal digits to the right of the decimal point defined for

the data field corresponding to the column. (e.g., if the field is defined as "PIC 9999V99", the value is 2).

* "Picture" key is optional and may be present only for a section where the value of <data-storage-type> is

"DATE", "COMP DATE" or "COMP DATE GROUP". The value of <data-storage-picture> must be one of

either "YYYYMMDD", "YYYYDDMM", "MMDDYYYY", "MMYYYYDD", "DDMMYYYY",

"DDYYYYMM", "CCYYMMDD", "CCYYDDMM", "MMDDCCYY", "MMCCYYDD", "DDMMCCYY", or

"DDCCYYMM" if the value of <data-digits-of-precision> is 8; it must be one of either "YYYMMDD",

"YYYDDMM", "MMDDYYY", "MMYYYDD", "DDMMYYY", or "DDYYYMM" if the value is 7; and it

must be one of either "YYMMDD", "YYDDMM", "MMDDYY", "MMYYDD", "DDMMYY", or

"DDYYMM" if the value is 6.

* "Suppress" key is optional; but if present, the value of <data-byte-suppress-when-value> must be the numeric

value (0 to 255) which when present in all bytes of the data field indicates that the value of the column is

considered empty or null.

* "Padding" key is optional; but if present, the value of <data-byte-padding-value> must be the numeric value (0

to 255) which will be used to pad the value of the column to its full length of <data-byte-length> when a shorter

value is specified.

* For a section where the value of <data-storage-type> is not "ALPHABETIC" or "ALPHANUMERIC", the

"Padding" key must not be present.

* "Default" key is optional and specifies the default value to be stored for the column if no value is provided as part

of the INSERT statement.

NOTE: If you plan on adding records (rows) to a database then consider setting this value especially for

DATE / TIME columns as on an INSERT sometimes a "null" record is inserted and then the values that

the user had specified are individually PUT into the columns, thus the INSERT would fail with an

Invalid data-type-value for a DATE column if the "Default" is NOT specified.

Example XDB

[Database]
NumTables=4
OpenMode=I-O
; AOS/VS uses biseconds since 1968-01-01 00:00:00
; EpochYear=1968
; EpochTick=BISECOND
; UNIX uses seconds since 1970-01-01 00:00:00
; EpochYear=1970
; EpochTick=SECOND
; MacOS uses seconds since 1903-01-01 00:00:00
; EpochYear=1904
; EpochTick=SECOND
; CBS uses days since 1876-12-31 00:00:00
; EpochYear=1876
; EpochDay=366
; EpochTick=DAY

[Tables]
Customers

Interactive COBOL Language Reference & Developer’s Guide - Part Two

778

Companies
Orders
Products

[Customers]
TableFile=c:\application\odbcdesc\anycust
DataFile=c:\application\livedata\%this%cust

[Companies]
TableFile=c:\application\odbcdesc\anycomp
DataFile=c:\application\livedata\%this%comps

[Orders]
TableFile=c:\application\odbcdesc\anyorder
DataFile=c:\application\livedata\%this%order

[Products]
TableFile=c:\application\odbcdesc\product
DataFile=c:\application\livedata\products

Example XDT

[Table]
NumColumns=6
MinRecordSize=100
MaxRecordSize=100
PrimaryKeyName=CustomerKey

[Columns]
CustomerId
Company
Address
City
State
ZipCode

[Primary Key]
CustomerId

[Foreign Keys]
Companies=CompanyKey

[CompanyKey]
Company

[CustomerId]
Type=UNSIGNED DISPLAY
Position=1
Length=10
Precision=10
Scale=0

[Company]
Type=ALPHANUMERIC
Position=11
Length=20

[Address]
Type=ALPHANUMERIC
Position=31
Length=40

[City]
Type=ALPHANUMERIC
Position=71
Length=20

[State]
Type=ALPHABETIC
Position=91
Length=2

[ZipCode]

ICODBC Driver (Managing Data Sources (On Windows))

779

Type=UNSIGNED DISPLAY
Position=93
Length=5
Precision=5
Scale=0

E. Managing Data Sources (On Windows)

1. Run the 32-bit ODBC Administrator. Typically, you should be able to do this by double-clicking the 32-bit

ODBC Administrator icon in the Control Panel, or by selecting the 32-bit ODBC Administrator from the programs

folder created by the driver installation procedure.

2. To ADD (i.e., create) a new data source from any of the DSN panels (User, System, or File) in the ODBC Data

Source Administrator dialog box, click the "Add" button. The dialog box below will be shown.

From this Create New Data Source dialog box, select the "Interactive COBOL ODBC Driver" and click the "Finish"

button. The Setup dialog below will be shown.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

780

From the ICODBC Setup dialog box you may specify the name of the data source and enter the name of the database

to be associated with it. The Database field must contain the absolute (i.e., fully qualified) pathname of a Database

definition (.xdb) file WITHOUT the ".xdb" extension. It may be a URL specification as documented for the

Interactive COBOL Runtime System. Additionally, it may contain a comma-list of value assignments to be used to

dynamically substitute for variable names referenced in table definition or data file names when establishing a

connection to the database. Click OK. The ODBC Data Source Administrator dialog box will be reactivated. See

below for a description of the Database definition (.xdb) file.

3. To DELETE (i.e., remove) a data source from the Data Sources dialog box, select the one you want to eliminate

and click the "Delete" button.

4. To CHANGE the setup for a data source from the Data Sources dialog box, select the one you want to eliminate

and click the "Configure" button. From the ICODBC Setup dialog box you may now change the name of the data

source and/or the name of the database to be associated with it. See the description above for adding a new data

source.

5. Click Close.

Example

 Data Source name: ABC Company Database

 Database: (.xdb) c:\application\odbcdesc\anycust,this=ABC

From your favorite ODBC-enabled program there will typically be a SQL/ODBC option available when you select

the data to access. Choosing this option will allow you to connect to any one of the data sources available to you.

For details, please read the documentation and/or online Help for the particular program you are using.

F. Managing Data Sources (On UNIX)

The ICODBC Driver on Unix is intended to provide an ODBC interface to those UNIX applications that can make

use of a shared object interface to ODBC. One of those type applications is the unixODBC project. unixODBC is

available from www.unixodbc.org and must be installed before using the ICODBC Unix driver (icodbc.so).

UnixODBC is not so much an end user program, but rather an intermediary between a program and one or

more databases. In this case the database is ICISAM files.

The isql program that comes with unixODBC can be used to perform simple connections and queries to test that

ICODBC is installed correctly.

Getting Started with unixODBC

UnixODBC is available in source code only. This means that you download a tar file (or zipped tar file) from

http://www.unixODBC.org, extract it, compile it, and install it.

Installing unixODBC

As mentioned before, get the source tar file from http://www.unixodbc.org. As root, move the tar file to /op or

/usr/local or where ever you want the source to reside. If zipped, then unzip the file. Untar the file and run the

following commands from the command line in the unixODBC source directory:

 ./configure
 make
 make install

http://www.unixodbc.org.

ICODBC Driver (Managing Data Sources (On UNIX))

781

Assuming that you have all the libraries and tools that it needs, you should be breezing through this compile.

UnixODBC takes quite a while to compile, actually all of these packages do. Relax and enjoy it. After installing

you will probably have to set the path for shared objects (LD_LIBRARY_PATH on Linux).

Installing

Prerequisets:

On UNIX, there is no ODBC Administrator so the data-sources must be configured in a text file.

System versus User

ODBC distingushes between two types of ini files. System ini files are designed to be accessable but not modifable

by any user, and user files are private to a particular user, and may be modified by that user. The system files are

odbcinst.ini and odbc.ini (note no leading dot), and the user file is ~/.odbc.ini in each user's home directory (note the

leading dot).

The system file odbcinst.ini contains information about ODBC drivers available to all users, and the odbc.ini file

contains information about DSN's available to all users. These "System DSN's" are useful for application such as

web servers that may not be running as a real user and so will not have a home directory to contain a .odbc.ini file.

A good example of this is Apache and PHP with ODBC support. When the http server is first started it calls

SQLAllocEnv as root. It then at a later time changes to the specified user (in my case nobody) and calls

SQLConnect. If the DSN's was not a system DSN then this fails.

The ~/.odbc.ini in the user's home directory are "User DSN's". These are only useful for cases of testing or when

you do not need to share datasets.

The unixODBC library uses the odbcinst.ini file to administrator the driver manager. Again this file is in a .ini

format and has the following format.

odbcinst.ini

This ini file simply lists all installed drivers. It is located in /usr/local/etc/odbcinst.ini. The syntax is simple; a name

followed by a property which tells us the drivers file name.

For example;

 [Sybase 11]
 Comment = Super Duper Sybase Server
 Driver = /usr/lib/libsybase.so
 Setup = /usr/lib/libsybaseS.so
 FileUsage = 1

The Driver file name (i.e., /usr/lib/libsybase.so) should be unique. The friendly name (i.e., Sybase 11) must also

be unique.

The Setup property points to a shared object containing functions to be called by ODBC Config. ODBC Config will

call this share to get driver specific property names during data source configuration. If ODBC Config can not

find/use this file it will assume some defaults such as; Data Source Name, Host, and default Database. (Setup is

NOT SUPPORTED BY ICODBC at this time.)

One can modify this file either using the ODBCINST shared object, by using the command line equivalent odbcinst,

or a standard UNIX editor.

The odbcinst command can be used to add ICODBC to this file.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

782

Enter the following into a temp file:

 [ICODBC]
 Comment = Interactive COBOL ISAM ODBC Driver for Linux
 Driver = /usr/lib/icodbc.so
 FileUsage = 1

Now invoke odbcinst with the following arguments assuming you have created a file template_icodbc:

 odbcinst -i -d -f template_icodbc

The args to odbcinst are as follows:

 -i (install)

 -d (driver name)

 -f (name of template)

Make sure you copy or link the released file, icodbc.so, to icodbc.so in /usr/lib. If you had specified a simple name

in the Driver line above, then the path for shared objects can be used to find the icodbc driver.

(LD_LIBRARY_PATH under Linux.) You can use the installic script in the examples sub-directory of the icobol

release to install icodbc.so.

Just execute:

examples/installic icodbc

If you wish to turn on ODBC tracing then the following needs to be added to the odbcinst.ini file:

 [ODBC]
 Trace = Yes
 Trace File = filename

If not specified, Trace defaults to NO and Trace File defaults to /tmp/sql.log.

odbc.ini or ~/.odbc.ini

These files describe the data-set to be used. They have the same format but refer to SystemDSN and UserDSN's

respectively.

The environment variable ODBCSYSINI can be used to find the system odbc.ini file and the environment variable

HOME is used to find the user .odbc.ini file. If the system file is not found then the "$HOME"/.odbc.ini file is tried.

If it is not found then the unixODBC will fail on the DriverConnect. Thus you must have ODBCSYSINI set if you

are not using UserDSN's.

The contents of the odbc.ini files give a section that is the data-set name, then a description, driver, and the DBQ

(database) entry. Generally each driver requires different entries. The entries may be added in the same way using

odbcinst, or a text editor. A sample entry to match the above driver could be:

 [TESTDSN]
 Description = Test IC Dataset
 Driver = ICODBC
 DBQ = /home/data/datfile89
 UID = user-id
 PWD = user-password
 Threading = 3

And this may be written to a template file, and inserted in the ini file for the current user by:

ICODBC Driver (Managing Data Sources (On UNIX))

783

 odbcinst -i -s -f template_file

The individual entries of course may vary.

The Driver line is used to match the [section] entry in the odbcinst.ini file and the Driver line in the odbcinst file and

is used to find the path for the driver library, and this is loaded and the connection is then established. It's possible to

replace the driver entry with a path to the driver itself. This can be used, for example if the user can't get root access

to setup anything in /etc (less important now because of the movable etc path).

The DBQ line specifies the actual ICISAM database file to open. UID/PWD specify the user-id and password if any

required to access the database.

The Threading line instructs unixODBC to not allow any threading. This should be the default.

Currently the icodbc.so driver has auditing in effect. An audit log "icodbc_<pid>.lg" will be created in the current

directory for all connections.

The isql command that comes with unixODBC can be used to connect to a dataset and execute some simple SQL

commands.

Java

One application that makes use of the unixODBC project is the JDBC-ODBC Bridge that is provided with the Java 2

Runtime environment. A java runtime can be downloaded from www.java.sun.com/products. The JDBC-ODBC

Bridge enable java programs to access ODBC data when a JDBC compliant interface is not available to access the

same data.

Under Java, the JDBC-ODBC Driver can be loaded with the ClassforName("sun.jdbc.odbc.JdbcodbcDriver")

A Connection to an ICOBOL Isam database can be made via:

Connect con = DriverManager.getConnection(jdbc.odbc.<datasource>,
<username>, <userpassword>);

where <datasource> is the DataSetName for the ICOBOL database.

ERROR CONDITIONS

A. You get:

 Error: Connection refused (oserr=111) Connecting to localhost:7334
java.sql.SQLException:[unixODBC]

Icpermit is not running.

B. You get:

 java.sql.SQLException: No suitable driver

The unixODBC driver(s) cannot be found. Make sure the load path for .so files is set. (Under Linux,

LD_LIBRARY_PATH=/usr/local/lib).

Interactive COBOL Language Reference & Developer’s Guide - Part Two

784

C. You get:

 java.sql.SQLException: [unixODBC]

The icodbc.so driver cannot find "$ODBCSYSINI"/odbc.ini or "$HOME"/.odbc.ini to find the data set name.

You must have an ICODBC license available from the license manager.

G. Data Types Supported

Currently the ICODBC driver provides for the following mapping of ICODBC data types to ODBC SQL data types

as shown in the following table. Examples of ICOBOL data types are also shown.

ICODBC Driver (Data Types)

785

ICODBC Type SQL Type Length Precision Scale ICOBOL Data Description

ALPHABETIC SQL_CHAR n n/a n/a PIC A(n)

ALPHANUMERIC SQL_CHAR n n/a n/a PIC X(n)

varies n/a n/a group item

varies n/a n/a alphanumeric edited items

varies n/a n/a numeric edited items

BYTE SQL_BINARY n n/a n/a PIC X(n) or group used in a
key/key-segment with subordi-
nated items of non-DISPLAY
usage

UNSIGNED DISPLAY SQL_NUMERIC l+r l+r r PIC 9(l)V9(r) USAGE DISPLAY

DISPLAY SQL_NUMERIC l+r l+r r PIC S9(l)V9(r) USAGE DISPLAY

LEADING OVERPUNCH SQL_NUMERIC l+r l+r r PIC S9(l)V9(r) USAGE DISPLAY
SIGN LEADING

LEADING SEPARATE SQL_NUMERIC l+r+1 l+r r PIC S9(l)V9(r) USAGE DISPLAY
SIGN LEADING SEPARATE

TRAILING OVERPUNCH SQL_NUMERIC l+r l+r r PIC S9(l)V9(r) USAGE DISPLAY
SIGN TRAILING

TRAILING SEPARATE SQL_NUMERIC l+r+1 l+r r PIC S9(l)V9(r) USAGE DISPLAY
SIGN TRAILING SEPARATE

UNSIGNED COMP SQL_NUMERIC varies l+r r PIC 9(l)V9(r) USAGE COMP

varies l+r r PIC 9(l)V9(r) USAGE BINARY

UNSIGNED COMP-3 SQL_NUMERIC varies l+r r PIC 9(l)V9(r) USAGE COMP-3

varies l+r r PIC 9(l)V9(r) USAGE PACKED

UNSIGNED COMP-5 SQL_NUMERIC varies l+r r PIC 9(l)V9(r) USAGE COMP-5

COMP SQL_NUMERIC varies l+r r PIC S9(l)V9(r) USAGE COMP

varies l+r r PIC S9(l)V9(r) USAGE BINARY

4 9 0 USAGE INDEX

COMP-3 SQL_NUMERIC varies l+r r PIC S9(l)V9(r) USAGE COMP-3

varies l+r r PIC S9(l)V9(r) USAGE PACKED

COMP-5 SQL_NUMERIC varies l+r r PIC S9(l)V9(r) USAGE COMP-5

4 10 0 USAGE POINTER

DAY SQL_DATE n n n/a PIC 9(n) where n=5,7
([YY]YYdd)

COMP DAY SQL_DATE varies n n/a PIC 9(n) COMP where n=5,7
([YY]YYddd)

DATE SQL_DATE n n n/a PIC 9(n) where n=6,7,8
([[Y]Y]YYMMDD)

COMP DATE SQL_DATE varies n n/a PIC 9(n) COMP where n=6,7,8
([[Y]Y]YYMMDD)

COMP DATE GROUP SQL_DATE varies n=6 or 8 n/a see note aa

TIME SQL_TIME n n n/a PIC 9(n) where n=4,6,8
(hhmm[ss[ff]])

COMP TIME SQL_TIME varies n n/a PIC 9(n) COMP where n=4,6,8
(hhmm[ss[ff]])

COMP TIME GROUP SQL_TIME 2,3,4 n=4,6,or 8 n/a see note bb

EPOCH TIMESTAMP SQL_TIMESTAMP varies n!= 0 n/a PIC [S]9(n)

COMP EPOCH TIMESTAMP SQL_TIMESTAMP varies n!=0 n/a PIC [S]9(n) COMP

FULLDATE SQL_TIMESTAMP 20 n/a n/a PIC X(20) where n=20
(YYYYdddMMDDhhmmssffw)

TABLE 48. ICODBC Data Types to ODBC SQL Data Types

Note aa:
 01 DATE-GROUP.
 02 YY PIC 9(2) COMP
 02 MM PIC 9(2) COMP
 02 DD PIC 9(2) COMP
 n=6 (default Picture=YYMMDD)
 01 DATE-GROUP.
 02 YYYY PIC 9(4) COMP
 02 MM PIC 9(2) COMP
 02 DD PIC 9(2) COMP

Interactive COBOL Language Reference & Developer’s Guide - Part Two

786

 n=8 (default Picture=YYYYMMDD)
 01 DATE-GROUP.
 02 CC PIC 9(2) COMP
 02 YY PIC 9(2) COMP
 02 MM PIC 9(2) COMP
 02 DD PIC 9(2) COMP
 n=8 (CCYYMMDD)

Note bb:
 01 TIME-GROUP.
 02 HH PIC 9(2) COMP
 02 MM PIC 9(2) COMP
 01 TIME-GROUP.
 02 HH PIC 9(2) COMP
 02 MM PIC 9(2) COMP
 02 SS PIC 9(2) COMP
 01 TIME-GROUP.
 02 HH PIC 9(2) COMP
 02 MM PIC 9(2) COMP
 02 SS PIC 9(2) COMP
 02 FF PIC 9(2) COMP

It is intended that eventually other ODBC SQL data types will be supported through either implicit or explicit

column descriptions in the table definition file. Suggestions are welcome.

H. Driver Limitations

* Entry level SQL-92 compliant, with some additional Intermediate and/or Full level functionality. See the SQL

grammar section at the end of this file for the SQL grammar supported. Some modification statements

(CREATE or DROP) are not supported semantically, although they are supported syntactically.

* SQLBrowseConnect, SQLTablePrivileges, SQLColumnPrivileges, SQLProcedures, and SQLProcedureColumns

are not supported. These ODBC API calls are not SQL-92 compliant CLI Calls and are not commonly used.

* Character and binary values supplied for parameterized queries (SELECT * FROM EMPLOYEE WHERE

NAME = ?) are limited to 255 bytes.

* Interval types are not supported.

* Qualifiers or owners are not allowed on databases, tables, etc.

* Transactions are not supported.

* Only SQL_CHAR, SQL_NUMERIC, SQL_BINARY, SQL_TIME, SQL_DATE, and SQL_TIMESTAMP are

supported.

* Queries that specify columns which are components of an INDEXED key are satisfied based on the internal

ordering of the key, which may not be equivalent to the external ordering.

* The following are the (maximum) limits of various implementation defined elements:

Character Literal Length 255 Binary Literal Length 255

Database Name Length 27 Column Name Length 63

Index Name Length 63 Table Name Length 63

Key Name Length 63 User Name Length 63

Password Length 63 Number of Columns in Order By 20

Number of Columns in a Key 15 Number of Columns in Index 15

Number of Foreign Keys in a Table 15

I. SQL Grammar Supported

ICODBC Driver (SQL Grammar)

787

statement ::= CREATE create | DROP drop | SELECT select orderby | INSERT insert | DELETE delete |

UPDATE update

create ::= TABLE tablename (createcols) | INDEX indexname ON tablename (indexcolumns)

indexcolumns ::= indexcolumn | indexcolumn , indexcolumns

indexcolumn ::= columnname asc

createcols ::= createcol , createcols | createcol

createcol ::= columnname datatype | columnname datatype (integer) |

columnname datatype (integer , integer)

drop ::= TABLE tablename | INDEX indexname

select ::= selectcols FROM tablelist where groupby having

delete ::= FROM tablename where

insert ::= INTO tablename insertvals

update ::= tablename SET setlist where

setlist ::= set | setlist , set

set ::= columnname = NULL | columnname = expression

insertvals ::= (columnlist) VALUES (valuelist) | VALUES (valuelist) |

(columnlist) VALUES (SELECT select) | VALUES (SELECT select)

columnlist ::= columname , columnlist | columname

valuelist ::= NULL , valuelist | expression , valuelist | expression | NULL

selectcols ::= selectallcols * | selectallcols selectlist

selectallcols ::= | ALL | DISTINCT

selectlist ::= selectlistitem , selectlist | selectlistitem

selectlistitem ::= expression | expression aliasname | expression AS aliasname | aliasname.*

where ::= | WHERE boolean

having ::= | HAVING boolean

boolean ::= and | and OR boolean

and ::= not | not AND and

not ::= comparison | NOT comparison

comparison ::= (boolean) | colref IS NULL | colref IS NOT NULL | expression LIKE pattern |

expression NOT LIKE pattern | expression IN (valuelist) | expression NOT IN (valuelist) |

expression op expression | EXISTS (SELECT select) |

expression op selectop (SELECT select) | expression IN (SELECT select) |

Interactive COBOL Language Reference & Developer’s Guide - Part Two

788

expression NOT IN (SELECT select) expression BETWEEN expression AND expression

expression NOT BETWEEN expression AND expression

selectop ::= | ALL | ANY

op ::= > | >= | < | <= | = | <>

pattern ::= string | ? | USER

expression ::= expression + times | expression - times | times

times ::= times * neg | times / neg | neg

neg ::= term | + term | - term

term ::= (expression) | colref | simpleterm | aggterm | scalar

scalar ::= scalarescape | scalarshorthand

scalarescape ::= --*(VENDOR(MICROSOFT),PRODUCT(ODBC) FN fn)*--

scalarshorthand ::= { FN fn }

fn ::= functionname (valuelist) | functionname () | POSITION (expression IN expression) |

EXTRACT (expression FROM expression)

aggterm ::= COUNT (*) | AVG (expression) | MAX (expression) | MIN (expression) |

SUM (expression) | COUNT (expression)

simpleterm ::= string | realnumber | ? | USER | date | time | timestamp

groupby ::= | GROUP BY groupbyterms

groupbyterms ::= colref | colref , groupbyterms

orderby ::= | ORDER BY orderbyterms

orderbyterms ::= orderbyterm | orderbyterm , orderbyterms

orderbyterm ::= colref asc | integer asc

asc ::= | ASC | DESC

colref ::= aliasname . columnname | columnname

tablelist ::= tablelistitem , tablelist | tablelistitem

tablelistitem ::= tableref | outerjoin

outerjoin ::= ojescape | ojshorthand

ojescape ::= --*(VENDOR(MICROSOFT),PRODUCT(ODBC) OJ oj)*--

ojshorthand ::= { OJ oj }

oj ::= tableref LEFT OUTER JOIN tableref ON boolean |

tableref LEFT OUTER JOIN oj ON boolean | tableref INNER JOIN tableref ON boolean |

tableref INNER JOIN oj ON boolean

ICODBC Driver (Usage)

789

tableref ::= tablename | tablename aliasname

indexname ::= identifier

functionname ::= identifier

tablename ::= identifier

datatype ::= identifier

columnname ::= identifier

aliasname ::= identifier

identifier ::= an identifier (identifiers containing spaces must be enclosed in double quotes)

string ::= a string (enclosed in single quotes)

realnumber ::= a non-negative real number (including E notation)

integer ::= a non-negative integer

date ::= dateescape | dateshorthand

dateescape ::= --*(VENDOR(MICROSOFT),PRODUCT(ODBC) d dateval)*--

dateshorthand ::= { d dateval }

dateval ::= a date in yyyy-mm-dd format in single quotes (for example, '1996-02-05')

time ::= timeescape | timeshorthand

timeescape ::= --*(VENDOR(MICROSOFT),PRODUCT(ODBC) t timeval)*--

timeshorthand ::= { t timeval }

timeval ::= a time in hh:mm:ss format in single quotes (for example, '10:19:48')

timestamp ::= timestampescape | timestampshorthand

timestampescape ::= --*(*VENDOR(MICROSOFT),PRODUCT(ODBC) ts timestampval)*--

timestampshorthand ::= { ts timestampval }

timestampval ::= a timestamp in yyyy-mm-dd hh:mm:ss[.ffffff] format in single quotes (for example,

'1996-02-05 10:19:48.529')

J. Usage Notes

Jet Database Engine

The Microsoft Jet Database Engine ("Jet") is the advanced relational database engine built into Microsoft Access(R)

and Visual Basic(R). Jet is intended to provide transparent access to data, regardless of the data's location and

format, and therefore deals with ODBC data. Any error returned by Jet that falls in the range -7700 to -7799 is an

ODBC Specification Compliance Error. The error indicates that an ODBC driver has failed to comply with the

Interactive COBOL Language Reference & Developer’s Guide - Part Two

790

ODBC specification and represents a bug in the driver. Please report all such errors to us with as much detail as

possible.

In Microsoft Access, links to tables in an ODBC data source can be created; these links are called attached tables.

Attaching ODBC tables allows you to use them transparently within Microsoft Access, but to implement this

transparency, Jet must ask the ODBC driver for a great deal of information about the table and cache it locally. This

process can be expensive and complex. After establishing a connection to the desired data source, Jet calls the

ODBC API function SQLTables to obtain a list of tables (and other similar objects) in the ODBC data source. When

you select a table, Jet calls SQLColumns, SQLStatistics, SQLSpecialColumns, and various ODBC Info functions to

acquire information about the selected table.

To allow updating of attached ODBC tables, Jet creates dynasets over them. There must be a unique (primary key)

value for each row in the table and it must be of type character and treatable as a null-terminated string. The

unique key values of a row are also called the row's bookmark because they uniquely identify and allow direct access

to the row.

Because data sources vary in their use of binary data, sometimes data loss can occur. Character data is generally

considered to be in the form of a null-terminated string, so values may lose some accuracy when being transferred

to Jet. If this data forms part of a table's bookmark, Jet might think the row has been deleted ("#Deleted" will appear

in a Microsoft Access datasheet/form). This is because Jet asked for the row by its key values, but no exact match

was found. Jet cannot distinguish this situation from that of a genuine record deletion by another user.

Microsoft Access and Visual Basic

Errors can occur while an application is running, either from the Visual Basic environment or as a stand-alone

executable. In particular, Visual Basic reserves a portion of the first 1000 error numbers, and other error numbers

are reserved by the Microsoft Jet Database Engine, or are available for defining custom errors. More information

concerning these errors is available in online help facility in the "Trappable Errors" and "Trappable Data Access

Errors" topics from Microsoft Access Help Topics.

Microsoft Access 2000

Microsoft Access 2000 appears to be stricter than earlier versions of that product regarding its adherence to the

declared precision of numeric fields. The ODBC Driver responds to a request for information concerning a column

of a table by Microsoft Access with, among other things, the display size, scale, and precision of the column. For the

precision, the driver dutifully returns the value of <data-digits-of-precision> specified in the column definition of the

table definition file. Because it is possible with Interactive COBOL COMPUTATIONAL data types to store a value

whose actual precision exceeds the declared precision of a data item, strict enforcement of the declared precision

has, in some cases, led to a problem whereby Microsoft Access 2000 reports that "The decimal field's precision is

too small to accept the numeric you attempted to add". Further complicating this situation, the ICOBOL compiler

sets the value of <data-digits-of-precision> as determined from the picture describing the data item in the COBOL

program.

Depending on the intent of the application, there are a number of ways to correct this problem. If the value of the

field is meant to be limited by the declared precision then the application should assure that no data is stored with a

greater precision; and steps should be taken to eliminate the corrupt data from the data file. The application can be

compiled with the "-G p" to enable size checking based on the picture; or it can perform data entry validation. If the

value of the field can legitimately have more digits of precision than declared then the declared precision of the item

in the COBOL source program of the application should be increased to properly reflect that fact. The value of

<data-digits-of-precision> in the column definition then needs to be modified, either automatically with the compiler

or manually with a text editor.

It is also possible to coerce the generated value of <data-digits-of-precision> to be the maximum for

COMPUTATIONAL items through the use of the ICODBC option "-G p" command line option. Please reference

page 189, 192, 226 for information regarding the storage of COMPUTATIONAL data items.

ICODBC Driver

791

K. Debugging

Several points for starting to use the ICODBC Driver.

1. Start in read-only mode to lessen the likely hood of corrupting your data.

2. Start with just a few columns and get it working.

3. Enable SQL tracing and see what is passed into the SQL call and what the actual SQL calls return by looking at

the output from the trace. This may give you a hint as to the real problem. NOTE: Remember to turn off tracing

when it is no longer needed!!

4. Under Access start with an import and not a link.

5. Look in the readodbc.txt file for more debugging information.

L. SYWARE

The ICODBC Driver was built using the Microsoft Visual C++ 6.0 compiler with the Microsoft ODBC Software

Development Kit (SDK) version 3.51 and the SYWARE Dr. DeeBee ODBC Driver Kit (Gold Edition). Portions of

the product are copyrighted by SYWARE Inc. and Microsoft.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

792

ICIDE

793

XVII. ICIDE

A. Introduction

The ICOBOL Integrated Development Environment (ICIDE) is available with ICOBOL on Windows. The ICIDE

provides a GUI interface to define the project, run the compiler, perform queries, tailor reports, browse sources and

reports, and edit sources. To use the ICIDE, an ICOBOL Development license must be available from the license

manager.

The ICIDE provides a project-based framework for editing, managing, and compiling the ICOBOL source files that

make up your application. A project encompasses a set of source files plus the associated COPY files, compiler

settings, and directory information necessary to organize and build your application. You determine what set of files

to include in a project. You can, for example, create a project that contains all of the source files for your "Acme

Accounting System." Or you can create a project that contains a subset of a larger system's source files; for an

"Accounts Payable Subsystem," for example.

Editing a file is as simple as double clicking a filename. Compiling a file (or a group of files) takes just a keystroke.

Compiling all of a project's files takes just a few mouse clicks. If an error occurs during compilation, the offending

source line can be automatically displayed in an editing window with the click of a mouse.

Once you’ve defined a project and performed the initial build, the ICIDE opens up a whole new set of tools for

traversing your application. As an integral part of the build process, the ICIDE creates a symbol file for each

program and it integrates information from each of those symbol files into a global symbol table. This allows the

ICIDE to efficiently perform operations such as a global cross-reference of a symbol. A simple right click operation

on a symbol allows you to see all the places where that symbol is used in the entire application.

B. Use

When the ICIDE is first started a screen like below will be shown. To the left is the Project Window (where “No

Project is Open” is shown. To the right (in the grey area) is the Source Window. At the bottom is the Output

Window used for Search, Cross Reference, and Building.

The syntax for starting the ICIDE from the command line is:

icide Start icide

icide filename Start icide with filename opened

icide /p filename Print filename to the default printer

icide /pt filename printer driver port Print filename to the specified printer

To get started, Select Help, Welcome and then go through the Start Here section for a short tutorial about the

ICIDE. After that you can use the Command Reference section to get help on different subjects as needed.

Interactive COBOL Language Reference & Developer’s Guide

794

C. Changing .CO or .SR file associations

To Change the .co or .sr file association from card to free (or vice versa) when using the ICIDE.

For Windows 9x/NT

Use regedit:

Position to HKEY_CLASSES_ROOT and open

Position to .co

Select (Default)

Now select Edit and Modify

Change the Value data from "ICIDE.CardSource" to "ICIDE.FreeSource"

Click OK

Exit the Registry

Now if you double-click on a *.co file it will be brought up as Free-Form format and not Card format.

Just do the opposite to change a .sr into a CardFormat.

For Windows 2000

Select My Computer

Select Tools

Select Folder Options

Select File Types

Pick .co

Select New

enter co extension

ICIDE

795

Click Advanced

Now go to Associated File Type and pull-down

Change to ICIDE.Free-Format

Say Yes to move association

Now if you double-click on a *.co file it will be brought up as Free-Form format and not Card format.

Just do the opposite to change a .sr into a CardFormat.

Interactive COBOL Language Reference & Developer’s Guide

796

Glossary

797

XVIII. GLOSSARY

A. Introduction

The terms in this section are defined in accordance with their meaning in COBOL, and may not have the same

meaning for other languages.

These definitions are also intended as either reference or introductory material to be reviewed prior to reading the

detailed language specifications that follow. For this reason, these definitions are, in most instances, brief and do not

include detailed syntactical rules.

B. Definitions

Abbreviated Combined Relation Condition. The combined condition that results from the explicit omission of a

common subject or a common subject and common relational operator in a consecutive sequence of relation

conditions.

Access Mode. The manner in which records are to be operated upon within a file.

Actual Decimal Point. The physical representation, using the decimal point characters period (.) or comma (,), of the

decimal point position in a data item.

Alphabet-Name. A user-defined word, in the SPECIAL-NAMES paragraph of the Environment Division, that

assigns a name to a specific character set and/or collating sequence.

Alphabetic Character. A letter or a space character.

Alphanumeric Character. Any character in the computer's character set.

Alternate Record Key. A key, other than the primary record key, whose contents identify a record within an indexed

file.

Arithmetic Expression. An identifier of a numeric elementary item, a numeric literal, such identifiers and literals

separated by arithmetic operators, two arithmetic expressions separated by an arithmetic operator, or an arithmetic

expression enclosed in parentheses.

Arithmetic Operation. The process caused by the execution of an arithmetic statement, or the evaluation of an

arithmetic expression, that results in a mathematically correct solution to the arguments presented.

Arithmetic Operator. A single character or fixed two-character combination which belongs to the following set:

 Character M eaning

+ addition

- subtraction

* multiplication

/ division

** exponentiation

Arithmetic Statement. A statement that causes an arithmetic operation to be executed. The arithmetic statements are

the ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements.

Ascending Key. A key upon the values of which data is ordered starting with the lowest value of key up to the

highest value of key in accordance with the rules for comparing data items.

ASCII character set. The 96-character ASCII character set is composed of the 96 characters from space (decimal

32) through DEL (decimal 127).

Interactive COBOL Language Reference & Developer’s Guide

798

Note: Except when used in nonnumeric literals and some PICTURE symbols, each lowercase letter is equivalent to the
corresponding uppercase letter.

Assumed Decimal Point. A decimal point position which does not involve the existence of an actual character in a

data item. The assumed decimal point has logical meaning with no physical representation.

At End Condition. A condition caused during the execution of a READ statement for a sequentially accessed file,

when no next logical record exists in the file, or when the number of significant digits in the relative record number

is larger than the size of the relative key data item, or when an optional input file is not present.

Block. A physical unit of data that is normally composed of one or more logical records. For disk files, a block may

contain a portion of a logical record. The size of a block has no direct relationship to the size of the file within

which the block is contained or to the size of the logical record(s) that are either contained within the block or that

overlap the block. The term is synonymous with physical record.

Called Program. A program which is the object of a CALL statement combined at object time with the calling

program to produce a run unit or a program which is the object of a CALL PROGRAM statement which produces a

new run unit.

Calling Program. A program which executes a CALL or CALL PROGRAM to another program.

Character. The basic indivisible unit of the language.

Character Position. A character position is the amount of physical storage required to store a single standard data

format character whose usage is DISPLAY.

Character-String. A sequence of contiguous characters which form a COBOL word, a literal, a PICTURE

character-string, or a comment-entry.

Class Condition. The proposition, for which a truth value can be determined, that the content of an item is wholly

alphabetic or is wholly numeric or consists exclusively of those characters listed in the definition of a class-name.

Class-Name. A user-defined word defined in the SPECIAL-NAMES paragraph of the Environment Division that

assigns a name to the proposition for which a truth value can be defined, that the content of a data item consists

exclusively of those characters listed in the definition of the class-name. NOT SUPPORTED BY VXCOBOL.

Clause. A clause is an ordered set of consecutive COBOL character-strings whose purpose is to specify an attribute

of an entry.

COBOL Character Set. The complete COBOL character set consists of the characters listed below.

Character M eaning

0, 1, ... , 9 digit

A, B, ... , Z uppercase letter

a, b, ... , z lowercase letter

space

+ plus sign

- minus Sign (hyphen)

* asterisk

/ slant (solidus)

= equal sign

$ currency sign (represented as # in the International Reference Version of International Standard ISO 646-1973)

, comma (decimal point)

; sem icolon

. period (decimal point, full stop)

" quotation mark

(left parenthesis

) right parenthesis

> greater than symbol

< less than symbol

: colon

Glossary

799

COBOL Word. A character-string of not more than 30 characters which forms a user-defined word, a system-name,

or a reserved word.

Collating Sequence. The sequence in which the characters that are acceptable to a computer are ordered for

purposes of sorting, merging, comparing, and for processing indexed files sequentially.

Column. A character position within a print or display line. The columns are numbered from 1, by 1, starting at the

left-most character position of the print line and extending to the right-most position of the line.

Combined Condition. A condition that is the result of connecting two or more conditions with the `AND' or the `OR'

logical operator.

Comment-Entry. An entry in the Identification Division that may be any combination of characters from the

computer's character set.

Comment Line. A source program line represented by an asterisk (*) in the indicator area of the line and any

characters from the computer's character set in area A and area B of that line. The comment line serves only for

documentation in a program. A special form of comment line represented by a slant (/) in the indicator area of the

line and any characters from the computer's character set in area A and area B of that line causes page ejection prior

to printing the comment.

Compile Time. The time at which a COBOL source program is translated, by a COBOL compiler, to a COBOL

object program.

Compiler Directing Statement. A statement, beginning with a compiler directing verb, that causes the compiler to

take a specific action during compilation. The compiler directing statement is the COPY statement.

Complex condition. A condition in which one or more logical operators act upon one or more conditions.

Computer-Name. A system-name that identifies the computer upon which the program is to be compiled or run.

Computer's character set. The computer's character set for all computers on which ICOBOL is currently supported

is the complete 8-bit ASCII table from decimal 0-255; i.e., the entire range of 8-bit (1-byte) values.

Condition. A status of a program at execution time for which a truth value can be determined. Where the term

`condition' (condition-1, condition-2, ...) appears in these language specifications in or in reference to `condition'

(condition-1, condition-2, ...) of a general format, it is a conditional expression consisting of either a simple

condition optionally parenthesized, or a single combined condition consisting of the syntactically correct

combination of simple conditions, logical operators, and parentheses, for which a truth value can be determined.

Condition-Name. A user-defined word that assigns a name to a subset of values that a conditional variable may

assume; or a user-defined word assigned to a status of a switch or device. When `condition-name' is used in the

general formats, it represents a unique data item reference consisting of a syntactically correct combination of a

condition-name, together with qualifiers and subscripts, as required for uniqueness of reference.

Condition-Name Condition. The proposition, for which a truth value can be determined, that the value of a

conditional variable is a member of the set of values attributed to a condition-name associated with the conditional

variable.

Conditional Expression. A simple condition or a complex condition specified in an EVALUATE, IF, PERFORM or

SEARCH statement.

Conditional Phrase. A conditional phrase specifies the action to be taken upon determination of the truth value of a

condition resulting from the execution of a conditional statement.

Conditional statement. A conditional statement specifies that the truth value of a condition is to be determined and

that the subsequent action of the object program is dependent on this truth value.

Interactive COBOL Language Reference & Developer’s Guide

800

Conditional Variable. A data item one or more values of which has a condition-name assigned to it.

Configuration Section. A section of the Environment Division that describes overall specifications of source and

object programs.

Contiguous Items. Items that are described by consecutive entries in the Data Division, and that bear a definite

hierarchical relationship to each other.

Coordinated Universal Time (UTC). Time scale, based on the second (SI), as defined and recommended by the

CCIR, and maintained by the Bureau International des Poids et Mesures (BIPM). For most practical purposes

associated with the Radio Regulations, UTC is equivalent to mean solar time at the prime meridian (0E° longitude),

formerly expressed in GMT. [NTIA] [RR] Note 1: The maintenance by BIPM includes cooperation among various

national laboratories around the world. Note 2: The full definition of UTC is contained in CCIR Recommendation

460-4. (188) Note 3 : The second was formerly defined in terms of astronomical phenomena. When this practice

was abandoned in order to take advantage of atomic resonance phenomena ("atomic time") to define the second

more precisely, it became necessary to make occasional adjustments in the "atomic" time scale to coordinate it with

the workaday mean solar time scale, UT-1, which is based on the somewhat irregular rotation of the Earth.

Rotational irregularities usually result in a net decrease in the Earth's average rotational velocity, and ensuing lags of

UT-1 with respect to UTC. Note 4: Adjustments to the atomic, i.e., UTC, time scale consist of an occasional

addition or deletion of one full second, which is called a leap second. Twice yearly, during the last minute of the day

of June 30 and December 31, Universal Time, adjustments may be made to ensure that the accumulated difference

between UTC and UT-1 will not exceed 0.9 s before the next scheduled adjustment. Historically, adjustments, when

necessary, have usually consisted of adding an extra second to the UTC time scale in order to allow the rotation of

the Earth to "catch up." Therefore, the last minute of the UTC time scale, on the day when an adjustment is made,

will have 59 or 61 seconds. Synonyms World Time, Z Time, Zulu Time. (Source: www.its.bldrdoc.gov)

Counter. A data item used for storing numbers or number representations in a manner that permits these numbers to

be increased or decreased by the value of another number, or to be changed or reset to zero or to an arbitrary positive

or negative value.

CRC. See Cyclic Redundancy Check.

Currency Sign. The character `$' of the COBOL character set.

Currency Symbol. The character defined by the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph. If

no CURRENCY SIGN clause is present in a COBOL source program, the currency symbol is identical to the

currency sign.

Current Record. In file processing, the record which is available in the record area associated with a file.

Current Volume Pointer. A conceptual entity that points to the current volume of a sequential file.

Cyclic Redundancy Check. A sophisticated checksum, which is based on the algebra of polynomials over the

integers (mod 2). It is substantially more reliable in detecting transmission errors, and is one common error-checking

protocol used in modems. (Source: http://mathworld.wolfram.com/CyclicRedundancyCheck.html)

Data Clause. A clause, appearing in a data description entry in the Data, Division of a COBOL program, that

provides information describing a particular attribute of a data item.

Data Description Entry. An entry, in the Data Division of a COBOL program, that is composed of a level-number

followed by a data-name, if required, and then followed by a set of data clauses, as required.

Data Item. A unit of data (excluding literals) defined by the COBOL program.

Data-Name. A user-defined word that names a data item described in a data description entry. When used in the

general formats, `data-name' represents a word which must not be reference-modified, subscripted, or qualified

unless specifically permitted by the rules of the format.

Glossary

801

Debugging Line. A debugging line is any line with a `d' or `D' in the indicator area of the line.

Declarative Sentence. A compiler directing sentence consisting of a single USE statement terminated by the

separator period.

Declaratives. A set of one or more special purpose sections, written at the beginning of the Procedure Division, the

first of which is preceded by the keyword DECLARATIVES and the last of which is followed by the keywords END

DECLARATIVES. A declarative is composed of a section header, followed by a USE compiler directing sentence,

followed by a set of zero, one, or more associated paragraphs.

De-Edit. The logical removal of all editing characters from a numeric edited data item in order to determine that

item's unedited numeric value.

Delimited Scope Statement. Any statement which includes its explicit scope terminator.

Delimiter. A character or a sequence of contiguous characters that identify the end of a string of characters and

separates that string of characters from the following string of characters. A delimiter is not part of the string of

characters that it delimits.

Descending Key. A key upon the values of which data is ordered starting with the highest value of key down to the

lowest value of key, in accordance with the rules for comparing data items.

Destination. The symbolic identification of the receiver of a transmission from a queue.

Digit Position. A digit position is the amount of physical storage required to store a single digit. This amount may

vary depending on the usage specified in the data description entry that defines the data item. If the data description

entry specifies that usage is DISPLAY, then a digit position is synonymous with a character position.

Division. A collection of zero, one, or more sections or paragraphs, called the division body, that are formed and

combined in accordance with a specific set of rules. Each division consists of the division header and the related

division body. There are four divisions in a COBOL program: Identification, Environment, Data, and Procedure.

Division Header. A combination of words, followed by a separator period, that indicates the beginning of a division.

The division headers in a COBOL program are:

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

DATA DIVISION.

PROCEDURE DIVISION [USING { data-name-1 }...] .

Dynamic Access. An access mode in which specific logical records can be obtained from or placed into a disk file in

a non-sequential manner and obtained from a file in a sequential manner during the scope of the same OPEN

statement.

Editing Character. A single character or a fixed two-character combination belonging to the following set:

 Character M eaning

B space

0 zero

+ plus

- minus

CR credit

DB debit

z zero suppress

* check protect

$ currency sign

. (decimal point) period

/ slant (solidus)

Elementary Item. A data item that is described as not being further logically subdivided.

Interactive COBOL Language Reference & Developer’s Guide

802

End of Procedure Division. The physical position of a COBOL source program after which no further procedures

appear.

Entry. Any descriptive set of consecutive clauses terminated by a separator period and written in the Identification

Division, Environment Division, or Data Division of a COBOL program.

Environment Clause. A clause that appears as part of an Environment Division entry.

Execution Time. The time at which an object program is executed. The term is synonymous with object time.

Explicit Scope Terminator. A reserved word which terminates the scope of a particular Procedure Division

statement.

Expression. An arithmetic or conditional expression.

Extend Mode. The state of a file after execution of an OPEN statement, with the EXTEND phrase specified, for that

file and before the execution of a CLOSE statement.

External Data. The data that is described in a program as external data items and external file connectors.

External Data Item. A data item which is described as part of an external record of a run unit and which itself may

be referenced from any program in which it is described.

External Data Record. A logical record which is described in one or more programs of a run unit and whose

constituent data items may be referenced from any program in which they are described.

External File Connector. A file connector which is accessible to one or more object programs in the run unit.

External Switch. A software device that can be specified when invoking a run unit. It is defined in the

SPECIAL-NAMES paragraph and can be used to indicate that one of two alternate states exists (ON or OFF).

Field. A contiguous row of character positions on a display screen. These characters form a logical unit that can be

filled with data, moved, displayed, etc.

Figurative Constant. A compiler generated value referenced through the use of certain reserved words.

File. A collection of logical records.

File Attribute Conflict Condition. An unsuccessful attempt has been made to execute an input-output operation on a

file and the file attributes, as specified for that file in the program, do not match the fixed attributes for that file.

File Clause. A clause that appears as part of any of the following Data Division entries: file description entry (FD

entry) and sort-merge file description entry (SD entry.)

File Connector. A storage area which contains information about a file and is used as the linkage between a

file-name and a physical file and between a file-name and its associated record area.

FILE-CONTROL. The name of an Environment Division paragraph, in which the data files are declared for a given

source program.

File Control Entry. A SELECT clause and all its subordinate clauses which declare the relevant physical attributes

of a file.

File Description Entry. An entry in the File Section of the Data Division that is composed of the level indicator FD,

followed by a file-name, and then followed by a set of file clauses as required.

File-Name. A user-defined word that names a file connector that is described in a file description entry or a

sort-merge file description entry within the File Section of the Data Division.

Glossary

803

File Organization. The permanent logical file structure established at the time that a file is created.

File Position Indicator. A conceptual entity that contains the value of the current key within the key of reference for

an indexed file, or the record number of the current record for a sequential file, or the relative record number of the

current record for a relative file, or indicates that no next logical record exists, or that the number of significant digits

in the relative record number is larger than the size of the relative key data item, or that an optional input file is not

present, or that the at end condition already exists, or that no valid next record has been established.

File Section. The section of the Data Division that contains file description entries and sort-merge file description

entries together with their associated record descriptions.

File System. An input-output control system that directs, or controls, the processing of mass storage files.

Fixed File Attributes. Information about a file which is established when a file is created and cannot subsequently be

changed during the existence of the file. These attributes include the organization of the file (sequential, relative, or

indexed), the primary record key, the alternate record keys, the code set, the minimum and maximum record size, the

record type (fixed or variable), the collating sequence of the keys for indexed files, the blocking factor, the padding

character, and the record delimiter.

Fixed Length Record. A record associated with a file whose file description or sort-merge description entry requires

that all records contain the same number of character positions.

Format. A specific arrangement of a set of data.

Global Name. A name which is declared in only one program but which may be referenced from that program and

from any program contained within that program. Condition-names, data-names, file-names, record-names, and

some special registers may be global names. NOT SUPPORTED BY ICOBOL.

Group Item. A data item that is composed of subordinate data items.

High Order End. The left-most character of a string of characters.

I-O-CONTROL. The name of an Environment Division paragraph in which object program requirements for rerun

points, sharing of same areas by several data files, and multiple file storage on a single input-output device are

specified.

I-O-CONTROL Entry. An entry in the I-O-CONTROL paragraph of the Environment Division which contains

clauses which provide information required for the transmission and handling of data on named files during the

execution of a program.

I-O Mode. The state of a file after execution of an OPEN statement, with the I-O phrase specified, for that file and

before the execution of a CLOSE statement.

I-O Status. A conceptual entity which contains the two-character value indicating the resulting status of an

input-output operation. This value is made available to the program through the use of the FILE STATUS clause in

the file control entry for the file.

Identifier. A syntactically correct combination of a data-name, with its qualifiers, subscripts, and reference

modifiers, as required for uniqueness of reference, that names a data item. The rules for `identifier' associated with

the general formats may, however, specifically prohibit qualification, subscripting, or reference modification.

Imperative Statement. A statement that either begins with an imperative verb and specifies an unconditional action

to be taken or is a conditional statement that is delimited by its explicit scope terminator (delimited scope statement).

An imperative statement may consist of a sequence of imperative statements.

Implicit Scope Terminator. A separator period which terminates the scope of any preceding unterminated statement,

or a phrase of a statement which by its occurrence indicates the end of the scope of any statement contained within

the preceding phrase.

Interactive COBOL Language Reference & Developer’s Guide

804

Index. A computer storage area or register, the content of which represents the identification of a particular element

in a table.

Index Data Item. A data item in which the values associated with an index-name can be stored.

Index-Name. A user-defined word that names an index associated with a specific table.

Indexed File. A file with indexed organization.

Indexed Organization. The permanent logical file structure in which each record is identified by the value of one or

more keys within that record.

Initial Program. A program that is placed into an initial state every time the program is called in a run unit.

Initial State. The state of a program when it is first called in a run unit.

Input File. A file that is opened in the input mode.

Input Mode. The state of a file after execution of an OPEN statement, with the INPUT phrase specified, for that file

and before the execution of a CLOSE statement.

Input-Output File. A file that is opened in the I-O mode.

Input-Output Section. The section of the Environment Division that names the files and the external media required

by an object program and which provides information required for transmission and handling of data during

execution of the object program.

Input-Output Statement. A statement that causes files to be processed by performing operations upon individual

records or upon the file as a unit. The input-output statements are: ACCEPT (with the identifier phrase), CLOSE,

DELETE, DISPLAY, OPEN, PURGE, READ, REWRITE, SET (with the TO ON or TO OFF phrase), START,

UNDELETE, UNLOCK, and WRITE.

Input Procedure. A set of statements, to which control is given during the execution of a SORT statement, for the

purpose of controlling the release of specified records to be sorted.

Integer. A numeric literal or a numeric data item that does not include any digit position to the right of the assumed

decimal point. When the term `integer' appears in general formats, integer must not be a numeric data item, and must

not be signed, nor zero unless explicitly allowed by the rules of that format.

Internal Data. The data that is described in a program excluding all external data items and external file connectors.

Items described in the Linkage Section of a program are treated as internal data.

Internal Data Item. A data item which is described in one program in a run unit.

Internal File Connector. A file connector which is accessible to only one object program in the run unit.

Intra-Record Data Structure. The entire collection of groups and elementary data items from a logical record which

is defined by a contiguous subset of the data description entries which describe that record. These data description

entries include all entries whose level-number is greater than the level-number of the first data description entry

describing the intra-record data structure.

Invalid Key Condition. A condition, at object time, caused when a specific value of the key associated with an

indexed or relative file is determined to be invalid.

ISAM. Indexed Sequential Access Method. The term ISAM file commonly refers to a relative or indexed file.

Key. A data item which identifies the location of a record, or a set of data items which serve to identify the ordering

of data.

Glossary

805

Key of Reference. The key, either primary or alternate, currently being used to access records within an indexed file.

Key Word. A reserved word whose presence is required when the format in which the word appears is used in a

source program.

Language-Name. A system-name that specifies a particular programming language.

Letter. A character belonging to one of the following two sets:

(1) uppercase letters: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z;

(2) lowercase letters: a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z.

Level Indicator. Two alphabetic characters that identify a specific type of file or a position in a hierarchy. The level

indicators in the Data Division are: FD and SD.

Level-Number. A user-defined word, expressed as a one or two digit number, which indicates the hierarchical

position of a data item or the special properties of a data description entry. Level-numbers in the range 1 through 49

indicate the position of a data item in the hierarchical structure of a logical record. Level-numbers in the range 1

through 9 may be written either as a single digit or as a zero followed by a significant digit. Level-numbers 66, 77,

and 88 identify special properties of a data description entry.

Line Number. An integer that denotes the vertical position of a report line on a page.

Line Terminator. The line terminator for data-sensitive files for a particular operating system.

Linkage Section. The section in the Data Division of the called program that describes data items available from the

calling program. These data items may be referred to by both the calling and the called program.

Literal. A character-string whose value is implied by the ordered set of characters comprising the string.

Logical Operator. One of the reserved words AND, OR, or NOT. In the formation of a condition, either AND, or

OR, or both, can be used as logical connectives. NOT can be used for logical negation.

Logical Record. The most inclusive data item. The level-number for a record is 01. A record may be either an

elementary item or a group item. The term is synonymous with record.

Longitudinal Redundancy Check The LRC algorithm is an extremely simple error detection method which yields

any character from 00h (0) through 0FFh (255). LRC stands for Longitudinal Redundancy Check, an old method

based on longitudinal parity. There are two major disadvantages of this method. The first problem is that the

resulting check character may be a control character which could interfere with data communications. The second

problem is that it is not highly effective, particularly with long transmissions. (Source:

http://www.smartronics.com/ref/checksum.html)

Low Order End. The right-most character of a string of characters.

LRC. See Longitudinal Redundancy Check

Mass Storage. A storage medium in which data may be organized and maintained in both a sequential and non-

sequential manner.

Mass Storage Control System (MSCS). An input-output control system that directs, or controls, the processing of

mass storage files. Generally referred to as the file system.

Mass Storage File. A collection of records that is assigned to a mass storage medium.

Merge File. A collection of records to be merged by a MERGE statement. The file is created and can be used only

by the merge function.

Interactive COBOL Language Reference & Developer’s Guide

806

Mnemonic-Name. A user-defined word that is associated in the Environment Division with a specific switch name.

Native Character Set. The character set associated with the computer specified in the OBJECT-COMPUTER

paragraph.

Native Collating Sequence. The collating sequence associated with the computer specified in the

OBJECT-COMPUTER paragraph.

Negated Combined Condition. The `NOT' logical operator immediately followed by a parenthesize combined

condition.

Negated Simple Condition. The `NOT' logical operator immediately followed by a simple condition.

Next Executable Sentence. The next sentence to which control will be transferred after execution of the current

statement is complete.

Next Executable Statement. The next statement to which control will be transferred after execution of the current

statement is complete.

Next Record. The record which logically follows the current record of a file.

Noncontiguous item. Elementary data items, in the Working-Storage and Linkage Sections, which bear no hierarchic

relationship to other data items.

Nonnumeric Item. A data item whose description permits its content to be composed of any combination of

characters taken from the computer's character set. Certain categories of nonnumeric items may be formed from

more restricted character sets.

Nonnumeric Literal. A literal bounded by quotation marks. The string of characters may include any character in

the computer's character set.

Numeric Character. A character that belongs to the following set of digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Numeric Item. A data item whose description restricts its content to a value represented by characters chosen from

the digits `0' through `9'; if signed, the item may also contain a `+', `-' or other representation of an operational sign.

Numeric Literal. A literal composed of one or more numeric characters that may contain either a decimal point, or

an algebraic sign, or both. The decimal point must not be the right-most character. The algebraic sign, if present,

must be the left-most character.

OBJECT-COMPUTER. The name of an Environment Division paragraph in which the computer environment,

within which the object program is executed, is described.

Object Computer Entry. An entry in the OBJECT-COMPUTER paragraph of the Environment Division which

contains clauses which describe the computer environment in which the object program is to be executed.

Object of Entry. A set of operands and reserved words, within a Data Division entry of a COBOL program, that

immediately follows the subject of the entry.

Object Program. A set or group of executable machine language instructions and other material designed to interact

with data to provide problem solutions. In this context, an object program is generally the machine language result

of the operation of a COBOL compiler on a source program. Where there is no danger of ambiguity, the word

`program' alone may be used in place of the phrase `object program'.

Object Time. The time at which an object program is executed. The term is synonymous with execution time.

Obsolete Element. A COBOL language element in Standard COBOL that is to be deleted from the next revision of

Standard COBOL.

Glossary

807

Open Mode. The state of a file after execution of an OPEN statement for that file and before the execution of a

CLOSE statement for that file. The particular open mode is specified in the OPEN statement as either INPUT,

OUTPUT, I-O, or EXTEND.

Operand. Whereas the general definition of operand is `that component which is operated upon', for the purposes of

this document, any lowercase word (or words) that appears in a statement or entry format may be considered to be an

operand and, as such, is an implied reference to the data indicated by the operand.

Operational Sign. An algebraic sign, associated with a numeric data item or a numeric literal, to indicate whether its

value is positive or negative.

Optional File. A file which is declared as being not necessarily present each time the object program is executed.

The object program causes an interrogation for the presence or absence of the file.

Optional Word. A reserved word that is included in a specific format only to improve the readability of the language

and whose presence is optional to the user when the format in which the word appears is used in a source program.

Ordinal Number. A number that show the order or succession in which names, objects, periods of time, or the like,

are considered; as, first, second, third, fourth, and so on.

Output File. A file that is opened in either the output mode or extend mode.

Output Mode. The state of a file after execution of an OPEN statement, with the OUTPUT or EXTEND phrase

specified, for that file and before the execution of a CLOSE statement for that file.

Output Procedure. A set of statements to which control is given during execution of a SORT statement after the sort

function is completed, or during execution of a MERGE statement after the merge function reaches a point at which

it can select the next record in merged order when requested.

Padding Character. An alphanumeric character used to fill the unused character positions in a physical record.

Paragraph. In the Procedure Division, a paragraph-name followed by a separator period and by zero, one, or more

sentences. In the Identification and Environment Divisions, a paragraph header followed by zero, one, or more

entries.

Paragraph Header. A reserved word, followed by the separator period, that indicates the beginning of a paragraph in

the Identification and Environment Divisions. The permissible paragraph headers in the Identification Division are:

PROGRAM-ID.

AUTHOR.

INSTALLATION.

DATE-W RITTEN.

DATE-COMPILED.

SECURITY.

The permissible paragraph headers in the Environment Division are:

SOURCE-COMPUTER.

OBJECT-COMPUTER.

SPECIAL-NAMES.

FILE-CONTROL.

I-O-CONTROL.

Paragraph-Name. A user-defined word that identifies and begins a paragraph in the Procedure Division.

Pathname. A file-name that represents the unique path through the file system to a specific file.

Interactive COBOL Language Reference & Developer’s Guide

808

Phrase. A phrase is an ordered set of one or more consecutive COBOL character-strings that form a portion of a

COBOL procedural statement or of a COBOL clause.

Physical Record. The term is synonymous with block.

Primary Record Key. A key whose contents uniquely identify a record within an indexed file.

Procedure. A paragraph or group of logically successive paragraphs, or a section or group of logically successive

sections, within the Procedure Division.

Procedure Branching Statement. A statement that causes the explicit transfer of control to a statement other than the

next executable statement in the sequence in which the statements are written in the source program. The procedure

branching statements are: CALL, EXIT, EXIT PROGRAM, GO TO, MERGE (with the OUTPUT PROCEDURE

phrase), PERFORM and SORT (with the INPUT PROCEDURE or OUTPUT PROCEDURE phrase).

Procedure-Name. A user-defined word which is used to name a paragraph or section in the Procedure Division. It

consists of a paragraph-name (which may be qualified), or a section-name.

Program Identification Entry. An entry in the PROGRAM-ID paragraph of the Identification Division which

contains clauses that specify the program-name and assign selected program attributes to the program.

Program-Name. In the Identification Division, a user-defined word that identifies a COBOL source program.

Pseudo-Text. A sequence of text words, comment lines, or the separator space in a source program or COBOL

library bounded by, but not including, pseudo-text delimiters.

Pseudo-Text delimiter. Two contiguous equal sign (=) characters used to delimit pseudo-text.

Punctuation Character. A character that belongs to the following set:

 Character M eaning

, comma

; sem icolon

: colon

. period (full stop)

" quotation mark

(left parenthesis

) right parenthesis

 space

= equal sign

Qualified Data-Name. An identifier that is composed of a data-name followed by one or more sets of either of the

connectives OF and IN followed by a data-name qualifier.

Qualifier.

(1) A data-name or a name associated with a level indicator which is used in a reference either together with

another data-name which is the name of an item that is subordinate to the qualifier or together with a

condition-name.

(2) A section-name which is used in a reference together with a paragraph-name specified in that section.

Random Access. An access mode in which the program-specified value of a key data item identifies the logical

record that is obtained from, deleted from, or placed into a relative or indexed file.

Record. The most inclusive data item. The level-number for a record is 01. A record may be either an elementary

item or a group item. The term is synonymous with logical record.

Record Area. A storage area allocated for the purpose of processing the record described in a record description

entry in the File Section of the Data Division. In the File Section, the current number of character positions in the

record area is determined by the explicit or implicit RECORD clause.

Glossary

809

Record Description. The total set of data description entries associated with a particular record. The term is

synonymous with record description entry.

Record Description Entry. The total set of data description entries associated with a particular record. The term is

synonymous with record description.

Record Key. A key whose contents identify a record within an indexed file. Within an indexed file, a record key is

either the primary record key or an alternate record key.

Record-Name. A user-defined word that names a record described in a record description entry ln the Data Division

of a COBOL program.

Record Number. The ordinal number of a record in the file whose organization is sequential.

Reference Format. A format that provides a standard method for describing COBOL source programs.

Reference Modifier. The left-most-character-position and length used to establish and reference a data item.

Relation. The term is synonymous with relational operator.

Relation Character. A character that belongs to the following set:

 Character M eaning

> greater than

< less than

= equal to

Relation Condition. The proposition, for which a truth value can be determined, that the value of an arithmetic

expression, data item, nonnumeric literal, or index-name has a specific relationship to the value of another arithmetic

expression, data item, nonnumeric literal, or index-name.

Relational Operator. A reserved word, a relation character, a group of consecutive reserved words, or a group of

consecutive reserved words and relation characters used in the construction of a relation condition. The permissible

operators and their meanings are:

Relational Operator Meaning

IS [NOT] GREATER THAN
IS [NOT] >

Greater than OR
not greater than

IS [NOT] LESS THAN
IS [NOT] <

Less than OR
not less than

IS [NOT] EQUAL TO
IS [NOT] =

Equal to OR
not equal to

IS [NOT] GREATER THAN OR EQUAL TO
IS [NOT] >=

Greater than or equal to OR
not greater than or equal to

IS [NOT] LESS THAN OR EQUAL TO
IS [NOT] <=

Less than or equal to OR
not less than or equal to

Relative File. A file with relative organization.

Relative Key. A key whose contents identify a logical record in a relative file.

Relative Organization. The permanent logical file structure in which each record is uniquely identified by an integer

value greater than zero, which specifies the record's logical ordinal position in the file.

Relative Record Number. The ordinal number of a record in a file whose organization is relative. This number is

treated as a numeric literal which is an integer.

Reserved Word. A COBOL word specified in the list of words which may be used in a COBOL source program, but

which must not appear in the program as user-defined words or system-names.

Interactive COBOL Language Reference & Developer’s Guide

810

Resource. A facility or service, controlled by the operating system, that may be used by an executing program.

Resultant Identifier. A user-defined data item that is to contain the result of an arithmetic operation.

Routine-Name. A user-defined word that identifies a procedure written in a language other than COBOL.

Run Unit. One or more object programs which interact with one another and which function, at object time, as an

entity to provide problem solutions.

Screen-name. A data name that identifies an item in the Screen Section of the Data Division.

Screen Section. The section of the Data Division where items to be used in screen ACCEPTs and DISPLAYs are

defined.

Section. A set of zero, one, or more paragraphs or entries, called a section body, the first of which is preceded by a

section header. Each section consists of the section header and the related section body.

Section Header. A combination of words followed by a separator period that indicates the beginning of a section in

the Environment, Data, and Procedure Division. In the Environment and Data Divisions, a section header is

composed of reserved words followed by a separator period. The permissible section headers in the Environment

Division are:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

The permissible section headers in the Data Division are:

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
SCREEN SECTION.

In the Procedure Division, a section header is composed of a section-name, followed by the reserved word

SECTION, followed by a segment-number (optional), followed by a separator period.

Section-Name. A user-defined word which names a section in the Procedure Division.

Sentence. A sequence of one or more statements, the last of which is terminated by a separator period.

Separately Compiled Program. A program which, together with its contained programs, is compiled separately from

all other programs.

Separator. A character or two contiguous characters used to delimit character-strings.

Sequential Access. An access mode in which logical records are obtained from or placed into a file in a consecutive

predecessor-to-successor logical record sequence determined by the order of records in the file.

Sequential File. A file with sequential organization.

Sequential Organization. The permanent logical file structure in which a record is identified by a predeces-

sor-successor relationship established when the record is placed into the file

Sign Condition. The proposition, for which a truth value can be determined, that the algebraic value of a data item

or an arithmetic expression is either less than, greater than, or equal to zero.

Significand. In floating-point representation, the fixed-point numeral that represents the significant digits of the

number.

Simple Condition. Any single condition chosen from the set:

Glossary

811

relation condition
class condition
condition-name condition
switch-status condition
sign condition
(simple-condition)

Sort File. A collection of records to be sorted by a SORT statement. The sort file is created and can be used by the

sort function only.

Sort-Merge File Description Entry. An entry in the File Section of the Data Division that is composed of the level

indicator SD, followed by a file-name, and then followed by a set of file clauses as required.

Source. The symbolic identification of the originator of a transmission to a queue.

SOURCE-COMPUTER. The name of an Environment Division paragraph in which the computer environment,

within which the source program is compiled, is described.

Source Computer Entry. An entry in the SOURCE-COMPUTER paragraph of the Environment Division which

contains clauses which describe the computer environment in which the source program is to be compiled.

Source Item. An identifier designated by a SOURCE clause that provides the value of a printable item.

Source Program. Although it is recognized that a source program may be represented by other forms and symbols, in

this document it always refers to a syntactically correct set of COBOL statements. A COBOL source program

commences with the Identification Division or a COPY statement. A COBOL source program is terminated by the

absence of additional source program lines.

Special Character. A character that belongs to the following set:

 Character Meaning
+ plus sign
- minus sign
* asterisk
/ slant (solidus)
= equal sign
$ currency sign
, comma (decimal point)
; semicolon
. period (decimal point, full stop)
" quotation mark
(left parenthesis
) right parenthesis
> greater than symbol
< less than symbol
: colon

Special Character Word. A reserved word which is an arithmetic operator or a relation character.

SPECIAL-NAMES. The name of an Environment Division paragraph in which ICOBOL-specific names (switch

name) are related to user-specified mnemonic-names.

Special Names Entry. An entry in the SPECIAL-NAMES paragraph of the Environment Division which provides

means for specifying the currency sign; choosing the decimal point; specifying symbolic characters; relating

switch-names to user-specified mnemonic-names; relating alphabet-names to character sets or collating sequences;

and relating class-names to sets of characters.

Special Registers. Certain compiler generated storage areas whose primary use is to store information produced in

conjunction with the use of specific COBOL features.

Standard Data Format. The concept used in describing data in a COBOL Data Division under which the

characteristics or properties of the data are expressed in a form oriented to the appearance of the data on a printed

page of infinite length and breadth, rather than a form oriented to the manner in which the data is stored internally in

the computer or on a particular medium.

Interactive COBOL Language Reference & Developer’s Guide

812

Statement. A syntactically valid combination of words, literals, and separators, beginning with a verb, written in a

COBOL source program.

Sub-Queue. A logical hierarchical division of a queue.

Subject of Entry. An operand or reserved word that appears immediately following the level indicator or the

level-number in a Data Division entry.

Subprogram. A program which is the object of a CALL statement combined at object time with the calling program

to produce a run unit. The term is synonymous with called program.

Subscript. An occurrence number represented by either an integer, a data-name optionally followed by an integer

with the operator + or -, or an index-name optionally followed by an integer with the operator + or -, which identifies

a particular element in a table.

Subscripted Data-Name. An identifier that is composed of a data-name followed by one or more subscripts enclosed

in parentheses.

Switch. A switch to a COBOL program is a character string that can be appended to the program-name when a

program is started and defined in the SPECIAL-NAMES paragraph of the Environment Division.

Switch-Status Condition. The proposition, for which a truth value can be determined, that a switch, capable of being

set to an `on' or `off' status, has been set to a specific status.

Symbolic-Character. A user-defined word that specifies a user-defined figurative constant.

System-Name. A COBOL word which is used to communicate with the operating environment.

Table. A set of logically consecutive items of data that are defined in the Data Division of a COBOL program by

means of the OCCURS clause.

Table Element. A data item that belongs to the set of repeated items comprising a table.

Text-Name. A user-defined word which identifies library text.

Text Word. A character or a sequence of contiguous characters between margin A and margin R in a COBOL

library, source program, or in pseudo-text which is:

(1) A separator, except for: space; a pseudo-text delimiter; and the opening and closing delimiters for

nonnumeric literals. The right parenthesis and left parenthesis characters, regardless of context within the

library, pseudo-text, are always considered text words.

(2) A literal including, in the case of nonnumeric literals, the opening quotation mark and the closing quotation

mark which bound the literal.

(3) Any other sequence of contiguous COBOL characters except comment lines and the word `COPY', bounded

by separators, which is neither a separator nor a literal.

Truth Value. The representation of the result of the evaluation of a condition in terms of one of two values: true,

false.

Unary Operator. A plus (+) or a minus (-) sign, which precedes a variable or a left parenthesis in an arithmetic

expression and which has the effect of multiplying the expression by +1 or -1 respectively.

Unit. A discrete portion of a storage medium, the dimensions of which are determined by each the particular

operating environment, that contains part of a file, all of a file, or any number of files. The term is synonymous with

reel and volume.

Glossary

813

Unsuccessful Execution. The attempted execution of a statement that does not result in the execution of all the

operations specified by that statement. The unsuccessful execution of a statement does not affect any data referenced

by that statement, but may affect status indicators.

User-Defined Word. A COBOL word that must be supplied by the user to satisfy the format of a clause or statement.

Variable. A data item whose value may be changed by execution of the object program. A variable used in an

arithmetic-expression must be a numeric elementary item.

Variable Length Record. A record associated with a file whose file description or sort-merge description entry

permits records to contain a varying number of character positions.

Variable Occurrence Data Item. A variable occurrence data item is a table element which is repeated a variable

number of times. Such an item must contain an OCCURS DEPENDING ON clause in its data description entry, or

be subordinate to such an item.

Variable origin (screen). The LINE phrase and COLUMN phrase in DISPLAY and ACCEPT statements allow the

entire screen description referenced by screen-name to be moved to a different starting position on the user's display

device than the starting position defined in the screen description. This capability is called variable origin.

Verb. A word that expresses an action to be taken by a COBOL compiler or object program.

Volume. A discrete portion of a storage medium, the dimensions of which are determined by each operating

environment, that contains part of a file, all of a file, or any number of files. The term is synonymous with reel and

unit.

Word. A character-string of not more than 30 characters which forms a user-defined word, a system-name, or a

reserved word.

Working-Storage Section. The section of the Data Division that describes working storage data items, composed

either of noncontiguous items or working storage records or of both.

77-Level-Description-Entry. A data description entry that describes a noncontiguous data item with the

level-number 77.

Interactive COBOL Language Reference & Developer’s Guide

814

APPENDICES

815

APPENDICES

A. IMPLEMENTATION LIMITS.. 817

B. ESCAPE KEY TABLE.. 819

C. ANSI 74 FILE STATUS CODES. 821

D. ANSI 85 FILE STATUS CODES. 823

E. VXCOBOL FILE STATUS CODES. 825

F. ANSI 74 and ANSI 85 EXCEPTION STATUS CODES. 827

G. VXCOBOL EXCEPTION STATUS CODES. 835

H. UNIX Errno. 843

I. ASCII CODES. 844

J. EBCDIC CODES. 846

K. COBOL RESERVED WORDS. 847

L. SYSTEM CALLS. 851

Interactive COBOL Language Reference & Developer’s Guide

816

APPENDIX A - IMPLEMENTATION LIMITS

817

APPENDIX A. IMPLEMENTATION LIMITS

Compiler and Runtime Implementation Limits

1. The maximum length of user-defined words (data-names, condition-names, file-names, index-names, etc.) kept

to determine uniqueness is 30 for ANSI 74 and ANSI 85 and 50 for VXCOBOL.

2. The maximum length of an elementary data item is 65535 characters.

3. The maximum number of subscripts for a table is 7.

4. The maximum number of occurrences for a table is 16,777,215; storage limitations will effectively cause a lower

limit.

5. The maximum number of items in the USING phrase of a CALL statement or a Procedure Division header is 32.

6. The maximum length of literals is 256.

7. The maximum number of entries in a GO TO DEPENDING ON is 254.

8. The maximum number of corresponding items in a MOVE CORRESPONDING statement is 126, while the

maximum number of corresponding items in an ADD or SUBTRACT CORRESPONDING statement is 63.

9. File I/O

For a sequential data-sensitive file the maximum record size is 2048 bytes, otherwise the maximum record

size is 32,768 bytes..

ICISAM files

For a relative file, the maximum record size is 16,384 bytes (16KB) (version 7). Versions 5 and 6 restrict

this to 4096 bytes.

For a relative file, the maximum number of keys (relative key) is 4,294,967,296 (2) (version 7). Versions32

5 and 6 restrict this to 65534.

For an indexed file, the maximum record size is 16,384 bytes (16KB) (version 7). Versions 5 and 6 restrict

this to 4096 bytes.

For an indexed file, the maximum number of alternate keys is 16 (version 7). Versions 5 and 6 restrict this

to 4.

For an indexed file, the maximum size of a key is 255 bytes (version 7). Versions 5 and 6 restrict this to

100 bytes.

The maximum file size is 4GB for data and 4GB for index but is dependent on the operating system support

on a particular platform.

The maximum number of alternate keys is 16.

10. The maximum number of COPY files for a given multi-file compile in an IDE project is 6000.

11. The maximum number of lines per compile is 60,000.

12. The maximum code size per program is 16,777,215 bytes.

13. The maximum data size per program is 16,777,215 bytes.

14. The maximum number of STRING/UNSTRING operands is 63.

15. The maximum number of level 88 values is 100.

Interactive COBOL Language Reference & Developer’s Guide

818

16. The maximum number of KEY IS clauses on an OCCURS clause is 10.

17. The maximum number of sort/merge keys is 20.

18. The maximum number of DISPLAY arguments is 63.

Runtime Implementation Limits

1. The maximum depth of a PERFORM is 31.

2. The maximum number for PERFORM x TIMES is 4,294,967,294 (2 -2).32

INFOS Implementation Limits (VXCOBOL)

The U/FOS product from Transoft , is used to provide INFOS functionality.™ ®

1. The maximum number of key volumes is 16.

2. The maximum number of data volumes is 16.

3. The maximum volume size is 1053MB with large pages and 526MB with small pages.

4. The maximum key size is 255 bytes.

5. The maximum total key path including nulls between keys is 255 bytes.

6. The maximum data length is 4074 bytes for large pages and 2026 bytes for small pages.

7. The maximum number of levels is 8.

APPENDIX B - ESCAPE KEY TABLE

819

APPENDIX B. ESCAPE KEY TABLE

This is the default ESCAPE KEY table for a Data General D2xx compatible terminal which had 15 function keys

(F1 - F 15) with four states (alone, SHIFT, CTRL, and CTRL-SHIFT), 4 function keys (C1 - C4) with two states,

along with the arrow keys with two states and two special keys.

Key Key
alone

Key +
SHIFT

Key +
CTRL

Key +
SHIFT+CTRL

 CR 00 00 00 00

 NEWLINE 00 00 00 00

 ESC 01 01 01 01

 F1 02 10 18 26

 F2 03 11 19 27

 F3 04 12 20 28

 F4 05 13 21 29

 F5 06 14 22 30

 F6 07 15 23 31

 F7 08 16 24 32

 F8 09 17 25 33

 F9 34 41 48 55

 F10 35 42 49 56

 F11 36 43 50 57

 F12 37 44 51 58

 F13 38 45 52 59

 F14 39 46 53 60

 F15 40 47 54 61

 C1 62 66 62 66

 C2 63 67 63 67

 C3 64 68 64 68

 C4 65 69 65 69

 Down-arrow * 77 * 77d d

 Up-arrow * 70 * 70u u

 Right-arrow n/a 71 n/a 71

 Left-arrow n/a 72 n/a 72

 CMD-Print 73 74 73 74

 Home n/a 75 n/a 75

* In a multi-field screen ACCEPT, goes to the next field (down-arrow), unless on the last field. On the lastd

field (or only field) a 00 is returned. (See Next Field definition under Terminal Description).

* In a multi-field screen ACCEPT, goes to the previous field (up-arrow), unless on the first field. On the firstu

field (or only field) a beep is sounded. (See Previous Field definition under Terminal Description).

In all operating environments, ICOBOL supports terminal types other than Data General terminals with a different

number of function keys. For more on those terminals supported and their supported function key values see the

Installing and Configuring Interactive COBOL Manual for your operating environment.

If using pc’s, either native or with a terminal emulator, the standard PC keyboard has twelve function keys (F1 -

F12). With the pcwindow terminal type, four states are available with F1 - F12.

Interactive COBOL Language Reference & Developer’s Guide

820

APPENDIX C - ANSI 74 File Status Codes

821

APPENDIX C. ANSI 74 FILE STATUS CODES

Code Meaning

00 Successful I/O operation.

02 Successful I/O operation but a duplicated key was detected.

04 Successful read but length of record does not conform to that specified for file.

10 AT END condition.

11 During a READ NEXT or READ PREVIOUS of an ISAM or relative file, another program added a record to

the file. Use the START statement to reposition the record pointer.

21 RECORD KEY error. For an ISAM or relative file in sequential access mode, a WRITE statement used a

RECORD KEY value that was not greater than the value used in the previous WRITE.

22 INVALID KEY error.

(1) An attempt has been made to write or rewrite a record that would create a duplicate primary key.

(2) An attempt has been made to UNDELETE a record that was not deleted.

23 No record exists with the specified RECORD KEY value.

24 Index structure is full. Writing a new record would necessitate creating a new index level beyond the allowable

levels.

30 Hardware error or other undefined error like a print device was aborted by the user.

34 Out of disk space to write a new record.

91 OPEN error.

(1) An OPEN statement referred to a file that was nonexistent, already open, or had an illegal name.

(2) A CLOSE statement referred to a file that had not been opened.

(3) On OPEN, the filename already existed.

(4) On OPEN, a nondirectory argument was in the pathname.

(5) On OPEN, a zero-length filename was specified.

(6) On OPEN, no more files could be opened by the operating system.

(7) On OPEN, for devices the hardware is not present.

(8) On a data-sensitive READ, the line is too long for the record.

92 Access mode error. (1) File not opened.

(2) WRITE or DELETE attempted to file opened for input.

(3) READ attempted for file opened for output.

(4) OPEN attempted for file closed with lock.

(5) DELETE or REWRITE statement not preceded by a READ statement for a file in sequential access

mode.

(6) OPEN attempted on a file with insufficient access rights for OPEN mode.

94 In Use Error. (1) File cannot be accessed because it is in use.

(2) Record cannot be accessed because it is locked.

(3) DELETE FILE attempted for an opened file.

96 A directory named by the program does not exist.

97 Maximum number of open files exceeded.

98 Attempt to write more than 65,535 records to a relative file.

99 Printer control file is full.

9A File description inconsistency. Record length, key length, or key positions specified in program does not agree

with the data file. Invalid ICISAM version.

9B Corruption error.

(1) After a successful OPEN of an ICISAM file, the runtime system has detected possible corruption in the

file. Close this file; this sets the ICISAM reliability flags and prevents further access to the file.

(2) Data (.XD) portion of an ICISAM or relative file is full. The ICISAM reliability flags are set.

(3) On an attempted OPEN of an ICISAM file, ICOBOL has detected that the file is possibly corrupt

although the ICISAM reliability flags are clear. The appropriate reliability flag(s) are set and the file is

not opened.

9C Index (.NX) portion of an ICISAM or relative file is full. The ICISAM reliability flags are not set.

9E Record lock limit has been exceeded.

9F Possible corruption of an ICISAM file has been detected on an attempted OPEN of the file; i.e., one or both of

the ICISAM reliability flags had previously been set.

9T Device Timeout.

Interactive COBOL Language Reference & Developer’s Guide

822

APPENDIX D - ANSI 85 File Status Codes

823

APPENDIX D. ANSI 85 FILE STATUS CODES

Code Meaning

00 Successful I/O operation.

02 Successful I/O operation but a duplicated key was detected.

04 Successful READ operation but the length of the record does not conform to that specified for the file.

05 Successful OPEN operation but the referenced optional file was not present, it was created if an OPEN I-O or

EXTEND.

10 AT END condition.

11 During a READ NEXT or READ PREVIOUS of an ISAM or relative file, another program added a record to

the file. Use the START statement to reposition the record pointer.

21 RECORD KEY error. For an ISAM or relative file in sequential access mode, a WRITE statement used a

RECORD KEY value that was not greater than the value used in the previous WRITE.

22 INVALID KEY error.

(1) An attempt has been made to write or rewrite a record that would create a duplicate key on a key that

does not support duplicates.

(2) An attempt has been made to UNDELETE a record that was not deleted.

23 No record exists with the specified RECORD KEY value.

24 Index structure is full. Writing a new record would necessitate creating a new index level beyond the allowable

levels for an indexed file. Attempt to write more than 65,535 records to a relative file.

30 Hardware error or other undefined error.

34 Boundary error.

(1) Out of space to write a new record (Out of disk space).

(2) Out of space to READ a record (record area is too small).

35 File not found. On OPEN with INPUT, I-O, or EXTEND a non optional file was not present.

37 Access error. On OPEN the specified file does not support the open mode specified.

38 On OPEN the specified file was previously closed with lock.

39 On OPEN a File description inconsistency was detected. Record length, key length, or key positions specified

in program does not agree with the data file.

41 An OPEN was attempted for a file that was already open.

42 A CLOSE was attempted for a file that was not open.

43 DELETE or REWRITE statement not preceded by a READ statement for a file in sequential access mode.

44 On a WRITE or REWRITE a record that is larger or smaller than what the file allows was attempted or on a

REWRITE the record is not the same size.

46 On a sequential READ no valid next record is available.

47 A READ or START was attempted for file not opened for input or I-O.

48 A WRITE was attempted on a file not open in I-O, output, or extend mode.

49 A DELETE, REWRITE, or UNDELETE was attempted for a file not opened in I-O mode.

91 OPEN error.

(1) An OPEN statement referred to a file that was nonexistent or had an illegal name.

(3) On OPEN, the filename already existed.

(4) On OPEN, a nondirectory argument was in the pathname.

(5) On OPEN, a zero-length filename was specified.

(6) On OPEN, no more files could be opened from the operating system.

(7) On OPEN, for devices the hardware is not present.

92 Access mode error.

(1) File not opened.

94 In Use Error.

(1) File cannot be accessed because it is in use.

(2) Record cannot be accessed because it is locked.

(3) DELETE FILE attempted for an opened file.

96 A directory named by the program does not exist.

97 Maximum number of open files exceeded.

99 Printer control file is full.

Interactive COBOL Language Reference & Developer’s Guide

824

9A Invalid ICISAM file version.

9B Corruption error.

(1) After a successful OPEN of an ICISAM file, the runtime system has detected possible corruption in the

file. Close this file; this sets the ICISAM reliability flags and prevents further access to the file.

(2) Data (.XD) portion of an ICISAM or relative file is full. The ICISAM reliability flags are set.

(3) On an attempted OPEN of an ICISAM file, ICOBOL has detected that the file is possibly corrupt

although the ICISAM reliability flags are clear. The appropriate reliability flag(s) are set and the file is

not opened.

9C Index (.NX) portion of an ICISAM or relative file is full. The ICISAM reliability flags are not set.

9E Record lock limit has been exceeded.

9F Possible corruption of an ICISAM file has been detected on an attempted OPEN of the file; i.e., one or both of

the ICISAM reliability flags had previously been set.

9T Device Timeout.

APPENDIX E - VXCOBOL File Status Codes

825

APPENDIX E. VXCOBOL FILE STATUS CODES

Code Meaning

00 Successful I/O operation.

02 Successful I/O operation but a duplicated key was detected.

10 AT END condition. (end-of-file or end of subindex)

11 During a READ NEXT or READ PREVIOUS of an ICISAM indexed or relative file, another program added a

record to the file. Use the START statement to reposition the record pointer.

21 RECORD KEY error. For an ICISAM indexed or relative file in sequential access mode, a WRITE statement

used a RECORD KEY value that was not greater than the value used in the previous WRITE.

22 INVALID KEY error.

(1) An attempt has been made to write or rewrite a record that would create a duplicate primary key.

(2) An attempt has been made to UNDELETE a record that was not deleted.

23 No record exists with the specified RECORD KEY value.

24 Index structure is full. Writing a new record would necessitate creating a new index level beyond the allowable

levels. (ICISAM only)

30 Hardware error or other undefined error like a print device was aborted by the user.

34 Out of disk space to write a new record.

91 OPEN error.

(1) An OPEN statement referred to a file that was nonexistent, already open, or had an illegal name.

(2) A CLOSE statement referred to a file that had not been opened.

(3) On OPEN, the filename already existed.

(4) On OPEN, a nondirectory argument was in the pathname.

(5) On OPEN, a zero-length filename was specified.

(6) On OPEN, no more files could be opened by the operating system.

(7) On OPEN, for devices the hardware is not present.

(8) On a data-sensitive READ, the line is too long for the record.

92 Access mode error.

(1) File not opened.

(2) WRITE or DELETE attempted to file opened for input.

(3) READ attempted for file opened for output.

(4) OPEN attempted for file closed with lock.

(5) DELETE or REWRITE statement not preceded by a READ statement for a file in sequential access

mode.

(6) OPEN attempted on a file with insufficient access rights for OPEN mode.

93 Write Verification error.

94 In Use Error.

(1) File cannot be accessed because it is in use.

(2) Record cannot be accessed because it is locked.

(3) DELETE FILE or EXPUNGE attempted for an opened file.

96 A directory named by the program does not exist or with INFOS the record the program is trying to access has

been previously marked as logically deleted, either locally or globaly.

97 Maximum number of open files exceeded or with INFOS a REWRITE or DELETE was attempted without

executing a previous READ statement for an indexed file with sequential access.

98 Attempt to write more than 65,535 records to a relative file or with INFOS while attempting to delete a primary

key, the program was:

(1) unable to access an alternate key associated with that primary key and/or

(2) was unable to restore the file to the condition it was in before the program deleted the primary key

and/or

(3) was unable to restore the file position.pointer to its locayion prior to the delete if RETAIN POSITION

was specified; the prior position may be locked.

99 A U/FOS error has occurred for which there is no corresponding File Status code. The U/FOS error code is in

the INFOS Status item, if specified in the file's SELECT clause.

9A File description inconsistency. Record length, key length, or key positions specified in program does not agree

with the data file. Invalid ICISAM version.

Interactive COBOL Language Reference & Developer’s Guide

826

9B Corruption error.

(1) After a successful OPEN of an ICISAM file, the runtime system has detected possible corruption in the

file. Close this file; this sets the ICISAM reliability flags and prevents further access to the file.

(2) Data (.XD) portion of an ICISAM indexed or relative file is full. The ICISAM reliability flags are set.

(3) On an attempted OPEN of an ICISAM file, VXCOBOL has detected that the file is possibly corrupt

although the ICISAM reliability flags are clear. The appropriate reliability flag(s) are set and the file is

not opened.

9C Index (.NX) portion of an ICISAM indexed or relative file is full. The ICISAM reliability flags are not set.

9E Record lock limit has been exceeded.

9F Possible corruption of an ICISAM file has been detected on an attempted OPEN of the file; i.e., one or both of

the ICISAM reliability flags had previously been set.

9T Device Timeout.

APPENDIX F - ANSI 74 and ANSI 85 Exception Status Codes

827

APPENDIX F. ANSI 74 and ANSI 85 EXCEPTION STATUS CODES

Following is a list of Exception Status codes along with the File Status that will be set, if appropriate. If two File

Status values are given, the first is for ANSI 74 and the second is for ANSI 85, if only one is given, both return the

same value. If none are given, both return a file status of 30.

On Windows, errors 1 - 31 map directly to Exception Status 1 - 31, while errors 32 - 92 map to Exception Status

288 - 347, i.e., add 256 to Microsoft errors greater than 31.

On UNIX, errno maps to an Exception Status as documented in APPENDIX H.

Exception
Status

74 File
Status

85 File
Status Message

1 30 Invalid operation
2 91 35 File not found
3 96 Path not found

4 91 No more handles available

5 92 37 Access denied

6 92 Invalid handle

7 30 Memory control blocks bad

8 30 Insufficient memory

9 30 Invalid memory control block address

10 30 Invalid environment

11 30 Invalid format

12 30 Invalid access code

13 30 Invalid data

14 Insufficient memory to complete this operation

15 96 Invalid drive specifier

16 92 Attempt to remove current directory

17 91 Not the same device

18 91 No more files

19 30 37 Write protected disk

20 30 Unknown hardware unit

21 30 Drive is not ready

22 30 Unknown hardware command

23 30 CRC error in data

24 30 Hardware drive request is bad

25 30 Disk seek error

26 30 Unknown disk media type

27 30 Sector not found

28 30 Printer out of paper

29 30 Write fault

30 30 Read fault

31 30 General failure

32 94 The file already exists

33 94 The file is exclusively opened

34 34 The filesize is too big

35 94 41 Attempt to exclusively open an open file

36 91 The filename is not valid

37 10 End of file

38 98 24 Invalid relative key

39 34 Out of (disk) space

40 91 34 Readline argument is too long

41 91 41 Attempt to open an open file

42 91 42 Attempt to close a closed file

43 92 38 Attempt to open a locked file

44 99 Printer control file is full

45 92 Invalid operation for open mode

46 92 Handle is not open

47 94 Attempt to delete an open file

48 92 34 Record area size too small for record

49 92 44 Record size mismatch on rewrite

50 9A 39 Record too long

51 9A 39 Too many keys requested

52 9A 39 Invalid key packet length

Interactive COBOL Language Reference & Developer’s Guide

Exception
Status

74 File
Status

85 File
Status Message

828

53 9A 39 Key is too long

54 9A 39 Invalid key definition (not in record)

55 9A 39 Record size mismatch on open

56 9A 39 Number of keys mismatch on open

57 9A 39 Key size mismatch on open

58 9A 39 Key offset mismatch on open

59 9A .NX file version is not valid

60 9A .XD file version is not valid

61 9E Out of record locks

62 94 Record is locked

63 23 46 Invalid current record pointer

64 23 Record is deleted

65 22 Record is not deleted

66 21 Not rewriting the current record

67 23 Key not found

68 22 Attempt to write a duplicate key

69 24 .NX file B-tree is full (node depth or full node)

70 21 Not writing in ascending order

71 9B The .NX file is corrupt

72 9B The .XD file is corrupt

73 9F Reliability flag indicates .NX file is corrupt

74 9F Reliability flag indicates .XD file is corrupt

75 94 Attempt to rename an open file

76 9T Device timeout

77 30 Device I/O error

78 30 Printer is offline

79 30 Printer is out of paper

80 30 I/O operation aborted by console interrupt

81 91 Device is not available or does not exist

82 9B The file format is not valid

83 9B The file does not have the correct revision

84 9B Record size is zero

85 9B Record position is too small

86 9B Record position is not aligned

87 9B Record position is too big

88 9B Record position is past EOF

89 9B Node block number is not zero

90 9B Node block number is zero

91 9B Node block number is too big

92 9B Duplicates are permitted

93 9B Duplicates are not permitted

94 9B Key size is zero

95 9B Node block number is past EOF

96 9B .XD file size is too small

97 9B .NX file size is too small

98 9B Key entry is deleted

99 9B Record position does not match

100 9B File version does not match

101 9B Node block number is inconsistent

102 9B Node entry count is zero

103 9B Node entry count is too big

104 9B Node entry count is the maximum

105 9B Node level is inconsistent

106 9B Node key number is inconsistent

107 9B Node leaf indicator is inconsistent

108 9B Position is not aligned on a node boundary

109 9B Relative key value is inconsistent

110 9B key value is inconsistent

111 00 Reliability flag(s) have been cleared

112 9B Internal error - invalid use of buffer manager

113 9B Attempt to release buffer not in use

114 9B No buffers were available

115 9B Attempt to destroy buffer still in use

116 9B The object definition is in use (internal error)

117 97 No more files may be OPENed

APPENDIX F - ANSI 74 and ANSI 85 Exception Status Codes

Exception
Status

74 File
Status

85 File
Status Message

829

118 97 No more OPEN resources are available

119 97 No more SEQUENTIAL files may be OPENed

120 97 No more RELATIVE files may be OPENed

121 97 No more INDEXED files may be OPENed

122 30 Data Carrier Detect (DCD) has been lost

123 30 The requested object definition is not registered (internal error)

124 The path does not specify a directory

125 I/O aborted by WATCH interrupt

126 This terminal has too few lines to watch the selected terminal

127 30 The object does not match the expected object type (internal error)

128 Console interrupts are disabled

129 Aborted by DUMP interrupt

130 97 Object handle or index entry is NULL (internal error)

131 9B No data is available

132 9A Named item is the wrong type to perform this operation

133 91 The parameter string is not valid for this object

134 91 -unused--

135 97 Not enough resources to complete request

136 30 Internal system error

137 30 Invalid argument to system call

138 92 A remote computer can not be specified for this operation

139 02 A duplicate key value has been written

140 02 A duplicate key value has been read

141 30 9B File standard header is not valid

142 30 9B File standard header checksum is bad

143 30 9B File type does not match required type

144 30 9B File header length, offset, or checksum is bad

145 30 9B File has wrong byte order

146 9A 39 Key with duplicates specification does not match

147 9A 39 ICISAM file format does not match

148 9A 39 ICISAM file version does not match

149 92 39 The .NX and .XD files are not properly paired

150 9A 39 Purge deleted records mismatch on open

151 9A 39 Key null value suppression specification does not match

152 9A 39 Key uppercase conversion specification does not match

153 00 05 File was created

154 00 05 The optional file was not available

155 92 47 Invalid operation for file without input access

156 92 48 Invalid operation for file without output access

157 92 49 Invalid operation for file without I-O access

158 92 43 DELETE or REWRITE not preceded by a successful READ

159 9B The header information from the .XD and .NX file is not consistent

160 30 A Sort or Merge operation is already active

161 92 10 Optional file was unavailable for sequential READ

162 92 23 Optional file was unavailable for random READ or START

163 30 14 The relative key value exceeds the size of the relative key on READ

164 30 24 The relative key value exceeds the size of the relative key on WRITE

165 9B Position is not aligned on a shared page boundary

166 22 Attempt to modify an unmodifiable key

167 94 Attempt to rewrite a record which has been modified since it was read

168 94 Attempt to perform an operation which would lead to a deadlock situation

169 9B Invalid record length value in record header

170 9A 39 Too many key occurs requested

171 9A 39 Too many key suffixes requested

172 9A 39 Too many key alsos requested

173 9A 39 Key occurs/also specification does not match

174 9A 39 Key occurs/also count does not match

175 9A 39 Key occurs span specification does not match

176 9A 39 Key suffix count specification does not match

177 9A 39 Key reverse order specification does not match

178 30 The .XL and .XD files are not properly paired

179 30 Begin/end transition is not in sequence

180 30 Invalid combination of open options

181 30 An invalid or corrupted network packet was received

182 30 Data value is not a valid data-type-value

Interactive COBOL Language Reference & Developer’s Guide

Exception
Status

74 File
Status

85 File
Status Message

830

183 30 Data does not fit in the data area provided

184 9A 39 4GB maximum file specification does not match

185 92 44 Record size specified exceeds the maximum or is less than the minimum for
the file

186 *ERROR:

187 Conversion error (index register overflow)

188 An index is out of range

189 The perform count is too large

190 The perform stack has overflowed

191 Fatal I/O error

192 04 Length of record does not conform to that specified for the file

193 The program was terminated by a console interrupt

194 **stop run**

195 Fatal Runtime System Error

196 Fatal Runtime System Error: invalid operation code

197 The system is ready. Press Newline to begin LOGON

198 The system is currently unavailable

199 The program was terminated by another console

200 The program is too big

201 –blank--

202 The program file is not valid

203 The program was not found

204 –blank--

205 –blank--

206 –blank--

207 The program is already active

208 Attempt to call too many programs

209 Parameter mismatch in call

210 –blank--

211 –blank--

212 No more programs are available

213 The program file could not be loaded

214 –blank--

215 The program had been disabled

216 --unused--

217 --unused--

218 --unused--

219 Invalid task number

220 There are no more entries in the table

221 This operation is not permitted

222 The item is currently in use

223 The item was removed

224 The requested page is not in the file

225 --unused--

226 --unused--

227 --unused--

228 The terminal is not logged on

229 The terminal is not configured into the system

230 The configuration file is not valid

231 --unused--

232 --unused--

233 --unused--

234 The abort request was sent to terminal

235 The message was sent to terminal

236 The maximum number of users are already running

237 The option is not a valid option

238 --unused--

239 Process initialization error

240 The option requires an argument

241 The argument is too long to process

242 There are no more options to process

243 Out of processes, system resources, or no data available

244 Shared memory initialization error

245 Shared area revision does not match

246 The shared area is not ready for use

APPENDIX F - ANSI 74 and ANSI 85 Exception Status Codes

Exception
Status

74 File
Status

85 File
Status Message

831

247 Semaphore initialization error

248 No more processes can be run

249 Username:

250 The Shared Resource Executive Agent (icexec) is required

251 Process termination (Quit/Logoff)

252 Program not authorized

253 Process termination (Modem Hangup)

254 The process was terminated by a global timeout

255 Process Termination (Shutdown)

256 Insufficient memory for File Table

257 Insufficient memory for File Name Table

258 –unused--

259 Insufficient memory for File Control Tables

260 Insufficient memory for Device Table

261 Insufficient memory for Device Control Tables

262 Unable to initialize standard input file

263 Unable to initialize standard output file

264 Unable to initialize standard error file

265 Invalid type for stdio file

266 Locking Open/Close semaphore

267 Insufficient memory for Handle Table

268 Insufficient memory for Buffer Control Tables

269 Insufficient memory for Buffers

270 Insufficient memory for Cache Control Tables

271 Insufficient memory for UID Tables

272 Insufficient memory for INDEXED file table

273 –unused--

274 Insufficient memory for RELATIVE file table

275 Insufficient memory for License Control tables

276 Insufficient memory for Record Lock table

277 –unused--

278 –unused--

279 Too many directories in path list

280 Insufficient memory for pathlist names

281 Insufficient memory for Library Sub-File Table

282 Too many libraries have been requested

283 –unused--

284 ICEXEC was abnormally terminated

285 Insufficient memory for ISAM File Table

286 Insufficient memory for Network Control Table

287 Insufficient memory for SEQUENTIAL File Table

288 92 Sharing violation

289 94 Lock violation

290 30 Invalid disk change

291 30 FCB unavailable

292 30 Sharing buffer overflow

293 30 -reserved-

294 30 Out of Input

295 34 Insufficient disk space

296-305 30 -reserved-

306 30 Network request not supported

307 30 Remote computer is not available

308 30 Duplicate name on network

309 30 Network path not found

310 30 Network busy

311 30 Network device no longer exists

312 30 Net BIOS command limit exceeded

313 30 Network adapter hardware error

314 32 The specified server cannot perform the requested operation

315 30 Unexpected network error

316 30 Incompatible remote adapter

317 30 Print queue full

318 30 Not enough space for print file

319 30 Print file was deleted

320 30 The specified network name is no longer available

Interactive COBOL Language Reference & Developer’s Guide

Exception
Status

74 File
Status

85 File
Status Message

832

321 92 37 Network access denied

322 30 Network resource type incorrect

323 30 Network name not found

324 30 Network name limit exceeded

325 30 Net BIOS session limit exceeded

326 30 Temporarily paused

327 30 No more connections can be made to this remote computer at this time

328 30 Print or disk redirection is paused

329-333 30 -reserved-

334 30 Not logged in or Network name not valid

335 30 -reserved-

336 94 File exists

337 30 -reserved-

338 30 Cannot make directory entry

339 30 Fail on INT 24

340 30 Too many redirections

341 30 Duplicate redirection

342 30 Invalid password

343 30 Invalid parameter

344 30 Network data fault

345 30 The system cannot start another process at this time

346 30 Required system component not installed

347-364 30 –reserved–

365 Connection broken

366-377 –reserved--

378 The data area passed to a system call is too small.

379-415 –reserved--

416 Record Manager initialization failed

417 The Record Manager or Requester is inactive

418 The Record Manager or Requester interface is invalid

419 Record Manager does not implement the required capability

420 Record Manager returned a reserved status code

421 Record Manager returned a generic status code

422 Record Manager returned an undefined status code

423 –blank--

424 –blank--

425 –blank--

426 –blank--

427 –blank--

428 –blank--

429 –blank--

430 –blank--

431 –blank--

432 The terminal is already being WATCH’ed

433 Cannot watch a pushed terminal

434 Cannot watch a watching terminal

435 A watched terminal cannot watch another

436 Cannot interrupt the terminal to watch

437 Watched terminal has logged off

438 Watched terminal has pushed to CLI. Press Interrupt to discontinue watching.

439 Invalid operation for your own terminal

440 Watched terminal terminated itself with an error

441 Watched terminal terminated by interrupt

442 The process is defunct

443 The watched terminals program process has terminated

444 Cannot watch an SP2 or CGI server process

448 Operation would block

449 Operation now in progress

450 Operation already in progress

451 Socket operation on non-socket

452 Destination address required

453 Message too long

454 Protocol wrong type for socket

455 Protocol not available

APPENDIX F - ANSI 74 and ANSI 85 Exception Status Codes

Exception
Status

74 File
Status

85 File
Status Message

833

456 Protocol not supported

457 Socket type not supported

458 Operation not supported on socket

459 Protocol family not supported

460 Address family not supported

461 Address already in use

462 Cannot assign requested address

463 Network is down

464 Network is unreachable

465 Network dropped connection on reset

466 Software caused connection abort

467 Connection reset by peer

468 Out of stream resources

469 Socket is already connected

470 Socket not connected

471 Cannot send after socket shutdown

472 Too many connection, cannot splice

473 Connection timed out

474 Connection refused

475 Too many symbolic links in path

476 Filename too long

477 Host is down

478 No route to host

479 Host not found

480 –blank--

481 No more streams resources available

482 The user account already exists

483 The password is too short or fails some other restriction

484 This beta release expired

485 This beta release will run until

486 Reference modification position out of range

487 Reference modification length out of range

500 ExitCode 0: Processing completed successfully

501 ExitCode 1: Processing occurred, but had errors

502 ExitCode 2: Processing occurred, but was interrupted or aborted

503 ExitCode 3: Processing occurred, but was halted by a fatal internal error

504 ExitCode 4: Processing failed because of command-line errors

505 ExitCode 5: Processing failed because of an authorization failure

506 ExitCode 6: Processing failed because of program initialization errors

507 ExitCode 7: Processing did not occur because command-line help was
requested instead

508 ExitCode 8: Processing did not occur because a command-line status request
ran instead

509 ExitCode 9: reserved

510 Unimplemented operating system function

511 Unexpected operating system error

Interactive COBOL Language Reference & Developer’s Guide

834

APPENDIX G - VXCOBOL Exception Status Codes

835

APPENDIX G. VXCOBOL EXCEPTION STATUS CODES

Following is a list of Exception Status codes along with the File Status and INFOS Status that will be set, if

appropriate. If an xxx is given for an INFOS Status then the INFOS Status will be a character string with an "x" in

front of the Exception Status, as "x7".

On Windows, errors 1 - 31 map directly to Exception Status 1 - 31, while errors 32 - 92 map to Exception Status

288 - 347, i.e., add 256 to Microsoft errors greater than 31.

On UNIX, errno maps to an Exception Status as documented in APPENDIX H.

Exception File INFOS
Status Status Status Message
 0 00 0 No error
 1 30 001 Invalid operation
 2 91 025 File not found
 3 91 023 Path not found
 4 91 035 No more handles available
 5 91 0102 Access denied
 6 92 0147 Invalid handle
 7 30 xxx Memory control blocks bad
 8 30 005 Insufficient memory
 9 30 xxx Invalid memory control block address
 10 30 xxx Invalid environment
 11 30 xxx Invalid format
 12 30 xxx Invalid access code
 13 30 0221207 Invalid data
 14 30 xxx -– reserved --
 15 30 xxx Invalid drive specifier
 16 91 031 Attempt to remove current directory
 17 91 0221222 Not the same device
 18 91 0221227 No more files
 19 30 0122 Write protected disk
 20 30 xxx Unknown hardware unit
 21 30 0121 Drive is not ready
 22 30 xxx Unknown hardware command for device
 23 30 070 CRC error in data
 24 30 xxx Hardware drive request is bad
 25 30 0155 Disk seek error
 26 30 0104 Unknown disk media type
 27 30 xxx Sector not found
 28 30 xxx Printer out of paper
 29 30 0121 Write fault
 30 30 075 Read fault
 31 30 xxx General failure
 32 91 026 The file already exists
 33 94 0204 The file is exclusively opened
 34 34 0146 The file size is too big
 35 94 063 Attempt to exclusively open an open file
 36 91 024 The filename is not valid
 37 10 030 End of file
 38 23 015101 Invalid relative key
 39 34 021 Out of (disk) space
 40 99 067 Readline argument is too long
 41 92 03 Attempt to open an open file
 42 92 065 Attempt to close a closed file
 43 92 xxx Attempt to open locked file
 44 30 xxx Printer control file is full
 45 92 077 Invalid operation for open mode
 46 92 02 Handle is not open
 47 94 0356 Attempt to delete an open file
 48 99 015022 Record area size too small for record
 49 97 xxx Record size mismatch on rewrite
 50 9A xxx Record is too long
 51 9A xxx Too many keys requested
 52 9A xxx Invalid key packet length
 53 9A xxx Key is too long
 54 9A xxx Invalid key definition (not in record)
 55 9A xxx Record size mismatched on open
 56 9A xxx Number of keys mismatched on open
 57 9A xxx Key size mismatch on open
 58 9A xxx Key offset mismatch on open
 59 9A xxx .NX file version is not valid
 60 9A xxx .XD file version is not valid
 61 9E 07034 Out of record locks
 62 94 07015 Record is locked
 63 23 xxx Invalid current record pointer
 64 96 015017 Record is deleted
 65 23 07030 Record is not deleted
 66 21 xxx Not rewriting the current record
 67 23 xxx Key not found
 68 22 07013 Attempt to write a duplicate key
 69 24 xxx .NX file B-tree is full (node depth or a full node)
 70 21 xxx Not writing in ascending order

Interactive COBOL Language Reference & Developer’s Guide

836

Exception File INFOS
Status Status Status Message
 71 9B xxx The .NX file is corrupt
 72 9B xxx The .XD file is corrupt
 73 9F xxx Reliability flag indicates .NX file may be corrupt
 74 9F xxx Reliability flag indicates .XD file may be corrupt
 75 94 xxx Attempt to rename an open file
 76 9T 076 Device timeout
 77 30 070 Device I/O error
 78 30 xxx Printer is offline
 79 30 xxx Printer is out of paper
 80 30 0221205 I/O operation aborted by console interrupt
 81 91 0221206 Device is not available or does not exist
 82 9B xxx The file format is not valid
 83 9B xxx The file does not have the correct revision
 84 9B xxx Record size is zero
 85 9B xxx Record position is too small
 86 9B xxx Record position is not aligned
 87 9B xxx Record position is too big
 88 9B xxx Record position is past EOF
 89 9B xxx Node block number is not zero
 90 9B xxx Node block number is zero
 91 9B xxx Node block number is too big
 92 9B xxx Duplicates are permitted
 93 9B xxx Duplicates are not permitted
 94 9B xxx Key size is zero
 95 9B xxx Node block number is past EOF
 96 9B xxx .XD file size is too small
 97 9B xxx .NX file size is too small
 98 9B xxx Key entry is deleted
 99 9B xxx Record position does not match
100 9B xxx File version does not match
101 9B xxx Node block number is inconsistent
102 9B xxx Node entry count is zero
103 9B xxx Node entry count is too big
104 9B xxx Node entry count is the maximum
105 9B xxx Node level is inconsistent
106 9B xxx Node key number is inconsistent
107 9B xxx Node leaf indicator is inconsistent
108 9B xxx Position is not aligned on a node boundary
109 9B xxx Relative key value is inconsistent
110 9B xxx Key value is inconsistent
111 00 0 Reliability flags(s) have been cleared
112 9B xxx Attempt to destroy buffer still in use
113 9B xxx Attempt to release buffer not in use
114 9B xxx No buffers were available
115 9B xxx Trash or I/O bit set and should not be
116 9B xxx Attempt to unlock file not locked
117 91 xxx No more files may be OPENed
118 91 xxx No more OPEN resources are available
119 91 xxx No more SEQUENTIAL files may be OPENed
120 91 xxx No more RELATIVE files may be OPENed
121 91 xxx No more INDEXED files may be OPENed
122 30 xxx Data Carrier Detect (DCD) has been lost
123 30 xxx Expanded Memory manager function failed

127 30 xxx XMS Extended memory manager function failed
130 91 xxx There are no more names available in the name table
131 9B xxx No data is available
132 9A xxx Named item is the wrong type to perform this operation
133 91 xxx The parameter string is not valid for this object
134 91 xxx An invalid configuration parameter was detected
135 91 xxx Not enough resources to complete system request
136 30 xxx Internal system error
137 30 xxx Invalid argument to system call
138 92 xxx File or device must be on the same node or volume
139 02 0 A duplicate key value has been written
140 02 0 A duplicate key value has been read
141 30 xxx File standard header is not valid
142 30 xxx File standard header checksum is bad
143 30 xxx File type does not match required type
144 30 xxx File header length, offset, or checksum is bad
145 30 xxx File has wrong byte order
146 9A xxx Key with duplicates specification does not match
147 9A xxx ICISAM file format does not match
148 9A xxx ICISAM file version does not match
149 91 xxx File is already opened incompatibly
150 9A xxx Purge-deleted-records mismatch on open
151 9A xxx Key null value suppression specification does not match
152 9A xxx Key uppercase conversion specification does not match
153 00 xxx File was created
154 00 xxx The optional file was not available
155 92 xxx Invalid operation for file without input access
156 92 xxx Invalid operation for file without output access
157 92 xxx Invalid operation for file without I-O access
158 97 015022 DELETE or REWRITE was not preceded by a successful READ
159 9B xxx The header information from the .nx and .xd file
160 30 xxx A Sort or Merge operation is already active
161 10 030 Optional file was unavailable for sequential READ
162 23 030 Optional file was unavailable for random READ or START
163 30 xxx Relative key value exceeds size of the relative key on READ
164 30 xxx Relative key value exceeds size of the relative key on WRITE
165 9B xxx Position is not aligned on a shared page boundary
166 22 xxx Attempt to modify unmodifiable key

APPENDIX G - VXCOBOL Exception Status Codes

837

Exception File INFOS
Status Status Status Message
167 94 xxx Attempt to rewrite a record that has been modified since it was

 read
168 94 xxx Attempt to perform an operation which would lead to a deadlock
 situation
169 9B 061 Invalid record length value in record header
170 9A xxx Too many key occurs requested
171 9A xxx Too many key suffixes requested
172 9A xxx Too may key alsos requested
173 9A xxx Key occurs/also specification does not match
174 9A xxx Key occurs/also count specification does not match
175 9A xxx Key occurs span specification does not match
176 9A xxx Key suffix count speciffication does not match
177 9A xxx Key reverse order specification does not match
178 30 xxx The .XL and .XD files are not properly paired
179 30 xxx Begin/end transition is not in sequence
180 30 xxx Invalid combination of network options
181 30 xxx An invalid or corrupted network packet was received
182 30 xxx The network packet argument descriptors do not match
183 30 xxx Data does not fit in the data area provided
184 9A xxx The 4GB maximum file specification does not match
185 92 xxx Record size specified exceeds the maximum or is less than the

minimum for the file
186 *ERROR:
187 Conversion error (index register overflow)
188 An index is out of range
189 The perform count is too large
190 The perform stack has overflowed
191 Fatal I/O error
192 04 0 The length of the record read does not conform to that specified

for the file
193 The program was terminated by a console interrupt
194 ** stop run **
195 Fatal Runtime System Error
196 Fatal Runtime System Error: invalid operation code
197 The system is ready. Press Newline to begin LOGON.
198 The system is currently unavailable
199 The program was terminated by another console
200 The program is too big
201 The program is the wrong revision
202 The program file is not valid
203 The program was not found
204 The program could not be loaded
205 Error processing using
206 The program could not be accessed
207 The program is already active
208 Attempt to call too many programs
209 Parameter mismatch in call
210 Out of .VM file space
211 Out of handles during CALL
212 No more programs are available
213 The program file could not be loaded
214 Error processing the .VM file
215 The program has been disabled
216 The program identifier is not valid
217 The program is not active
218 Too many parameters in call
219 Invalid task number
220 There are no more entries in the table
221 This operation is not permitted
222 The item is currently in use
223 The item was removed
224 The requested page is not in the file
225 Do you want to shutdown the system?
226 The system is still busy. Do you want to shut down anyway?
227 Do you want to re-enable the terminals?
228 The terminal is not logged on
229 The terminal is not configured into the system
230 The configuration file is not valid
231 The configuration file is the wrong revision
232 The link file is not valid
233 The link file is the wrong revision
234 The abort request was sent to terminal
235 The message was sent to terminal
236 The maximum number of users are already running
237 The option is not a valid option
238 The option has already been selected
239 An option specification is expected
240 The option requires an argument
241 The argument is too long to process
242 There are no more options to process
243 Out of processes, system resources, or no data available
244 Shared memory initialization error
245 Shared area revision does not match
246 The shared area is not ready for use
247 Semaphore initialization error
248 No more processes can be run
249 Username:
250 Exit from hot key call
251 Process termination (Quit/Logoff)
252 Program not authorized
253 Process termination (Modem Hangup)
254 The process was terminated by a global timeout
255 Process Termination (Shutdown)

Interactive COBOL Language Reference & Developer’s Guide

838

Exception File INFOS
Status Status Status Message
256 Insufficient memory for File Table
257 Insufficient memory for File Name Table
258 Insufficient memory for File Name Hash Table
259 Insufficient memory for File Control Tables
260 Insufficient memory for Device Table
261 Insufficient memory for Device Control Tables
262 Unable to initialize standard input file
263 Unable to initialize standard output file
264 Unable to initialize standard error file
265 Invalid type for stdio file
266 Locking Open/Close semaphore
267 Insufficient memory for Handle Table
268 Insufficient memory for Buffer Control Tables
269 Insufficient memory for Buffers
270 Insufficient memory for Cache Control Tables
271 Insufficient memory for UID Tables
272 Insufficient memory for INDEXED file table
273 Insufficient memory for INDEXED file work area
274 Insufficient memory for RELATIVE file table
275 Insufficient memory for License Control tables
276 Insufficient memory for Record Lock table
277 Insufficient memory for Device Name Table
278 Insufficient memory for Device Name Hash Table
279 Too many directories in path list
280 Insufficient memory for pathlist names
281 Insufficient memory for Library Sub-File Table
282 Too many libraries have been requested
283 Insufficient memory for Map Control Tables
284 icexec was abnormally terminated
285 Insufficient memory for ISAM file table
286 Insufficient memory for Network Control table
287 Insufficient memory for Sequential File Table
288 92 Sharing Violation
289 94 Lock Violation
290 30 Invalid disk change
291 30 FCB unavailable
292 30 Sharing Buffer overflow
293 30 –reserved–
294 30 Out of input
295 34 021 Insufficient disk space
296-305 30 –reserved–
306 30 Network request not supported
307 30 Remote computer not listed.
308 30 Duplicate name on network
309 30 Network name not found
310 30 Network busy
311 30 Network device no longer exists
312 30 Net BIOS command limit exceeded
313 30 Network adapter hardware error
314 32 Incorrect response from network
315 30 Unexpected network error
316 30 Incompatible remote adapter
317 30 Print queue full
318 30 Not enough space for print file
319 30 Print file was deleted
320 30 Network name deleted
321 91 102 Network access denied
322 30 Network device type incorrect
323 30 Network name not found
324 30 Network name limit exceeded
325 30 Net BIOS session limit exceeded
326 30 Temporarily paused
327 30 Network request not accepted
328 30 Print or disk redirection is paused
329-333 30 -reserved-
334 30 Not logged in or Network name not valid
335 30 -reserved-
336 94 File exists
337 30 -reserved-
338 30 Cannot make directory entry
339 30 Fail on INT 24
340 30 Too many redirections
341 30 Duplicate redirection
342 30 Invalid password
343 30 Invalid parameter
344 30 Network data fault
345 30 The system cannot start another process at this time
346 30 Required system component not installed
347-377 30 –reserved–
378 The data area passed to a system call is too small.
379-415 –reserved--
416 BTRIEVE initialization failed
417 BTRIEVE Record Manager or Requester is inactive
418 BTRIEVE Record Manager or Requester interface is invalid
419 BTRIEVE does not implement the required capability
420 BTRIEVE returned a reserved status code
421 BTRIEVE returned a generic status code
422 BTRIEVE returned an undefined status code
423 C-ISAM initialization failed
424 C-ISAM is not available
425 C-ISAM interface is invalid
426 C-ISAM does not implement the required capability
427 C-ISAM returned a reserved status code

APPENDIX G - VXCOBOL Exception Status Codes

839

Exception File INFOS
Status Status Status Message

428 C-ISAM returned a generic status code
429 C-ISAM returned an undefined status code
430 Winsock initialization failed
431 Winsock interface is invalid
432 The terminal is already being WATCH’ed
433 Cannot watch a pushed terminal
434 Cannot watch a watching terminal
435 A watched terminal cannot watch another
436 Cannot interrupt the terminal to watch
437 Watched terminal has logged off
438 Watched terminal has pushed to CLI. Press Interrupt to discontinue

watching.
439 Invalid operation for your own terminal
440 Watched terminal terminated itself with an error
441 Watched terminal terminated by interrupt
442 The process is defunct
443 The watched terminals program process has terminated

448 Operation would block
449 Operation now in progress
450 Operation already in progress
451 Socket operation on non-socket
452 Destination address required
453 Message too long
454 Protocol wrong type for socket
455 Protocol not available
456 Protocol not supported
457 Socket type not supported
458 Operation not supported on socket
459 Protocol family not supported
460 Address family not supported
461 Address already in use
462 Cannot assign requested address
463 Network is down
464 Network is unreachable
465 Network dropped connection on reset
466 Software caused connection abort
467 Connection reset by peer
468 Out of stream resources
469 Socket is already connected
470 Socket not connected
471 Cannot send after socket shutdown
472 Too many connection, cannot splice
473 Connection timed out
474 Connection refused
475 Too many symbolic links in path
476 Filename too long
477 Host is down
478 No route to host

480 Connection broken
481 No more streams resources available
482 The user account already exists
483 The password is too short or fails some other restriction
484 This beta release expired
485 This beta release will run until
486 Reference modification position out of range
487 Reference modification length out of range

510 Unimplemented operating system function
511 Unexpected operating system error

Interactive COBOL Language Reference & Developer’s Guide

840

The following only occur with U/FOS files.

Exception File INFOS
Status Status Status Message
2560 99 07006 Positioned above main index
2561 99 xxx 'ufos_verify' found errors
2562 99 07005 Invalid current position
2563 99 xxx Indicates alternate index
2564 99 07777 Function not implemented
2565 99 xxx Software has expired
2566 99 xxx User interrupt
2567 99 xxx Start of fatal messages (request is aborted)
2568 91 07141 Not a U/FOS database or INFOS volume, index, or database
2569 91 07211 Unable to access the key volume(s)
2570 91 07212 Unable to access the data volume(s)
2571 91 xxx Unable to access the logging file
2572 91 xxx Unable to access the shadow volume
2573 91 07211 Unable to access the database directory
2574 34 xxx Exceeded maximum volume size
2575 94 07222 Database is exclusively open, cannot open
2576 94 07217 Database is open, cannot exclusively open
2577 91 07055 Database is invalid, must be fixed first
2578 91 07231 Database left open, run 'ufos_verify' or 'IVERIFY'
2579 99 07001 Index full, cannot add a new level
2580 91 07241 Access to index volume denied
2581 91 07242 Access to data volume denied
2582 91 xxx Access to logging file denied
2583 34 xxx U/FOS data volumes are full
2584 91 07061 Illegal channel number
2585 99 xxx Do not have a U/FOS or INFOS database open
2586 99 07061 No database is open on this channel
2587 34 xxx No space for main key volume
2588 34 xxx No space for main data volume
2589 92 xxx Database is read-only
2590 94 07076 Already opened for read/write; cannot open for sequential
2591 91 xxx No valid primary index file
2592 91 xxx Cannot find the primary index file
2593 94 07101 Already opened for sequential, cannot open for write
2594 92 07437 On-line backup is already in progress
2595 99 xxx Problem opening/creating shadow volume
2596 91 xxx Cannot use 'big-endian' (not byteswapped) database here
2597 91 xxx Cannot use 'little-endian' (byteswapped) database here
2598 92 xxx Database is not in on-line backup mode
2599 99 xxx Unknown processing packet function
2600 99 07702 Invalid packet type
2601 99 xxx Invalid keyed motion word
2602 99 xxx Invalid keyed position word
2603 99 xxx Invalid key address
2604 99 xxx Invalid data record (_DREC) value
2605 99 07201 Invalid number of volumes
2606 99 xxx Invalid split point
2607 99 07026 Invalid number of subindex levels
2608 99 07207 Inavlid maximum volume size
2609 99 xxx Invalid volume element size
2610 99 07175 Invalid database page size
2611 99 xxx Invalid number of concurrent locks
2612 99 xxx __GEN or __APP not allowed on __WRITE
2613 99 xxx Occurence number is zero for __DUP read
2614 99 07173 Filename address pointer is invalid
2615 99 07105 A key address is invalid
2616 99 07064 Record length less than 1
2617 99 07064 Record length too large for page
2618 99 07007 Subindices are not allowed in this subindex
2619 99 07020 Exceeded maximum number of subindexes
2620 99 xxx Data record 2 (partial record) not allowed in this subindex
2621 23 07030 Key not found
2622 99 xxx No key path has been defined
2623 22 07013 Key already exists
2624 99 xxx Data record 1 must exist
2625 99 xxx Data record 2 must exist
2626 23 07014 No data record 1
2627 23 xxx No data record 2
2628 22 07023 Data record 1 already exists
2629 22 xxx Data record 2 already exists
2630 99 xxx Tree too deep for unlink in group
2631 99 07065 Invalid feedback value
2632 99 07006 Positioned above main index
2633 99 07005 Invalid current position
2634 23 07016 Subindex already defined
2635 23 07030 Subindex key does not exist
2636 99 07010 Subindex is not defined
2637 10 07011 End of subindex
2638 99 xxx Key does not have subindex
2639 99 xxx Current position has been deleted
2640 99 07034 Maximum number of locks exceeded
2641 99 07021 Cannot erase key, subindex defined
2642 99 xxx Data record is not locked by user
2643 94 07015 Data record (data record 1) is locked by another user
2644 94 07025 Partial record (data record 2) is locked by another user
2645 99 07104 Key too long for this subindex
2646 99 07104 Zero length key
2647 22 07036 Duplicate keys not allowed in this subindex
2648 99 07043 Subindex not empty; Cannot remove subindex--indices defined
2649 99 xxx No transaction group defined
2650 99 xxx Invalid transaction group count

APPENDIX G - VXCOBOL Exception Status Codes

841

Exception File INFOS
Status Status Status Message
2651 23 xxx Total key path length too long
2652 23 xxx A single null byte '\0' is not a valid key
2653 99 xxx No reads allowed below this index
2654 99 xxx No writes allowed below this index
2655 99 xxx No modifications allowed below this index
2656 99 xxx No deletes allowed below this index
2657 92 xxx User not privileged to access this file
2658 92 07042 User not privileged to modify this file
2659 91 xxx Cannot find primary index for alternate index
2660 91 xxx Alternate index points to another alternate index
2661 91 xxx Alternate key index pointer out of bounds
2662 91 0247 Cannot find the server
2663 99 xxx Cannot create/open pipe to server
2664 99 xxx No setup acknowledgement from server
2665 99 xxx Error in writing to the server
2666 99 xxx Error in reading from the server
2667 99 07051 Allowed number of system users exceeded
2668 99 xxx Allowed number of system databases exceeded
2669 91 07142 Allowed number of databases for this user exceeded
2670 99 xxx Log file truncated
2671 99 xxx Incorrect log file revision
2672 99 xxx Attempt to access negative page number
2673 99 xxx Page is after end of volume
2674 99 xxx Page types do not match
2675 99 xxx Page number mismatch
2676 99 xxx 'KEY_NXT' value is 0
2677 99 xxx Invalid page type
2678 99 xxx Data record address is zero
2679 99 xxx Data record item number is invalid
2680 99 xxx Data item pointer is out of range
2681 99 xxx Data item is marked as deleted
2682 99 xxx Indirect address is zero
2683 99 xxx Page descriptor is zero
2684 99 xxx Insert invalid first key
2685 99 xxx Invalid subindex xref item
2686 99 xxx Invalid key volume number
2687 99 xxx Invalid data volume number
2688 99 xxx Attempt to delete subindex null key
2689 99 xxx Expanded record is not the correct length
2690 99 xxx Key page overflows allowed size
2691 99 xxx Data page is on the wrong space chain
2692 99 xxx File mode in header is wrong
2693 99 xxx Header page descriptor invalid
2694 99 xxx Error from database lseek request
2695 99 xxx Error from database read request
2696 99 xxx Error from database write request
2697 99 xxx Invalid page type request
2698 99 xxx Bad volume number in page request
2699 99 xxx Bad page number in page request
2700 99 xxx Bad page number in page request
2701 99 xxx Attempt to read part of header
2702 99 xxx Reserved -0705
2703 99 xxx Reserved -0706
2704 99 xxx Attempt to write page with invalid address
2705 99 xxx Attempt to flush and page address mismatch
2706 99 xxx Unable to find allocated VM page for user/db
2707 99 xxx Error when attempting to read shadow file
2708 99 xxx Exceeded maximum number of user/database opens
2709 99 xxx Unexpected error from U/FOS
2710 99 xxx Invalid AOS INFOS subindex definition packet
2711 96 015017 Data record is marked as logically deleted
2712 96 015017 Partial record is marked as logically deleted
2713 99 015022 Data record read exceeds specified maximum length
2714 99 015022 Partial record read exceeds specified maximum length
2715 99 07046 Invalid partial record length
2716 92 07102 Request requires read-only access
2717 91 07120 Invalid index node size
2718 91 07213 Index filename already exists
2719 99 07240 Invalid merit factor

2746 99 xxx Transaction group already in progress
2747 99 xxx No transaction group in progress
2748 99 xxx Transaction group not initiated by this user
2749 99 xxx Invalid key length
2750 99 xxx Cannot find banner file name
2751 99 xxx No banner file present for this product
2752 99 xxx Banner server not found
2753 99 xxx Cannot attach to the banner server
2754 99 xxx AIM tools not allowed
2755 99 xxx Cannot get maximum number of users
2756 99 xxx Cannot allocate maximum number of users
2757 99 xxx Data has been corrupted in message queues
2758 99 xxx No message available on interprocess queue
2759 99 xxx Could not generate a valid session
2760 99 xxx Bad session ID
2761 99 xxx System access to server failed
2762 99 xxx Request denied by banner server
2763 99 xxx Corrupt or inaccessible banner name
2764 99 xxx Banner file name entry missing from configuration file
2765 99 xxx Error in target database
2766 99 xxx Error reading target database
2767 99 xxx Cannot link alternate index to another alternate index database

Interactive COBOL Language Reference & Developer’s Guide

842

Exception File INFOS
Status Status Status Message

2768 99 xxx No more linked indices allowed for this database
2769 99 xxx Error positioning target database
2770 99 xxx Unable to rewrite database header
2771 99 xxx Unable to create alternate index symbolic link
2772 99 xxx Unable to create alternate index
2773 99 xxx Unable to write to alternate index

2778 99 xxx Unable to place message on message queue
2779 99 xxx Message send timed out
2780 99 xxx Message receive timed out
2781 99 xxx No space in shared memory table of kernel processes
2782 99 xxx No space in shared memory table of databases opened
2783 99 xxx Database request queue full
2784 99 xxx Timed out waiting on request queue
2785 99 xxx Failed to start monitor process
2786 99 xxx Shared memory tables invalid
2787 99 xxx Failed to write to log file
2788 99 xxx Error attaching to shared memory
2789 99 xxx Error accessing shared memory semaphore
2790 99 xxx Error accessing file of process locks
2791 99 xxx Error getting file status
2792 99 xxx Error removing the semaphore set
2793 99 xxx Error removing the shared memory set
2794 99 xxx Error accessing database semaphore set
2795 99 xxx Error reading page from multi-request diff file
2796 99 xxx Error from database volume unlink request
2797 99 xxx Error from database volume truncate request
2798 99 xxx Invalid subindex root node size
2799 99 xxx Database in checkpointing mode, cannot start transaction
2800 99 xxx Cannot checkpoint, as not in checkpointing mode
2801 99 xxx Can only perform a checkpoint with database closed
2802 99 xxx Cannot checkpoint, as not in explicit checkpointing mode
2803 91 xxx Cannot open database lock table volume
2804 99 xxx Failed to write to database lock table volume
2805 99 xxx Failed to read from database lock table volume
2806 99 xxx Failed to start the 'ufos_connect' process
2807 99 xxx Failed to open the network path (.unp) file
2808 99 xxx U/FOS kernel not yet implemented on this platform
2809 99 xxx Error in the network path (.unp) file
2810 99 xxx Unable to access the ipc type used by the kernel
2811 99 xxx Invalid host name specified
2812 99 xxx Error reading the kernel configuration file
2813 99 xxx Exceeded number of user database combinations
2814 99 xxx Error setting effective user ID
2815 99 xxx Error setting effective group ID
2816 99 xxx Error setting supplementary group access list
2817 99 xxx Log in use by kernel not supporting 'ufos_new_log'
2818 99 xxx Failed to rename old log file
2819 99 xxx Failed to create a new log file
2820 99 xxx Subindex root-node page item table corrupt
2821 99 xxx Subindex root-node item number invalid
2822 99 xxx Database volumes contain an incomplete checkpoint
2823 99 xxx Error processing the multiple request differential file
2824 99 xxx Error processing subindex root node
2825 99 xxx Error expanding subindex root node
2826 99 xxx Error processing opening checkpoint

APPENDIX H - UNIX Errno

843

APPENDIX H. UNIX Errno

The following is a mapping of UNIX errors (errno) to Exception Status codes.

E2BIG 241
EACCES 5
EADDRINUSE 461
EADDRNOTAVAIL 462
EADV 315
EAFNOSUPPORT 460
EAGAIN 243
EALREADY 315
EBADF 6
EBADFD 6
EBADMSG 344
EBUSY 33
ECHILD 1
ECHRNG 6
ECOMM 313
ECONNABORTED 466
ECONNREFUSED 474
ECONNRESET 467
EDEADLK 168
EDEADLOCK 168
EDESTADDRREQ 452
EDOM 137
EDOTDOT 315
EDQUOT 295
EEXIST 32
EFAULT 9
EFBIG 34
EHOSTDOWN 477

EHOSTUNREACH 478
EIDRM 223
EINPROGRESS 315
EINTR 80
EINVAL 137
EIO 77
EISCONN 469
EISDIR 5
ELBIN 315
ELOOP 475
EMFILE 4
EMLINK 340
EMSGSIZE 453
EMULTIHOP 340
ENAMETOOLONE 476
ENETDOWN 463
ENETRESET 465
ENETUNREACH 464
ENFILE 18
ENOBUFS 468
ENODATA 131
ENODEV 81
ENOENT 2
ENOEXEC 137
ENOLCK 61
ENOLINK 311
ENOMEM 8
ENOMSG 131

ENONET 307
ENOPKG 346
ENOPROTOOPT 455
ENOSPC 39
ENOSR 481
ENOSTR 5
ENOSYS 511
ENOTBLK 11
ENOTCONN 470
ENOTDIR 3
ENOTSOCK 451
ENOTTY 5
ENOTUNIQ 308
ENXIO 81
EOPNOTSUPP 458
EOVERFLOW 34
EPERM 5
EPFNOSUPPORT 459
EPIPE 365
EPROTO 314
EPROTONOSUPPORT 456
EPROTOTYPE 454
ERANGE 136
EREMCHG 320
EREMOTE 138
EROFS 29
ESHUTDOWN 471
ESOCKTNOSUPPORT 457

ESPIPE 25
ESRCH 219
ESRMNT 315
ETIME 76
ETIMEDOUT 473
ETOOMANYREFS 472
ETXTBSY 5
EWOULDBLOCK 448
EXDEV 17

any errno not listed generates a 511

Interactive COBOL Language Reference & Developer’s Guide

844

APPENDIX I. ASCII CODES

Dec Oct Hex DG Function Ctrl-code PC Function/Character

 0 000 00 Null Ctrl @ NUL space

 1 001 01 Print Screen Form Ctrl A SOH (

 2 002 02 Reverse off Ctrl B STX)

 3 003 03 Ctrl C ETX Ì

 4 004 04 Ctrl D EOT Ë

 5 005 05 Read cursor address Ctrl E ENQ Ê

 6 006 06 Ctrl F Ack Í

 7 007 07 Bell Ctrl G Bell !

 8 010 08 Cursor Home Ctrl H Backspace 3

 9 011 09 Ctrl I HTab "

 10 012 0A Newline Ctrl J Linefeed 4

 11 013 0B Erase EOL Ctrl K VTab %

 12 014 0C Erase Screen Ctrl L Form-feed &

 13 015 0D Carriage Return Ctrl M Carriage Return *

 14 016 0E Blink ON Ctrl N SO +

 15 017 0F Blink off Ctrl O SI '

 16 020 10 Write cursor addr(c,r) Ctrl P DLE <

 17 021 11 Print Screen Ctrl Q DC1 (XON) =

 18 022 12 Roll Enable Ctrl R DC2 ;

 19 023 13 Roll Disable Ctrl S DC3 (XOFF) .

 20 024 14 Underscore ON Ctrl T DC4 ¶

 21 025 15 Underscore OFF Ctrl U NAK §

 22 026 16 Reverse On Ctrl V SYN ,

 23 027 17 Cursor Up Ctrl W ETB 0

 24 030 18 Cursor Right Ctrl X CAN 8

 25 031 19 Cursor Left Ctrl Y EM 9

 26 032 1A Cursor Down Ctrl Z SUB 6

 27 033 1B Escape Ctrl [ESC 7

 28 034 1C Dim ON Ctrl \ FS 2

 29 035 1D Dim OFF Ctrl] GS :

 30 036 1E Command Header Ctrl ^ RS >

 31 037 1F Ctrl _ US ?

Dec Oct Hex DG PC

 32 040 20 space space

 33 041 21 ! !

 34 042 22 " "

 35 043 23 # #

 36 044 24 $ $

 37 045 25 % %

 38 046 26 & &

 39 047 27 ’ ’

 40 050 28 ((

 41 051 29))

 42 052 2A * *

 43 053 2B + +

 44 054 2C , (comma),

 45 055 2D - -

 46 056 2E . .

 47 057 2F / /

 48 060 30 0 0

 49 061 31 1 1

 50 062 32 2 2

 51 063 33 3 3

 52 064 34 4 4

 53 065 35 5 5

 54 066 36 6 6

 55 067 37 7 7

 56 070 38 8 8

 57 071 39 9 9

 58 072 3A : :

 59 073 3B ; ;

 60 074 3C < <

 61 075 3D = =

 62 076 3E > >

 63 077 3F ? ?

Dec Oct Hex DG PC

 64 100 40 @ @

 65 101 41 A A

 66 102 42 B B

 67 103 43 C C

 68 104 44 D D

 69 105 45 E E

 70 106 46 F F

 71 107 47 G G

 72 110 48 H H

 73 111 49 I I

 74 112 4A J J

 75 113 4B K K

 76 114 4C L L

 77 115 4D M M

 78 116 4E N N

 79 117 4F O O

 80 120 50 P P

 81 121 51 Q Q

 82 122 52 R R

 83 123 53 S S

 84 124 54 T T

 85 125 55 U U

 86 126 56 V V

 87 127 57 W W

 88 130 58 X X

 89 131 59 Y Y

 90 132 5A Z Z

 91 133 5B [[

 92 134 5C \ \

 93 135 5D]]

 94 136 5E ^ ^

 95 137 5F _ _

Dec Oct Hex DG PC

 96 140 60 < <

 97 141 61 a a

 98 142 62 b b

 99 143 63 c c

100 144 64 d d

101 145 65 e e

102 146 66 f f

103 147 67 g g

104 150 68 h h

105 151 69 i i

106 152 6A j j

107 153 6B k k

108 154 6C l l

109 155 6D m m

110 156 6E n n

111 157 6F o o

112 160 70 p p

113 161 71 q q

114 162 72 r r

115 163 73 s s

116 164 74 t t

117 165 75 u u

118 166 76 v v

119 167 77 w w

120 170 78 x x

121 171 79 y y

122 172 7A z z

123 173 7B { {

124 174 7C | |

125 175 7D } }

126 176 7E ~ ~

127 177 7F DEL -

APPENDIX I - ASCII Codes

845

Dec Oct Hex DGI PC

128 200 80 Ç

129 201 81 ü

130 202 82 é

131 203 83 â

132 204 84 ä

133 205 85 à

134 206 86 å

135 207 87 ç

136 210 88 ê

137 211 89 ë

138 212 8A è

139 213 8B ï

140 214 8C î

141 215 8D ì

142 216 8E Ä

143 217 8F Å

144 220 90 É

145 221 91 æ

146 222 92 Æ

147 223 93 ô

148 224 94 ö

149 225 95 ò

150 226 96 û

151 227 97 ù

152 230 98 ÿ

153 231 99 Ö

154 232 9A Ü

155 233 9B ¢

156 234 9C £

157 235 9D ¥

158 236 9E .

159 237 9F ƒ

160 240 A0 space á

161 241 A1 é í

162 242 A2 ½ ó

163 243 A3 µ ú

164 244 A4 ² ñ

165 245 A5 ³ Ñ

166 246 A6 ¤ ª

167 247 A7 ¢ º

168 250 A8 £ ¿

169 251 A9 ª 1

170 252 AA º ¬

171 253 AB ¡ ½

172 254 AC ¿ ¼

173 255 AD © ¡

174 256 AE ® «

175 257 AF ‡ »

176 260 B0 » !

177 261 B1 « "

178 262 B2 ¶ #

179 263 B3 ™ *

180 264 B4 ƒ 1

181 265 B5 ¥ I

182 266 B6 ± M

183 267 B7 # D

184 270 B8 $ @

185 271 B9 · <

186 272 BA ! (grave) 5

187 273 BB § 7

188 274 BC ° (degree) 8

189 275 BD ¨ (umlaut) E

190 276 BE ´ (acute) A

191 277 BF 8 ,

Dec Oct Hex DGI PC

192 300 C0 Á .

193 301 C1 À 2

194 302 C2 Â 0

195 303 C3 Ä /

196 304 C4 Ã)

197 305 C5 Å 3

198 306 C6 Æ G

199 307 C7 Ç K

200 310 C8 É 9

201 311 C9 È 6

202 312 CA Ê =

203 313 CB Ë ;

204 314 CC Í :

205 315 CD Ì 4

206 316 CE Î >

207 317 CF Ï N

208 320 D0 Ñ J

209 321 D1 Ó L

210 322 D2 Ò H

211 323 D3 Ô F

212 324 D4 Ö B

213 325 D5 Õ ?

214 326 D6 Ø C

215 327 D7 Œ O

216 330 D8 Ú P

217 331 D9 Ù -

218 332 DA Û +

219 333 DB Ü $

220 334 DC space (

221 335 DD Ÿ %

222 336 DE space '

223 337 DF space &

224 340 E0 á "

225 341 E1 à $

226 342 E2 â '

227 343 E3 ä B

228 344 E4 ã E

229 345 E5 å F

230 346 E6 æ :

231 347 E7 ç J

232 350 E8 é M

233 351 E9 è 2

234 352 EA ê S

235 353 EB ë *

236 354 EC í 4

237 355 ED ì N

238 356 EE î ,

239 357 EF ï 1

240 360 F0 ñ /

241 361 F1 ó ±

242 362 F2 ò $

243 363 F3 ô #

244 364 F4 ö !

245 365 F5 õ "

246 366 F6 ø ÷

247 367 F7 œ .

248 370 F8 ú E

249 371 F9 ù @

250 372 FA û A

251 373 FB ü /

252 374 FC $ 6

253 375 FD ÿ ²

254 376 FE space #

255 377 FF space space

< Notes:
1. Decimal codes 128 - 159 for DGI are the same as their 7-bit counterparts by default.

2. DGI is as defined by a D216E+/D217/D413/D463 terminal.

Interactive COBOL Language Reference & Developer’s Guide

846

APPENDIX J. EBCDIC CODES
Dec Oct Hex Char

 0 000 00 NUL
 1 001 01 SOH
 2 002 02 STX
 3 003 03 ETX
 4 004 04 PF
 5 005 05 HT
 6 006 06 LC
 7 007 07 DEL
 8 010 08
 9 011 09
 10 012 0A SMM
 11 013 0B VT
 12 014 0C FF
 13 015 0D CR
 14 016 0E SO
 15 017 0F SI
 16 020 10 DLE
 17 021 11 DC1 (XON)
 18 022 12 DC2
 19 023 13 DC3(XOFF)
 20 024 14 RES
 21 025 15 NL
 22 026 16 BS
 23 027 17 IL
 24 030 18 CAN
 25 031 19 EM
 26 032 1A CC
 27 033 1B CU1
 28 034 1C FS
 29 035 1D GS
 30 036 1E RS
 31 037 1F US

Dec Oct Hex Char

 32 040 20 DS
 33 041 21 SOS
 34 042 22 FS
 35 043 23
 36 044 24 BYP
 37 045 25 LF
 38 046 26 ETB
 39 047 27 ESC
 40 050 28
 41 051 29
 42 052 2A SM
 43 053 2B CU2
 44 054 2C DC4
 45 055 2D ENQ
 46 056 2E ACK
 47 057 2F BEL
 48 060 30
 49 061 31
 50 062 32 SYN
 51 063 33
 52 064 34 PN
 53 065 35 RS
 54 066 36 UC
 55 067 37 EOT
 56 070 38
 57 071 39
 58 072 3A
 59 073 3B CU3
 60 074 3C
 61 075 3D NAK
 62 076 3E
 63 077 3F SUB

Dec Oct Hex Char

 64 100 40 space
 65 101 41
 66 102 42
 67 103 43
 68 104 44
 69 105 45
 70 106 46
 71 107 47
 72 110 48
 73 111 49
 74 112 4A
 75 113 4B .
 76 114 4C <
 77 115 4D (
 78 116 4E +
 79 117 4F |
 80 120 50 &
 81 121 51
 82 122 52
 83 123 53
 84 124 54
 85 125 55
 86 126 56
 87 127 57
 88 130 58
 89 131 59
 90 132 5A !
 91 133 5B $
 92 134 5C *
 93 135 5D)
 94 136 5E ;
 95 137 5F ~

Dec Oct Hex Char

 96 140 60 -
 97 141 61 /
 98 142 62
 99 143 63
100 144 64
101 145 65
102 146 66
103 147 67
104 150 68
105 151 69
106 152 6A |
107 153 6B ,
108 154 6C %
109 155 6D _
110 156 6E >
111 157 6F ?
112 160 70
113 161 71
114 162 72
115 163 73
116 164 74
117 165 75
118 166 76
119 167 77
120 170 78
121 171 79 `
122 172 7A :
123 173 7B #
124 174 7C @
125 175 7D '
126 176 7E =
127 177 7F "

Dec Oct Hex Char

128 200 80
129 201 81 a
130 202 82 b
131 203 83 c
132 204 84 d
133 205 85 e
134 206 86 f
135 207 87 g
136 210 88 h
137 211 89 i
138 212 8A
139 213 8B
140 214 8C
141 215 8D
142 216 8E
143 217 8F
144 220 90
145 221 91 j
146 222 92 k
147 223 93 l
148 224 94 m
149 225 95 n
150 226 96 o
151 227 97 p
152 230 98 q
153 231 99 r
154 232 9A ^
155 233 9B
156 234 9C
157 235 9D
158 236 9E
159 237 9F

Dec Oct Hex Char

160 240 A0
161 241 A1 ~
162 242 A2 s
163 243 A3 t
164 244 A4 u
165 245 A5 v
166 246 A6 w
167 247 A7 x
168 250 A8 y
169 251 A9 z
170 252 AA
171 253 AB
172 254 AC
173 255 AD [
174 256 AE
175 257 AF
176 260 B0
177 261 B1
178 262 B2
179 263 B3
180 264 B4
181 265 B5
182 266 B6
183 267 B7
184 270 B8
185 271 B9
186 272 BA
187 273 BB
188 274 BC
189 275 BD]
190 276 BE
191 277 BF

Dec Oct Hex Char

192 300 C0 {
193 301 C1 A
194 302 C2 B
195 303 C3 C
196 304 C4 D
197 305 C5 E
198 306 C6 F
199 307 C7 G
200 310 C8 H
201 311 C9 I
202 312 CA
203 313 CB
204 314 CC
205 315 CD
206 316 CE
207 317 CF
208 320 D0 }
209 321 D1 J
210 322 D2 K
211 323 D3 L
212 324 D4 M
213 325 D5 N
214 326 D6 O
215 327 D7 P
216 330 D8 Q
217 331 D9 R
218 332 DA
219 333 DB
220 334 DC
221 335 DD
222 336 DE
223 337 DF

Dec Oct Hex Char

224 340 E0 \
225 341 E1
226 342 E2 S
227 343 E3 T
228 344 E4 U
229 345 E5 V
230 346 E6 W
231 347 E7 X
232 350 E8 Y
233 351 E9 Z
234 352 EA
235 353 EB
236 354 EC
237 355 ED
238 356 EE
239 357 EF
240 360 F0 0
241 361 F1 1
242 362 F2 2
243 363 F3 3
244 364 F4 4
245 365 F5 5
246 366 F6 6
247 367 F7 7
248 370 F8 8
249 371 F9 9
250 372 FA
251 373 FB
252 374 FC
253 375 FD
254 376 FE
255 377 FF

< Note:

APPENDIX K - COBOL RESERVED Words

847

APPENDIX K. COBOL RESERVED WORDS

BOLD words are ANSI 85 reserved words. Trailing letter(s) after the word indicate the following:

i indicates an additional non-ANSI reserved word for ANSI 74 and ANSI 85.

q indicates an additional non-ANSI reserved word for the ISQL feature-set.

v- indicates an ANSI reserved word that is NOT reserved for VXCOBOL.

v indicates an additional non-ANSI reserved word for VXCOBOL.

Words without a trailing “i”, “v-”, “v“, or ”q” are reserved words for all ICOBOL dialects.

ABSOLUTE q
ACCEPT
ACCESS
ACCESSIBILITY v
ACTION q
ADD
ADDRESS i
ADVANCING
AFTER
ALL
ALLOCATE q
ALLOW v
ALLOWS v
ALPHABET v-
ALPHABETIC
ALPHABETIC-LOWER v-
ALPHABETIC-UPPER v-
ALPHANUMERIC v-
ALPHANUMERIC-EDITED v-
ALSO
ALTER
ALTERNATE
AND
ANY v-
APPROXIMATE v
ARE
AREA
AREAS
AS q
ASC
ASCENDING
ASCII i, v
ASSIGN
AT
AUTHOR
AUTO i, v
AUTOMATIC v
AVG q

BACKGROUND i
BACKGROUND-COLOR i
BACKWARD i, v
BECOMES v
BEEP i
BEFORE
BELL i, v
BETWEEN q
BINARY v-
BIT v, q
BLACK i
BLANK
BLINK
BLOCK
BLUE i
BOLD i
BOTTOM
BRIGHT i
BROWN i
BY

CALL
CANCEL
CD
CF
CH
CHANNEL v
CHAR q
CHARACTER
CHARACTERS
CHECK v, q

CHECKPOINT v
CLASS v-
CLOCK-UNITS
CLOSE
COBOL
CODE
CODE-SET
COL
COLLATING
COLS q
COLUMN
COLUMNS q
COMMA
COMMAND q
COMMIT v, q
COMMON v-
COMMUNICATION
COMP
COMP-1 v
COMP-2 v
COMP-3 i, v
COMP-5 i
COMPRESSION v
COMPUTATIONAL
COMPUTATIONAL-1 v
COMPUTATIONAL-2 v
COMPUTATIONAL-3 i, v
COMPUTATIONAL-5 i
COMPUTE
CONCURRENT v
CONFIGURATION
CONNECT v, q
CONNECTED v
CONNECTION q
CONTAINS
CONTENT
CONTIGUOUS v
CONTINUE
CONTROL
CONTROLS
CONVERT i, q
CONVERTING v-
COPY
CORR
CORRESPONDING
COUNT
CR v
CREATE v, q
CURRENCY
CURRENT v, q
CURRENT-DATE q
CURRENT-TIME q
CURRENT-TIMESTAMP q
CURSOR i, v
CYAN i

DATA
DATA-SENSITIVE i, v
DATE
DATE-COMPILED
DATE-WRITTEN
DAY
DAY-OF-WEEK
DBMS v
DB-EXCEPTION v
DE
DEALLOCATE q
DEBUG-CONTENTS
DEBUG-ITEM
DEBUG-LINE

DEBUG-NAME
DEBUG-SUB-1
DEBUG-SUB-2
DEBUG-SUB-3
DEBUGGING
DECIMAL-POINT
DECLARATIVES
DEFAULT i
DEFINE v
DELETE
DELIMITED
DELIMITER
DEPENDING
DESC
DESCENDING
DESTINATION
DETAIL
DIAGNOSTICS q
DICTIONARY v
DIM i
DISABLE
DISCONNECT v, q
DISK i, v
DISPLAY
DISTINCT q
DIVIDE
DIVISION
DOUBLE q
DOWN
DROP q
DUPLICATE v
DUPLICATES
DYNAMIC

EBCDIC i, v
ECHO i
EGI
ELSE
EMI
EMPTY v
ENABLE
END
END-ACCEPT i, v
END-ADD
END-CALL
END-CHECKPOINT v
END-COMMIT q
END-COMPUTE
END-CONNECT q
END-CREATE q
END-DEALLOCATE q
END-DEFINE v
END-DELETE
END-DISCONNECT q
END-DISPLAY i
END-DIVIDE
END-DROP q
END-EVALUATE v-
END-EXEC q
END-EXECUTE q
END-EXPUNGE v
END-FETCH q
END-FINISH-REQUEST-GROUP v

END-GET q
END-IF
END-INSERT q
END-LINK v
END-LOCK-RESOURCE v
END-MODIFY-REQUEST-GROUP v

END-MULTIPLY

END-OF-PAGE
END-PERFORM
END-PREPARE q
END-READ
END-RECEIVE v-
END-RETRIEVE v
END-RETURN
END-REWRITE
END-ROLLBACK q
END-SEARCH
END-SELECT q
END-SET q
END-START
END-START-REQUEST-GROUP v

END-STRING
END-SUBTRACT
END-UNDELETE i, v
END-UPDATE q
END-UNSTRING
END-WRITE
ENTER
ENVIRONMENT
EOL i
EOP
EOS i
EQUAL
ERASE i, v
ERROR
ESCAPE i, v
ESI
EVALUATE v-
EVEN v
EVERY
EXCEPTION
EXCLUDE v
EXCLUSIVE i, v
EXEC q
EXECUTE q
EXISTS q
EXIT
EXPIRATION v
EXPUNGE v
EXTEND
EXTERNAL

FALSE v-
FD
FEEDBACK v
FETCH q
FIELD i, v
FIELDS i, v
FILE
FILE-CONTROL
FILES v
FILESET v
FILLER
FINAL
FIND v
FINISH v
FIRST
FIX v
FIXED i, v
FLOAT q
FOOTING
FOR
FOREGROUND i
FOREGROUND-COLOR i
FORWARD i, v
FOUND q
FROM

Interactive COBOL Language Reference & Developer’s Guide

848

FULL i, v
FUNCTION i, v

GENERATE
GENERATION v
GENERIC v
GET q
GIVING
GLOBAL
GO
GOBACK i, v
GREATER
GREEN i
GROUP

HAVING q
HEADER i, v
HEADING
HIERARCHICAL v
HIGH i, v
HIGH-VALUE
HIGH-VALUES
HIGHLIGHT i
HOUR q

I-O
I-O-CONTROL
ID v
IDENTIFICATION
IF
IGNORE i
IMMEDIATE i, v
IN
INDEX
INDEXED
INDICATE
INDICATOR q
INFOS v
INITIAL
INITIALIZATION v
INITIALIZE v-
INITIATE
INPUT
INPUT-OUTPUT
INSPECT
INSTALLATION
INT q
INTEGER q
INTERVAL q
INTO
INVALID
INVALIDATE v
INVERTED v
IS

JUST
JUSTIFIED

KEY
KEYBOARD i, v
KEYS v

LABEL
LABELS v
LAST
LEADING
LEFT
LENGTH
LESS
LEVELS v
LIKE q
LIMIT
LIMITS
LINAGE
LINAGE-COUNTER
LINE
LINE-COUNTER
LINES
LINK v
LINKAGE
LOCAL v
LOCK
LOCK-RESOURCE v
LOGICAL i, v
LOW i

LOW-VALUE
LOW-VALUES
LOWLIGHT i
LRU v

MAGENTA i
MANAGEMENT v
MANDATORY v
MAX q
MAXIMUM v
MEMBER v
MEMORY
MERGE
MERIT v
MESSAGE
MIN q
MINUS i
MINUTE q
MODE
MODIFY v
MODULES
MONTH q
MOVE
MULTIPLE
MULTIPLY

NAME i, v
NATIONAL q
NATIVE
NEGATIVE
NEXT
NO
NODE v
NONE v,q
NOT
NULL i,v
NULLS i
NUMBER
NUMERIC
NUMERIC-EDITED v-

OBJECT-COMPUTER
OBTAIN v
OCCURRENCE v
OCCURS
ODD v
OF
OFF
OFFSET v
OMITTED
ON
ONLY v, q
OPEN
OPTIONAL
OR
ORDER
ORGANIZATION
OTHER
OUT v
OUTPUT
OVERFLOW
OWNER v

PACKED-DECIMAL v-
PAD v, q
PADDING
PAGE
PAGE-COUNTER
PARITY v
PARTIAL v, q
PERFORM
PF
PH
PHYSICAL i, v
PIC
PICTURE
PLUS
POINTER
POSITION
POSITIVE
PRECISION q
PREPARE q
PREVIOUS i
PRINTER i, v
PRINTER-1 i, v

PRINTING
PRIOR v, q
PROCEDURE
PROCEDURES
PROCEED
PROGRAM
PROGRAM-ID
PROMPT i
PURGE v-

QUEUE
QUOTE
QUOTES

RANDOM
RD
READ
READY v
REAL q
RECEIVE
RECONNECT v
RECORD
RECORDING i, v
RECORDS
RED i
REDEFINES
REEL
REFERENCE
REFERENCES
RELATIVE
RELEASE
REMAINDER
REMOVAL
RENAMES
REPLACE v-
REPLACING
REPORT
REPORTING
REPORTS
REQUEST-GROUP v
REQUIRED i, v
RERUN
RESERVE
RESERVE-KEY v
RESET
RETAIN v
RETRIEVAL v
RETRIEVE v
RETURN
REVERSE i
REVERSE-VIDEO i
REVERSED
REWIND
REWRITE
RF
RH
RIGHT

ROLLBACK v, q
ROOT v
ROUNDED
ROW q
RUN

SAME
SAVE v
SCREEN i, v
SD
SEARCH
SECOND q
SECONDS v
SECTION
SECURE i, v
SECURITY
SEEK v
SEGMENT
SEGMENT-LIMIT
SELECT
SEND
SENTENCE
SEPARATE
SEQUENCE
SEQUENTIAL
SET
SIGN

SIZE
SORT
SORT-MERGE
SOURCE
SOURCE-COMPUTER
SPACE
SPACES
SPECIAL-NAMES
SQL q
SQLCA q
SQLCODE q
SQLERROR q
SQLSTATE q
SQLWARNING q
STANDARD
STANDARD-1
STANDARD-2
STANDARD-3 v
START
STATIC v
STATUS
STOP
STORE v
STRING
SUB-INDEX v
SUB-QUEUE-1
SUB-QUEUE-2
SUB-QUEUE-3
SUBSCHEMA v
SUBTRACT
SUM
SUPPRESS
SWITCH i, v
SYMBOLIC
SYNC
SYNCHRONIZED
SYSTEM v

TAB i
TABLE
TALLYING
TAPE
TEMPORARY v, q
TERMINAL
TERMINATE
TEST v-
TEXT
THAN
THEN
THROUGH
THRU
TIME
TIME-OUT i, v
TIMES
TIMESTAMP q
TO
TOP
TRAILER v
TRAILING
TRANSACTION
TRUE v-
TRUNCATE v
TYPE

UNDEFINED v
UNDELETE i, q
UNDERLINE i
UNDERLINED i
UNION q
UNIT
UNLOCK
UNSTRING
UNTIL
UP
UPDATE i, q
UPON
USAGE
USE
USER i, v, q
USING

VALID q
VALUE
VALUES
VARCHAR q

APPENDIX K - COBOL RESERVED Words

849

VARIABLE i, v
VARYING
VERIFY v
VIRTUAL v
VIRTUAL-STORAGE v
VOLUME v

WAIT v
WHEN
WHENEVER q

WHERE q
WHITE i
WITH
WITHIN v
WORDS
WORK q
WORKING-STORAGE
WRITE

YEAR q

YYYYDDD i, v
YYYYMMDD i, v

ZERO
ZEROES
ZEROS
ZONE q

+
-

*
/
**
<
<>
<=
=
>
>=

Interactive COBOL Language Reference & Developer’s Guide

850

The following words are not currently reserved words in ICOBOL but may be used in the future or are reserved

words in another manufacturer's COBOL product.

ABSENT
ACTIVE-CLASS
AUTOTERMINATE

B-AND
B-NOT
B-OR
B-XOR
BASED
BINARY-CHAR
BINARY-DOUBLE
BINARY-LONG
BINARY-SHORT
BINARY-SEQUENTIAL
BLINKING
BOOLEAN

C01
C02
C03
C04
C05
C06
C07
C08
C09
C10
C11
C12
CARD-PUNCH

CARD-READER
CASSETTE
CLASS-ID
COMP-4
COMP-6
COMPUTATIONAL-4
COMPUTATIONAL-6
CONSOLE
CONSTANT
CONVERSION
CRT

DISC

EXCEPTION-OBJECT

FACTORY
FILE-ID
FLOAT-EXTENDED
FLOAT-LONG
FLOAT-SHORT
FREE
FUNCTION-ID

INHERITS
INTERFACE-ID
INVOKE

LISTING

MANUAL
METHOD
METHOD-ID

NATIONAL-EDITED
NESTED

OBJECT
OPTIONS
OVERRIDE

PRINT
PRINTER-2
PRINTER-3
PROGRAM-POINTER
PROPERTY
PROTOTYPE

RAISE
RAISING
REMARKS
REPOSITORY
RESUME
RETRY
RETURN-CODE
RETURNING

SHARING
SORT-WORK

SOURCES
SWITCH-1
SWITCH-2
SWITCH-3
SWITCH-4
SWITCH-5
SWITCH-6
SWITCH-7
SWITCH-8
SYSIN
SYSOUT
SYSTEM-DEFAULT

TYPEDEF

UNIVERSAL
UPSI-0
UPSI-1
UPSI-2
UPSI-3
UPSI-4
UPSI-5
UPSI-6
UPSI-7
USER-DEFAULT

VALIDATE

APPENDIX L - System Calls

851

*** NOTE: New applications should avoid using these system calls and instead

use the preferred IC_xx builtins described in this document. Each system call

(except for #D) has a corresponding builtin, as indicated in the table.

APPENDIX L. SYSTEM CALLS

1. Overview

ICOBOL uses the CALL PROGRAM statement to access a set of system-defined routines. These are called system

calls and are listed in the table below. Following the table is a description of each of the calls. If the system call

provides user interaction through a menu, that interface is documented in the appropriate chapter in the Utilities

Manual.

System
Call

Function Comparable
Builtin Function

 #A Abort a program IC_ABORT_TERM

 #D Treated as a normal CALL PROGRAM n.a.

 #H Log off a terminal IC_HANGUP

 #L Chain to LOGON IC_LOGON

 #M Send a message IC_SEND_MSG

 #N Rename a file IC_RENAME

 #O Detach a COBOL job IC_DETATCH_PROGRAM

 #P View and change the current sta-
tus of the print spooling system,
including the files in the system

IC_PRINT_STAT

 #S Shutdown the runtime system IC_SHUTDOWN

 #T Terminal Status IC_TERM_STATUS

 #W Pause for a period of time IC_DELAY

##C Compute a check block IC_CHECK_DATA

##D Get total and free disk space IC_GET_DISK_SPACE

##E Get an environment variable IC_GET_ENV

##F Resolve a filename or do a
directory listing

IC_DIR_LIST

##G Return a system message IC_MSG_TEXT

##I Show internal status information IC_SYS_INFO

##M Move file data IC_MOVE_FILE_DATA

##P Like #P but returns to program IC_PRINT_STAT

##S Return a serial number IC_SERIAL_NUMBER

##T Sets timeout value for ACCEPTs IC_SET_TIMEOUT

##U Shutdown the runtime system IC_SHUTDOWN

For VXCOBOL, #D, #H, #L, #S, and #W are supported. #A, #M, #P, and #T will chain to logon. All other system

calls will return exception 203, “Program not found”.

Interactive COBOL Language Reference & Developer’s Guide

852

NOTE: A CALL PROGRAM "LOGON" is not the same as #L, since it will not mark the terminal as

being Inactive.

2. #A Abort a Program

The #A system call allows active terminals to be aborted either to facilitate a system shutdown or for other reasons.

Upon invocation, a terminal status window of all logged-on terminals will be displayed. You are then prompted as to

which terminal you wish to abort. Once that terminal is aborted you will see the confirmation in the status window.

Aborting a terminal will not remove it from the terminal status window but will mark the terminal as `Stopped' in the

terminal status window.

The #A system call is enabled with the Abort terminal privilege in the Program Environment configuration of the

configuration file (.cfi). If not enabled, the call will fail with an Exception Status 203 "Program not found.".

The syntax is:

CALL PROGRAM "#A"

On exit from #A, a CALL PROGRAM "#L" is performed.

On UNIX, Abort communicates with ICEXEC to interrupt the appropriate process. ICEXEC uses the UNIX Signal

mechanism with SIGUSR1 to shutdown the named process. An abort is just like a kill -16 from the shell to that

process.

For more on #A see the Abort utility in the Utilities Manual.

3. #H Hang Up the Terminal

The syntax is:

CALL PROGRAM "#H"

#H terminates ICOBOL like #S does.

4. #L Call LOGON

The #L system call runs the standard LOGON program and makes the terminal line Inactive in the terminal status

window. #L does not remove the terminal from the Terminal Status window. No ICISAM files should be open in

the LOGON program since the system can and will abort users executing LOGON when entered via #L or after the

initial sign-on.

The syntax is:

CALL PROGRAM "#L"

5. #M Message Broadcast

The #M system call allows the user to send a message to one, several, or all logged-on ICOBOL users, either active

or inactive on the same machine. The message will not appear on the user's console until the next opcode is executed

by that process. Thus if a user is waiting in an ACCEPT the message will not appear until that ACCEPT has been

terminated.

The #M system call is enabled with the Message sending privilege in the Program Environment configuration of the

configuration file (.cfi). If not enabled, the call will fail with an Exception Status 203 "Program not found.".

APPENDIX L - System Calls

853

Two message modes are available.

Mode 1 (Interactive Mode)

For mode 1, the syntax is:

CALL PROGRAM "#M"

Upon invocation, a terminal status window of all logged on terminals is displayed. You are then prompted for the

message that you wish to send. You are then prompted for the terminal number to send the message to. If none, the

message is sent to all logged-on users.

On exit from a Mode 1 #M, a CALL PROGRAM "#L" is performed.

For more on #M in Mode 1 see the Message Broadcast utility in the Utilities Manual.

Mode 2 (Program Mode)

For mode 2, the syntax is:

CALL PROGRAM "#M n message" or
CALL PROGRAM "#M * message"

Where

n

Specifies the terminal number to send the message to.

*

Implies all logged on terminals.

message

Is the message to be sent.

If n is an invalid terminal number or is not currently active, an Exception Status 228 "The terminal is not logged on"

is returned. If n is a terminal which is not enabled, Exception Status 229 "The terminal is not configured into the

system" is returned.

When a Mode 2 #M is finished, execution continues with the next statement in the COBOL program.

6. #N Rename a File

The #N system call allows a file to be renamed.

The syntax is:

CALL PROGRAM "#N old-filename new-filename"

Where

old-filename

Is the old filename to be renamed.

new-filename

Is the new filename.

Pathnames can be used. Separate the filenames by at least one (1) space. To rename an ICISAM file you must

rename each individual portion explicitly supplying the .XD and .NX extensions with two system calls.

Execution continues at the next statement.

The #N filenames do not go through the ICLINK link file facility.

Interactive COBOL Language Reference & Developer’s Guide

854

Old-filename and new-filename are processed as an External Filename as described on page 751, except a full

pathname is not made if a simple name is given.

7. #O Detach a COBOL program

The #O system call enables a user to start a COBOL program on another logical console (called a detached

program).

The #O system call is enabled with the Detach/Host programs privilege in the Program Environment of the

configuration file (.cfi). If not enabled, the call will fail with an Exception Status 203 "Program not found.".

The syntax is:

CALL PROGRAM "#O program-name [filename]" [USING term-id].

Where

program-name

Is a valid COBOL program name including program switches, although no spaces can separate the switches

from the program.

filename

Specifies a disk filename for the output file.

term-id

Is at least a PIC 9(5) DISPLAY field. If set to 65535, it instructs ICOBOL to start the detached program

on the next available detachable console and return that console number in term-id. If set to anything other

than 65535, ICOBOL tries to detach the COBOL program attached to that specific detached console if it is

available, otherwise an error is given. If no term-id is given, then the next available detachable console is

used.

An available detachable console is defined to be a logical console that is:

1) enabled,

2) whose device is set to NUL (on Windows) or null (on UNIX), and

3) is currently not running a detached program.

If a detached program is started with no optional output file, then all output from the program will go to the null

device (bit-bucket). That is, the program output will be discarded.

All detached programs will generate an end-of-file (EOF) error on any ACCEPT or READ from the console, as the

input device will always be set to the null device.

A detached program can only execute non-screen DISPLAY statements. A screen DISPLAY will generate an error

and the program will terminate.

Possible errors for #O include:

1 Invalid operation

36 Filename is not valid (for an invalid program name)

209 Parameter mismatch (for no program name specified or if term-id is invalid, i.e., greater than 65535 or

not a number)

212 No more programs are available (if no available consoles can be found to detach this program to)

219 Invalid task number (if the console specified by term-id is not available or is in use.

The detached program will inherit the starting program's username. Its privileges are those specified for the console

on which it is running. Detached programs cannot execute any system calls or builtins that perform screen I/O.

If a detached program terminates abnormally, any error will be written to the standard output file or to the starting

program's standard error file on UNIX.

APPENDIX L - System Calls

855

NOTE: A standard CALL PROGRAM error like Program Not Found, Program Too Big, etc. is not

returned by a #O because it occurs after the "detached program" has been detached from the

current program.

On UNIX, the program performing the #O must have icrun in the working directory or in a directory on its PATH

variable.

8. #P and ##P Printer Control Utility

The #P and ##P system calls enable the user to view and change the current status of the print spooling system

including the files in the system, the files currently queued to a print queue or printing, and the files that have been

printed.

The #P and ##P system calls are enabled with the Printer control privilege in the Program Environment configuration

of the configuration file (.cfi). If not enabled, the call will fail with an Exception Status 203 "Program not found.".

The syntax is:

CALL PROGRAM "#P"
or

CALL PROGRAM "##P"

For more on #P, ##P, and the printer spooling system, see the Printer Control utility in the Utilities Manual.

On exit from #P, a CALL PROGRAM "#L" is performed.

On exit from ##P control is returned to the program that called it.

9. #S Stop Runtime System Execution

The #S and ##U system calls allow the program to terminate the runtime system.

The #S and ##U system calls are enabled with the System Shutdown privilege in the Program Environment

configuration of the configuration file (.cfi). If not enabled, the call will fail with an Exception Status 203 "Program

not found.".

The syntax is:

CALL PROGRAM "#S"

The #S system call terminates the currently running ICOBOL process and returns control to the process that invoked

ICOBOL. If that process was login, then the terminal is logged off the system. #H and ##U behave exactly the

same as #S. When ICOBOL has been started in Program mode (i.e., icrun program) then a STOP RUN or Fatal

Error will behave the same as #S.

Interactive COBOL Language Reference & Developer’s Guide

856

 NOTE: If any value but spaces or digits are found after the #W, a conversion error is detected and

the default value of 30 is used.

10. #T Terminal Status

The #T (Terminal Status) system call allows the user to view the status of all ICOBOL users on the machine as well

as current system information.

The #T system call is enabled with the Terminal status privilege in the Program Environment configuration of the

configuration file (.cfi). If not enabled, the call will fail with an Exception Status 203 "Program not found.".

The syntax is:

CALL PROGRAM "#T"

For more on #T see the Terminal Status utility in the Utilities Manual.

11. #W Wait for a Specified Time

The #W system call suspends program execution for a time expressed in tenths of a second. The default integer is

30, which is a three-second pause. The maximum integer is 65,535, producing a pause of 109 minutes and 13.5

seconds. No CPU time is used during the pause.

The syntax is:

CALL PROGRAM "#W[{ space }...]integer".

12. ##C Compute Check Block

The ##C extended system call is supported to allow programmers to easily calculate a CRC, LRC (XOR), or

checksum on a block of data.

The syntax is:

CALL PROGRAM "##C" USING option, polynomial, length, buffer, result

Where

option

Is a 1-byte binary, PIC 99 COMP, that holds the calculation option. Current options are:

0 for a normal CRC using the supplied polynomial,

1 for a reverse CRC using the supplied polynomial,

2 for a LRC (XOR) 8-bit calculation, and

3 for a checksum calculation.

Adding 64 to one of the above calculation options says to use the passed in result as the base to

start the calculation, otherwise zero is used.

polynomial

Is a 2-byte binary, PIC 9(4) COMP, that holds the binary value for the CRC generator polynomial.

length

Is a 2-byte, PIC 9(4) DISPLAY, which holds the length of data in the buffer on which to perform the

calculation. This cannot be larger than buffer.

buffer

Is a PIC X(n) that holds the data on which the check is to be calculated.

result

Is a 2-byte binary, PIC 9(4) COMP, that holds the calculated value as a binary number.

Some common crc polynomials are:

APPENDIX L - System Calls

857

CRC-CCITT 1021h or 4129 (base 10)

CRC-16 8005h or 32773

reverse CRC-CCITT 8408h or 33800

reverse CRC-16 A001h or 40961

The CRC-CCITT polynomial is used for XMODEM-CRC protocol.

For example, calculation option 64 would be used to calculate a CRC on a block (or file) that is larger than the buffer

by making repeated calls.

13. ##D Get Disk Space Information

The ##D extended system call is supported to allow system developers to access the total disk space allowed and the

current amount free in bytes for a disk drive (on Windows) or for a mounted file system (on UNIX).

The syntax is:

CALL PROGRAM "##D" USING location, space

Where

 location

An alphanumeric item of at least the length to hold the two-character drive name (on Windows), the

mounted filesystem name (on UNIX) (/, /usr, etc.), or spaces for the current drive name or filesystem you

wish to check.

space

A structure composed of two PIC 9(10) items into which ICOBOL returns the total amount of storage (in

bytes) for the given filesystem and the number of bytes currently free. The structure could look like:

01 DISK-SPACE.
02 TOTAL-BYTES PIC 9(10).
02 FREE-BYTES PIC 9(10).

If you wish to determine the default filesystem, the ##F call should be used.

Location is processed as an External Filename as described on page 751.

14. ##E Get Environment Variable

The ##E extended system call is supported to allow programmers to read the value of an environment parameter that

was set before ICOBOL started.

The syntax is:

CALL PROGRAM "##E" USING name-argument, return-argument

Where

name-argument

Is a PIC X(n) that holds the name of the environment variable to be read

return-argument

Is a PIC X(n) to which ICOBOL moves the value of the environment variable according to the rules for

MOVE.

If the environment variable named by name-argument cannot be found either in the environment or as configured in

the environment strings section of the configuration file (.cfi), an error is generated and the ON EXCEPTION clause,

if present, is executed.

Interactive COBOL Language Reference & Developer’s Guide

858

If the return-argument for the environment variable is too small to hold the full value, the value is moved and

truncated and an error is generated and the ON EXCEPTION clause, if present, is executed.

15. ##F Filename Resolution or Directory Lookup

The ##F extended system call is supported to allow system developers to:

1) resolve a simple or relative filename into a full pathname and check to see if the filename exists or

2) do a directory lookup on a given template to get the number of matches along with an optional list in a

sequential file for each file entry along with its file information (filename, filesize, attributes, last-modified).

Option 1 Filename Resolution

For option 1, the syntax is:

CALL PROGRAM "##F" USING argument-1

Where

argument-1

Is an alphanumeric item of at least 64 characters. Argument-1 should be set to the filename or template you

wish to resolve or check for existence before making the ##F call. If the filename does not exist, or the file

is a symbolic link for which the resolution does not exist, or no files match the template the Exception

Status will be set to 2 (File not found) and the ON EXCEPTION clause, if given, is executed.

Argument-1 is returned as a fully resolved filename or template including all directory specifiers that can be

up to 64 characters.

To get the default directory, argument-1 should be set to spaces; and the fully resolved pathname is returned.

On Windows, to get the default directory for any disk drive, set argument-1 to just the disk drive itself; i.e., `C:', `D:',

etc.; and the fully resolved pathname will be returned. When running in network mode, network files will be

resolved to their fully qualified network name. For example if drive D is redirected to the server

\\386MAINSERVER's E drive, the file `D:\PROGRAMS\FILE' would resolve to the fully qualified name of

`\\386MAINSERVER\E\PROGRAMS\FILE'.

When no template is given, argument-1 is processed as an External Filename as described on page 751.

Option 2 Directory Lookup

For option 2, the syntax is:

CALL PROGRAM "##F" USING argument-1, argument-2 [, argument-3]

Where

 argument-1

Is the same as for option 1 but normally will contain a template.

argument-2

Is a numeric item of at least PIC 9(5) that returns the number of file entries found by the template specified

in argument-2. If this number is zero, no files were found that matched the template provided by

argument-1. In addition, the Exception Status is set and the ON EXCEPTION clause, if given, is executed.

argument-3

Is optional and specifies the filename of the file to which each of the file entries that match the template

given by argument-1 are written. Argument-3 should be an alphanumeric item at least large enough to hold

the filename to be given.

Argument-1, when not a template, and argument-3 are processed as an External Filename as described on page 751.

APPENDIX L - System Calls

859

The file entries are written to the file as printer-records, with each entry terminated with a line-terminator. If the

count returned is greater than zero, the filename given by argument-3 is created if there is no file by that name

already, and is deleted and re-created if it already exists. If the count returned in argument-2 is zero, the file given in

argument-3 is not touched.

To read the file created above you should have an ASSIGN TO KEYBOARD in your COBOL program and read

with at least 64-byte records to get each file entry. Each filename entry will be a single line of characters terminated

by a line-terminator. Each entry can be defined as such:

01 FILE-ENTRY.
02 MODIFIED-INFO.

03 DATE-MODIFIED PIC 9(6).
03 TIME-MODIFIED PIC 9(8).

02 ACCESSED-INFO.
 03 DATE-ACCESSED PIC 9(6).

03 TIME-ACCESSED PIC 9(8).
 02 FILESIZE-BYTES PIC 9(10).

02 F-ATTRIBUTES PIC X(8).
 02 F-ATTRIBUTE-RED REDEFINES F-ATTRIBUTES.

03 READABLE-ON PIC X(1).
03 WRITABLE-ON PIC X(1).

 03 PROTECTABLE-ON PIC X(1).
 03 ARCHIVE-IT PIC X(1).
 03 DIRECTORY-TYPE PIC X(1).
 03 SYSTEM-TYPE PIC X(1).
 03 EXECUTABLE-TYPE PIC X(1).
 03 FILLER PIC X(1).
 02 FILENAME PIC X(64).

The date and time fields are exactly like ACCEPT FROM DATE (YYMMDD) and TIME (HHMMSShh)

respectively.

On Windows

The Accessed Info (ACCESSED-INFO) field is not available and will always be set to zeros(0).

The file attributes (F-ATTRIBUTES) will have an `R' in position 1 if the file can be read, a `W' in position 2 if the

file can be written to, a `P' in position 3 if it cannot be deleted, and an `A' in position 4 if it has been modified since it

was archived. Position 5 will be set to `D' if the file entry is a directory. Position 6 will be set to `S' if the file is a

system file. Otherwise the positions will be set to space.

The Read-only attribute will force position 2 (WRITABLE-ON) to be set to space and position 3

(PROTECTABLE-ON) to be set to P. The archive, directory, and system attributes match the os attributes. The

executable-type (X) will be set for directories, .EXE, .COM, and .BAT files. The filename argument will never be

more than 12 characters.

On UNIX

Positions 1, 2, 3, and 7 of the file attributes are based on how the current user within his group can access each

particular file. For files that are symbolic links, the file attributes returned are for the resolution file, not the

symbolic link itself.

The file attributes (F-ATTRIBUTES) will have an `R' in position 1 if the file can be read by the current user, a `W' in

position 2 if the file can be written by the current user, and a `P' in position 3 if the file cannot be deleted by the

current user (i.e., the current user does not have Write access to the directory). Position 4 will always return a space.

Position 5 will be set to `D' if the file entry is a directory. Position 6 will be set to `S' if the file is a special character

device, block device, or other special files. Position 7 will be set to `X' if the file is executable. Otherwise the

positions will be set to space.

If a simple filename is ever to exceed 64 characters then this structure should be increased to match the largest size a

simple name could be. ICOBOL will only write as much as needed to the temporary file.

Interactive COBOL Language Reference & Developer’s Guide

860

16. ##G Return a System Message

The ##G extended system call is supported to allow system developers to pick up any of the system messages from

the message file (system.ms). These messages map one-to-one to the Exception Status received in ACCEPT FROM

EXCEPTION STATUS.

The syntax is:

CALL PROGRAM "##G" USING exc-code, return-argument

Where

exc-code

Specifies the numeric code (PIC 9(3)) of the message to be given between 0 and the maximum Exception

Status value.

return-argument

Specifies a character string of at least 60 characters. The system call will return with return-argument

holding the corresponding message for the numeric code in exc-code.

You can actually get back any message from the message file, not just those that map to Exception Status value,

provided you know the correct value.

17. ##I Internal Status Information

The ##I extended system call is supported in ICOBOL to allow internal status information for the entire ICOBOL

system to be viewed.

The ##I extended system call is enabled with the System Information privilege in the Program Environment

configuration of the configuration file (.cfi). If not enabled, the call will fail with an Exception Status 203 "Program

not found.".

The syntax is:

CALL PROGRAM "##I"

For Internal Status, ICOBOL provides a screen of statistical information about various ICOBOL parameters. For

the named resource, three numbers are displayed. These are:

In Use is the number currently in use
MaxUsed is the most this has ever been, for this invocation
Max is the maximum number configured

The MaxUsed values can be used to either raise or lower individual System Parameters in the configuration file

(.cfi), the CONFIG.SYS file (on Windows), or in the UNIX Kernel (on UNIX) to provide a better tuned system.

On exit from ##I, control is returned to the program that called it.

18. ##M Move File data

The ##M extended system call is supported in ICOBOL to allow files to be copied from one place to another with

various options.

The syntax is:

CALL PROGRAM "##M" USING option, source-name, destination-name [, count
[, start-src-pos [, start-dst-pos]]]

APPENDIX L - System Calls

861

Where

option

Specifies a 1-byte binary, PIC 99 COMP, composed of the following bits.

Option-bit Meaning

1 Don't erase destination if it exists

2 Write at eof (ignore start-dst-pos)

4 The destination file must exist

8 The destination file must NOT exist

Below are the useful combinations of the above option-bits.

Option

Destination file Destination

PositionDoes NOT exist Exists

0 create erase as specified

1 create don't erase as specified

3 create don't erase at eof

4 ERROR erase as specified

5 ERROR don't erase as specified

7 ERROR don't erase at eof

8 create ERROR as specified

source-name

Specifies a PIC X(n) and holds the source filename to be copied.

destination-name

Specifies a PIC X(n) and holds the destination filename to be copied. It cannot be a directory.

count

Specifies a PIC 9(n) DISPLAY, and holds an optional count for how many bytes to copy from source or

until EOF. If given, the number of bytes actually copied is returned.

start-src-pos

Specifies a PIC 9(n) DISPLAY, and holds an optional byte offset in the source file from which to start

copying. I.E., a start-src-pos of 0 is the beginning of file.

start-dst-pos

Specifies a PIC 9(n) DISPLAY, and holds an optional byte offset in the destination file to which copying

should start. If not given, the beginning of file is used.

The source file must exist and be able to be opened for binary input.

Unless you use the appropriate option, this call will allow a file to be copied upon itself with possible unintended

results.

Source-name and destination-name are processed as an External Filename as described on page 751.

19. ##P Print Spooling

The ##P extended call is the same as the #P system call with the exception that upon exiting from the Printer Control

Utility it returns to the calling program, just like a CALL. See #P for more information.

20. ##S Return the System Serial Number

The ##S extended system call is supported to allow system developers to check for a unique serial number. This call

will return the unique runtime license serial number as provided by the license manager (ICPERMIT) from the

license description file.

Interactive COBOL Language Reference & Developer’s Guide

862

The syntax is:

CALL PROGRAM "##S" USING argument

Where

argument

Should be declared as PIC 9(10).

21. ##T Set Timeout Value

The ##T extended system call allows the system developer to enable and disable timeouts for ACCEPT statements

and STOP literal statements.

The syntax is:

CALL PROGRAM "##T" [USING timeout]

Where

timeout

Specifies a numeric value (PIC 9(5)). The values 0 through 63000 set a timeout in tenths of seconds, a

65535 is interpreted to wait forever, a 65534 says to default to the value specified as the global timeout

(ICTIMEOUT), while a number between 63000 and 65534 will set the value to 63000. This value

represents the time allowed between keystrokes before the system will timeout and terminate the operation.

Setting a 0 essentially only reads the input buffer.

If no argument is specified, wait forever is set. The timeout value remains in effect whenever this program is active.

I.E., if a CALL statement is made, while in the new program the timeout is reset to that specified by the global

timeout (ICTIMEOUT) for the new program. Upon returning to the calling program, the timeout is restored to be

the value that was set before the CALL.

When an ACCEPT statement times out, ESCAPE KEY is set to 99 and no data is moved to the particular item (just

as when an ESC key is pressed).

If an invalid argument string is given, an Exception Status 209 is returned and the timeout value is not changed.

Where possible, the TIME-OUT AFTER clause on the ACCEPT statement should be used rather than the ##T

system call.

22. ##U Unconditional Shutdown

The #S and ##U system calls are enabled with the System Shutdown privilege in the Program Environment

configuration of the configuration file (.cfi).

The syntax is:

CALL PROGRAM "##U".

The ##U extended system call acts just like #S and terminates the ICOBOL process.

23. System Call Errors

For those system calls that are "NOT SUPPORTED" under ICOBOL for whatever reason, the runtime system will

give an Exception Status 203 "Program not found", and the ON EXCEPTION clause, if any, is executed. This is

also true if the console issuing the system call is not privileged to do so.

APPENDIX L - System Calls

863

Interactive COBOL Language Reference & Developer’s Guide

864

INDEX

865

INDEX

. PICTURE. 177, 179

.BAT. 497, 702, 859

.CF. 695

.CFI. 293, 403, 498, 509, 515, 528, 536, 544, 548,

556, 561-565, 669, 695, 747-750, 852, 854-

857, 860, 862

.CL. 695

.CX. . 512, 514, 695, 699, 700, 702, 706, 707, 741, 743,

744

.FA. 695

.LG. 693, 695, 699, 741, 743, 783

.LGB.. 693, 695

.LK. 695

.NX. 263, 267, 270, 271, 551, 695, 761, 762, 821,

824, 826, 828, 829, 835, 836, 853

.PQ. 544, 695, 747

.profile. 702

.PT. 695

.PTI. 690, 691, 695

.SY. 695, 701, 706, 709, 721

.TD. 695

.TDI. 294, 522, 690, 691, 695, 768

.XD. 263, 267, 270, 551, 695, 761, 762, 821, 824,

826, 828, 829, 835-837, 853

.XDB. . . . 695, 701, 706, 709, 717, 718, 771-773, 775,

780

.XDT. 695, 701, 706, 709, 717-719, 771-775

.XL. 695, 829, 837

.XLG. 695

, PICTURE. 177, 178

?CBADDR. 30, 493, 494

?CBBADDR.. 30, 493, 495

{ }.. 33, 34, 692

+ PICTURE. 177

- PICTURE.. 177

* PICTURE. 177, 179

/ PICTURE. 177, 178

/dev.. 750

<000>. 419, 426

<cr>. 487, 488, 554

<ff>.. 487, 488

<lf>.. 487, 488

<nl>. 282, 305, 487, 488, 554

0 PICTURE. 177, 178

01 level. . . . 63, 120, 148, 168, 173, 183, 185, 200, 208,

209, 219, 220, 273, 277, 494, 703, 714

4GB. 519, 521, 817, 830, 837

66 level. 168, 185, 701, 709

77 level. . . . 63, 118, 165, 173, 174, 188, 199, 277, 494,

699, 703, 805, 813

88 level. . . . 63, 118, 168, 173, 174, 189, 192, 199, 712,

805, 817

9 PICTURE. 177, 178

A PICTURE. 176, 177

Abort Terminal. 498, 500, 528, 564, 852

Abort terminal privilege. 498, 500, 528, 564, 852

ACCEPT statement. . 36, 209, 210, 216, 223, 224, 251,

279, 282-289, 291, 293, 338, 339, 559, 749,

813, 859, 860, 862

ACCESS MODE clause. 90, 91, 258, 458, 459

ADD statement. 247, 297

AIX.. 6, 292

Alignment rules. 119, 195

ALPHABETIC. . 40-42, 78, 79, 85, 86, 88, 93, 94, 110,

111, 118, 119, 172, 176, 177, 179, 181, 196,

236, 237, 282, 285, 377, 381, 393-395, 475,

476, 579, 581, 583, 616, 618, 626, 635-637,

644, 661, 695, 701, 717, 719, 775-778, 785,

797, 798, 805, 847

ALTERNATE RECORD KEY clause. . 93, 94, 96, 257,

418, 460, 490

ANSI COBOL 74. 699, 712-714

ANSI COBOL 85. 2, 69, 709, 712-714

ANSI switch. 401, 763

AOS/VS. . . 6, 26, 30, 35, 103, 105, 108, 175, 271, 496,

669, 703, 755, 756, 777

APPEND. 259, 693, 699, 741, 743, 754-756

Area A. 52, 59-63, 66, 67, 69, 799

Area B. 59-62, 66, 799

ASCENDING phrase. 94, 111, 390, 391, 452, 453

ASCII. . . 44, 45, 79, 108, 109, 145, 146, 152, 190, 193,

194, 391, 454, 488, 507, 516, 592, 731, 771,

797, 799, 844, 847

ASSIGN clause. 88, 98, 153, 706

ASSIGN TO DISK.. 282, 341, 458

ASSIGN TO DISPLAY. 146, 341, 487

ASSIGN TO PRINTER. . 146, 341, 403, 484, 487, 757,

758

AT END. . . 250-252, 255, 261, 264, 266-268, 271-273,

391, 400, 401, 414, 415, 417, 420-423, 431,

439-441, 454, 479, 700, 706, 798, 803, 821,

823, 825

audit file. 28, 693, 727

Audit switch. 693

AUTO clause. 210, 712

AUTOEXEC.BAT. 702

B PICTURE. 176, 177

BACKGROUND. 28, 29, 208, 209, 211, 286, 339,

847

BACKGROUND-COLOR. 28, 208, 209, 211, 339,

847

backslash. 752

Bad code switch. 714

BELL clause. 212

big file. 521

big-endian.. 190, 721

BINARY SEQUENTIAL. 106, 109

BLANK LINE. . . . 61, 62, 65, 208, 213, 219, 339, 704,

707, 710

BLANK SCREEN. 206-208, 213, 220, 339

Interactive COBOL Language Reference & Developer’s Guide

866

BLANK WHEN ZERO clause. 118, 169

BLOCK CONTAINS clause.. 144, 147

BOLD.. . . 202, 205, 207, 209, 214, 218, 228, 288, 340,

772, 847

BRIGHT.. 214, 228, 288, 340, 672, 676-679, 847

BTRIEVE.. 760, 765, 766, 838

buffers. . . 113, 310, 435, 485, 563, 683, 757, 828, 831,

836, 838

builtins. . . 25, 27-30, 55, 289, 291, 294, 295, 300, 463,

493, 494, 498-500, 502-507, 509-522, 525-

534, 536, 541, 542, 545, 549-552, 554-562,

564, 565, 567-570, 572, 573, 575, 577, 578,

681, 729, 747, 749, 751, 753-756, 768, 769,

851, 854

C-ISAM. 760, 767

CALL PROGRAM statement. 133, 199, 251, 277,

303, 304, 306, 753, 754, 798, 851

CALL statement. . 55, 56, 189, 199, 251, 254, 277, 299-

301, 306, 307, 357, 371, 493, 559, 753, 754,

798, 812, 817, 862

CANCEL statement. 307, 357, 371, 753, 754

Card Format. 59, 61, 695, 704, 794, 795

Case switch.. 702

CGI.. 832

cgiCOBOL. 293, 690, 691

character set. . 39, 44, 46, 52, 61, 67, 69, 71, 73, 74, 76-

79, 88, 117, 145, 146, 176-178, 259, 476, 579,

630, 634, 661, 669, 674, 797-800, 806, 811

character-string. . . 33, 39, 40, 43-45, 47, 52, 61, 64, 78,

80, 166, 176-182, 186, 187, 189, 195, 203,

205, 223, 225, 381, 465, 475, 798, 799, 805,

808, 810, 813

checksum. 502, 800, 805, 829, 836, 856

class. . 40, 41, 48-52, 71, 73-75, 78, 118, 129-134, 171,

195, 232-237, 250, 290, 291, 311, 316, 319,

334, 347, 348, 352, 353, 363, 364, 381, 413,

419, 426, 437, 449, 488, 579, 584-586, 588-

590, 593, 603, 604, 606, 608, 611, 612, 614-

616, 618, 620, 622, 624, 626, 632, 635-637,

639, 642-650, 657, 661, 662, 713, 734, 798,

811, 847, 849

CLI. 30, 493, 497, 730, 786, 832, 839

CLOSE statement. . . 262, 266, 307, 309, 310, 391, 392,

401, 419, 425, 455, 463, 717, 750, 751, 764,

802-804, 807, 821, 825

CMD.EXE. 302

COBOL character set. . . . 39, 52, 78, 79, 117, 176, 798,

800

CODE-SET clause. 77, 145, 146, 186

collating sequence. . 47, 71, 73, 74, 77-81, 88, 90, 234,

256, 259, 389-391, 415, 422, 451, 453, 454,

459, 461, 489, 581, 592, 635, 797, 799, 803,

806, 811

color. 28, 208, 209, 211, 281, 286, 336, 339, 847

color-name. 211

COLUMN clause. . . 213, 217, 219-222, 228, 289, 341,

717

COLUMN phrase. 220, 283, 286, 338, 340, 813

comment line. 39, 40, 61, 62, 65, 67, 73, 115, 148,

704, 799, 808, 812

comment-entry. . . . 33, 39, 40, 52, 64, 67, 69, 798, 799

compatibility mode. 714

compress mode. 28, 341

COMPUTATIONAL. . . . 189-191, 193, 194, 322, 337,

430, 494-496, 498, 500, 502, 508, 509, 511,

512, 514, 517, 519, 521-523, 527, 528, 531,

532, 536-539, 541, 543-546, 553, 556, 559,

562-565, 577, 590, 607, 613, 617, 670, 672-

680, 684-686, 700, 701, 704, 707, 713, 714,

717, 719, 763, 776, 777, 785, 786, 790, 847,

849, 856, 861

COMPUTATIONAL-3. . . 189-191, 337, 719, 776, 785,

847

COMPUTATIONAL-5. . . 189-191, 517, 527, 532, 719,

776, 785, 847

COMPUTE statement. 313, 713

computer's character set. . 44, 46, 52, 61, 67, 69, 78, 79,

177, 178, 476, 661, 797, 799, 806

COMSPEC. 497

condition.. . . 41, 71, 75, 77, 78, 88, 118, 122, 123, 125,

126, 130-132, 136, 153, 154, 160, 167, 168,

173, 183, 189, 191, 194-196, 199, 232, 233,

235-246, 250, 251, 260-262, 264-273, 276,

277, 301, 304, 326, 327, 348, 349, 362, 373,

374, 388, 391, 400-402, 404-406, 408-411,

415-418, 422-424, 430, 431, 435, 436, 439,

440, 443, 445, 453, 454, 459, 461, 469, 472,

476, 477, 479, 480, 485-487, 489, 490, 580,

666, 710, 717, 757, 797-800, 802-806, 808-

812, 817, 821, 823, 825

condition-name. 41, 71, 75, 77, 78, 118, 122, 123,

125, 126, 136, 167, 168, 173, 183, 195, 196,

199, 233, 238-240, 242-245, 277, 404-406,

408-411, 439, 440, 443, 445, 717, 799, 800,

803, 808, 811

conditional expression. . . 232, 240, 349, 406, 439, 799,

802

conditional statement. . . . 246, 250-252, 254, 271, 272,

299, 300, 304, 311, 316, 318, 319, 334, 352,

353, 364, 366, 367, 373, 413, 417, 423, 431,

437, 449, 466, 477, 799, 803

config. 563, 781, 860

CONFIG.SYS. 563, 860

configuration file. . . 293, 403, 498, 509, 515, 528, 536,

544, 548, 556, 561-565, 669, 695, 747-750,

830, 837, 841, 842, 852, 854-857, 860, 862

configure. 25, 768, 780

console interrupt. . . . 500, 501, 513, 515, 564, 725, 727,

736, 748, 758, 764, 828-830, 836, 837

Console interrupt privilege. 500, 501, 515

continuation line. 61, 66

CONTINUE statement. 318

Control Panel. 779

CONVERT. 29, 67, 280, 287, 289, 292, 295, 335,

340, 341, 692, 754-756, 760, 847

COPY file. . . 29, 149, 531, 702-705, 716, 723, 793, 817

INDEX

867

COPY Path switch. 703

COPY statement. . . . 57, 62, 64-66, 252, 253, 705, 799,

811

CORRESPONDING phrase. . . 246, 247, 298, 393, 416,

423, 432, 468

CR PICTURE.. 176, 177

CRC. 502, 800, 827, 835, 856, 857

cross reference. 700, 716, 717, 793

Ctrl-\. 764

Ctrl-C. 725, 727

Ctrl-Del. 764

Ctrl-R. 768

CURRENCY. 78, 79, 179, 800

Currency PICTURE. 177, 179

CX file. 699, 706, 707, 743

Data Division. . 35, 41, 53, 57-59, 62, 63, 88, 103, 105,

107, 117, 136-138, 165, 174, 196, 198-200,

235, 389, 390, 406, 431, 434, 444, 452, 484,

716, 800-803, 805, 806, 808-813

DATA RECORDS clause. 148

data-name. . 41, 52, 53, 84-87, 90, 91, 95-97, 103, 105,

110-112, 117, 120, 123, 125-127, 139-143,

148, 153-155, 158, 165-168, 170, 171, 174,

175, 183-185, 199, 230, 246, 277, 300, 304,

389-391, 421, 424, 426, 439, 440, 451-453,

459, 460, 471, 487, 717, 800, 801, 803, 808,

812

DATAFILE. 749, 772, 778

data-sensitive. 106, 108, 163

DB PICTURE. 176, 177

DCD. 750, 829, 836

Debug switch. 706, 709

debugging. 62, 65, 66, 73, 338, 500, 565, 701, 704,

709, 721-723, 743, 791, 801, 847

debugging line. 62, 65, 66, 73, 704, 801

DEBUGGING MODE. 73

decimal. . . 45, 46, 52, 71, 73-75, 78, 80, 103, 105, 117,

119, 177-182, 189-191, 193, 194, 227, 245,

249, 271, 284, 289, 340, 344, 394, 397, 439,

521, 525, 534, 579, 630, 632, 634, 704, 731,

735, 744, 777, 790, 797-799, 801, 804, 806,

811, 845, 847, 848

Declaratives. . . 53, 57, 58, 63, 103, 105, 149, 229, 230,

260, 261, 272, 362, 369, 388, 389, 406, 430,

452, 479, 481, 700, 704, 722, 801, 847

DELETE FILE statement. 331, 717, 755, 756, 764

DELETE statement. 102, 259, 274, 325-329

delete-is-physical. 102, 327, 759-761

descending. . . . 77-79, 94, 95, 111, 175, 258, 259, 390,

391, 452, 453, 761, 801, 847

DESCENDING phrase. . . . 94, 111, 390, 391, 452, 453

Detach/Host program privilege. 500

detached program. 293, 509, 510, 854, 855

DG terminal. 341, 487, 684

DG/UX. 6

DIM. 209, 214, 218, 228, 288, 340, 341, 556, 674,

844, 847

DISPLAY statement. . 28, 208, 210, 212, 213, 217-219,

223, 228, 283, 284, 289, 335-341, 487, 509,

854

DIVIDE statement. 343, 344, 713

drawlines. 669

DUPLICATES phrase. 95-97, 257, 453, 490, 704

ELSE phrase. 373

environment. . 25, 28, 29, 41, 42, 53, 57-59, 62, 71-73,

80, 83, 135, 136, 159, 236, 238, 282, 290-293,

315, 455, 484, 497, 498, 500, 509, 520, 521,

528, 536, 539, 544, 554-556, 558, 561, 562,

564, 565, 575, 669, 670, 689, 691, 694, 696,

697, 699, 702, 712, 716, 722, 741, 743, 747,

749, 751, 771, 782, 783, 790, 793, 797, 798,

800-804, 806, 807, 810-813, 819, 827, 835,

847, 851, 852, 854-858, 860, 862

Environment Division. . . 41, 53, 57-59, 62, 71-73, 80,

83, 136, 236, 238, 282, 484, 716, 797, 798,

800-804, 806, 807, 810-812

environment variable. . . . 315, 497, 520, 521, 539, 544,

554, 555, 558, 670, 689, 691, 694, 696, 697,

702, 741, 743, 749, 782, 851, 857, 858

ERASE EOL. 208, 217, 287, 339, 340, 844

ERASE EOS.. 208, 217, 287, 288, 339, 340

ERASE LINE. 208, 217, 287, 339, 340, 704

Error File switch. 703

ERRORLEVEL. 696

ESC. 282, 284-286, 288, 294, 559, 573, 678-680, 730,

733-735, 738, 768, 819, 844, 846, 862

ESCAPE KEY. 210, 284-286, 288-291, 293, 294, 523,

559, 679, 734, 819, 862

Exception Status. 29, 56, 103, 105, 149, 171, 260,

269, 271, 273, 290, 291, 294, 300-302, 304,

419, 426, 481, 493, 497-500, 505-507, 509,

511, 516, 517, 522, 524, 527-529, 532, 533,

535, 536, 544, 548-550, 553, 556, 560-562,

564, 565, 569, 570, 573, 577, 671, 675, 678,

679, 684-686, 724, 725, 727, 730, 733, 734,

740, 747, 748, 750, 757, 759, 766, 767, 827,

835, 843, 852-856, 858, 860, 862

exclusive.. . 3, 4, 78, 179-182, 399, 403, 418, 424, 691,

703, 705, 749, 750, 847

exit code. 302, 463, 497, 524, 561, 693, 696, 702

EXIT PROGRAM statement. . . 55, 254, 300, 306, 307,

357, 411

EXIT statement. 355, 407

exponentiation. 231, 232, 246, 797

export. 702

extended device open. 750, 751, 757, 758

extended disk open. 403, 757, 759

extended indexed open. 760

extended open options. . . 289, 419, 463, 488, 755-757,

765

extended PCQ open. 757, 758

extended relative open. 759

extension to ANSI COBOL. . . . 93, 102, 104, 110, 162,

163, 200, 260, 262, 265, 273, 279, 290, 303,

file:///|//�

Interactive COBOL Language Reference & Developer’s Guide

868

331, 335, 359, 403, 414, 433, 469, 471, 473,

483

external filename. . . . 99, 100, 299, 303, 331, 531, 551,

718, 751, 854, 857, 858, 861

Fatal. 103, 105, 260, 261, 294, 486, 696, 700, 705,

709-711, 725, 748, 768, 830, 833, 837, 840,

855

FAX. 765, 877, 879, 881, 883

feature-set. . . 35-37, 133, 192, 226, 253, 290, 291, 704,

847

FILE

OPTIONAL.. 402

file associations. 794

file attribute file. 695

File Status. . . . 35, 84-87, 103, 105, 133, 149, 260, 261,

270-273, 294, 328, 329, 362, 388, 403, 419,

426, 430, 703, 717, 725, 734, 747, 750, 757,

759, 764, 766, 803, 821, 823, 825, 827, 835,

842

FILE STATUS clause. 103, 260, 717, 803

file transfer. 758

file-name.. . . 41, 53-55, 72, 83-88, 90, 93, 96, 110, 111,

114, 115, 125, 138-143, 145, 154, 256, 266,

272, 309, 310, 321, 322, 325-328, 331, 359,

361, 362, 387-392, 402, 414-418, 420-424,

426, 427, 429-432, 434-436, 451-455, 457-

461, 469, 471-473, 479, 480, 485, 486, 489-

491, 509, 537, 541, 543, 545-548, 717, 766,

767, 772, 773, 802, 803, 807, 811

FILLER clause. 143, 165, 168, 170, 184, 376

filter. 536-539, 541, 544-548

filtering. 536, 539, 544, 547, 548

FIRST.. . . . 40, 42, 53-56, 58, 60-62, 65-67, 76, 88, 91,

94, 100, 111, 112, 120, 124, 126, 128, 136,

149, 154, 156, 160, 170, 173, 174, 180-182,

185, 190, 219, 220, 229, 231-234, 240, 254,

256, 261, 268, 271, 274, 275, 282-286, 300,

304, 305, 322, 328, 338, 340, 350, 351, 361-

363, 365, 366, 373, 376, 380-385, 387, 388,

390-393, 400-403, 407, 411, 415, 416, 418,

422, 424-426, 430, 436, 439-441, 445, 452-

455, 458-461, 472, 477, 480, 486, 487, 489-

491, 493, 541, 542, 545, 546, 560, 566, 567,

572, 641, 655, 657, 659, 674, 678, 679, 689,

693, 695, 701, 714, 717, 718, 724-726, 729,

731, 732, 734, 736, 737, 744, 748, 752-755,

760-762, 764, 768, 781, 790, 793, 801, 804,

805, 807, 810, 819, 827, 840, 841, 847

fixed insertion.. 179, 180

fixed length record. 256

fixed length records. . 54, 158, 159, 162, 257, 258, 389-

392, 452, 453, 455, 803

floating insertion. 179-182

Flow Control

Hardware Output. 758

Software Input. 758

Software Output. 758

For ANSI 74. 383, 399, 400, 402

For ANSI 74 and ANSI 85. . 88-90, 100, 166, 208, 209,

247, 256, 257, 281, 282, 284, 331, 336, 337,

359, 369, 390, 403, 410, 434, 452, 497, 517,

527, 530, 532, 568, 817, 847

For ANSI 85. 88, 399, 402, 417, 827

For ANSI 85 and VXCOBOL. 88, 383, 704

For VXCOBOL. 88, 100, 106, 152, 158, 171, 174,

256, 258-260, 271, 272, 282, 284, 295, 331,

390, 399, 402, 406, 434, 436, 439, 452, 453,

458, 486, 497, 704, 851

FOREGROUND.. 28, 29, 208, 209, 211, 286, 339,

847

FOREGROUND-COLOR. . . . 208, 209, 211, 339, 847

FormPrint. 25, 691

forwardslash. 752

forward-only-cursor. 363

Free-form format. 59, 60, 62, 794, 795

FROM clause. 208, 209, 218, 223, 282, 712, 717

FULL. . . . 203, 205-207, 210, 262, 263, 265, 267, 269,

270, 285, 291, 493, 496, 499, 518, 543, 545,

551, 552, 670, 703, 726, 738, 766, 777, 786,

798, 800, 808, 811, 821, 823-828, 831, 835,

838, 840, 842, 848, 854, 858

function keys. . 282, 284-286, 294, 679, 680, 684, 768,

819

General switch. 27, 44, 700, 701, 704

generic. . 26, 33, 58, 112, 275, 692, 726, 749, 761, 766,

832, 838, 839, 848

global timeout.. 289, 463, 523, 559, 831, 837, 862

GMT.. 697, 698, 800

GO TO statement. 57, 369, 441, 479, 712, 714

GOBACK statement. 28, 371

Greenwich mean time. 697, 698

GUI. 25, 570, 572, 575, 577, 691, 793

hard links. 403, 693

help directory. 690, 696

Help switch.. 693, 694

HIGH-VALUE. 47, 78, 79, 714, 848

HIGHLIGHT. 214, 228, 288, 340, 848

HP-UX. 26

HTML. 800, 805

hyphen. 40, 50, 61, 66, 67, 69, 692, 701, 707, 718,

751, 798

I-O Status. 103, 161, 260, 261, 264, 267-269, 271-

274, 309, 326, 327, 331, 359, 402, 415, 417-

419, 421, 423-426, 434-436, 459, 469, 471,

473, 485, 486, 489, 490, 803

IC_ABORT_TERM. 493, 498, 528, 851

IC_CHANGE_DIR. 493, 499

IC_CHANGE_PRIV. 493, 500

IC_CHECK_DATA. 493, 502, 851

IC_COMPRESS_OFF. 28, 493, 503

IC_COMPRESS_ON. 28, 493, 504

IC_CREATE_DIR. 493, 505

IC_CURRENT_DIR. 493, 506

IC_DECODE_URL. 493, 507, 516

IC_DELAY.. 493, 508, 851

INDEX

869

IC_DETACH_PROGRAM. . . 493, 509, 510, 749, 753,

754, 756

IC_DIR_LIST. 493, 511, 751, 755, 756, 851

IC_DISABLE_HOTKEY.. 493, 512, 514, 768

IC_DISABLE_INTS. 493, 513, 515

IC_ENABLE_HOTKEY. 493, 512, 514, 768

IC_ENABLE_INTS. 493, 513, 515

IC_EXTRACT_STRING. 493, 517

IC_FULL_DATE. 291, 493, 518

IC_GET_DISK_SPACE.. 493, 519, 751, 755, 756,

851

IC_GET_ENV. 493, 520, 851

IC_GET_FILE_IND. 28, 493, 521

IC_GET_KEY. 493, 522, 523, 681

IC_HANGUP. 30, 493, 524, 748, 851

IC_HEX_TO_NUM. 30, 493, 525

IC_INFOS_STATUS_TEXT. 30, 493, 526

IC_INSERT_STRING. 493, 527

IC_KILL_TERM. 493, 528

IC_LOGON. 30, 493, 529, 748, 851

IC_LOWER. 493, 530

IC_MOVE_FILE_DATA. 493, 531, 751, 755, 756,

851

IC_MOVE_STRING. 493, 532

IC_MSG_TEXT.. 294, 493, 533, 851

IC_NUM_TO_HEX. 30, 493, 534

IC_PID_EXISTS. 30, 493, 535

IC_PRINT_STAT. 493, 536, 541, 545, 747, 851

IC_QUEUE_STATUS. 30, 493, 549

IC_REMOVE_DIR. 493, 550

IC_RENAME. 493, 551, 751, 755, 756, 851

IC_RESOLVE_FILE. 493, 552

IC_SEND_MAIL. 27, 493, 554, 555

IC_SEND_MSG.. 28, 493, 556, 851

IC_SERIAL_NUMBER. 493, 557, 851

IC_SET_ENV. 28, 493, 558

IC_SET_TIMEOUT.. . . . 289, 463, 493, 559, 685, 851

IC_SET_USERNAME.. 295, 493, 560

IC_SHUTDOWN. 30, 493, 561, 748, 851

IC_SYS_INFO. 28, 493, 562, 851

IC_TERM_CTRL. 493, 564

IC_TERM_STAT. 293, 493, 565

IC_TRIM. 28, 493, 567

IC_UPPER. 493, 568

IC_VERSION. 493, 569

IC_WINDOW_TITLE. 27, 493, 570

IC_WINDOWS_MSG_BOX. 27, 493, 572, 573

IC_WINDOWS_SETFONT. 27, 28, 493, 575

IC_WINDOWS_SHELLEXECUTE. 29, 493, 576

IC_WINDOWS_SHOW_CONSOLE. . . . 27, 493, 576-

578

ICCHECK utility. 695-697, 762

ICCODEPATH. 499, 552, 753, 754, 764

ICCONFIG utility.. 522

ICCREATE utility. 761

ICDATAPATH. 499, 521, 552, 755, 766, 767

ICEDCFW utility. 522

ICEXEC service. . . . 293, 498, 528, 691, 727, 747, 748,

771, 831, 838, 852

ICFONT. 575

ICFONTSIZE. 575

ICIDE. 28, 29, 691, 695, 793-795, 817

ICINFO utility. 692

ICISAM file. . 88, 93-95, 102, 111, 263, 267, 270, 316,

326, 529, 551, 689-691, 695, 704, 755, 761,

762, 780, 817, 821, 824, 826, 829, 836, 852,

853

ICISAM reliability. . 263, 267, 270, 310, 762, 821, 824,

826

ICLIB utility. 697

ICLINK utility. 509, 511, 531, 537, 539, 551, 552,

764, 768, 853

ICLOGS. 691

ICMAKEMS utility. 526

ICNETD service. 521, 691, 766, 767, 773

ICOBOL compiler. . . . 34, 59, 130, 285, 691, 697, 699,

702, 704, 706, 709, 711-713, 715, 721, 751,

772, 790

ICOBOL ODBC Driver. . 316, 412, 691, 695, 700, 701,

706-709, 717-719, 771, 772, 780-785, 790,

791

ICPACK utility. 695

ICPCQFILTER. 539

ICPERMIT service. 557, 691, 699, 765, 783, 861

ICQPRW. 25, 691

ICREORG utility. 762, 763, 765-767

ICREV utility. 292, 293, 697, 741

ICREVSET utility. 25, 293, 741

ICROOT.. 689, 691, 696, 697, 702, 741, 743

ICRUN. . . 261, 463, 512, 526, 560, 563, 691, 695, 697,

699, 721-723, 747, 765, 767, 855

ICRUNRC client. 570, 572, 575, 577

ICRUNRS surrogate.. 493, 566

ICRUNW. 29, 570, 572, 575

ICSCROPT.. 722, 738

ICSDMODE. 669-671

ICSORT utility. 697

ICSP2. 25, 691

ICSTAT utility. 689

ICTERM.. 282

ICTHINS surrogate. 566

ICTIMEOUT. 289, 463, 523, 559, 862

ICTMPDIR.. 455, 697, 702, 741

Identification Division. . 52, 53, 55, 57-59, 67, 69, 716,

799, 801, 802, 807, 808, 811

IF statement. 373, 374, 440

IMMEDIATE. . . 27, 181, 251, 253, 293, 353, 354, 366,

433, 435, 483-485, 491, 586, 729, 749, 762,

848

index-name. 41, 123, 126, 127, 166, 174, 175, 199,

233, 235, 253, 277, 406, 408, 411, 439-441,

443, 444, 447, 448, 713, 717, 804, 809, 812

INDEXED BY phrase. . . 123, 126, 174, 439, 441, 444,

447, 713

Interactive COBOL Language Reference & Developer’s Guide

870

indexed file. 28, 85, 86, 88, 90, 91, 93, 95, 96, 100,

101, 106, 110, 111, 141, 147, 150, 151, 163,

256, 257, 259-262, 264-266, 268-270, 326,

327, 331, 359, 390, 399, 402, 414-416, 418,

420-422, 424, 433-435, 452, 459, 469, 471,

472, 483, 484, 489, 490, 521, 704, 717, 718,

760-762, 765, 767, 771-773, 775, 797, 799,

803-805, 808, 809, 817, 823, 825, 829, 831,

836, 838

Information switch. 705

infostat.ms. 526

Infostat.txt. 526

inline comment. 28, 61, 62

INSPECT statement. 379, 381, 383, 384, 714

Install. 25, 690, 691, 699, 780, 782

installic. 782

Intel. 6, 191, 292

Interactive COBOL. . . . 1, 5, 25-29, 35, 176, 223, 463,

763, 767, 768, 771, 773, 779, 780, 782, 790,

819, 883

intercept spooling. 750

internal filename. 100, 751

Intr key. 736, 748, 764

Intrinsic Functions. 25, 27, 29, 129, 130, 579-581,

583, 584

ISAM file. 263, 767, 804, 831, 838

ISAM reliability. 263

ISQL.. . . . 27, 36, 37, 40-44, 48-51, 118-120, 128, 133-

135, 167, 168, 192, 194-197, 204, 205, 226,

227, 232, 235, 238, 246, 251-253, 290-292,

311, 313, 315, 316, 319, 333, 348, 349, 351,

353, 363, 365, 366, 375, 377, 381, 393, 394,

412, 437, 443, 444, 449, 700, 704, 707, 729,

730, 734, 780, 783, 847

ISQL COMMIT statement. 311

ISQL CONNECT statement. 315, 316

ISQL DEALLOCATE statement. 319, 333, 334

ISQL EXECUTE IMMEDIATE statement. . . . 27, 251,

253, 353, 354, 366, 729

ISQL EXECUTE statement. 351, 352, 363, 412

ISQL FETCH statement. 351, 363, 364, 707

ISQL GET DIAGNOSTICS

COMMAND FUNCTION phrase. 365, 366

DYNAMIC FUNCTION phrase. 365, 366

MESSAGE LENGTH phrase. 365

MESSAGE TEXT phrase. 365

NUMBER phrase. 365

ISQL GET DIAGNOSTICS statement.. . 135, 251, 252,

365-367

ISQL PREPARE statement. 319, 351, 412, 413

ISQL ROLLBACK statement.. 437

ISQL SET CONNECTION statement. . . 251, 315, 449,

450

ISQL SQLERROR. . . . 27, 43, 127, 128, 133, 134, 311,

316, 319, 333, 334, 351-354, 363-367, 412,

413, 437, 449, 450, 730, 734, 848

ISQL SQLSTATE.. . 251, 252, 311, 315, 319, 333, 351,

353, 363, 412, 437, 449, 848

item-name. 63

JAVA.. 771, 783, 784

JUSTIFIED clause. . . 47, 119, 131, 172, 196, 465, 712

KEY IS phrase. 126, 174, 175, 415, 439, 440, 458

kill. 493, 528, 564, 727, 852

Kill Terminal. 528

LAST. . . 34, 40, 42, 59, 61, 63, 69, 174, 175, 179, 180,

185, 190, 210, 240, 254, 256, 266, 272, 274,

282-286, 293, 300, 305, 306, 326, 327, 337,

339, 357, 369, 371, 382, 384, 391, 392, 402,

407, 410, 417, 424, 430, 434-436, 440, 453-

455, 460, 463, 476, 477, 486, 491, 541, 542,

545, 546, 669, 683, 701, 724, 727, 729, 732,

734, 737, 766, 800, 801, 810, 819, 848, 858

LEADING. . . . 45, 46, 50, 51, 119, 178-181, 186, 187,

225, 289, 337, 340, 380, 381, 383-385, 630,

634, 657, 719, 752, 772, 773, 776, 781, 785,

848

LENGTH OF. 27, 43-47, 88, 93, 95, 96, 108-112, 128,

132, 146, 163, 164, 175, 193, 197, 220, 234,

257, 258, 261, 264, 269, 275, 323, 366, 381,

393, 419, 425, 430, 440, 458, 460, 466, 502,

507, 516, 517, 527, 532, 543, 544, 548, 567,

581, 582, 590, 612, 719, 760, 776, 777, 817,

821, 823, 830, 837, 856

level-number.. 33, 41, 63, 117, 118, 120, 143, 148,

165, 166, 168, 170, 173, 174, 183, 185, 189,

192, 199-201, 203, 206, 208, 247, 800, 804,

805, 808, 812, 813

library file. 695, 741

license.. . . . 3, 4, 27, 134, 501, 557, 691, 699, 760, 765,

767, 772, 784, 793, 831, 838, 861

license description file. 861

LINAGE. 29, 43, 52, 125, 127, 128, 133, 139, 140,

143, 149, 153-155, 400, 484, 486, 487, 848

LINE clause. 213, 217, 219-222, 228, 717

LINE NUMBER.. . . 153, 154, 286, 290, 291, 295, 340,

705, 710, 716, 717, 721, 723, 724, 729, 732,

734, 736, 740, 805

LINE phrase. 283, 286, 338, 340, 813

LINE SEQUENTIAL. 106, 108, 419

link file. 551, 695, 749, 754-756, 837, 853

Link Kit. 55, 301, 754

Linux. 26, 292, 781-783

LISTFILE. 749

Listing file switch. 705

little-endian. 190, 721

LOCK phrase. 276, 309, 401, 418, 424

logical operator. 239, 241, 799, 805, 806

Logon mode. 748

Lowest console. 293

LOWLIGHT.. 214, 288, 340, 848

lp. 543, 747, 750, 764

LRC. 502, 805, 856

Master Console.. 293

MERGE file. . . . 55, 84, 87, 88, 99, 115, 138, 142, 258,

331, 359, 389, 399, 427, 431, 432, 452, 454,

802, 803, 805, 811

INDEX

871

MERGE Statement. . . 57, 138, 145, 254, 389-392, 401,

431, 805, 807

Message

error.. 271, 282, 285, 294, 554, 686, 691, 693,

711, 734

message file. 526, 695, 860

Message Sending. 293, 500, 556, 564, 852

Message sending privilege. 500, 556, 564, 852

mnemonic-name. . . . 41, 71, 73-78, 279, 281, 282, 335,

336, 443, 445, 484, 486, 806, 811

modem. 750, 758, 831, 837

modem control. 750, 758

MOVE statement. . . 160, 178, 191, 194, 218, 247, 282,

285, 291, 293, 339, 375-377, 381, 393, 395,

416, 418, 423, 424, 427, 432, 434, 476, 477,

485, 489, 713, 735

MS-DOS.. 6, 755, 756, 766

MULTIPLY statement. 397

native character set. 76-79, 88, 145, 146, 259, 806

negated combined condition.. 806

negated simple condition. 806

network mode. 858

NO ADVANCING phrase. 337

No switch. 701, 706

nonnumeric item. 806

nonnumeric literal.. . 40, 44, 45, 47, 61, 75-79, 88, 196,

208, 234, 281, 299, 303, 307, 315, 319, 333,

336, 351, 353, 363, 380, 412, 465, 476, 806,

809

nonnumeric operand. 234

NOT ANSI. 400, 458, 460

numeric edited item. 289, 297, 313, 344, 394, 397,

467, 714

numeric item.. . 119, 130, 189, 190, 194, 195, 236, 282,

285, 289, 297, 313, 344, 381, 394, 397, 467,

713, 806, 858

numeric literal. 40, 43, 45-47, 163, 195, 230, 231, 281,

297, 344, 394, 397, 406, 415, 447, 467, 797,

804, 806, 807, 809

numeric operand. 234

NX file. . . 263, 267, 270, 271, 551, 695, 761, 762, 821,

824, 826, 828, 829, 835, 836, 853

obsolete. . . 47, 52, 67, 69, 74, 114, 148, 152, 162, 258,

293, 463, 703, 806

OCCURS. . 28, 29, 40, 45, 55, 65, 66, 93-95, 120-124,

126, 127, 154, 166, 174, 175, 183, 185, 197,

203, 206, 218, 222, 229, 245-247, 253, 254,

258, 271-274, 288, 311, 316, 319, 333, 344,

352, 353, 363, 366, 369, 381, 382, 390, 392,

393, 395, 402, 407, 413, 417, 418, 423, 426,

431, 435, 437, 439-441, 444, 447-449, 452,

454, 455, 459-461, 476, 479, 480, 487, 496,

510, 521, 541, 589, 590, 592, 596, 605, 610,

612, 613, 674, 689, 691, 716, 717, 719, 727,

757, 761, 793, 812, 813, 818, 829, 837, 848,

855

OCCURS clause. . . . 120-123, 126, 127, 174, 175, 183,

185, 197, 218, 222, 258, 390, 392, 393, 395,

439-441, 444, 447, 452, 454, 455, 590, 612,

719, 761, 812, 818

ODBC.. . . . 27, 134, 135, 316, 717, 719, 771, 779-786,

788-791

ODBC Administrator. 316, 779, 781

ON SIZE ERROR phrase. 246, 251, 298, 313, 344,

345, 397, 468

On UNIX. . 25, 109, 271, 293, 331, 359, 403, 487, 488,

493, 497, 498, 509, 510, 528, 544, 546-548,

550, 560, 563, 575, 689-693, 695, 696, 699,

701, 702, 725, 727, 741, 747, 749, 750, 752,

754-756, 760, 764, 767, 771, 780, 781, 827,

835, 852, 854, 855, 857, 859, 860

On UNIX only. 767

On Windows. 25, 29, 109, 331, 359, 487, 488, 493,

497, 498, 509, 528, 546, 547, 560, 563, 573,

575, 576, 578, 689, 690, 692, 693, 696, 697,

699, 701, 702, 725, 727, 747, 750, 752, 760,

765, 771, 779, 793, 827, 835, 854, 857-860

On Windows only. 493, 765

OPEN statement. . . . 109, 145, 154, 259, 260, 262, 264-

266, 269, 272, 391, 392, 399-403, 454, 455,

459, 486, 717, 747, 755, 764, 801-804, 807,

821, 823, 825

operational sign. . . . 119, 177, 178, 186, 187, 225, 237,

394, 579, 580, 806, 807

optional.. . 28, 33, 36, 42, 43, 48-51, 67, 71, 73, 83-85,

88, 106, 117, 119, 123, 135, 165, 178, 186,

187, 199, 200, 225, 227, 229, 252, 253, 260-

262, 264, 265, 268, 272, 273, 307, 309, 315,

322, 326, 327, 362, 388, 391, 392, 400-402,

417, 430, 435, 439, 455, 459, 463, 469, 472,

509, 519, 524, 531, 549, 554, 561-564, 582,

677, 686, 692, 726, 734, 772, 773, 775-777,

798, 803, 807, 810, 823, 829, 836, 848, 854,

858, 861

Ordinal number. 77-79, 131, 636, 637, 807, 809

ORGANIZATION clause. 106

Output file switch. 707

P PICTURE. 176, 177

PACKED-DECIMAL. 189-191, 848

paragraph-name. . . . 41, 42, 62, 70, 125, 229, 230, 407,

717, 807, 808

parallel. 750, 758

PASS. . . . 282, 301, 306, 341, 407, 411, 496, 544, 554,

706, 727, 730, 749, 768

PATH. . . 93, 94, 96, 110, 111, 268, 269, 275, 322, 328,

362, 388, 403, 425, 426, 430, 436, 472, 490,

491, 499, 552, 575, 576, 701, 703, 741, 743,

761, 762, 764, 781-783, 807, 818, 827, 829,

831, 833, 835, 838-842, 855

PCQ. 107, 403, 536-539, 541, 542, 544-548, 562, 563,

749, 757, 758

PERFORM statement. . 55, 57, 123, 127, 253, 254, 357,

371, 392, 404, 406-411, 444, 447, 454, 455,

479, 721, 729

period. 4, 34, 39, 40, 62-64, 78, 80, 138, 178-180,

229, 252, 253, 255, 373, 440, 522, 582, 586,

Interactive COBOL Language Reference & Developer’s Guide

872

639, 700, 751, 797, 798, 801-803, 807, 808,

810, 811, 851

permissions.. 331, 359, 560

PICTURE. . . . 52, 78-80, 119, 165, 168, 176, 179, 180,

195, 196, 199, 208, 209, 223, 250, 282, 285,

712, 715

. PICTURE. 176, 223

, PICTURE. 33, 122, 168, 189, 192, 226

+ PICTURE.. 179

- PICTURE. 179

A PICTURE. . . 30, 39, 40, 52, 176-182, 186, 187,

189, 199, 208, 209, 225, 493, 496, 712, 798

B PICTURE. 177

CR PICTURE. 176, 179

DB PICTURE. 176, 179

P PICTURE. 176

PICTURE character-string. 118

S PICTURE.. 176, 223

V PICTURE. 176

PLUS phrase.. 460

Print Pass Through. 282, 341

Print Screen. 844

Printer Control

directory. 403

file. . . 263, 267, 331, 359, 403, 695, 747, 757-759,

821, 823, 827, 835

privilege. 500, 501, 536, 544, 548, 855

queues. . . . 107, 541, 545, 549, 747, 749, 750, 759

utility. 403, 536, 539, 541, 545, 549, 560, 747,

750, 855, 861

Printer control management privilege. 500, 501

PRN. 562, 749

Procedure Division. . . 36, 42, 52, 53, 56-59, 62, 63, 80,

133, 154, 189, 190, 193, 200, 229, 230, 250,

253-255, 277, 300, 304, 306, 337, 357, 369,

371, 389, 406, 452, 479, 716, 801, 802, 807,

808, 810, 817

procedure-name. 229, 355, 369, 404-408, 479, 808

processes. 283, 285, 299, 301, 303, 331, 339, 562,

753, 755, 830, 831, 837, 842

Program debugging privilege. 500

program lines. 57, 58, 61, 750, 758, 799, 811

program mode. 498, 556, 748, 853, 855

program switches. 303, 305, 752-754, 854

program-name. . . . 41, 67, 69, 292, 293, 299, 303, 481,

717, 808, 812, 854

purge.. 521, 804, 829, 836, 848

QPR. 691

qualification. 43, 123-125, 133, 136, 273, 803

QUEUE IS. 29, 84, 107, 549, 747, 759

Quiet switch. 693, 694

Quit key. 725, 764

radix. 117, 119, 190, 193, 246

READ statement. 88, 145, 250, 251, 261-268, 270,

273, 275, 326, 327, 391, 414-426, 434, 454,

460, 717, 736, 798, 821, 823, 825

readme. 293, 690

reason code.. 724-726, 731, 736, 737

RECORD clause.. . . . 36, 152, 157-160, 175, 257, 258,

323, 416, 432, 808

RECORD KEY clause. . . 92-94, 96, 110-112, 257, 418,

426, 460, 461, 490

record-name. 41, 63, 125, 138, 171, 416, 423, 427,

432-436, 483-487, 489, 490, 803, 809

RECORDING MODE clause. . 106, 108, 158-160, 162,

163, 712

REDEFINES. . 122, 124, 126, 166, 168, 171, 183, 193,

196, 247, 249, 277, 292, 376, 511, 521, 522,

541, 545, 552, 553, 701, 709, 717, 718, 848,

859

REDEFINES clause. 124, 126, 168, 171, 183, 196,

277, 376, 717, 718

reference modification. 27, 29, 124, 130, 131, 249,

432, 517, 527, 532, 567, 803, 833, 839

reference modifier. 393, 809

REGISTRY. 794

relation condition. . . . 41, 132, 136, 189, 233, 240, 241,

391, 453, 580, 797, 809, 811

relational operator. . 233, 234, 240, 241, 459, 461, 797,

809

relative file. . . 85, 90, 91, 141, 160, 163, 256, 262, 263,

265, 267, 268, 310, 326, 327, 390, 392, 402,

414, 415, 417, 418, 420, 422, 424, 434, 435,

454, 455, 458, 459, 469, 483, 488, 489, 759,

761, 762, 803, 804, 809, 817, 821, 823-826,

829, 831, 836, 838

relative key. . 90, 91, 259, 265, 268, 273, 326, 327, 392,

415-418, 422-424, 435, 454, 455, 458, 459,

469, 489, 762, 798, 803, 809, 817, 827-829,

835, 836

RELATIVE KEY phrase. . 90, 416, 418, 422, 424, 458,

459, 489

RELEASE statement. 427, 454

RENAMES.. . . 118, 167, 173, 185, 247, 277, 375, 376,

701, 709, 718, 848

RENAMES clause. . 118, 173, 185, 277, 375, 376, 718

REQUIRED. . . . 2, 3, 33, 34, 39, 40, 42, 43, 54, 67, 88,

117, 119, 120, 122-124, 126, 129, 130, 134,

143, 159, 165, 173, 174, 183, 190, 191, 196,

199, 200, 203, 205-208, 210, 218, 228, 285,

288, 352, 363, 383, 439, 493, 515, 517, 527,

532, 554, 555, 560, 565, 579, 651, 653, 691,

692, 694, 700, 706, 713, 717, 718, 726, 732,

755, 761, 766, 771-773, 775, 776, 783, 798-

805, 811, 829, 831, 832, 836, 838, 839, 848

REQUIRED clause.. 210

reserved words. 29, 33, 35, 36, 40, 42, 43, 46, 802,

805, 806, 809, 810, 847, 849

RETURN statement. 160, 250, 392, 431, 432, 454,

455

Revision switch. 707

REWRITE statement. . . . 145, 259, 262, 263, 265, 266,

268, 272, 418, 424, 425, 433-436, 717, 821,

823, 825

ROUNDED. . . 190, 191, 245, 246, 289, 297, 298, 313,

343-345, 397, 419, 467, 468, 608, 647, 848

file:///|//�����

INDEX

873

Run Program. 749

run unit. 52-55, 69, 71, 95, 97, 112, 133, 145, 146,

149, 155, 171, 299-301, 303, 306, 307, 311,

315, 316, 333, 401, 411, 412, 437, 449, 463,

486, 641, 724, 727, 768, 798, 802, 804, 810,

812

runtime. 25, 27-29, 35, 56, 95, 107, 129-131, 134,

147, 149, 193, 194, 199, 263, 267, 270, 285,

286, 289, 292, 293, 295, 301, 304, 305, 338,

340, 347, 351, 363, 366, 412, 419, 463, 487,

493, 498, 500, 501, 513, 524, 528, 553, 557,

561, 569, 572, 575, 577-580, 690-692, 699,

701, 704, 707, 709, 712, 721, 724, 726, 727,

733, 734, 747, 749, 753, 756, 760, 764-769,

771, 780, 783, 817, 818, 821, 824, 826, 830,

837, 851, 855, 861, 862

S PICTURE. 176-178

SAME clause. 115, 273, 452

SAME RECORD AREA. . 54, 115, 273, 390, 416, 422,

427, 434, 485

SCO. 292

SCREEN DEMON. 669-671, 685

SCREEN HANDLER.. . . . 669-671, 682, 685, 768, 769

SCREEN OPTIMIZER. 722

screen-data. . . . 200, 203, 205, 208-210, 213, 214, 217-

219, 223, 224, 281, 283, 284, 339

screen-group. 200, 206-212, 214, 224, 283

screen-literal. . . 200-202, 208, 209, 213, 214, 217, 219,

339

screen-name. . . 200, 208, 279, 281, 283, 284, 335, 336,

338, 339, 717, 810, 813

SEARCH ALL statement. 704

SEARCH statement. 123, 126, 235, 439-442, 799

section-name.. . . . 41, 42, 125, 229, 230, 407, 717, 808,

810

SECURE clause. 224, 288

SEPARATE CHARACTER. . . 166, 178, 186, 187, 204-

206, 225, 394, 476

separator. . . . 34, 39, 40, 44, 62-65, 179, 180, 229, 252,

253, 255, 373, 440, 632, 752, 801-803, 807,

808, 810, 812

sequential file. . . 29, 84, 88, 90, 98, 100, 106-108, 139,

140, 160, 162, 256, 258, 260, 262, 265, 309,

331, 359, 399, 402, 403, 414, 415, 419, 420,

422, 426, 433, 435, 457, 458, 460, 483, 486,

704, 712, 757, 759, 764, 800, 803, 810, 829,

831, 836, 838, 858

SER. 563, 749

services. 769

SET statement. 41, 71, 75, 77, 123, 124, 127, 131,

132, 136, 189, 193, 233, 375-377, 443-445,

447, 448, 713

shared data. 57

shared memory. 771, 830, 837, 842

shared objects. 781, 782

SHELL. . . 301, 302, 497, 565, 689, 692, 702, 730, 741,

748, 764, 852

SIGN. . . . 45, 50, 51, 71, 73-75, 78, 79, 119, 131, 145,

166, 176-181, 186, 187, 189, 190, 192-194,

204-206, 223, 225-227, 233, 234, 236-238,

284, 289, 337, 340, 344, 381, 394, 460, 476,

529, 570, 573, 579, 580, 582, 583, 611, 630,

632, 645, 657, 659, 714, 715, 718, 719, 731,

751, 752, 785, 798, 800, 801, 806-808, 810-

812, 848, 852

SIGN clause. 78, 79, 119, 178, 179, 186, 187, 225,

800

sign condition. 238, 810, 811

SIZE ERROR. . 130, 232, 246, 251, 252, 297, 298, 313,

343-345, 397, 467, 468, 580, 714, 763

Solaris.. 6

SORT file. 138, 451, 811

SORT Statement. 57, 392, 401, 427, 451-455, 804,

807, 811

SORT-MERGE. 55, 87, 88, 99, 115, 138, 142, 258,

389, 390, 427, 431, 432, 452, 802, 803, 811,

813, 848

SP2. 25, 565, 566, 578, 691, 832

SPECIAL-NAMES. . . 41, 47, 71-75, 78-80, 136, 179,

236-238, 282, 336, 390, 453, 484, 797, 798,

800, 802, 807, 811, 812, 848

Spooler

UNIX. 747, 750, 764

spooling. 747, 750, 851, 855, 861

SQL. . . 27, 36, 40, 41, 48, 49, 120, 134, 135, 193, 194,

226, 227, 292, 311, 315, 333, 351-354, 365,

366, 412, 437, 449, 704, 729, 730, 734, 771,

773, 780, 782-786, 791, 848

Standard COBOL. 40, 47, 52, 67, 69, 74, 114, 148,

152, 291, 336, 463, 806

START statement. 90, 93, 110, 258-260, 266, 415,

422, 457, 459-461, 821, 823, 825

STOP statement. 289, 463

STRING statement. 465, 466

stty. 764

subscript. . . 93, 120, 123, 124, 126-128, 344, 393, 432,

713, 731, 812

SUBTRACT statement. . . 246, 247, 249, 251, 467, 797

suffixed.. 94, 718, 761

SunOS. 6

suppress. 85, 93-95, 100, 275, 276, 287, 426, 433,

436, 484, 491, 542, 694, 709, 719, 774, 777,

801, 848

SUPPRESS WHEN clause. 719

switch. . . . 27, 28, 35, 41, 44, 59, 62, 71, 73, 75, 77, 78,

80, 100, 120, 136, 188, 233, 237, 238, 293,

295, 304, 305, 369, 401, 439, 443, 445, 479,

494, 692-694, 700-707, 709, 711, 712, 714,

717, 718, 721, 741, 744, 745, 749, 753, 760,

762, 763, 765, 767, 772, 799, 802, 806, 811,

812, 848, 850

switch-name. 73, 238, 811

symbol file. . . . 701, 709, 721-723, 729, 732, 733, 735-

737, 740, 793

Interactive COBOL Language Reference & Developer’s Guide

874

symbolic. . . 41, 47, 71, 73-78, 331, 359, 403, 496, 801,

811, 812, 833, 839, 842, 848, 858, 859

symbolic links.. 331, 359, 403, 833, 839, 859

SYNCHRONIZED clause. 120, 188

system calls. . . 303, 304, 306, 496, 510, 544, 729, 730,

754, 756, 768, 829, 832, 836, 838, 851-858,

860-862

System Information. 293, 500, 562, 565, 856, 860

System Information privilege. 500, 562, 860

System Parameters. 563, 860

System Shutdown privilege. 500, 561, 855, 862

system.pq. 747

system-name. 40, 42, 799, 805, 809, 812, 813

SYSTEM-CODE. 293

tab.. 29, 60, 62, 281, 287, 288, 341, 523, 549, 702,

768, 848

TCP. 691

TCP/IP. 691

terminal description file. 522, 695, 768

Terminal number switch. 749

Terminal Status. 293, 498, 500, 528, 529, 556, 564,

565, 851-853, 856

Terminal status privilege. 500, 564, 565, 856

text-name. 41, 64, 812

ThinClient. 493, 570, 573, 575, 577, 690, 691

THRU phrase. 196

time zone. 697, 698

TIME-OUT. . . 279, 281, 289, 414, 419, 522, 670, 680,

685, 848, 862

timeout. . . 135, 289, 310, 419, 426, 463, 488, 493, 522,

523, 559, 670, 671, 678-681, 685, 750, 751,

757, 758, 821, 824, 826, 828, 831, 836, 837,

851, 862

TO clause. 208, 209, 218, 223, 712, 717

TRAILING. . . . 186, 187, 225, 554, 556, 558, 567, 570,

572, 630, 634, 657, 719, 752, 773, 776, 785,

847, 848

TSR. 765

ttyname. 749

TZ.. 697, 698

UNDELETE. . . 102, 251, 252, 255, 259, 260, 262, 265,

266, 269, 271, 272, 274, 326, 328, 401, 469,

471, 472, 730, 766, 767, 804, 821, 823, 825,

847, 848

UNDELETE statement. 272

UNDERLINE. 214, 287, 288, 340, 341, 669, 673,

848

UNDERLINED. . . 33, 34, 43, 214, 288, 341, 672, 676-

679, 848

uniqueness of reference. . . 41, 124, 125, 136, 799, 803

UNIX. . . . 6, 25, 26, 109, 271, 292-294, 301, 302, 316,

331, 359, 403, 487, 488, 493, 497, 498, 509,

510, 519, 528, 537, 541-548, 550, 560, 563,

575, 689-693, 695, 696, 699, 701, 702, 725,

727, 741, 747, 749, 750, 752, 754-756, 760,

764, 767, 771, 777, 780, 781, 827, 835, 843,

852, 854, 855, 857, 859, 860

unixODBC. 316, 771, 780-783

Unixware. 292

UNLOCK statement. 276, 473

UNSTRING statement. 47, 251, 475-478

UNTIL phrase. 253, 408, 410

url. 493, 507, 516, 576, 773, 780

USAGE clause. 119, 189, 190, 192, 193, 199, 226,

237

USE Statement. 230, 252, 260, 271, 272, 417, 423,

479, 480, 801

User Library. 691

USER NAME. 290, 291, 295, 315, 537, 542, 560,

722, 786

user-defined subroutine. 55

user-defined word. . . . 40, 41, 69, 73, 74, 256, 277, 714,

797-800, 802, 804-810, 812, 813

user-id.. 541-543, 545, 547, 560, 782, 783

USING clause.. 134, 208, 209, 218, 222, 223, 352,

712, 717

USING phrase. . 56, 189, 199, 277, 299-301, 303, 304,

306, 357, 371, 452, 454, 817

V PICTURE. 176-178

VALUE clause. . . . 47, 55, 69, 122, 131, 165, 171, 183,

189, 195-197, 199, 208, 220, 228, 376, 377,

445, 718

variable length record. 256

variable length records. . 54, 94, 96, 111, 158, 162, 257,

258, 389, 390, 392, 452, 453, 455, 813

variable origin. 283, 284, 338, 339, 813

VARYING phrase. . . 123, 127, 175, 193, 197, 258, 411,

441

virtual memory. 696

Watch Facility.. 293

Watch other terminals privilege. 500, 564

WHEN phrase. 94, 349, 350, 440, 441

Windows.. . . 25-29, 109, 271, 292, 294, 301, 302, 316,

331, 359, 487, 488, 493, 497, 498, 509, 519,

528, 537, 541-543, 545-547, 560, 563, 570,

572, 573, 575-578, 689-693, 696, 697, 699,

701, 702, 715, 723, 725, 727, 737, 738, 744,

747, 750, 752, 760, 765, 771, 779, 793, 794,

827, 835, 854, 857-860

Windows print spooler. 747

Windows printer. 750

Windows Server. 26

Windows Vista. 26

Windows XP. 26

WITH DEBUGGING MODE clause. 73

Working-Storage. . . . 54, 111, 122, 137, 165, 168, 170,

171, 173, 195, 196, 198-200, 222, 223, 249,

279, 285, 290, 299, 303, 322, 716, 806, 810,

813, 849

WRITE statement. 78, 90, 112, 154, 160, 161, 175,

250, 251, 256, 259-261, 264, 266, 268, 271,

272, 274, 275, 341, 392, 418, 424, 425, 455,

483-490, 717, 821, 823, 825

X PICTURE. 176-178

XD file. . . 263, 267, 270, 551, 695, 761, 762, 821, 824,

826, 828, 829, 835-837, 853

INDEX

875

Z PICTURE. 176-178

ZERO. . . . 34, 42, 44-47, 62-64, 81, 106, 107, 118-120,

153, 154, 158, 160, 166, 168, 169, 174, 176-

181, 189, 192-194, 196, 203, 205, 208, 209,

219, 226, 227, 229, 230, 232, 234, 236-238,

246, 249, 262, 266, 269, 271, 286, 288, 291,

294, 323, 328, 338, 340, 341, 361, 366, 381,

383, 384, 393, 394, 406, 407, 419, 425, 430,

436, 458, 460, 461, 466, 476, 479, 484, 486,

491, 494, 496, 497, 499, 502, 506, 507, 516,

522, 524, 529, 536-539, 543, 544, 561, 563,

565, 575, 579, 584-589, 592, 593, 596, 597,

600, 605, 611, 614, 615, 619, 620, 622, 625,

626, 628, 631, 632, 634, 641, 643, 645-647,

655, 657, 659, 675, 678, 679, 693, 702, 711,

713, 714, 730, 759, 760, 773, 800, 801, 804,

805, 807, 809, 810, 821, 823, 825, 828, 836,

840, 841, 849, 856, 858, 859

zero suppression. 176, 179, 181

[]. 33, 34, 206, 692, 726, 752

Interactive COBOL Language Reference & Developer’s Guide

876

SUPPORT

Questions, comments, bugs, etc. can be addressed to your supplier or distributor or to the Developers at:

Envyr Corporation

Suite 160

4904 Waters Edge Drive

Raleigh, N.C. 27606

U.S.A.

FAX (919) 851-4609

W W W www.icobol.com

FTP ftp.icobol.com

E-Mail: support@icobol.com

Support Information Request (SIR)

Support FAX: (919) 851-4609 Date: __/__/__

Support E-mail: support@icobol.com

FROM Originator ID No:__________

Contact: __________________________ Phone: _______________

Company: __________________________ Fax: _______________

Address: __________________________ Timezone: ______________

City: __________________________ State/Province: ___________

Country: __________________________ Zip/Mail Code: ____________

ICOBOL revision: _______ Purchased From: ____________

Kind of problem:_______ (Enhancement/Suggestion, Question, Documentation

error, Software error)

Frequency: ______ (Frequent, Occasional, Erratic, Reproducible)

Significance: ______ (Low, Medium, High, Urgent)

Host Machine Configuration

Vendor: ________________ Model: _______ CPU type: ____

Amount of Memory: ________

Peripherals:

OS Name and Version: ________________ __________

Other software in Use, with versions:

Rebooted from scratch? Y N

(turned the power off and back on)

Problem/Suggestion: (Describe as fully as possible. If a COBOL problem, a

sample of code that generates the error would be appreciated.)

Attachments: ________ (None, tape, floppy, listings, etc.)
(Please label attachments with company, contents, format, and "# of #" (e.g. 1
of 2).

mailto:support@icobol.com

From: Stamp

Envyr Corporation
Support
#160
4904 Waters Edge Drive
Raleigh, N.C. 27606
U.S.A.

--
(Fold Here)

Enhancement/Suggestion Request
FAX (919) 851-4609
Date: ___/___/___

OEM: _________ Timezone:
contact: _________ Phone: __________

ICOBOL revision: _______

Suggestion: (Describe as fully as possible. If possible give a brief example
of COBOL code to use this feature.)

From: Stamp

Envyr Corporation
Suggestions
#160
4904 Waters Edge Drive
Raleigh, N.C. 27606
U.S.A.

--
(Fold Here)

CUSTOMER DOCUMENTATION COMMENT FORM
FAX (919) 851-4609

Name:

Title:

Company:

Street:

City:

State: Zip:

Country:

Manual: Interactive COBOL Language Reference & Developer’s Guide
No: 011-00100-13

About the manual:

Is it easy to read? Yes No
Is it easy to understand? Yes No
Are the topics logically arranged? Yes No
Is the information correct? Yes No
Can you easily find what you want? Yes No
Does it tell you what you need to know? Yes No

Comments:

From: Stamp

Envyr Corporation
Documentation
#160
4904 Waters Edge Drive
Raleigh, N.C. 27606
U.S.A.

--
(Fold Here)

	TABLE OF CONTENTS
	LIST OF EXAMPLES
	LIST OF FIGURES
	LIST OF SCREENS
	LIST OF TABLES
	PREFACE
	ENHANCEMENTS
	 PART ONE - LANGUAGE REFERENCE
	I. CONVENTIONS USED IN THIS MANUAL
	A. Definition of a General Format
	1. Elements
	2. Words
	3. Level-Numbers
	4. Brackets and Braces
	5. Ellipsis
	6. Format Punctuation
	7. Use of Special Character Words in Formats
	8. Documentation Only

	B. Rules
	1. Syntax Rules
	2. General Rules

	C. ICOBOL Dialects and Feature-Sets
	1. Description of ICOBOL Dialects
	2. Notation of Dialect Differences
	3. Description of Feature-sets
	4. Notation of Feature-set Differences

	II. COBOL SOURCE PROGRAM
	A. General Description
	B. Concepts
	1. Character Set
	2. Language Structure
	2.1 Separators
	2.2 Character-Strings
	2.2.1 COBOL Words
	2.2.2 Literals
	 .1 Nonnumeric Literals
	 .2 Nonnumeric Hexadecimal Literals
	 .3 Numeric Literals
	 .4 Numeric Hexadecimal Literals
	 .5 Figurative Constant Values
	 .6 Date Literals (ISQL)
	 .7 Time Literals (ISQL)
	 .8 Timestamp Literals (ISQL)
	 .9 Interval Literals (ISQL)
	 .9.1 Year-Month Interval Literals (ISQL)
	 .9.2 Day-Time Interval Literals (ISQL)
	2.2.3 LINAGE-COUNTER
	2.2.4 PICTURE Character-Strings
	2.2.5 Comment-Entries

	3. Program and Run Unit Organization and Communication
	3.1 Program and Run Unit Organization
	3.2 Accessing Data and Files
	3.2.1 Names
	3.2.2 Objects

	3.3 Inter-program Communication
	3.3.1 Transfer of Control
	3.3.2 Passing Parameters to Programs

	3.4 Intra-program Communication
	3.4.1 Transfer of Control
	3.4.2 Shared Data

	C. Organization
	D. Structure
	E. Divisions
	F. Reference Format (Source)
	1. General Description
	2. ANSI Card Format
	3. Free-Form Format (CRT)
	4. Sequence Numbers (ANSI Card Format)
	5. Continuation of Lines
	6. Blank Lines
	7. Comments
	8. Debugging Lines
	9. Division, Section, and Paragraph Formats
	9.1 Division Header
	9.2 Section Header
	9.3 Paragraph Header, Paragraph-Name, and Paragraph

	10. DATA DIVISION Entries
	11. DECLARATIVES

	G. COPY Statement

	III. IDENTIFICATION DIVISION
	A. General Description
	B. Organization
	C. PROGRAM-ID Paragraph
	D. DATE-COMPILED Paragraph

	IV. ENVIRONMENT DIVISION
	A. General Description
	B. Concepts
	C. Organization
	D. CONFIGURATION SECTION
	1. SOURCE-COMPUTER Paragraph
	2. OBJECT-COMPUTER Paragraph
	3. SPECIAL-NAMES Paragraph

	E. INPUT-OUTPUT SECTION
	1. FILE-CONTROL Paragraph
	2. File Control Entry
	3. ACCESS MODE Clause
	4. ALLOW SUB-INDEX and LEVELS Clauses (VXCOBOL)
	5. ALTERNATE RECORD KEY Clause (ANSI 74 and ANSI 85)
	6. ALTERNATE RECORD KEY Clause (VXCOBOL)
	7. ASSIGN Clause
	8. COMPRESSION Clauses (VXCOBOL)
	9. DELETE LOGICAL/PHYSICAL Clause (ANSI 74 and ANSI 85)
	10. FILE STATUS Clause
	11. INDEX SIZE, DATA SIZE Clauses
	12. INFOS STATUS Clause (VXCOBOL)
	13. ORGANIZATION Clause
	14. QUEUE Clause
	15. RECORD DELIMITER Clause (ANSI 74 and ANSI 85)
	16. RECORD KEY Clause
	17. RESERVE Clause (VXCOBOL)
	18. I-O-CONTROL Paragraph
	19. SAME Clause

	V. DATA DIVISION
	A. General Description
	B. Concepts
	1. Logical Record Concept
	1.1 Physical Aspects of a File
	1.2 Conceptual Characteristics of a File
	1.3 Record Concepts

	2. Concept of Levels
	3. Concept of Class and Category of Data
	4. Selection of Character Representation and Radix
	5. Algebraic Signs
	6. Standard Alignment Rules
	7. Item Alignment for Increased Object-Code Efficiency
	8. Table Handling
	8.1 Table Definition
	8.2 Initial Values of Tables
	8.3 References to Table Items
	8.4 Subscripting

	9. Uniqueness of Reference
	9.1 Qualification
	9.2 Subscripting
	9.3 Identifiers
	9.3.1 Identifier
	9.3.2 Function-identifier
	9.3.3 Reference-modifier
	9.3.4 Predefined-address
	9.3.5 Data-address-identifier
	9.3.6 Length-identifier
	9.3.7 LINAGE-COUNTER
	9.3.8 SQLSTATE (ISQL)

	9.4. Condition-Name

	C. Organization
	D. FILE SECTION
	1. File Description Entry/Sort-Merge Description Entry
	2. Record Description Structure
	3. Initial Values
	4. BLOCK CONTAINS Clause
	5. CODE-SET Clause
	6. DATA BLOCK and INDEX BLOCK Clauses (VXCOBOL)
	7. DATA RECORDS Clause
	8. EXTERNAL Clause
	9. FEEDBACK Clause (VXCOBOL)
	10. INDEX NODE Clause (VXCOBOL)
	11. LABEL RECORD Clause
	12. LINAGE Clause
	13. MERIT Clause (VXCOBOL)
	14. PARTIAL RECORD Clause (VXCOBOL)
	15. RECORD Clause (ANSI 74 and ANSI 85)
	16. RECORDING MODE Clause (ANSI 74 and ANSI 85)
	17. RECORDING MODE Clause (VXCOBOL)

	E. WORKING-STORAGE SECTION
	1. Noncontiguous Working Storage
	2. Working Storage Records
	3. Record Description Structure
	4. Initial Values
	5. Data Description Entry
	6. BLANK WHEN ZERO Clause
	7. Data-Name or FILLER Clause
	8. EXTERNAL Clause
	9. JUSTIFIED Clause
	10. Level-Number
	11. OCCURS Clause
	12. PICTURE Clause
	13. REDEFINES Clause
	14. RENAMES Clause
	15. SIGN Clause
	16. SYNCHRONIZED Clause
	17. USAGE Clause
	18. USAGE Clause (ISQL)
	19. VALUE Clause

	F. VIRTUAL-STORAGE SECTION (VXCOBOL)
	G. LINKAGE SECTION
	1. Noncontiguous Linkage Storage
	2. Linkage Records
	3. Initial Values

	H. SCREEN SECTION
	1. Screen Description
	2. Screen Description Entry
	3. AUTO, FULL, REQUIRED Clauses
	4. BACKGROUND-COLOR, FOREGROUND-COLOR Clauses (ANSI 74 and ANSI 85)
	5. BELL Clause
	6. BLANK Clause
	7. BLINK, BOLD/BRIGHT/HIGHLIGHT/DIM/LOWLIGHT, REVERSE/REVERSED/REVERSED-VIDEO, UNDERLINE/UNDERLINED Clauses
	8. CONVERTING Clause
	9. ERASE Clause
	10. FROM, TO, USING Clauses
	11. LINE and COLUMN Clauses
	12. OCCURS Clause
	13. PICTURE Clause
	14. SECURE Clause
	15. SIGN Clause
	16. USAGE Clause (ISQL)
	17 VALUE Clause

	VI. PROCEDURE DIVISION
	A. General Description
	1. DECLARATIVES
	2. Procedures
	3. Execution

	B. Concepts
	1. Arithmetic Expressions
	1.1 Definition of an Arithmetic Expression
	1.2 Arithmetic Operators
	1.3 Formation and Evaluation Rules

	2. Conditional Expressions
	2.1 Simple Conditions
	2.2 Complex Conditions
	2.3 Abbreviated Combined Relation Conditions
	2.4 Order of Evaluation of Conditions

	3. Common Options and Rules for Statements
	3.1 ROUNDED Phrase
	3.2 ON SIZE ERROR Phrase
	3.3 CORRESPONDING Phrase
	3.4 Arithmetic Statements
	3.5 Overlapping Operands
	3.6 Multiple Results in Arithmetic Statements
	3.7 Incompatible Data

	4. Statements and Sentences
	4.1 Conditional Statements and Sentences
	4.2 Compiler Directing Statements and Sentences
	4.3 Imperative Statements and Sentences

	5. Scope of Statements
	6. Explicit and Implicit Specifications
	6.1 Explicit and Implicit Procedure Division References
	6.2 Explicit and Implicit Transfers of Control
	6.3 Explicit and Implicit Attributes
	6.4 Scope Terminators
	6.5 Explicit Scope Terminators
	6.6 Implicit Scope Terminators

	C. File Concepts
	1. File Attributes
	1.1 Sequential Organization
	1.2 Relative Organization
	1.3 Indexed Organization
	1.4 INFOS Organization (VXCOBOL)

	2. Logical Records
	2.1 Fixed Length Records
	2.2 Variable Length Records (ANSI 74 and ANSI 85)
	2.3 Variable Length Records (VXCOBOL)

	3. File Processing
	4. Record Operations
	4.1 Sequential Access Mode
	4.2 Random Access Mode
	4.3 Dynamic Access Mode
	4.4 Open Mode
	4.5 Current Volume Pointer
	4.6 File Position Indicator

	5. File Operations
	6. Exception Handling
	6.1 I-O Status (FILE STATUS)
	6.2 I-O Status (ANSI 74)
	6.3 I-O Status (ANSI 85)
	6.4 I-O Status (VXCOBOL)
	6.5 INFOS Status (VXCOBOL)
	6.6 The At End Condition
	6.7 The Invalid Key Condition
	6.8 The File Attribute Conflict Condition
	6.9 Exception Declaratives
	6.10 Optional Phrases
	6.11 ACCEPT FROM EXCEPTION STATUS

	7. Shared Record Area
	8. INFOS File I-O Common Phrases (VXCOBOL)
	8.1 The POSITION Phrase
	8.2 The Relative Motion Phrase
	8.3 The KEY Series Phrase
	8.4 The SUPPRESS Phrase
	8.5 The LOCK/UNLOCK Phrase

	D. Header
	E. Statements
	1. ACCEPT (keyboard)
	2. ACCEPT (system)
	3. ADD
	4. CALL
	5. CALL PROGRAM
	6. CANCEL
	7. CLOSE
	8. COMMIT (ISQL)
	9. COMPUTE
	10. CONNECT (ISQL)
	11. CONTINUE
	12. DEALLOCATE (ISQL)
	13. DEFINE SUB-INDEX (VXCOBOL)
	14. DELETE
	15. DELETE FILE
	16. DISCONNECT (ISQL)
	17. DISPLAY
	18. DIVIDE
	19. EVALUATE (ANSI 74 and ANSI 85)
	20. EXECUTE (ISQL)
	21. EXECUTE IMMEDIATE (ISQL)
	22. EXIT
	23. EXIT PROGRAM
	24. EXPUNGE (VXCOBOL)
	25. EXPUNGE SUB-INDEX (VXCOBOL)
	26. FETCH (ISQL)
	27. GET DIAGNOSTICS (ISQL)
	28. GO TO
	29. GOBACK
	30. IF
	31. INITIALIZE (ANSI 74 and ANSI 85)
	32. INSPECT
	33. LINK SUB-INDEX (VXCOBOL)
	34. MERGE
	35. MOVE
	36. MULTIPLY
	37. OPEN
	38. PERFORM
	39. PREPARE (ISQL)
	40. READ (ANSI 74 and ANSI 85)
	41. READ (VXCOBOL)
	42. RELEASE
	43. RETRIEVE (VXCOBOL)
	44. RETURN
	45. REWRITE
	46. ROLLBACK (ISQL)
	47. SEARCH
	48. SET (ANSI 74 and ANSI 85)
	49. SET (VXCOBOL)
	51. SORT
	52. START
	53. STOP
	54. STRING
	55. SUBTRACT
	56. UNDELETE (ANSI 74 and ANSI 85)
	57. UNDELETE (VXCOBOL)
	58. UNLOCK
	59. UNSTRING
	60. USE
	61. WRITE

	VII. BUILTINS
	A. Introduction
	1. Overview

	B. Builtins
	1. ?CBADDR
	2. ?CBBADDR
	3. ?CBSYS
	4. CLI
	5. IC_ABORT_TERM
	6. IC_CHANGE_DIR
	7. IC_CHANGE_PRIV
	8. IC_CHECK_DATA
	9. IC_COMPRESS_OFF
	10. IC_COMPRESS_ON
	11. IC_CREATE_DIR
	12. IC_CURRENT_DIR
	13. IC_DECODE_URL
	14. IC_DELAY
	15. IC_DETACH_PROGRAM
	16. IC_DIR_LIST
	17. IC_DISABLE_HOTKEY
	18. IC_DISABLE_INTS
	19. IC_ENABLE_HOTKEY
	20. IC_ENABLE_INTS
	21. IC_ENCODE_URL
	22. IC_EXTRACT_STRING
	23. IC_FULL_DATE
	24. IC_GET_DISK_SPACE
	25. IC_GET_ENV
	26. IC_GET_FILE_IND
	27. IC_GET_KEY
	28. IC_HANGUP
	29. IC_HEX_TO_NUM
	30. IC_INFOS_STATUS_TEXT (VXCOBOL)
	31. IC_INSERT_STRING
	32. IC_KILL_TERM
	33. IC_LOGON
	34. IC_LOWER
	35. IC_MOVE_FILE_DATA
	36. IC_MOVE_STRING
	37. IC_MSG_TEXT
	38. IC_NUM_TO_HEX
	39. IC_PID_EXISTS
	40. IC_PRINT_STAT
	41. IC_QUEUE_LIST
	42. IC_QUEUE_OPERATION
	43. IC_QUEUE_STATUS
	44. IC_REMOVE_DIR
	45. IC_RENAME
	46. IC_RESOLVE_FILE
	47. IC_SEND_MAIL
	48. IC_SEND_MSG
	49. IC_SERIAL_NUMBER
	50. IC_SET_ENV
	51. IC_SET_TIMEOUT
	52. IC_SET_USERNAME
	53. IC_SHUTDOWN
	54. IC_SYS_INFO
	55. IC_TERM_CTRL
	56. IC_TERM_STAT
	57. IC_TRIM
	58. IC_UPPER
	59. IC_VERSION
	60. IC_WINDOW_TITLE
	61. IC_WINDOWS_MSG_BOX
	62. IC_WINDOWS_SETFONT
	63. IC_WINDOWS_SHELLEXECUTE (Windows only)
	64. IC_WINDOWS_SHOW_CONSOLE

	VIII. INTRINSIC FUNCTIONS
	A. General Description
	1. Types of Functions
	2. Arguments
	3. Returned values
	4. Date conversion functions
	5. Summary of functions

	B. Intrinsic Functions
	1. ABS
	2. ACOS
	3. ANNUITY
	4. ASIN
	5. ATAN
	6. BYTE-LENGTH
	7. CHAR
	8. COS
	9. CURRENT-DATE
	10. DATE-OF-INTEGER
	11. DATE-TO-YYYYMMDD
	12. DAY-OF-INTEGER
	13. DAY-TO-YYYYDDD
	14. E
	15. EXP
	16. EXP10
	17. FACTORIAL
	18. FRACTION-PART
	19. HIGHEST-ALGEBRAIC
	20. INTEGER
	21. INTEGER-OF-DATE
	22. INTEGER-OF-DAY
	23. INTEGER-PART
	24. LENGTH
	25. LOG
	26. LOG10
	27. LOWER-CASE
	28. LOWEST-ALGEBRAIC
	29. MAX
	30. MEAN
	31. MEDIAN
	32. MIDRANGE
	33. MIN
	34. MOD
	35. NUMVAL
	36. NUMVAL-C
	37. NUMVAL-F
	38. ORD
	39. ORD-MAX
	40. ORD-MIN
	41. PI
	42. PRESENT-VALUE
	43. RANDOM
	44. RANGE
	45. REM
	46. REVERSE
	47. SIGN
	48. SIN
	49. SQRT
	50. STANDARD-DEVIATION
	51. SUM
	52. TAN
	53. TEST-DATE-YYYYMMDD
	54. TEST-DAY-YYYYDDD
	55. TEST-NUMVAL
	56. TEST-NUMVAL-C
	57. TEST-NUMVAL-F
	58. UPPER-CASE
	59. VARIANCE
	60. WHEN-COMPILED
	61. YEAR-TO-YYYY

	IX. SCREEN HANDLER
	A. General Description
	1. Enabling the SCREEN HANDLER
	2. Summary of Calls
	3. Error Handling

	B. Calls
	1. SD_DRAW_BOX
	2. SD_DRAW_HLINE and SD_DRAW_VLINE
	3. SD_GET_IMAGE
	4. SD_GET_POS
	5. SD_MESSAGE, SD_ERROR_MESSAGE, SD_MESSAGE_ONLY
	6. SD_NEW_WINDOW
	7. SD_POP_UP_MENU
	8. SD_POP_UP_MENU2
	9. SD_READ_CHAR
	10. SD_REDRAW
	11. SD_REMOVE_WINDOW
	12. SD_RETURN_INPUT
	13. SD_SET_ACCEPT_TIMEOUT
	14. SD_SYS_ERROR_MESSAGE

	 PART TWO - DEVELOPER’S GUIDE
	X. INTRODUCTION TO THE DEVELOPER’S GUIDE
	A. Overview
	B. Operating Environment
	1. General Concepts
	1.1 Communication with the Operating System
	1.2 I-O Redirection
	1.3 Environment Variables

	2. Directory Structure
	3. ICEXEC Control Program
	4. ICPERMIT License Program

	C. Command-line Conventions
	1. Switches
	2. Conventions for Defining Syntax
	3. Filename Case (upper or lower)

	D. Common Switches
	1. Overall
	2. Audit Switch
	3. Quiet Switch
	4. Help Switch

	E. Filename Extensions
	F. Exit Codes
	G. Common Environment Variables
	1. Overall
	2. ICROOT
	3. ICTMPDIR
	4. Executable-Name Environment Variable
	5. TZ (Windows only)

	XI. COMPILER (ICOBOL)
	A. Overview
	B. Syntax
	1. Rules
	2. Environment Variables

	C. Switches
	1. Overview
	2. Byte Alignment Switch (-B 1|2|4)
	3. COPY Sourcedir Switch (-c)
	4. COPY Path Switch (-C copydir)
	5. Dialect Switch (-D ic|vx|85)
	6. Error File Switch (-e | -E erdir)
	7. Format Switch (-F c|f)
	8. General Switch (-G {6|a|b|d|e|g|h|i|k|n|p|q|s}...)
	9. Hard Error Limit Switch (-H cnt)
	10. Information Switch (-i)
	11. Include listing options Switch (-I {g|m|p|x}...)
	12. Listing File Switch (-l | -L lsdir)
	13. Make ICODBC Data Definition Files Switch (-M dddir)
	14. No Switch (-N {h|p|s|u}...)
	15. OEM Version Switch (-o | -O rev)
	16. Program Output File Switch (-P cxdir)
	17. Revision Switch (-R 1|2|3|4)
	18. Statistics Switch (-s)
	19. Warnings Switch (-w)
	20. ICODBC Options Switch (-X “string”)
	21. Debug Switch (-Z sydir)

	D. Messages
	1. Overview
	1.1 Format
	1.2 Examples

	2. Error Messages
	3. Warning Messages
	4. Information Messages

	E. Example Output
	F. Cross Reference Output
	G. ICODBC Support

	XII. DEBUGGING
	A. Introduction
	B. Invocation
	C. Usage
	D. Commands
	1. Overview
	2. AUDIT
	3. BREAK
	4. COMMAND
	5. DUMP
	6. ERROR RESET
	7. EXECUTE
	8. FIND
	9. GO
	10. HELP
	11. INFO
	12. LIST
	13. MOVE
	14. QUIT
	15. RERUN
	16. RUN
	17. STEP
	18. TYPE
	19. VIEW
	20. ZOOM

	E. Performance Considerations
	F. Quick Reference

	XIII. ICREVSET
	A. Introduction
	B. Syntax
	C. General Rules

	XIV. ICDUMP
	A. Introduction
	B. Syntax
	C. Rules
	D. Example

	XV. RUNTIME (ICRUN)
	A. Introduction
	B. Printer Control Utility
	C. Program Termination
	1. Two Types of Termination
	1.1 Return to LOGON as Inactive
	1.2 Return to Parent Process

	D. Device Support
	1. Overview
	2. General Rules
	3. Parallel Printer Ports
	4. Serial Ports

	E. Filenaming Conventions
	1. Internal Filenames
	2. External Filenames
	2.1 Rules
	2.2 Program names
	2.3 Sequential and ICISAM Filenames

	F. Extended OPEN options
	1. Overview
	2. Extended Sequential Open
	3. Extended Relative Open (ANSI 74 and ANSI 85)
	4. Extended Indexed Open

	G. ICISAM Information
	1. Overview
	2. ICISAM Versions
	3. ICISAM Reliability
	4. ICISAM Key Ordering

	H. Notes and Warnings
	I. UNIX Pipe Opens
	J. BTRIEVE Support
	1. Overview
	2. Runtime
	3. ICREORG
	4. ICNETD

	K. C-ISAM Support
	1. Overview
	2. Runtime
	3. ICREORG
	4. ICNETD

	L. HOT KEYS
	1. Introduction
	2. Construction
	3. Restrictions
	3. Example

	XVI. ICODBC Driver
	A. Introduction
	B. General Information
	C. Using the Driver
	D. Creating .XDB and XDT Files
	E. Managing Data Sources (On Windows)
	F. Managing Data Sources (On UNIX)
	G. Data Types Supported
	H. Driver Limitations
	I. SQL Grammar Supported
	J. Usage Notes
	K. Debugging
	L. SYWARE

	XVII. ICIDE
	A. Introduction
	B. Use
	C. Changing .CO or .SR file associations

	XVIII. GLOSSARY
	A. Introduction
	B. Definitions

	APPENDICES
	A. IMPLEMENTATION LIMITS
	B. ESCAPE KEY TABLE
	C. ANSI 74 FILE STATUS CODES
	D. ANSI 85 FILE STATUS CODES
	E. VXCOBOL FILE STATUS CODES
	F. ANSI 74 and ANSI 85 EXCEPTION STATUS CODES
	G. VXCOBOL EXCEPTION STATUS CODES
	H. UNIX Errno
	I. ASCII CODES
	J. EBCDIC CODES
	K. COBOL RESERVED WORDS
	L. SYSTEM CALLS

	INDEX
	Support Information Request (SIR)
	Enhancement/Suggestion Request
	CUSTOMER DOCUMENTATION COMMENT FORM

