I

1l
‘IFIIIIII

4|I

Interactive COBOL
Language Reference
&

Developer’s Guide

ICOBOL Reyvision 5.50
No. 011-00100-32

February 2024

Much of the material in this manual is extracted from the ANSI X.3-1985 COBOL Standard, generally referred to as the ANSI COBOL 85
Standard. Accordingly, the following acknowledgment is made as required in that document.

COBOL is an industry language and is not the property of any company or group of companies, or of any organization or group of organizations.
No warranty, expressed or implied, is made by any contributor or by the CODASYL COBOL Committee as to the accuracy and functioning of
the programming system and language. Moreover, no responsibility is assumed by any contributor, or by the committee, in connection
therewith.
The authors and copyright holders of the copyrighted materials used herein are:
FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for the UNIVAC (R) I and II, Data Automation System copyrighted
1958, 1959, by Sperry Rand Corporation; IBM Commercial Translator Form No. F 28-8013, copyrighted 1959 by IBM; FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell.

They have specifically authorized the use of this material in whole or in part, in the COBOL specifications. Such authorization extends to the
reproduction and use of COBOL specifications in programming manuals or similar publications.

Procedures have been established for the maintenance of COBOL. Inquiries concerning the procedures for proposing changes should be directed
to the Chairman of the CODASYL COBOL Committee, P.O. 1808, Washington, DC 20013.

LICENSE AGREEMENT

Carefully read the following terms and conditions. Use of this product constitutes your acceptance of these terms and
conditions and your agreement to abide by them.

You, the purchaser, are granted a non-exclusive license to use this software under the terms stated in this agreement. The
program and its documentation are copyrighted and may not be copied or reproduced in any part, in any form, for any purpose,
except according to the terms stated in this agreement.

You may:

1. use the software for up to the number of active users for which the software was purchased.

2. use the software provided a valid license is installed for the required number of active users to be supported at any one
time.

3. copy the software into any machine readable form for backup purposes.
4. transfer the software from one computer to another.

5. assign or transfer the software and license to another party if the other party agrees to all the terms and conditions of this
agreement. Once the transfer is complete you must destroy any copies of the software not transferred.

6. rent, sublicense, or lease the software and license if the user agrees to all the terms and conditions of this agreement.
7. not alter, modify, or adapt the software itself, including, but not limited to, translating, decompiling, or disassembling.
8. copy or reproduce the documentation for purposes of using a valid license.

This license and your right to use the software automatically terminate if you fail to comply with any provision of this License
Agreement. You agree upon such termination to destroy the software and license.

LIMITED WARRANTY

Envyr Corporation warrants that (a) the software will perform substantially in accordance with the accompanying
written materials for a period of ninety (90) days from the date of receipt; and (b) any hardware accompanying the
software will be free from defects in materials and workmanship under normal use and service for a period of one (1)
year from the date of receipt. Any implied warranties on the software and hardware are limited to ninety (90) days
and one (1) year respectively. Some states do not allow limitations on duration of an implied warranty, so the above
limitation may not apply to you.

Envyr Corporation's entire liability and your exclusive remedy shall be, at Envyr Corporation’s option, either (a)
return the license fee or (b) repair or replacement of the software or hardware that does not meet the above Limited
Warranty and which is returned to the original vendor with a copy of the receipt. This Limited Warranty is void if
failure of the software or hardware has resulted from accident, abuse, or misapplication.

In no event shall Envyr Corporation or its suppliers be liable for any damages whatsoever, including, but without
limitation, damages for loss of business profits, business interruption, loss of business information, or other
pecuniary loss, arising out of the use of or inability to use this software or hardware, even if Envyr Corporation has
been advised of the possibility of such damages.

Restricted Rights Legend: Use, duplication, or disclosure by the U. S. Government is subject to restrictions as set forth in subparagraph
(c) (1) (ii) of the Rights in Technical Data and Computer Software clause at [DFARS] 252.227-7013 (October 1988).

Envyr Corporation
92 Cornerstone Dr., Ste 143
Cary, N.C. 27519
USA

www.icobol.com

Interactive COBOL Lanquage Reference & Developer’s Guide

NOTICE

This manual has been prepared for use only with the Interactive COBOL product by prospective customers or valid
licensees. The information in this manual is subject to change without prior notice.

In no event shall the seller be liable for any incidental, indirect, special or consequential damages whatsoever
(including but not limited to lost profits) arising out of or related to this document or the information contained in it,
even if the writers have been advised, knew or should have known of the possibility of such damage.

Program and Manual Copyright © 1994-96, 1998-2004, 2007-2012, 2014-2017, 2020, 2021, 2024 by Envyr
Corporation, Cary, N.C. All rights reserved.

Major Revision History:
Release 2.00 - March 1994
Release 2.20 - September 1996
Release 2.40 - June 1998

Release 2.60 - October 1999

Release 3.00 - August 2000

Release 3.10 - April 2001
Release 3.20 - April 2002
Release 3.30 - February 2003
Release 3.40 - March 2004

Release 3.60 - January 2008

Release 4.00 - October 2008
Release 4.10 - August 2009
Release 4.20 - December 2009
Release 4.40 - June 2010
Release 4.50 - April 2011
Release 4.53 - July 2011

Release 4.70
Release 4.71

- August 2012
- October 2012

Release 4.72 - December 2012
Release 5.00 - December 2014
Release 5.02 - December 2014
Release 5.04 - March 2015
Release 5.10 - October 2015
Release 5.20 - June 2016
Release 5.24 - December 2016
Release 5.25 - January 2017
Release 5.40 - May 2020
Release 5.44 - July 2021
Release 5.50 - February 2024

Effective with:

Interactive COBOL Revision 5.50

TRADEMARKS

ICHOST, Interactive COBOL, and ICOBOL are trademarks of Envyr Corporation

DEC, VT100, and VT220 are trademarks of Digital Equipment Corporation.

DG/UX is a trademark of Data General Corporation.

IBM is a registered trademarks of International Business Machines Corporation.

Intel is a registered trademark of Intel Corporation.

Core and Quark are trademarks of Intel Corporation.

Atom, Celeron, Pentium, Xeon, and Itanium are registered trademarks of Intel Corporation.

AIX, PC, PC/XT, PC/AT, PS/2, RISC System 6000, 3101, 3151, and 3161 are trademarks of International
Business Machines Corporation.

Microsoft, MS-DOS, Windows, Windows NT, and XENIX are registered trademarks of Microsoft Corporation.

Sentine]lPRO and Software Sentinel-C are trademarks of RAINBOW Technologies, Inc. (Now owned by
Gemalto)

SunOS and Solaris are trademarks of Sun Microsystem, Inc.

UNIX is a trademark of UNIX Systems Laboratories, Inc. (USL)

WYSE is a registered trademark of Wyse Technology.

WY-60, WY-50, WY-50+ are trademarks of Wyse Technology.

Linux is a registered trademark owned by Linus Torvalds and managed by The Linux Foundation.

All other product names mentioned herein are trademarks of their respective owners.

Interactive COBOL Lanquage Reference & Developer’s Guide

Table of Contents

TABLE OF CONTENTS

EHIpSiS . .o 39
Format Punctuation 40
Use of Special Character Wordsin Formats 40
. Documentation Only. 40
B. RUIES . . 40

1. Syntax Rules 40

2. General Rules. 40
C. ICOBOL Dialects and Feature-Sets 41
Description of ICOBOL Dialects 41
Notation of Dialect Differences. 41
Description of Feature-sets 42
Notation of Feature-set Differences 42

OGN RWN =

PN~

Il. COBOL SOURCE PROGRAM e 43
A. General Description. 43

B. Concepts 43

1. Character Set. 43

2. Language Structure 43

2.1 Separators e 43

2.2 Character-Strings 44

221 COBOL WOIAS. . . oottt e 44

2.2.2 Literals. 47

2.2.21 Nonnumeric Literals 48

Nonnumeric Hexadecimal Literals 49
Numeric Literals 49
Numeric Hexadecimal Literals 50
Figurative ConstantValues. 50
Date Literals (JSQL) 52
Time Literals (ISQL) 52
Timestamp Literals (ISQL) 53
Interval Literals (ISQL) 53
.9.1 Year-Month Interval Literals (ISQL) 54
.2.9.2 Day-Time Interval Literals (ISQL), 55
2.2.3 LINAGE-COUNTER e 56

2.2.4 PICTURE Character-Strings e 56

2.25 Comment-Entries. 56

3. Program and Run Unit Organization and Communication...................... 56
3.1 Program and Run Unit Organization 57
3.2 AccessingDataand Files. 57
3.2.1 NamMeS . . o 57

O©CoOoO~NOOPRWN

2
2
2
2
2
2
2
2
2

NNNPNNDNNDNDDNDN

2
2
2
2
2
2
2
2
2
2

Interactive COBOL Lanquage Reference & Developer’s Guide

Mmoo

3.2.2 Objectso 57
3.3 Inter-program Communication 59
3.3.1 Transferof Control. 59
3.3.2 Passing Parametersto Programs 60
3.4 Intra-program Communication 61
3.4.1 Transferof Control. 61
3.4.2 Shared Data 61

Organization 61
StruCtUre . . . 62
DiIVISIONS . . . 62
Reference Format (Source). 63

1.
2
3
4
5
6.
7
8
9.
10.

1.
12.

General DescCription 63

. ANSICard Format e 63
. Free-Form Format (CRT) e e e e 64
. Extended Card Format. e 65
. Sequence Numbers (ANSI Card Format)., 65

Continuation of Lines e 65

CBlank Lines. . .. 66
o CommeENtS L e 66

Debugging Lines. e 66
Division, Section, and Paragraph Formats. 67
10.1 Division Header e 67
10.2 Section Header. 67
10.3 Paragraph Header, Paragraph-Name, and Paragraph. 67
DATA DIVISION Entries. e e e e e 67
DECLARATIVES . . . e 68

G. COPY Statement. 69

Il IDENTIFICATION DIVISION e 73

A.
B.
C.
D.

Ge

neral Description. e 73

Organization 73

PR

OGRAM-ID Paragraph e 75

DATE-COMPILED Paragraph e e 75

IV. ENVIRONMENT DIVISION e 77
A. General Description. 77
B. Concepts 77
C. Organization 77
D. CONFIGURATION SECTION e e e e e e e 79

E.

1.
2.
3.

SOURCE-COMPUTER Paragraph. e 79
OBJECT-COMPUTER Paragraph e 80
SPECIAL-NAMES Paragraph. e 80

INPUT-OUTPUT SECTION e 89

FILE-CONTROL Paragraph e e 89
File Control Entry. 90
ACCESS MODE Clause e e 96
ALLOW SUB-INDEX and LEVELS Clauses (VXCOBOL) 98
ALTERNATE RECORD KEY Clause (ANSI74and ANSI85) 99
ALTERNATE RECORD KEY Clause (VXCOBOL). i . 102
ASSIGN Clause. 104
COMPRESSION Clauses (VXCOBOL) e 107
DELETE LOGICAL/PHYSICAL Clause (ANSI74and ANSI85). 108

CFILE STATUS Clause e e e e e e 109
.INDEX SIZE, DATA SIZE ClauSes.ot it e e e e 110
. INFOS STATUS Clause (VXCOBOL). 111
.ORGANIZATION Clauseo e e 11
CQUEUE Clause e 11
. RECORD DELIMITER Clause (ANSI74and ANSI85) 11

10

Table of Contents

16.
17.
18.
19.

RECORD KEY Clause.o e e e 116
RESERVE Clause (VXCOBOL) s 119
[-O-CONTROL Paragraph. e e 120
SAME Clause 121

V. DATA DIVISION. 123
A. General Description. 123
B. CoNnCepts . . .o 123

1.

GNOORLN

Logical Record Concept. 123
1.1 Physical Aspectsofa File. 123
1.2 Conceptual Characteristicsofa File. 123
1.3 Record Conceptst i 123
Conceptof Levels. 123
Concept of Class and CategoryofData. 124
Selection of Character Representationand Radix 125
Algebraic Signs. 125
Standard Alignment Rules 125
Item Alignment for Increased Object-Code Efficiency 126
Table Handling 126
8.1 Table Definition. 127
8.2 Initial Values of Tables 128
8.3 Referencesto Table ltems 128
8.4 Subscripting 128
Uniqueness of Reference. 130
9.1 Qualification 130
9.2 SubsCHipting 131
9.3 Identifiers 133

9.3.1 Identifier. 133
Function-identifier 135
Reference-modifier 136
Predefined-address. 137
Data-address-identifier 137
Length-identifier. 138
.7 LINAGE-COUNTER e 138
3.8 SQLSTATE (ISQL) e 139
9.4. Condition-Name. 142

©oooooo
W W ww
~NoO o h~hWN

C. Organization 143
D. FILE SECTION . .. e e 144

File Description Entry/Sort-Merge Description Entry. 144
Record Description Structure 149
Initial Values 149
BLOCK CONTAINS Clause. oot e e e 150
CODE-SET Clauseo e e e 151
DATA BLOCK and INDEX BLOCK Clauses (VXCOBOL) 153
DATA RECORDS Clause e e e 154
EXTERNAL Clause s 155
FEEDBACK Clause (VXCOBOL). e 156

_INDEX NODE Clause (VXCOBOL)uouei . 157
.LABEL RECORD ClaUSE.o e ettt et e e 158
CLINAGE ClAUSE . « . o v oo e e e e e e e e e 159
 MERIT Clause (VXCOBOL)o oot ettt 162
. PARTIAL RECORD Clause (VXCOBOL)ooeiiei . 163
. RECORD Clause (ANSI74and ANSI85)ocuuiuueianeaaea... 164
. RECORDING MODE Clause (ANSI74and ANSI85) 168
17.

RECORDING MODE Clause (VXCOBOL).\ oieiii e 169

E. WORKING-STORAGE SECTION e 171

1.
2.

Noncontiguous Working Storage. E
Working Storage Records 171

Interactive

COBOL Language Reference & Developer’s Guide

3. Record Description Structure 171
4. Initial Values 171
5. Data Description Entry. 172
6. BLANKWHEN ZERO Clause e e 175
7. Data-Name or FILLER Clause. e 176
8. EXTERNAL Clause e e 177
9. JUSTIFIED Clauseottt e e e e 178
10. Level-Number 179
T1.0CCURS Clause.ot e e e 180
12. PICTURE Clause. e e e 182
13. REDEFINES Clause o e 189
14. RENAMES Clause. 191
15.SIGN Clause 192
16. SYNCHRONIZED Clause e e 194
17. USAGE Clause 195
18. USAGE Clause (ISQL). e 198
19. VALUE Clause. 202
F. VIRTUAL-STORAGE SECTION (VXCOBOL) 205
G. LINKAGE SECTION . .. e e 206
1. Noncontiguous Linkage Storage e 206
2. Linkage Records. 206
3. Initial Values 206
H. SCREEN SECTION. e e 207
1. Screen Description 207
2. Screen Description Entry. 207
3. AUTO, FULL, REQUIRED Clauses.ottt e e 217
4. BACKGROUND-COLOR, FOREGROUND-COLOR Clauses (ANSI 74 and ANSI 85)
.. 218
5. BELL Clause 219
6. BLANK Clause. 220
7. BLINK, BOLD/BRIGHT/HIGHLIGHT/DIM/LOWLIGHT,
REVERSE/REVERSED/REVERSED-VIDEO, UNDERLINE/UNDERLINED Clauses
.. 221
8. CONVERTING Clause e 223
9. ERASE Clause 224
10. FROM, TO, USING Clausest e s 225
T1. LINE and COLUMN Clauses e e 226
12. OCCURS Clause.o e e e e e 229
13.PICTURE Clause. e e e e 230
14. SECURE Clause 231
15.SIGN Clause 232
16. USAGE Clause (ISQL). e 233
17. VALUE Clause. e 235
VI. PROCEDURE DIVISION. e 237
A. General Description. 237
1. DECLARATIVES . .. 237
2. ProCeduUres 237
3. EXecution . .. 237
B. CoNCEptS . . . 238
1. Arithmetic EXpressions. 238
1.1 Definition of an Arithmetic Expression, 238
1.2 Arithmetic Operators. 238
1.3 Formation and Evaluation Rules 239
2. Conditional EXPressionS.ot 240
2.1 Simple Conditions. 241
2.2 Complex Conditions 247
2.3 Abbreviated Combined Relation Conditions. 248

12

Table of Contents

2.4 Order of Evaluation of Conditions. 249

3. Common Options and Rules for Statements 253
3.1 ROUNDED Phrase. s 253
3.2 ONSIZEERROR Phrase. e 254
3.3 CORRESPONDING Phrase. e 254
3.4 Arithmetic Statements. 256
3.5 Overlapping Operands 256
3.6 Multiple Results in Arithmetic Statements 256

3.7 Incompatible Data. 257

4. Statements and Sentences. 257
4.1 Conditional Statements and Sentences 257
4.2 Compiler Directing Statements and Sentences 259
4.3 Imperative Statements and Sentences. o oL 259

5. Scope of Statements 260
6. Explicit and Implicit Specifications 260
6.1 Explicit and Implicit Procedure Division References 260
6.2 Explicit and Implicit Transfers of Control 261
6.3 Explicit and Implicit Attributes. 262
6.4 Scope Terminators 262
6.5 Explicit Scope Terminators. 262
6.6 Implicit Scope Terminators 262

. File Concepts. 263
1. File Attributes 263
1.1 Sequential Organization. 263
1.2 Relative Organization. 263
1.3 Indexed Organization 264
1.4 INFOS Organization (WXCOBOL) e 264

2. Logical Records 264
2.1 Fixed Length Records 264
2.2 Variable Length Records (ANSI74and ANSI85) 265
2.3 Variable Length Records (VXCOBOL) 265

3. File Processing. 265
4. Record Operations 265
4.1 Sequential Access Mode 265
4.2 Random Access Mode e 266
4.3 Dynamic Access Mode. 266
4.4 Open Mode. 266
4.5 Current Volume Pointer 267
4.6 File Position Indicator. 267

5. File Operations. 267
6. Exception Handling. 267
6.1 [-O Status (FILE STATUS).o e 267
6.2 1-O Status (ANSI74). 268
6.3 [-O Status (ANSI85). 271
6.4 [-O Status (VXCOBOL). e 274
6.5 INFOS Status (VXCOBOL). e 278
6.6 The AtEnd Condition 278
6.7 Thelnvalid Key Condition 278
6.8 The File Attribute Conflict Condition 279
6.9 Exception Declaratives 279
6.10 Optional Phrases. e 279
6.11 ACCEPT FROM EXCEPTION STATUS i 280

7. Shared Record Area.ot 280
8. INFOS File I-O Common Phrases (VXCOBOL) 280
8.1 The POSITION Phrase. e 280
8.2 The Relative Motion Phrase. 281
8.3 The KEY Series Phrase e 282
8.4 The SUPPRESS Phrase i 282

Interactive COBOL Lanquage Reference & Developer’s Guide

8.5 The LOCK/UNLOCK Phrase e 283

D. Header. 284
E. Statements. 285
1. ACCEPT (keyboard) 285
2. ACCEPT (system)o 296
3. AD D . 303
4. CALL . 305
5. CALL PROGRAM . .. 309
6. CANCEL 313
7. CLOSE . o 315
8. COMMIT (ISQL). . . . o e e 317
9. COMPUTE. . . 319
10. CONNECT (ISQL) oo e e 321
11, CONTINUE . .o e e 325
12. DEALLOCATE (ISQL)o e e 327
13. DEFINE SUB-INDEX (VXCOBOL) 329
T4, DELETE. . . .o 333
15. DELETE FILE . .. 339
16. DISCONNECT (ISQL)o e 341
7. DIS P LAY . 343
18. DIVIDE. . o 351
19. EVALUATE (ANSI74and ANSI85) e 355
20. EXECUTE (ISQL) . . . oo i 359
21. EXECUTE IMMEDIATE (ISQL)« e 361
2 EXIT . o 363
23. EXIT PROGRAM. . . 365
24 EXPUNGE (VXCOBOL) e e e 367
25. EXPUNGE SUB-INDEX (VXCOBOL) e 369
26. FETCH (ISQL)o 371
27. GET COLUMNS (ISQL). e e 373
28. GET DIAGNOSTICS (ISQL) o e 377
29. GET TABLES (ISQL) o 380
30. GO TO . . 383
31, GOBACK . . 385
2. IF 387
33. INITIALIZE (ANSI74and ANSI85) e 389
34, INSPECT . . . 393
35. LINK SUB-INDEX (VXCOBOL). e 400
36. MERGE 402
7. MOVE . . 406
38. MULTIPLY . . 409
39. OPEN o 411
40. PERFORM. . .o 416
41. PREPARE (ISQL) 424
42. READ (ANSI74and ANSI85) 426
43. READ (VXCOBOL). 432
44, RELEASE . .. 439
45. RETRIEVE (VXCOBOL).o e 441
46. RETURN oo 443
47 . REWRITE . .o 445
48. ROLLBACK (ISQL) . . . o o e 449
49. SEARCH . .o 451
50. SET (ANSI74and ANSI85) 455
51. SET (VXCOBOL) 459
52. SET CONNECTION (ISQL e 461
53, SORT . Lo 463
4. ST AR . . 469
B8, ST O . L o 475

Table of Contents

56. STRING. . .. 477
7. SUBTRACT . . o 479
58. UNDELETE (ANSI74and ANSI85). 481
59. UNDELETE (VXCOBOL) e 483
B60. UNLOCK . .. 485
61. UNSTRING 487
B2. USE 491
63. WRITE . . . 495
VIL BUILTINS 505
A Introduction 505
1. OVEIVIEW. L o 505
B. BUIltinS. . .. 507
1. 2CBADD R . . 507
2. 2CBBADDR. . .. 508
3. 2CB Y S 509
] 510
5. IC_ABORT _TERM 511
6. IC_CENTER 512
7. IC_CHANGE _DIR . . . 513
8. IC_CHANGE PRIV . .. 514
9. IC _CHE CK _DAT A .« 516
10. IC_CLIENT_CALLPROCESS e 518
T1.1C_CLIENT_DELETE_FILE. s 519
12. IC_CLIENT _GET_ENV .. . e 520
13.IC_CLIENT _GET_FILE e 521
14. IC_CLIENT _PUT_FILE e 522
15, IC_CLIENT_RESOLVE_FILE e 523
16. IC_CLIENT _SET_ENV e 524
17.1C_CLIENT_SHELLEXECUTE e 525
18. IC_COMPRESS_OFF 527
19. IC_COMPRESS _ON. ... 528
20. IC_CREATE _DIR ... 529
21, IC_CURRENT _DIR . .o 530
22. IC_DECODE _CSV . .. 531
23. IC_DECODE _URL . .. 532
24 |G _DELAY . 533
25. IC_DETACH_PROGRAM . . . 534
26. IC_DIR _LIST . .o 536
27.IC_DISABLE _HOTKEY 537
28. IC_DISABLE _INTS 538
29. IC_ENABLE _HOTKEY . .. e 539
30. IC_ENABLE _INTS. . .. 540
31. IC_ENCODE _CSV . . . 541
32. IC_ENCODE_URL 542
33. IC_EXTRACT _STRING. 543
34. IC_FULL_DATE. . . . 544
35. IC_GET _DISK _SPACE 545
36. IC_GET _ENV ... 546
37. IC_GET_FILE_IND 547
38. IC_GET _KEY ... e 548
39. IC _HANGUP . . 550
40. IC_HEX _TO_NUM 551
41.IC_INFOS_STATUS_TEXT (VXCOBOL) e 552
42 IC_INSERT_STRING e 553
43, IC_KILL _TERM . . 554
44 IC _LEFT . 555
45, 1C _LOGON ..o 556
46. IC_LOWER 557

Interactive COBOL Lanquage Reference & Developer’s Guide

47.1C_MOVE _FILE _DATA . . 558
48. IC_MOVE _STRING. . .. 559
49. IC_MS G _TEXT ..ot 560
50. IC_NUM _TO _HEX . .. e e e 561
51. IC_PDF _PRINT . .. 562
52, I _PID _EXIST S . 563
53. IC _PRINT S TAT . . o 564
54. IC_QUEUE _LIST. . . 568
55. IC_QUEUE_OPERATION i 572
56. IC_QUEUE _STATUS e 577
57. IC_REMOVE _DIR 578
58. IC_RENAME 579
59. IC_RESOLVE_FILE. 580
60. IC_RIGHT .. 583
61. IC_SEND _KEY 584
62. IC_SEND _MAIL. . .. 585
63. IC_SEND _MSG. 588
64. IC_SERIAL_NUMBER. 589
65. IC_SET _ENV. ... 590
66. IC_SET_TIMEOUT e e e e 591
67. IC_SET_USERNAME 592
68. IC_SHUTDOWN . .. e 593
69. IC_SYS _INFO 594
70. IC_TERM _CTRL . .o e e 596
71 IC _TERM _STAT .. 597
72, G T RIM L 599
73. IC _UPPER. . . . e 600
74, IC _VERSION. . . 601
75. IC_WHOHAS _LOCKS 602
76. IC_WINDOW _TITLE . . . oo e e 603
77.IC_WINDOWS_MSG_BOX. . . . 605
78. IC_WINDOWS _SETFONT e 608
79. IC_WINDOWS_SHELLEXECUTE e 609
80. IC_WINDOWS_SHOW_CONSOLE 610
VIL INTRINSIC FUNCTIONS. e 613
A. General Description. 613
1. Types of Functions 613
2. ArQUMENES L L 613
3. Returned values 614
4. Date conversion functions 614
5. Summary of functions. 615
B. Intrinsic Functions 618
1. ABS L 618
2. ACO S 619
3. ANNUITY . o 620
4. ASIN . 622
B ATAN L 623
6. BYTE-LENGTH e e 624
7. CHAR 626
8. COS. L 627
9. CURRENT-DATE. . . . e e 628
10. DATE-OF-INTEGER e 630
11. DATE-TO-YYYYMMDD e e 631
12. DAY-OF-INTEGER e 633
13. DAY-TO-YYYYDDD . . .o 634
1 636
18 EX P o 637
16, EXP0 . o 638

Table of Contents

17.FACTORIAL. . .o oot e e e e 639
18. FRACTION-PART . . . oottt e e i 640
19. HIGHEST-ALGEBRAIC o ot ettt e e e e e 641
20 1C-CENTER . © . o ettt e e e e 642
21 1C-DECODE-URLottt e e e e e e e 643
22 1C-ENCODE-URL\ttt e 644
23 1C-GET-ENV . . oottt e e e e e e e 645
24 1C-HEX-TO-NUM. . . oot 646
25, IC-MSG-TEXT . . e e ettt 647
26. IC-NUM-TO-HEX. . . . oo oottt e e e e 648
27 1C-PID-EXISTS . . .o ottt e e e e 649
28. IC-SERIAL-NUMBER\ttt 650
200 1C-TRIM. . oo et e e e e e e e 651
30 IC-VERSIONottt e 652
BT INTEGER. « . o o et et e e e e e e 653
32 INTEGER-OF-DATE . ..ottt e e 654
33. INTEGER-OF-DAYttt e e 655
34 INTEGER-PART . ..ot et 656
35 LENGTH ..o oottt e e e e e e e e 657
36.LOG . . oot 659
37 LOGT0. ettt e e 660
38. LOWER-CASE ...\ttt 661
39. LOWEST-ALGEBRAICottt e e e e 662
B0, MAX. .« o e 663
A1 MEAN © oo 665
42 MEDIAN. . .o 666
A3 MIDRANGE . . . o ottt e e e 668
BAMIN .« 669
A5 MOD . ..ot 671
48 NUMVAL . . oot e 672
AT NUMVAL-C .« .ot e e e e 674
48 NUMVAL-F ..o 676
B9.ORD. . oottt 677
50. ORD-MAX . . . oo et e e 678
51 ORD-MIN. © . oot e e e e 679
720 = S 680
53. PRESENT-VALUEottt e e e e e e e e e e e 681
54, RANDOM. . . . oot e e e e e e e 683
55. RANGEo ottt e e e e e e e 684
56. REM. . . o ottt e e e e 685
57. REVERSE . . . ottt e e e e e e e 686
58. SIGN . . .ot eee 687
59, SIN. vt e e 688
60. SQL-ADD-ESCAPES @\ttt e e 689
61. SQL-REMOVE-ESCAPESttt et 690
B2. SQRT . © . ottt e 691
63. STANDARD-DEVIATION.\ o ettt e e e e e 692
BA. SUM. . . oot 693
B5. TAN « . o oot e e e e 694
66. TEST-DATE-YYYYMMDD oottt e e 695
87. TEST-DAY-YYYYDDDo oottt e e e e e e e 697
68. TEST-NUMVAL . . .o oot e e e e e e 699
89. TEST-NUMVAL-C . . . oottt e e e e e e e e e 700
70. TEST-NUMVAL-F . ..o e e 702
71 UPPER-CASE . . . o ottt e e 704
T2 VARIANCE ..ottt e e 705
73. WHEN-COMPILED . . . e ottt e e e e e e e e e 707
T4 YEAR-TO-YYYY oot 709

Interactive COBOL Lanquage Reference & Developer’s Guide

IX. SCREEN HANDLER. e 711
A. General Description. 711
1. Enabling the SCREEN HANDLER i, 711

2. Summary of Calls 712

3. ErrorHandling 713

B. Calls. . .. 714
1. SD_DRAW _BOX. .. 714

2. SD_DRAW_HLINE and SD_DRAW_VLINE 715

3. SD_GET _IMAGE. 716

4. SD_GET _POS. .. 717

5. SD_MESSAGE, SD_ERROR_MESSAGE, SD_MESSAGE_ONLY 718

6. SD_NEW _WINDOW . .. 719

7. SD_POP_UP_MENU 720

8. SD_POP_UP_MENUZ 721

9. SD_READ_CHAR 722

10. SD_RED RAW . . 724

11. SD_REMOVE_WINDOW e 725

12. SD_RETURN L _INPUT . .. e 726

13. SD_SET_ACCEPT_TIMEOUT e 727

14. SD_SYS_ERROR_MESSAGE 728

PART TWO - DEVELOPER’'SGUIDE............... . 729

X. INTRODUCTION TO THE DEVELOPER’'SGUIDE 731
AL OVEIVIBW . . oo 731
B. Operating Environment 731

1. General Concepts. oot 731

1.1 Communication with the Operating System 731

1.2 [F-ORedirection 731

1.3 Environment Variables 731

2. Directory Structure 732

3. ICEXEC Control Program. e 733

4. ICPERMIT License Program e 734

C. Command-line Conventions 734
1. SwitChes 734

2. Conventions for Defining Syntax 734

3. Filename Case (Upper or loWer).ot eeeeee 734

D. Common Switches. 735
1. Overall ..o 735

2. Audit Switch 735

3. Quiet Switch 736

4. Help SwitCh. . .. 736

E. Filename EXtensions. 736
F. EXit Codes. 738
G. Common Environment Variables. 738
1. Overall . 738

2. ICR OO . 738

3. ICCONFIGDIR . . . 739

4. Executable-Name Environment Variable 739

5. TZ (WINdowWs ONlY) . . oot 739

XI. COMPILER (ICOBOL)o e e e e 741
A OVEIVIBW . . oo 741
B. Syntax . .. 741

1. RUIES . 743
2. Environment Variables. 744
C. Switches 744

Table of Contents

T OVeIVIEW o 744

2. Byte Alignment Switch (-B 1]2]|4). 745

3. COPY Sourcedir Switch (-C)o 745

4. COPY Path Switch (-C copydir) 745

5. Dialect Switch (-D ic|vX|85) 745

6. Error File Switch (-e |-E erdir) 745

7. FormatSwitch (-F ¢ |f | X) ... 746

8. General Switch (-G {alb|d|e|g|hlilk|n]|p|qls}...) - -« o 746

9. Hard Error Limit Switch (-Hcent). 747
10. Information Switch (-i) o 747

11. Include listing options Switch (-1 {glm|p|x}...) o i 747

12. Listing File Switch (-1 | -L Isdlir). o 747

13. Make ICODBC Data Definition Files Switch (-M dddir) 748

14. No Switch (-N {h|p[S|U}...) -« o oo 748

15. OEM Version Switch (-0 | -O rev). e 748

16. Program Output File Switch (<P cexdir) 749

17. Revision Switch (-R 112]3]|4]5]6]7) o oo i 749

18. Statistics Switch (-8) 749

19. Source lines Switch (-S) 749
20. Warnings SWitCh (-W). o 750
21. ICODBC Options Switch (-X “string”). 750
22. Debug Switch (-Z sydir) 750

D. MESSagES . . ot 751
T OV W, L . 751

T Format . .. 751

1.2 EXamples . .. 752

2. Error MesSsSagesot 753

3. Warning Messages.ot 753

4. Information Messages 754

E. Example Output. 756
F. Cross Reference Output e e 757
G. ICODBC SUpPOrt. . .o 758
XIL. DEBUGGING 761
A. Introduction 761
B. Invocation 761
C. UsSage. . . .o 762
D. Commands 766
1. OVEIVIEW . Lo 766

2. AUDIT 766

3. BREAK 767

4. COMMANND . . . 770

5. DUMP 770

6. ERROR RESET. e 771

7. EXECUTE .. 71

8. FIND .. 771

0. GO . 772
10, HELP . . 772

T INF O 773
T2, LIS T . 774

18, MOVE 774

T4, QUIT L. 775

18, RERUN L 775

16. RUN . . 775

7. ST EP L 776

18, TYPE . . 776

1. VIEW L 777
20. ZOOM . . 777

Interactive COBOL Lanquage Reference & Developer’s Guide

E. Performance Considerations. 778
F. Quick Reference 778
XHL ICREVSET 781
A Introduction 781
B. Syntax 781
C. General Rules 781
XIV. ICDUMP. . . 783
A, Introduction 783
B. Syntax . .. 783
C. RUIES . 783
D. Example. 783
XV. RUNTIME (ICRUN) e e 787
AL Introduction . ..o 787
B. Printer Control Utility 787
C. Program Termination 788
T OV W, .« . 788

2. Logon mode Termination 788

2.1 Returnto LOGON as Inactive 788

2.2 Return to Parent Process 788

3. Program mode Termination 788

D. Device SUPPOIt . . . 789
T OV W, L . 789

2. General Rules. 789

3. Parallel Printer Ports 790

4. Serial Ports. 791

E. Filenaming Conventions 791
1. Internal Filenames 791

2. External Filenames. 791
2.1 RUIES 793

2.2 Program Names v ittt 793

2.3 Sequential and ICISAM Filenames. 795

F. Extended OPEN oplions 796
1. OVEIVIEW. L o 796

2. Extended Sequential Open. 797

2.1 (Sequential) Extended Device Open. 797

2.2 (Sequential) Extended PDF Open. 798

2.3 (Sequential) Extended PCQ Open 799

2.4 (Sequential) Extended Disk Open. i 800

3. Extended Relative Open (ANSI74and ANSI85) 800

4. Extended Indexed Open. 801

G. ICISAM Information 802
T OV W, L . 802

2. ICISAM VErSIONS . . .ot 802

3. ICISAM Reliability. 803

4. ICISAM Key Ordering.ottt e 803

H. Notes and Warnings e 804
. PIpe OpPENS . . 805
J. PDF GENERATION. e 806
1. Introduction. 806

2. PDF Format 807

3. PDF Sample. 809

K. HOT KEY S .. e 810
1. Introduction. 810

2. ConstruCtion 810

3. Restrictions. 810

Table of Contents

4. Example . .o 811
XVLICODBC Driver 813

A, Introduction . ..o 813
B. General Information. 813
C. Using the Driver. 813
D. Creating . XDB and XDT Files e 814
E. Managing Data Sources (On Windows) i, 821
F. Managing Data Sources (On Linux) e 823
G. Data Types Supported. 826
H. Driver Limitations. 828
[. SQL Grammar Supported 829
J.oUsage NOtes 831
K. Debuggingo 833
L. SYWARE . . . 833
XVIL ICIDE 835
A, Introduction . .. o 835
B. USE . o 835
XVIIL GLOS S ARY 837
A, Introduction . ..o 837
B. Definitions 837
APPENDICES 855
A. IMPLEMENTATION LIMITS ... e e 857
B. ESCAPE KEY TABLE 859
C. ANSI 74 FILE STATUS CODES e 861
D. ANSI85FILE STATUS CODES i 863
E. VXCOBOLFILE STATUS CODES e 865
F. EXCEPTION STATUS AND FILE STATUS CODES 867
G. LINUX Ermno .. o 875
H. RUNTIME ERRORS . . . e 877
I ASCII CODES . . . 899
J. EBCDIC CODES 901
K. COBOL RESERVED WORDS e 903
L. SYSTEM CALLS . .. 907
INDEX . . 921

21

Interactive COBOL Lanquage Reference & Developer’s Guide

EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE

oAb =

EXAMPLE 10.
EXAMPLE 11.

EXAMPLE 12

EXAMPLE 21

EXAMPLE 24

EXAMPLE 42

. Referencing elements in 1-, 2-, and 3-dimensional tables
EXAMPLE 13.
EXAMPLE 14.
EXAMPLE 15.
EXAMPLE 16.
EXAMPLE 17.
EXAMPLE 18.
EXAMPLE 19.
EXAMPLE 20.
. CALL the command processor and execute the DIR command (Windows)
EXAMPLE 22.
EXAMPLE 23.
.INSPECT TALLYING, REPLACING. oottt e e
EXAMPLE 25.
EXAMPLE 26.
EXAMPLE 27.
EXAMPLE 28.
EXAMPLE 29.
EXAMPLE 30.
EXAMPLE 31.
EXAMPLE 32.
EXAMPLE 33.
EXAMPLE 34.
EXAMPLE 35.
EXAMPLE 36.
EXAMPLE 37.
EXAMPLE 38.
EXAMPLE 39.
EXAMPLE 40.
EXAMPLE 41.
. DAY-TO-YYYYDDD function
EXAMPLE 43.
EXAMPLE 44,
EXAMPLE 45.
EXAMPLE 46.
EXAMPLE 47.
EXAMPLE 48.
EXAMPLE 49.
EXAMPLE 50.
EXAMPLE 51.
EXAMPLE 52.
EXAMPLE 53.
EXAMPLE 54.
EXAMPLE 55.

LIST OF EXAMPLES
Identifying parameters passed by a calling program i
Using a Program Switch
Modifying the collating sequence for a program
Changing 1 character in the collating sequence
Making multiple characters the same in the collating sequence
Reversing collating sequence for digits, uppercase alphabet.
Definition for a one-dimensional table
Another one-dimensional table
Three one-dimensional tables without group names
Definition for a two-dimensional table
Referencing single- and multi-dimensional table elements

Referencing an intrinsic function with and without arguments
Abbreviated combined and negated combined relation conditions
MOVE CORRESPONDING and ADD CORRESPONDING.
MOVE CORRESPONDING
CALL the Bourne shell from a COBOL program (Linux).ot
CALL the shell, have it execute “Is” and return (Linux)
CALL the “Is” command directly and return (Linux)
CALL the command processor (Windows)

CALL Acrobat Reader and print a file (Windows)
EVALUATE. . .«

INSPECT TALLYING, REPLACING.o e e e
INSPECT TALLYING, REPLACING. e e e e
INSPECT TALLYING, REPLACING. e e e e e
INSPECT CONVERTING
USINg DeClaratiVes. oottt ettt e e e e e
ABS function
ACOS function
ANNUITY fUnction. e e e e e e e
ASIN function
ATAN fUNCHON. . . .o e e e e e
BYTE-LENGTH function
CHAR function
COS function
CURRENT-DATE function
DATE-OF-INTEGER function
DATE-TO-YYYYMMDD function.t i et
DAY-OF-INTEGER function

E function
EXP function
EXP10 function
FACTORIAL function. e e e e e et et
FRACTION-PART function
HIGHEST-ALGEBRAIC function
IC-CENTER function
IC-DECODE-URL function
IC-ENCODE-URL function
IC-GET-ENV function. i e e e et e et e e
IC-HEX-TO-NUM function
IC-MSG-TEXT function
IC-NUM-TO-HEX function

Table of Contents

EXAMPLE 56. IC-PID-EXISTS fUnctionttt ettt i 649
EXAMPLE 57. IC-SERIAL-NUMBER functionttt 650
EXAMPLE 58. IC-TRIM fUNCLIONottt e e e e e e e e e e e e e 651
EXAMPLE 59. IC-VERSION functionu.uiotiun ettt 652
EXAMPLE 60. INTEGER function oottt e e 653
EXAMPLE 61. INTEGER-OF-DATE functionuuuetunntit .. 654
EXAMPLE 62. INTEGER-OF-DAY functionouuuunotimuneittiin i, 655
EXAMPLE 63. INTEGER-PART function.ttt 656
EXAMPLE 64. LENGTH function. e e e 658
EXAMPLE 65. LOG fUnCtion.« ottt ettt et e e e e e e 659
EXAMPLE 66. LOGI0 fUnction.ottt ettt e e e e e 660
EXAMPLE 67. LOWER-CASE functiont e e e e 661
EXAMPLE 68. LOWEST-ALGEBRAIC function.ttt 662
EXAMPLE 69. MAX fUNCHON . . .« .ottt et e e e e e e e e e e e e e 664
EXAMPLE 70. MEAN fUNCHONottt e e e e e e e e e 665
EXAMPLE 71. MEDIAN function.ttt e e i 667
EXAMPLE 72. MIDRANGE functionoii ittt 668
EXAMPLE 73. MIN fUNCHON. . . .« .ottt e e e e e e e e e e e e 670
EXAMPLE 74. MOD fUNCLION . . .« . ottt et e e e e e e e e e e e e e 671
EXAMPLE 75. NUMVAL functionttt ettt e 673
EXAMPLE 76. NUMVAL-C functionttt ettt e 675
EXAMPLE 77. NUMVAL-F function.ttt e e e e 676
EXAMPLE 78. ORD fUnCtionottt e e e e e e e e 677
EXAMPLE 79. ORD-MAX fUNCHON o\ttt ettt e ettt e e e e e e e e e 678
EXAMPLE 80. ORD-MIN fUNCHON oottt ettt e e e e e e e e e e e e e e 679
EXAMPLE 81. PLUNCHON . . .« .ottt e e e e e e e e e e e e e e e 680
EXAMPLE 82. PRESENT-VALUE functionuiuuunitt et 682
EXAMPLE 83. RANDOM fUnCtiON oottt ettt e et e e e e e e e e e et 683
EXAMPLE 84. RANGE fUNnCHONottt e e e e e e e e e e e e 684
EXAMPLE 85. REM functionttt e e e e e 685
EXAMPLE 86. REVERSE function. e et e e 686
EXAMPLE 87. SIGN fUNCLION . . .« . ottt et e e e e e e e e e e e 687
EXAMPLE 88. SIN fUNCHIONttt e e e e e e e e e 688
EXAMPLE 89. SQRT fUNCHION. . .« . oottt et e e e et e e e e e e e e 691
EXAMPLE 90. STANDARD-DEVIATION function.ooiuiititi i, 692
EXAMPLE 91. SUM fUnCtionottt ettt e et e e e e e e e e e 693
EXAMPLE 92. TAN fUNCLION. . . . o oottt ettt e e e e e e e e e e e e 694
EXAMPLE 93. TEST-DATE-YYYYMMDD function.ueiiunneetiiin i, 696
EXAMPLE 94. TEST-DAY-YYYYDDD function.ouuuntttii ettt 698
EXAMPLE 95. TEST-NUMVAL fUnCtiono vttt ettt et et et e e e 699
EXAMPLE 96. TEST-NUMVAL-C fUnctionooouun ittt ettt e 701
EXAMPLE 97. TEST-NUMVAL-F functionttt 703
EXAMPLE 98. UPPER-CASE function.oo oottt i 704
EXAMPLE 99. VARIANCE functionoouuuntttit ettt 706
EXAMPLE 100. WHEN-COMPILED functionouuiuunettnn ettt 708
EXAMPLE 101. YEAR-TO-YYYY function.coouuu ittt i 710
EXAMPLE 102. ICDUMP of the Header (default) i 784
EXAMPLE 103. ICDUMP of the Program Code (using the -c switch) ooo... 784
EXAMPLE 104. ICDUMP of the Reference Table (using the -r switch) 785
EXAMPLE 105. ICDUMP of the Data (using the -d switch) i i 785

LIST OF FIGURES

FIGURE 1. Evaluation of condition-1 AND condition-2 AND ... condition-n 250
FIGURE 2. Evaluation of condition-1 OR condition-2 OR ... condition-n. c...... 251
FIGURE 3. Evaluation of condition-1 OR condition-2 AND condition-3 252

23

Interactive COBOL Lanquage Reference & Developer’s Guide

FIGURE 4. Evaluation of (condition-1 OR NOT condition-2) AND condition-3 AND condition-4.......... 253
FIGURE 5. PERFORM [TEST BEFORE] VARYING with one condition 421
FIGURE 6. PERFORM [TEST BEFORE] VARYING with two conditions. oo .. 422
FIGURE 7. Valid PERFORM CONSLIUCES oottt ettt ettt e et e e e e e e e e e et 423
FIGURE 8. Format 1 SEARCH statement having two WHEN phrases 454
FIGURE 9. ICOBOL Directory Structure (LinUX).o ottt et e et e e e eeeae s 732
FIGURE 10. ICOBOL Directory Structure (Windows)ottt ettt e e 733
LIST OF SCREENS
SCREEN 1. Default Debugging SCREEN e 762
SCREEN 2. Debugging SCREEN (all views enabled) i, 762
SCREEN 3. Debugging SCREEN (no symbol file) i 762
SCREEN 4. Debugging SCREEN (symbols but 10 SOUICE) oottt e a e 763
SCREEN 5. ICCONFIG PDF FORMATS CONFIGURATION. 808
LIST OF TABLES
TABLE 1. Default External Filenames for Sequential Files 106
TABLE 2. Relationship of the Class and Categories of Dataltems 124
TABLE 3. File Description Clauses by ICOBOL dialectand filetype i, 149
TABLE 4. PICTURE Editingottt e e e e e e e e 185
TABLE 5. Sign Control in Fixed PICTURE Editing. 186
TABLE 6. Sign Control in Floating PICTURE Editing i 187
TABLE 7. PICTURE Precedence Ruleso e 188
TABLE 8. SIGN Overpunch Charactersottt e e et 193
TABLE 9. BINARY & COMPUTATIONAL Storage Allocation.t .. 196
TABLE 10. COMPUTATIONAL-5 Storage Allocationttt 197
TABLE 11. INTERVAL Field Maximum Precision (ISQL)ottt e 200
TABLE 12. BACKGROUND-COLOR and FOREGROUND-COLOR i 218
TABLE 13. LINE and COLUMN relationship oottt e e e 228
TABLE 14. INTERVAL Field Maximum Precision (ISQL) ottt ee e 234
TABLE 15. Combination of Symbols in Arithmetic Expressions.t 239
TABLE 16. Relational Operatorsttt e e e et e 242
TABLE 17. Combinations of Conditions, Logical Operators, and Parentheses 248
TABLE 18. Variable Origin for DISPLAY and ACCEPT. e 290
TABLE 19. Function Key Escape Codes ittt e et et 300
TABLE 20. Common Error Conditions for a CALL Statement. 307
TABLE 21. Common Error Conditions for a CALL PROGRAM Statement 310
TABLE 22. How Program Switches are evaluated i 311
TABLE 23. CALL and CALL PROGRAM Compared.ttt 312
TABLE 24. Combination of operands in the EVALUATE statement 356
TABLE 25. Legality of Types of MOVE Statements ittt 408
TABLE 26. Availability of a File (ANST 74). . . .« oo e e e e 412
TABLE 27. Availability of a File (ANSI 85).« oo e 412
TABLE 28. Availability of a File (VXCOBOL) e 413
TABLE 29. Permissible Statementsttt e 413
TABLE 30. Validity of Operand Combinations in Format 1 SET Statements. 457
TABLE 31. ANSTI 74 and ANST 85 ADVANCING Definitions.. i 499
TABLE 32. VXCOBOL ADVANCING Definitions.uuuuunente i 500
TABLE 33. VXCOBOL CHANNEL ADVANCING Definitions..ovvutiin i 500
TABLE 34. List of BUILTINSo e e e e e e e e 506
TABLE 35.IC_GET KEY values returned e 548
TABLE 36. IC_SEND KEY ValUesttt e e e e e e e e 584
TABLE 37. Summary of Intrinsic Functions. 617

Table of Contents

TABLE 38.
TABLE 39.
TABLE 40.
TABLE 41.
TABLE 42.
TABLE 43.
TABLE 44.
TABLE 45.
TABLE 46.
TABLE 47.
TABLE 48.

Summary of Screen Handler Calls. 712
Common Command-line Syntax COnVentionsttt et ettt 734
Common Filename Extensions used by ICOBOL. 737
Cross Reference Symbol Typeso vttt e e e 758
ICOBOL Data Types to ODBC Data Types vt i ittt et e 760
DevIiCe MapPings.ot e et ettt et 789
Legal characters in a filename ot e 792
Illegal Characters ina Filename. e 792
Characters Allowed in a Filename, in Certain Contexts.c.oouiiniiniunennenenn . 792
Four Categories of Extended Open for Sequential Files 197
ICODBC Data Types to ODBC SQL Data Typesttt 827

25

Interactive COBOL Lanquage Reference & Developer’s Guide

26

Table of Contents

PREFACE

This manual defines the COBOL language supported by Interactive COBOL. This COBOL language is based on the
ANSI COBOL standard X3.23-1985. The manual is intended for programmers already familiar with the COBOL

language in general.

The complete documentation for Interactive COBOL includes the following manuals:

Installing and Configuring Interactive COBOL on Linux (011-00402)
Installing and Configuring Interactive COBOL on Windows (011-00403)
Each manual provides the appropriate sections necessary to properly install and configure Interactive

COBOL in the given environment.

Interactive COBOL Utilities Manual (011-00300)
Provides a simple guide to all the user visible utilities.

Interactive COBOL Language Reference & Developer’s Guide (011-00100)
Contains two parts:

A) Interactive COBOL Language Reference: The complete COBOL syntax supported by all dialects of
ICOBOL. Included are ICOBOL builtins, intrinsic functions, and screen calls.

B) Interactive COBOL Developer’s Guide: Explains how to use the development tools including the

compiler, debugger, ICREVSET, and ICDUMP. 1t also explains how the ICOBOL runtime works
including how to program across the multiple environments supported by ICOBOL.

COBOL sp2 User Interface Development Manual
How to use the ICSP2 Panel Editor to define GUI screens.

COBOL FormPrint
How to use the ICQPRW FormPrint Editor to setup printers.

27

Interactive COBOL Lanquage Reference & Developer’s Guide

TERMS

This document uses several terms as generic names to describe the following products.

ANSI 74, ANSI 85, and VXCOBOL are the three dialects supported by Interactive COBOL and are used to
describe differences.

AOS/VS refers to both AOS/VS 11 and AOS/VS (Classic) unless specifically stated..

ICOBOL refers to all dialects of the Interactive COBOL product unless otherwise stated.

INFOS refers to either AOS/VS INFOS II or U/FOS. INFOS II or U/FOS are explicitly used when needed.

VXCOBOL refers to all models of the VXCOBOL products unless otherwise stated.

Linux refers to all supported flavors of Linux unless specifically stated.

Windows will be used to refer collectively to various versions of the Windows operating system. As of
ICOBOL 5.50 and this manual, the supported versions are Windows Server 2008 R2 through Windows
Server 2022 and Windows 7 through Windows 11. How-to steps for Windows are based on Windows 10

and may be different for older versions of Windows.

PC refers to any style of personal computer based on the Intel x86 microcomputer architecture that runs
Windows or a Linux-compatible operating system.

RDOS refers to the Data General operating system RDOS.

DG refers to Data General Corporation.

28

Table of Contents

29

Interactive COBOL Lanquage Reference & Developer’s Guide

30

Enhancements

ENHANCEMENTS (Language area)

Interactive COBOL 5 Language Changes

Interactive COBOL 5.40 added support for the following:
e Added a new source format called xcard (extended card) that has the sequence area and indicator column
like standard card format, but no right margin or comment area like free-form format.
* Annew runtime environment variable, ICPROMPTCHAR, for the runtime system that modifies the default
prompt pad to something other than underscore.
Interactive COBOL 5.40 removed support for the following:
* The AOS compatibility builtins: ?7CBSYS, 7CBADDR, ?CBBADDR, and CLI. A program that calls one of
these functions at runtime will received a “Program not found” error.

Interactive COBOL 5.30 added support for the following:
e The SQL BIGINT type. It is equivalent to 8-byte COMP-5.

Interactive COBOL 5.30 removed support for the following:

* The U/FOS data manager that was used by the VX/COBOL dialect to provide compatibility with DG’s
INFOS and INFOS II products. Items that are no longer supported at runtime are flagged by the compiler
unless -R 6 or before is selected. A program that uses these features will get an exception 230 “The
requested feature is not available”.

Interactive COBOL 5.20 added support for the following:

- New Builtins: IC_SEND KEY, IC_ WHOHAS LOCKS

- Added extended open option for additional case conversion on filenames (c=I|nfu)
Interactive COBOL 5.09 added support for the following:

- New Builtins: IC_LEFT, IC_RIGHT
Interactive COBOL 5.00 added support for the following:

- Native 64-bit support, continued 32-bit support

- ICISAM version 8 files with support for 4 billion records and 16TB index file.

- sequential file support > 4GB

- enhanced PDF creation

- enhanced IC_SEND MAIL with SSL support

- 64-bit pointers

31

Interactive COBOL Lanquage Reference & Developer’s Guide

Interactive COBOL 4 Language Enhancements

Interactive COBOL 4.70 added support for the following:
- New environment variable ICCONFIGDIR to allow for customized system files
Interactive COBOL 4.50 added support for the following:
- New Intrinsic Functions: SQL-ADD-ESCAPES, SQL-REMOVE-ESCAPES
- New Statements: GET COLUMNS, GET TABLES
- New COLUMN COUNT option to GET DIAGNOSTICS
- Remote ISQL support for CONNECT
Interactive COBOL 4.40 added support for the following:

- New Builtin: IC_CENTER

- New Intrinsic Functions: IC-CENTER, IC-DECODE-URL, IC-ENCODE-URL, IC-GET-ENV,
IC-HEX-TO-NUM, IC-NUM-TO-HEX, IC-PID-EXISTS,

IC-SERIAL-NUMBER, IC-TRIM, IC-VERSION

Interactive COBOL 4.20 added support for the following:

- New Builtins: IC_CLIENT _CALLPROCESS, IC_CLIENT DELETE FILE, IC_CLIENT GET ENV,
IC_CLIENT GET FILE, IC_CLIENT PUT FILE, IC_CLIENT RESOLVE FILE,

IC_CLIENT _SET_ENV,IC CLIENT SHELLEXECUTE
to work with ThinClient

- Enhanced Builtin: IC_CHECK DATA (to support 32-bit crc’s)
Interactive COBOL 4.11 added support for the following:
- The compiler can handle a maximum of 200,000 lines per program
- The debugger supports compressed mode
Interactive COBOL 4.10 added support for the following:
- UNIX pipe opens can be bidirectional, i.e. OPEN I-O
- Extended sequential open options to allow generating .PDF files
- New Builtin: IC_PDF PRINT
- Windows support for pipe opens just as UNIX
Interactive COBOL 4.00 added support for the following:

- New builtins: IC_DECODE_CSV, IC_ENCODE_CSV

32

Enhancements

Interactive COBOL 3 Language Enhancements

Interactive COBOL 3.60 added support for the following:

- Enhanced builtins: IC_WINDOWS_MSG_BOX, IC_ WINDOWS_SHOW_CONSOLE,
IC_WINDOW _TITLE

Interactive COBOL 3.57 added support for the following:

- Enhanced builtin: IC_SEND_ MAIL

Interactive COBOL 3.56 added support for the following:

- Enhanced builtin: IC_WINDOWS SETFONT

- Filenames can contain “(“ and “)”

Interactive COBOL 3.50 added support for the following:

- New builtin: IC_SEND MAIL

Interactive COBOL 3.40 added support for the following:

- Integrated SQL (ISQL) added that provides a simple way of using popular relational databases directly from
within your COBOL programs. ISQL provides many of the embedded SQL features but in an integrated
fashion without the added complexity of pre-processors or call-level interface. Most of the SQL data types
have been added to the base language set. At runtime, ISQL makes use of standard ODBC calls to access
any data manager available to ODBC.

New literal types include: DATE, TIME, TIMESTAMP, and INTERVALS.

New data types include: CHARACTER, CHARACTER VARYING, DATE, INDICATOR, INTEGER,
INTERVAL, NUMERIC, SMALLINT, TIME, and TIMESTAMP.

New statements include: COMMIT, CONNECT, DEALLOCATE, DISCONNECT, EXECUTE,
EXECUTE IMMEDIATE, FETCH, GET DIAGNOSTICS, PREPARE, ROLLBACK, and
SET CONNECTION. (These statements require an additional ICSQL runtime license).
New identifier: SQLSTATE
Enhancements to other statements to support the new literal and data types.
These features are made available with the new General switch (-G q) on the compiler.
Debugger support for the above.
- Special Register LENGTH OF
- VXCOBOL dialect allows CONTINUE, GOBACK, reference modification, and intrinsic functions
- Use of reference modification in the SCREEN SECTION

Interactive COBOL 3.35 added support for the following:

- Enhanced builtin: IC_SYS INFO

33

Interactive COBOL Lanquage Reference & Developer’s Guide

Interactive COBOL 3.34 added support for the following:
- Enhanced builtin: IC_ WINDOWS_ SETFONT
- New builtin: IC_TRIM.

Interactive COBOL 3.30 added support for the following:

- ACCEPT FROM ENVIRONMENT updated to give the minimum and maximum screen column sizes and the
computer name.

- New builtins: IC_COMPRESS ON. IC COMPRESS OFF
- New Statement: GOBACK
- Inline comment (*>) added
Interactive COBOL 3.22 added support for the following:
- Enhanced builtin: IC_SYS INFO
- New builtin: IC_GET FILE IND
Interactive COBOL 3.20 added support for the following:
- Enhancements to the Screen Section, including OCCURS, LINE PLUS/MINUS variable, relative positioning
after absolute positioning, identifier for FOREGROUND-COLOR and BACKGROUND-COLOR,
CONVERTING UP/DOWN, and compatibility enhancements for the ERASE, BLANK, attribute control

clauses.

- Introduction of screen control clauses such as line and column positioning and attribute control, etc. for
non-screen ACCEPT and DISPLAY statements

Interactive COBOL 3.13 added support for the following:
- New builtins: IC SET ENV,IC WINDOWS SETFONT.
- New compiler switch (-c).
- ICIDE enhancements.
- Runtime support to write to the audit file. (DISPLAY UPON)
Interactive COBOL 3.12 added support for the following:
- Enhanced builtin: IC_SEND_ MSG.
Interactive COBOL 3.11 added support for the following:
- New builtin: IC_ WINDOWS SHELLEXECUTE.

- On Windows, ICRUNW can set its font and size at startup.

34

Enhancements

Interactive COBOL 3.10 added support for the following:

- New reserved words for the ANSI 74 and ANSI 85 dialects: CONVERT, CURSOR, HIGH, LOW, PROMPT,
and TAB.

- Removed the debugger (ICDEB) as a separate executable and made an integral part of the runtime.

- On Windows, added an integrated development environment (ICIDE) allowing projects to be defined, edited,
and compiled in one place.

Interactive COBOL 3.03 added support for the following:

- New reserved words for the ANSI 74 and ANSI 85 dialects: BACKGROUND, BEEP, FOREGROUND, and
MINUS.

Interactive COBOL 3.01 added support for the following:
- New builtins: IC_QUEUE_LIST, IC_QUEUE_OPERATION.
Interactive COBOL 3.00 added support for the following:

- Code and data space increased to 16MB each

- Multicharacter switches

- Nested COPY files

- Expressions in subscripts

- Reference modification (ANSI 74/85 only)

- ACCEPT FROM DATE YYYYMMDD

- ACCEPT FROM DAY YYYYDDD

- ACCEPT FROM EXCEPTION STATUS WITH ERROR IN xx

- CALL by CONTENT

- CODE-SET

- COPY REPLACING

- OCCURS DEPENDING ON

- EVALUATE statement (ANSI 74/85 only)

- EXTERNAL data and files

- INITTALIZE statement (ANSI 74/85 only)

- Enhanced INSPECT (multiple TALLYING, CONVERTING clause)

- LINAGE support

- SECURE NO ECHO

- QUEUE IS added to SELECT

- RECORD DELIMITER added to SELECT

- START is available for sequential files

- STOP RUN literal

- Varying length records for all file types

- IS INITIAL PROGRAM

- 61 INTRINSIC FUNCTIONS added (ABS, ACOS, ANNUITY, ...) (ANSI 74/85 only)

- New Builtins: IC_HANGUP, IC_LOGON, IC_QUEUE_STATUS, IC_SHUTDOWN,
IC_INFOS_STATUS_TEXT, IC_PID_EXISTS, IC HEX TO NUM, IC NUM_TO_HEX,
CLIL ?CBSYS, ?CBADDR, and 7CBBADDR

- Support for a VXCOBOL dialect (Data General AOS/VS COBOL compatible)

35

Interactive COBOL Lanquage Reference & Developer’s Guide

36

PART ONE - LANGUAGE REFERENCE

37

Interactive COBOL Language Reference & Developer’s Guide - Part One

38

Conventions (General Format)

. CONVENTIONS USED IN THIS MANUAL

A. Definition of a General Format
A general format is the specific arrangement of the elements of a clause or a statement.

A clause or a statement consists of elements as defined below. Throughout this document a format is shown
adjacent to information defining the clause or statement. When more than one specific arrangement is permitted, the
general format is separated into numbered or named formats. Clauses must be written in the sequence given in the
general formats. (If they are used, optional clauses must appear in the sequence shown.) In certain cases, stated
explicitly in the rules associated with a given format, clauses may appear in sequences other than that shown.
Applications, requirements, or restrictions concerning a format, are shown as rules.

A.l. Elements

Elements that make up a clause or a statement consist of uppercase words, lowercase words, level-numbers, brackets,
braces, connectives, and special characters.

A.2. Words

UNDERLINED UPPERCASE WORDS represent keywords and are required whenever the functions of which they
are a part are used. An error will be reported by the compiler if a keyword is absent or incorrectly spelled.

UPPERCASE WORDS that are not underlined are optional; they are used only for readability.

Lowercase words, in a general format, are generic terms used to represent COBOL words, literals, PICTURE
character-strings, comment-entries, or a complete syntactical entry that must be supplied by the user. Where generic
terms are repeated in a general format, a number or letter appended to the term serves to identify that term for
explanation or discussion.

A.3. Level-Numbers

When specific level-numbers appear in data description entry formats, those specific level-numbers are required
when such entries are used in a COBOL program. In this document, the form 01, 02, ..., 09 is used to indicate
level-numbers 1 through 9.

A.4. Brackets and Braces

Brackets, [], enclose optional items.

Braces, { }, enclose a set of alternatives, one of which is required; it must be selected explicitly or implicitly. If one
of the options contains only reserved words which are not keywords, that option is the default if no option is
explicitly specified.

Options are indicated in a general format or a portion of a general format by vertically stacking the set of
alternatives, by a series of brackets or braces or by a combination of both. An option is selected by specifying one of
the alternatives or by specifying a unique combination of possibilities from a series of brackets or braces.

A.5. Ellipsis (...)

In text, other than general formats, the ellipsis shows omission of a word or words when such omission does not
impair comprehension. This is the conventional meaning of the ellipsis, and the use becomes apparent in context.

39

Interactive COBOL Language Reference & Developer’s Guide - Part One

In the general format, the ellipsis represents indefinite repetition of the last item. The portion of the format that may
be repeated is determined as follows:

Given ... (the ellipsis) in a format, scanning right to left, determine the] (right bracket) or } (right brace)
delimiter immediately to the left of the ... (ellipsis); continue scanning right to left and determine the
logically matching [(left bracket) or { (left brace) delimiter; the ... (ellipsis) applies to the portion of the
format between the determined pair of delimiters. Thus a []... indicates there can be zero or more
occurrences of this item while a { }... indicates there can be one or more occurrences of this item.

A.6. Format Punctuation

The separators comma and semicolon may be used anywhere the separator space is used in the formats. In the
source program, these separators are interchangeable.

The separator period, when used in the formats, has the status of a required word. It must be followed by a space.

A.7. Use of Special Character Words in Formats

The special character words "+, -, ™>', "<, "=, ">=' "<=' and ‘<>’ when appearing in formats, although not
underlined, are required when such portions of the formats are used.

A.8. Documentation Only

Lines with the symbol “d” in the left margin indicate that this phrase is used for documentation only; it does not in
any way affect how the ICOBOL compiler syntaxes the source or generates executable code..

B. Rules

B.1. Syntax Rules

Syntax rules define or clarify the order in which words or elements must be arranged to form larger elements such as

phrases, clauses, or statements. Syntax rules may also either impose restrictions on individual words or elements or
relax restrictions implied by words or elements.

B.2. General Rules

General rules define or clarify the meaning or relationship of meanings of an element or set of elements. They are
used to define or clarify the semantics of the statement and the effect that it has on either compilation or execution.

40

Conventions (ICOBOL Dialects)

C. ICOBOL Dialects and Feature-Sets

The ICOBOL product described by this document is a COBOL language product that can be customized at compile-
time to mimic one of several popular COBOL implementations, or dialects. The selection of a given dialect
automatically affects a number of different language attributes, such as the set of reserved words, the syntax for
particular statements, the storage format for data, and even run-time behavior.

In addition, the product implements a number of language enhancements that are selectable independently of the
dialect selected. These enhancements are bundled in various combinations to form a feature-set.

C.1. Description of ICOBOL Dialects

Each dialect is selectable via a compiler switch. (See the Compiler Chapter of the Developer’s Guide Section starting
on page 741, for a description of compiler options.) Each dialect is named and described individually below. Note
that whenever the term ICOBOL is used in this manual, it refers collectively to all of the supported dialects.
Whenever the individual dialect name is used, it refers specifically to that dialect. The supported dialects are:

« ANSIT74

This is the fundamental dialect. It is consistent with traditional Interactive COBOL. It uses ANSI-74 file
status codes and file handling semantics.

+ ANSI 85

This is the stricter ANSI-85 dialect. It is consistent with ICOBOL 2 code compiled with the -M 85 option.
It uses ANSI-85 file status codes and file handling semantics.

+ VXCOBOL

This dialect is consistent with the syntax and semantics used by Data General’s AOS/VS COBOL and by
Envyr Corporation’s VXCOBOL product.

C.2. Notation of Dialect Differences

(1) Many language features and runtime behavior are common to all dialects. In that case, no dialect notation is
necessary, and support with all dialects is assumed. The term “ICOBOL” refers to the product as a whole and
includes all dialects, except where explicitly noted.

(2) Where there are differences, they are noted in the documentation with flags to note those exceptions. Most
differences are between the following sets of dialects, and these are the most common flags you will see in the

documentation. For example,

« (ANSI 74 and ANSI 85)
. (VXCOBOL)

Less frequently, differences will be noted with the following flags:

- (ANSI74)
. (ANSI 85)

(3) Some features and behavior are found only in one dialect and are so marked. For example in the DATA
DIVISION:

41

Interactive COBOL Language Reference & Developer’s Guide - Part One

FEEDBACK Clause (VXCOBOL)
and
RECORD Clause (ANSI 74 and ANSI 85)

(4) Differences are flagged at the highest level appropriate. A COBOL statement may be supported in one
dialect but not another; in that case, the notation will appear at the highest level for the statement, indicating which
dialect(s) support the statement. Most COBOL statements are common to all dialects but have minor differences

among dialects, as, for example in the following documentation excerpt from ACCEPT statement in the
PROCEDURE DIVISION:

ANSI 74 and ANSI 85:

(4) During the execution of an ACCEPT statement for a screen item that contains
SECURE NO ECHO, any characters entered by the user will not be echoed, and the cursor will
not move as the characters are entered.

VXCOBOL:
(5) During the execution of an ACCEPT statement, any characters entered by the user
will not be echoed. Additionally, the cursor will not move as the characters are entered.

C.3. Description of Feature-sets
A feature-set is an enhancement or a set of enhancements that can be enabled independently of the specific dialect
that is selected. In a manner similar to the dialect, however, a feature-set may affect the set of reserved words, that
syntax for existing language features, additional syntax that is specific to the feature-set, and even run-time behavior.
Each feature-set is denoted by a feature-set name and an optional level indicator. The naming reflects this scheme.
The feature-sets are as follows:
+ ISQL

This is Integrated SQL. This level includes integrated support for a number of the SQL data types and

operators, as well as basic support for dynamic queries using PREPARE and EXECUTE.
C.4. Notation of Feature-set Differences
Where there are differences created by the presence of a feature-set, they are noted in the documentation with flags
to note those exceptions. When the differences are the same for all levels of a feature-set, they are denoted by using

just the base feature-set name. For example,

+ (ISQL) Applies to all levels of the ISQL feature-set

42

COBOL Source Program (Concepts)

Il. COBOL SOURCE PROGRAM

A. General Description

A COBOL source program is a syntactically correct set of COBOL statements.

B. Concepts
B.1. Character Set

The most basic and indivisible unit of the language is the character. The set of characters used to form COBOL
character-strings and separators includes the letters of the alphabet, digits, and special characters. This character set
consists of the characters as defined under COBOL Character Set in the glossary. In the case of nonnumeric literals,
comment-entries, and comment lines, the character set is expanded to include the computer's entire character set.
The characters allowable in each type of character-string and as separators are defined in the section below.

B.2. Language Structure

The individual characters of the language are concatenated to form character-strings and separators. A separator
may be concatenated with another separator or with a character-string. A character-string may only be concatenated
with a separator. The concatenation of character-strings and separators forms the text of a source program.

B.2.1 Separators
A separator is a character or two contiguous characters formed according to the following rules:

(1) Space. The punctuation character space is a separator. Anywhere a space is used as a separator or as part of
a separator, more than one space may be used. All spaces immediately following the separators comma, semicolon,
or period are considered part of that separator and are not considered to be the separator space.

(2) Comma and semicolon. Except when the comma is used in a PICTURE character-string, the punctuation
characters comma and semicolon, immediately followed by a space, are separators that may be used anywhere the
separator space is used. They may be used to improve program readability.

(3) Period. The punctuation character period, when followed by a space is a separator. It must be used only to
indicate the end of a sentence, or as shown in formats.

(4) Parentheses. The punctuation characters right and left parentheses are separators. Parentheses may appear
only in balanced pairs of left and right parentheses delimiting subscripts, reference modifiers, arithmetic expressions,
or conditions.

(5) Quotation mark. The punctuation character quotation mark is a separator. An opening quotation mark must
be immediately preceded by a space or left parenthesis; a closing quotation mark, when paired with an opening
quotation mark, must be immediately followed by one of the separators space, comma, semicolon, period, or right
parenthesis.

(6) Colon. The punctuation character colon is a separator and is required when shown in the general formats.

43

Interactive COBOL Language Reference & Developer’s Guide - Part One

(7) The separator space may optionally immediately precede all separators except:
a. As specified by reference format rules.

b. The separator closing quotation mark. In this case, a preceding space is considered as part of the
nonnumeric literal and not as a separator.

(8) The separator space may optionally immediately follow any separator except the opening quotation mark.
In this case, a following space is considered as part of the nonnumeric literal and not as a separator.

(9) Pseudo-text delimiters. Pseudo-text delimiters are separators. An opening pseudo-text delimiter must be
immediately preceded by a space. A closing pseudo-text delimiter must be immediately followed by one of the
separators space, comma, semi-colon, or period. Pseudo-text delimiters may appear only in balanced pairs
delimiting pseudo-text.

Any punctuation character which appears as part of the specification of a PICTURE character-string or numeric
literal is not considered as a punctuation character, but rather as a symbol used in the specification of that PICTURE
character-string or numeric literal. PICTURE character-strings are delimited only by the separators space, comma,
semicolon, or period.

The rules established for the formation of separators do not apply to the characters which comprise the contents of
nonnumeric literals, comment-entries, or comment lines.

B.2.2 Character-Strings

A character-string is a character or a sequence of contiguous characters which forms a COBOL word, a literal, a
PICTURE character-string, or a comment-entry. A character-string is delimited by separators.

B.2.2.1 COBOL Words

A COBOL word is a character-string of not more than 30 characters which forms a user-defined word, a
system-name, or a reserved word. Each character of a COBOL word is selected from the set of letters, digits, and the
hyphen. The hyphen may not appear as the first or last character. Each lowercase letter is considered to be
equivalent to its corresponding uppercase letter. Within a source program, reserved words and user-defined words
form disjoint sets; reserved words and system-names form disjoint sets; system-names and defined words form
intersecting sets. The same COBOL word may be used as a system-name and as a user-defined word within a source
program; and the class of a specific occurrence of this COBOL word is determined by the context of the clause or
phrase in which it occurs.

NOTE: ANSI standard COBOL required that COBOL words be no more than 30 characters. The
VXCOBOL dialect will issue an info message at compile time if a word exceeds 30 characters, but
otherwise will allow up to 50 characters in a word.

B.2.2.1.1 User-Defined Words

A user-defined word is a COBOL word that must be supplied by the user to satisfy the format of a clause or
statement. Each character of a user-defined word is selected from the set of characters “A', ‘B', °C', ..., Z', 'a', 'b',

'

¢y ..., 7,70, ...,79', and -' except that the *-' may not appear as the first or last character.

44

COBOL Source Program (Concepts)

The types of user-defined words are:

1. alphabet-name 7. level-number 13. section-name

2. class-name * 8. mnemonic-name 15. symbolic-character *
3. condition-name 9. paragraph-name 16. text-name

4. data-name 10. program-name

5. file-name 11. record-name

6. index-name 12. screen-name

* this type is not used in VXCOBOL

Within a given source program, the defined words are grouped into the following disjoint sets:

1. alphabet-names 5. index-names 9. section-names
class-name * 6. mnemonic-names 10. symbolic-characters *

3. condition-names, data-names, 7. paragraph-names 11. text-names
record-names, and screen-name 8. program-names

4. file-names

* this type is not used in VXCOBOL

All user-defined words, except level-numbers, can belong to one and only one of these disjoint sets. Further, all
user-defined words within a given disjoint set must be unique, except as specified in the rules for uniqueness of
reference.

With the exception of section-names, paragraph-names, and level-numbers, all user-defined words must contain at

least one alphabetic character. Level-numbers need not be unique; a given specification of a level-number may be
identical to any other level-number.

B.2.2.1.1.1 Condition-Name

A condition-name is a name which is assigned to a specific value, set of values, or range of values, within a complete
set of values that a data item may assume. The data item itself is called a conditional variable.

Condition-names may be defined in the Data Division or in the SPECIAL-NAMES paragraph within the
Environment Division where a condition-name must be assigned to the on status or off status, or both, of
user-defined switches.

A condition-name is used in conditions as an abbreviation for the relation condition; this relation condition posits
that the associated conditional variable is equal to one of the set of values to which that condition-name is assigned.
A condition-name is also used in a SET statement, indicating that the associated value is to be moved to the
conditional variable.

B.2.2.1.1.2 Mnemonic-Name

A mnemonic-name assigns a user-defined word to a user-defined-switch. These associations are established in the
SPECIAL-NAMES paragraph of the Environment Division (see The SPECIAL-NAMES Paragraph, page 80).
B.2.2.1.1.3 Paragraph-Name

A paragraph-name is a word which names a paragraph in the Procedure Division. Paragraph-names are equivalent if,
and only if, they are composed of the same sequence of the same number of digits and/or characters.

45

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.2.2.1.1.4 Section-Name

A section-name is a word which names a section in the Procedure Division. Section-names are equivalent if, and
only if, they are composed of the same sequence of the same number of digits and/or characters.

B.2.2.1.1.5 Other User-Defined Names

All other types of user-defined words are defined in the glossary.

B.2.2.1.2 System-Names

A system-name is a COBOL word which is used to communicate with the operating environment. Each character
used in the formation of a system-name must be selected from the set of characters "A', 'B', 'C', ..., "Z', 0", ..., '9',
and "-' except that the *-' may not appear as the first or last character.

B.2.2.1.3 Reserved Words

A reserved word is a COBOL word that is one of a specified list of words which may be used in COBOL source
programs, but which must not appear in the program as user-defined words or system-names. Reserved words can
only be used as specified in the general formats. The reserved word table can be found in APPENDIX L on page
903.

Reserved words satisfy the following conditions:

(1) Reserved words do not begin with the characters "0, ..., 9", X', "Y', or "Z' except for the reserved words
YYYYMMDD, YYYYDDD, ZERO, ZEROES, ZEROS, and ZONE (ISQL).

(2) Reserved words do not contain only one alphabetic character.

(3) Reserved words do not start with 1 or 2 characters followed by -' except for the reserved words I-O,
[-O-CONTROL, and reserved words which begin with 'B-' or "DB-".

(4) Reserved words do not contain two or more contiguous hyphens.

(5) Reserved words are always shown as uppercase, although they may be written in mixed or lowercase with
each lowercase letter being equivalent to the corresponding uppercase letter.

There are three types of reserved words:

1. required words 2. optional words 3. special purpose words

B.2.2.1.3.1 Required Words

A required word is a word whose presence is required when the format in which the word appears is used in a source
program.

Required words are of two types:
(1) Keywords. Within each format, such words are uppercase and underlined.

(2) Special character words. These are the arithmetic operators and relation characters.

46

COBOL Source Program (Concepts)

B.2.2.1.3.2 Optional Words

Within each format, uppercase words that are not underlined are called optional words and may be specified at the
user's option with no effect on the semantics of the format.

B.2.2.1.3.3 Special Purpose Words
There are two types of special purpose words:

1. figurative constants
2. special registers

B.2.2.1.3.3.1 Figurative Constants

Certain reserved words are used to name and reference specific constant values. These reserved words are specified
under Figurative Constant Values on page 50.

B.2.2.1.3.3.2 Special Registers

Certain reserved words are used to name and reference special registers. Special registers are certain compiler-
generated storage areas whose primary use is to store information produced in conjunction with the use of specific
COBOL features. Unless specified otherwise in these specifications, one special register of each type is allocated for
each program. In the general formats of this specification, a special register may be used, unless otherwise restricted,
wherever data-name or identifier is specified provided that the special register is the same category as the data-name
or identifier. If qualification is allowed, special registers may be qualified as necessary to provide uniqueness. See
page 130 Qualification.

Special registers include: ADDRESS OF, LENGTH OF, LINAGE-COUNTER, and SQLSTATE (ISQL).

B.2.2.2 Literals

A literal is a character-string whose value is implied by an ordered set of characters of which the literal is composed,
by specification of a reserved word which references a figurative constant, or (ISQL) by specification of a reserved
word (or words) in combination with a non-numeric literal value. Every literal belongs to one of the following types:

(1) nonnumeric

(2) numeric

(3) date-time (ISQL)
(4) interval (ISQL)

NOTE: For simplicity in the formats that follow, the literals that make use of quotation marks or apostrophes as

delimiters are only shown using quotation marks. Simply remember that the closing delimiter must match
the opening delimiter.

47

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.2.2.2.1 Nonnumeric Literals

A nonnumeric literal is a character-string enclosed in either quotation marks or apostrophes. The length of a
nonnumeric literal applies to its representation in the object program.

B.2.2.2.1.1 General Format

"{character-1}... "

B.2.2.2.1.2 Syntax Rules
(1) Character-1 may be any character in the computer's character set.

(2) If character-1 is to represent the quotation mark, two contiguous quotation mark characters must be used to
represent a single occurrence of that character, or the delimiting characters must be apostrophes.

(3) If character-1 is to represent the apostrophe, two contiguous apostrophes characters must be used to
represent a single occurrence of that character, or the delimiting characters must be quotations.

(4) (ISQL) There may be zero occurrences of character-1.

B.2.2.2.1.3 General Rules
(1) The value of a nonnumeric literal in the object program is the value represented by character-1.

(2) The separator quotation mark or apostrophe that delimits the nonnumeric literal is not part of the value of
the nonnumeric literal.

(3) All nonnumeric literals are of category alphanumeric.

(4) With the -G n compiler switch, a single character may be represented by enclosing a value in angle brackets.
For example, "<014>" represents the formfeed character, since octal 14 is the ASCII code for formfeed. See page
746 for complete details on the General switch to the compiler.

(5) (ISQL) When there are zero occurrences of character-1 in the literal, it is known as the null string and it is

a literal of zero length. When the value is moved to a an item of usage Character Varying, it results in the data item
also having zero length. When used with items without the Varying attribute, normal padding rules apply.

48

COBOL Source Program (Concepts)

B.2.2.2.2 Nonnumeric Hexadecimal Literals

A nonnumeric hexadecimal literal is a special type of nonnumeric literal. It is a character string of one or more
hexadecimal digits which is delimited at the beginning by the uppercase character 'X' followed immediately by a
quotation mark or apostrophe and delimited at the end by a matching quotation mark or apostrophe. The length of a
nonnumeric hexadecimal literal applies to its representation in the object program. Odd digit counts assume a
leading zero to ensure an even number of bytes.

B.2.2.2.2.1 General Format

X"{character-1}..." or X ‘{character-1}...|

B.2.2.2.2.2 Syntax Rules

(1) Character-1 may be the digits '0' through '9', the characters 'A’ through 'F' or the characters 'a' through 'f.
The uppercase and lowercase characters are considered equivalent.

(2) Character-1 may occur from one to 160 times. If character-1 occurs an odd number of times, a '0" is
assumed to immediately follow the opening quotation mark or apostrophe so that there are an even number of
occurrences.

B.2.2.2.2.3 General Rules

(1) The value of a nonnumeric hexadecimal literal in the object program is the ASCII character represented by
each pair of occurrences of character-1. (Each ASCII character is represented as a pair of hexadecimal digits.)

(2) The leading X' and quotation marks or apostrophes that delimit the nonnumeric hexadecimal literal are not
part of the value of the literal.

(3) Nonnumeric hexadecimal literals are category alphanumeric.

(4) Nonnumeric hexadecimal literals may be used anywhere that a nonnumeric literal may be used.

B.2.2.2.3 Numeric Literals

A numeric literal is a character-string whose characters are selected from the digits "0' through '9', the plus sign, the
minus sign, and the decimal point. Numeric literals can be from 1 through 18 digits in length. The rules for the
formation of numeric literals are as follows:

(1) A literal must contain at least one digit.

(2) A literal must not contain more than one sign character. If a sign is used, it must appear as the left-most
character of the literal. If the literal is unsigned, the literal is nonnegative.

(3) A literal must not contain more than one decimal point. The decimal point is treated as an assumed decimal
point, and may appear anywhere within the literal except as the right-most character. If the literal contains no

decimal point, the literal is an integer.

(4) If aliteral conforms to the rules for the formation of numeric literals but is enclosed in quotation marks, it is
a nonnumeric literal and is treated as such by the compiler.

49

Interactive COBOL Language Reference & Developer’s Guide - Part One

(5) The value of a numeric literal is the algebraic quantity represented by the characters in the numeric literal.
Every numeric literal is category numeric. The size of a numeric literal in standard data format characters is equal to
the number of digits in the string of characters as specified by the user.

B.2.2.2.4 Numeric Hexadecimal Literals

A numeric hexadecimal literal is a special type of numeric literal. It is a character string of one or more hexadecimal
digits which is delimited at the beginning by the uppercase character 'H' followed immediately by a quotation mark
or apostrophe and delimited at the end by a matching quotation mark or apostrophe. The length of a numeric
hexadecimal literal applies to its representation in the object program.

B.2.2.2.4.1 General Format

H"{character-1}..."

B.2.2.2.4.2 Syntax Rules

(1) Character-1 may be the digits '0' through '9', the characters 'A’ through 'F' or the characters 'a' through 'f.
The uppercase and lowercase characters are considered equivalent.

(2) Character-1 may occur from one to 8 times.

B.2.2.2.4.3 General Rules

(1) The value of a numeric hexadecimal literal is the algebraic quantity represented by the characters within the
quotes interpreted as a non-negative hexadecimal integer.

(2) The leading 'H' and quotation marks that delimit the numeric hexadecimal literal are not part of the value of
the literal.

(3) The size of a numeric hexadecimal literal is the size of an equivalent decimal representation of the same
algebraic quantity.

(4) Numeric hexadecimal literals are category numeric.

(5) Numeric hexadecimal literals may be used anywhere in the source program that a numeric literal may be
used.
B.2.2.2.5 Figurative Constant Values
Figurative constant values are generated by the compiler and referenced through the use of the reserved words given
below. These words must not be bounded by quotation marks when used as figurative constants. The singular and
plural forms of figurative constants are equivalent and may be used interchangeably.

The figurative constant values and the reserved words used to reference them are as follows:

(1) TALL] ZERO, [ALL] ZEROS, [ALL] ZEROES - Represents the numeric value *0', or one or more of the
character "0' from the computer's character set.

(2) TALL] SPACE, [ALL] SPACES - Represents one or more of the character space from the computer's
character set.

50

COBOL Source Program (Concepts)

(3) [ALL] HIGH-VALUE, [ALL] HIGH-VALUES - Except in the SPECIAL-NAMES paragraph, represents
one or more of the character that has the highest ordinal position in the program collating sequence.

(4) [ALL] LOW-VALUE, [ALL] LOW-VALUES - Except in the SPECIAL-NAMES paragraph, represents one
or more of the character that has the lowest ordinal position in the program collating sequence.

(5) [ALL] QUOTE, [ALL] QUOTES - Represents one or more of the character " "'. The word QUOTE or
QUOTES cannot be used in place of a quotation mark in a source program to bound a nonnumeric literal. Thus
QUOTE ABD QUOTE is incorrect as a way of stating the nonnumeric literal "ABD".

(6) ALL literal - Represents all or part of the string generated by successive concatenations of the characters
comprising the literal. The literal must be a nonnumeric literal. The literal must not be a figurative constant.

NOTE: The following is supported in the ANSI 74 and ANSI 85 dialects and not the VXCOBOL dialect.

(7) [ALL] symbolic-character - Represents one or more of the character specified as the value of this
symbolic-character in the SYMBOLIC CHARACTERS clause of the SPECIAL-NAMES paragraph.

NOTE: The following is supported in the VXCOBOL dialect and not the ANS/ 74 and ANSI 85 dialects.
(8) TALL] CR - Represents one or more NEW LINE characters.

When a figurative constant represents a string of one or more characters, the length of the string is determined by the
compiler from context according to the following rules:

(1) When a figurative constant is specified in a VALUE clause, or when a figurative constant is associated with
another data item (e.g., when the figurative constant is moved to or compared with another data item), the string of
characters specified by the figurative constant is repeated character by character on the right until the size of the
resultant string is greater than or equal to the number of character positions in the associated data item, This resultant
string is then truncated from the right until it is equal to the number of character positions in the associated data item.
This is done prior to and independent of the application of any JUSTIFIED clause that may be associated with the
data item.

(2) When a figurative constant, other than ALL literal, is not associated with another data item as when the
figurative constant appears in a DISPLAY, STOP, STRING, or UNSTRING statement, the length of the string is one
character.

(3) When the figurative constant ALL literal is not associated with another data item, the length of the string is
the length of the literal.

A figurative constant may be used whenever "literal' appears in a format with the following exceptions:

(1) If the literal is restricted to a numeric literal, the only figurative constant permitted is ZERO (ZEROS,
ZEROES). ICOBOL also allows HIGH-VALUES and LOW-VALUES, although the compiler generates a warning.

(2) Associating the figurative constant ALL literal, where the length of the literal is greater than one, with a data
item that is numeric or numeric edited is an obsolete feature in Standard COBOL. This obsolete feature is to be
deleted from the next revision of Standard COBOL.

(3) When a figurative constant other than ALL literal is used, the word ALL is redundant and is used for
readability only.

In all ICOBOL dialects, HIGH-VALUES is hex FF, and LOW-VALUES is hex 00.
Each reserved word that is used to reference a figurative constant value is a distinct character-string with the

exception of the constructs using the word ALL, such as ALL literal, ALL SPACES, etc., which are composed of
two distinct character-strings.

51

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.2.2.2.6 Date Literals (/ISQL)

A date literal specifies an SQL date value.

B.2.2.2.6.1 General Format

DATE "YYYY-MM-DD"

B.2.2.2.6.2 Syntax Rules
(1) YYYY specifies a numeric year field of exactly four digits.
(2) MM specifies a numeric month field of exactly two digits.

(3) DD specifies a numeric day field of exactly two digits.

B.2.2.2.6.3 General Rules

(1) The date literal is class date-time and category date.

(2) The value of year field may range from 0001 to 9999.

(3) The values of month and day fields must fulfill the rules for valid values within the Gregorian calendar.

(4) A date literal may appear anywhere the general formats allow an item of category date to appear and where
the item is a sending (value) operand.
B.2.2.2.7 Time Literals (ISQL)

A time literal specifies an SQL time value.

B.2.2.2.7.1 General Format

TIME "hh:mm:ss[ffffff]”

B.2.2.2.7.2 Syntax Rules

(1) The brackets that appear in the format above are not part of the literal, but have their usual meaning of
showing optional parts.

(2) hh specifies a numeric hours field of exactly two digits.
(3) mm specifies a numeric minutes field of exactly two digits.
(4) ss specifies a numeric seconds field of exactly two digits.

(5) .fftftf specifies a numeric fraction field of one to six digits, which is optional.

52

COBOL Source Program (Concepts)

B.2.2.2.7.3 General Rules

(1) The time literal is of class date-time and category time.

(2) The value of hour field may range from 00 to 23.

(3) The values of minutes and seconds fields may range from 00 to 59.

(4) The value of the fraction field may range from .000000 to .999999.

(5) A time literal may appear anywhere the general formats allow an item of category time to appear and where
the item is a sending (value) operand.
B.2.2.2.8 Timestamp Literals (/SQL)
A timestamp literal specifies an SQL timestamp value, which is the combination of an SQL date value and an SQL
time value separated by a single space.
B.2.2.2.8.1 General Format

TIMESTAMP "YYYY-MM-DD hh:mm:ss]_ffffff]”

B.2.2.2.8.2 Syntax Rules

(1) The brackets that appear in the format above are not part of the literal, but have their usual meaning of
showing optional parts.

(2) The rules for the various fields are found in the preceding sections entitled Date Literals and Time Literals.

(3) The date part of the literal is separated from the time part of the literal by exactly one space.

B.2.2.2.8.3 General Rules
(1) The timestamp literal is of class date-time and category timestamp.

(2) The rules for the values of the various fields are found in the preceding sections that describe the general
rules for date literals and time literals.

(3) A timestamp literal may appear anywhere the general formats allow an item of category timestamp to appear
and where the item is a sending (value) operand.

B.2.2.2.9 Interval Literals (/ISQL)

An interval literal specifies an SQL interval value. Each interval has a start specification and an optional end
specification. The start and end specifications may be used in various combinations to create different interval
ranges. An SQL interval is one of two disjoint kinds: the year-month interval and the day-time interval. In order to
help simplify the formats, we have divided the rules according to these two kinds. For the year-month interval, the
start and end specifications are from the set YEAR and MONTH. For the day-time interval, the start and end
specifications are from the set DAY, HOUR, MINUTE, and SECOND.

53

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.2.2.2.9.1 Year-Month Interval Literals (ISQL)

Within the year-month literals, there are three combinations of the start and end specifications.

B.2.2.2.9.1.1 General Format

INTERVAL "[+/-][Y...]Y-[M]M" YEAR TO MONTH
INTERVAL "[+/-][Y...]Y” YEAR
INTERVAL "[+/-][M...]M" MONTH

B.2.2.2.9.1.2 Syntax Rules

(1) The brackets and ellipses in the format above are not part of the literal, but have their usual meaning of
showing optional items and repeated items.

(2) [+/-] specifies an optional sign.

(3) [Y...]Y specifies a numeric number-of-years field of one to four digits.

(4) [M] M specifies a numeric number-of-months field of one or two digits.

(5) [M...] M specifies a numeric number-of-months field of one to six digits.

(6) There are no intervening spaces between the sign and the year or month field.

(7) The year and month fields are separated by a single intervening hyphen with no spaces.

B.2.2.2.9.1.3 General Rules
(1) The year-month literal is of class interval and category year-to-month.
(2) The value of number-of-years field may range from 0 to 9999.

(3) The value of number-of-months field may range from 0 to 11 when participating in a year-to-month interval,
and from 0 to 999999 when participating in a month interval.

(4) The month field in a YEAR TO MONTH interval literal is always considered to have 2 digits of precision,
even if it is specified with only a single digit in the source text.

(5) Leading zeros are allowed in the leftmost field and participate in determining the precision of that field, just
as they do numeric literals. When used in comparisons, the algebraic value of the field is used. Thus, both
INTERVAL “0023-01" YEAR TO MONTH and INTERVAL “23-1" YEAR TO MONTH represent the interval of
23 years and 1 month, but one has a precision of 4 and the other a precision of 2 for the year field.

(6) A year-month interval literal may appear anywhere the general formats allow an item of class interval and

category year-month and the item is a sending (value) operand. In some cases, the general formats will allow an
interval item and the general rules will define any restrictions on the category of the item.

54

COBOL Source Program (Concepts)

B.2.2.2.9.2 Day-Time Interval Literals (ISQL)

Within the day-time literals, there are multiple combinations of the start and end specifications.

B.2.2.2.9.2.1 General Format

INTERVAL "[+/-][D...]D" DAY
INTERVAL "[+/-][D...]D [h]h" DAY TO HOUR

INTERVAL "[+/-][D...]D [h]h:mm" DAY TO MINUTE
INTERVAL "[+/-][D...]D [h]h:mm:ss[.ff...]" DAY TO SECOND

INTERVAL "[+/-][h...]"" HOUR
INTERVAL "[+/-][h...]h:mm" HOUR TO MINUTE
INTERVAL "[+/-][h...]n:mm:ss[.f...]' HOUR TO SECOND

INTERVAL "[+/-][m...]Jm" MINUTE
INTERVAL "[+/-][m...Jm:ss[.f..]" MINUTE TO SECOND

INTERVAL "[+/-][s...]s[.ff...]" SECOND

B.2.2.2.9.2.2 Syntax Rules

(1) The brackets and ellipses in the format above are not part of the literal, but have their usual meaning of
showing optional items and repeated items.

(2) [+/-] specifies an optional sign.

(3) [D...]D specifies a numeric number-of-days field of one to seven digits.
(4) [h]h specifies a numeric number-of-hours field of one or two digits.

(5) [m...]m specifies a numeric number-of-minutes field of one to ten digits.
(6) mm specifies a numeric number-of-minutes field of exactly two digits.

(7) [s...]s specifies a numeric number-of-seconds field of one to twelve digits.
(8) ss specifies a numeric number-of-seconds field of exactly two digits.

(9) [.ff...]s specifies a numeric fractional seconds field of one to six digits.
(10) The day and hour fields are separated by a single intervening space.

(11) The hour, minute and second fields are separated by a single colon.

B.2.2.2.9.2.3 General Rules
(1) The day-time literal is of class interval and category day-to-time.

(2) When the field corresponds to the start specification for the interval (the leftmost, or most significant field),
the value is bounded by the number of available digits as specified in the syntax rules of the field.

(3) Leading zeros are allowed in the leftmost field and participate in determining the precision of that field, just
as they do in numeric literals. When used in comparisons, the algebraic value of the field is used.

55

Interactive COBOL Language Reference & Developer’s Guide - Part One

(4) When the hours field is not the most significant field, it must range in value from 0 to 23.

(5) When the hours field is not the most significant field, it is assumed to have a precision of two digits, even if
it is written with only a single digit.

(6) When the minutes field is not the most significant field, it must range in value from 0 to 59.
(7) When the seconds field is not the most significant field, it must range in value from 0 to 59.

(8) The fractional seconds field is limited to six digits, yielding a range from 0 to .999999. If the decimal point
is specified, at least one fractional digit must be specified.

(9) A day-time interval literal may appear anywhere the general formats allow an item of class interval to
appear and where the interval variable is a sending (value) operand. In some cases, the general formats will allow an
interval item and the general rules will define any restrictions on the category of the item.

B.2.2.3 LINAGE-COUNTER

The reserved word LINAGE-COUNTER is a name for a line counter generated by the presence of a LINAGE clause
in a file description entry. The implicit description is that of an unsigned integer whose size is equal to integer-1 or
the data item referenced by data-name-1 in the LINAGE clause. LINAGE-COUNTER may be referenced only in
Procedure Division statements; however only the input-output control system may change the value of
LINAGE-COUNTER.

If you have more than one print-file, you can qualify LINAGE-COUNTER with the filename in the Procedure
Division so that the compiler knows the output record you are using with LINAGE-COUNTER.

B.2.2.4 PICTURE Character-Strings

A PICTURE character-string consists of certain symbols which are composed of the currency symbol and certain
combinations of characters in the COBOL character set. An explanation of the PICTURE character-string and the
rules that govern its use are given under the PICTURE clause section, which begins on page 182.

Any punctuation character which appears as part of the specification of a PICTURE character-string is not
considered as a punctuation character, but rather as a symbol used in the specification of that PICTURE
character-string.

B.2.2.5 Comment-Entries

A comment-entry is an entry in the Identification Division that may be any combination of characters from the
computer's character set. Comment-entry is an obsolete element in Standard COBOL because it is to be deleted from
the next revision of Standard COBOL. A comment-entry is delimited by the next character-string that begins in
Area A.

B.3. Program and Run Unit Organization and Communication
Complete data processing problems are frequently solved by developing a set of separately compilable but logically
coordinated programs which at some time prior to execution may be compiled and assembled into a complete

problem solution. The organization of COBOL programs and run units supports this approach of dividing large
problem solutions into small, more manageable, portions which may be programmed and validated independently.

56

COBOL Source Program (Concepts)

B.3.1 Program and Run Unit Organization

There are two levels of computer programs in a COBOL environment. These are the source level and the object
level.

At the source level, the most inclusive unit of a computer program is a source program. A source program is a
syntactically correct set of COBOL statements as specified in this document and consists of an Identification
Division followed optionally by an Environment Division and/or a Data Division and/or a Procedure Division. A
source program can be converted by the COBOL compiler into an object program that either alone, or together with
other object programs, is capable of being executed.

The Procedure Division of a source program is organized into a sequence of procedures of two types. Declarative
procedures, normally termed declaratives, are procedures which will be executed only when special conditions occur
during the execution of a program. Nondeclarative procedures are procedures which will be executed according to
the normal flow of control within a program. Declaratives may contain nondeclarative procedures but these will be
executed only during the execution of the declarative which contains them. Nondeclarative procedures may contain
other nondeclarative procedures but must not contain a declarative. Neither declaratives nor nondeclarative
procedures can contain programs. In other words, in COBOL the terms "procedure' and “program' are not synonyms.

At the object level the most inclusive unit of organization of computer programs is the run unit. A run unit is a
complete problem solution consisting of an object program or of several inter-communicating object programs. A
run unit is an independent entity that can be executed without communicating with, or being coordinated with, any
other run unit except that it may process data files or set and test switches that were written or will be read by other
run units.

When a program is called, parameters upon which it is to operate may be passed to it by the program which calls it.
As any separately compiled program may be the first program executed in a run unit, the first executed program of a
run unit may receive parameters.

B.3.2 Accessing Data and Files

Some data items have associated with them a storage concept determining where data item values and other
attributes of data items are represented with respect to the programs of a run unit. Likewise, file connectors have
associated with them a storage concept determining where information concerning the positioning and status of a file
and other attributes of file processing are represented with respect to the programs of a run unit.

B.3.2.1 Names

A data-name names a data item. A file-name names a file connector.

A name may be used only to refer to the object with which it is associated from within the program in which the
name is declared.

B.3.2.2 Objects

Accessible data items usually require that certain representations of data be stored. File connectors usually require
that certain information concerning files be stored.

57

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.3.2.2.1 Object Types
B.3.2.2.1.1 Working Storage Records

Working storage records are allocations of sufficient storage to satisfy the record description entries in that section.
Each record description entry in a program declares a different object. Renaming and redefining do not declare new
objects; they provide alternate groupings or descriptions for objects which have already been declared.

B.3.2.2.1.2 File Connectors

File connectors are storage areas which contain information about a file and are used as the linkage between a
file-name and a physical file and between a file-name and its associated record area.

B.3.2.2.1.3 Record Areas for Files

No particular record description entry in the File Section is considered to declare the storage area for the record.
Rather, the Storage area is the maximum required to satisfy associated record description entries. These entries may
describe fixed or variable length records. In this discussion, record description entries are said to be associated in
two cases. First, when record description entries are subordinate to the same file description entry, they are always
associated. Second, when record description entries are subordinate to different file description entries and these file
description entries are referenced in the same SAME RECORD AREA clause, they are associated. All associated
record description entries are redefinitions of the same storage area.

B.3.2.2.1.4 Other Objects

Examples of other information declared in COBOL programs are the description entries and control information
used by programs in a run unit as they communicate with each other.

B.3.2.2.2 The EXTERNAL Attribute of an Object

A data item or file connector is external if the storage associated with that object is associated with the run unit rather
than with any particular program within the run unit. An external object may be referenced by any program which
describes the object. References to an external object from different programs using separate descriptions of the
object are always to the same object.

An object is internal if the storage associated with that object is associated only with the program which describes the
object.

B.3.2.2.2.1 Working Storage Records

A data record described in the Working-Storage Section is given the external attribute by the presence of the
EXTERNAL clause in its data description entry. Any data item described by a data description entry subordinate to
an entry describing an external record also attains the external attribute. If a record or data item does not have the
external attribute, it is part of the internal data of the program in which it is described.

B.3.2.2.2.2 File Connectors

A file connector is given the external attribute by the presence of the EXTERNAL clause in the associated file

description entry. If the file connector does not have the external attribute, it is internal to the program in which the
associated file-name is described.

58

COBOL Source Program (Concepts)

B.3.2.2.2.3 Record Areas for Files

The data records described subordinate to a file description entry which does not contain the EXTERNAL clause or
a sort-merge file description entry, as well as any data items described subordinate to the data description entries for
such records, are always internal to the program describing the file-name. If the EXTERNAL clause is included in
the file description entry, the data records and the data items attain the external attribute.

B.3.2.2.2.4 Other Objects

Data records, subordinate data items, and various associated control information described in the Linkage section of
a program are always considered internal to the program describing that data.

B.3.2.2.2.5 Program Classes
All programs which form part of a run unit may optionally possess the initial attribute.

An initial program is one whose program state is initializes when the program is called. Thus, whenever an initial
program is called, its program state is the same as when the program was first called in that run unit. During the
process of initializing an initial program, that program’s internal data is initialized; thus an item of the program’s
internal data whose description contains a VALUE clause is initialized to that defined value, but an item whose
description does not contain a VALUE clause is initialized to an undefined value. Files with internal file connectors
associated with the program are not in the open mode. The control mechanisms for all PERFORM statements
contained in the program are set to their initial states. The initial attribute is attained by specifying the INITIAL
phrase in the programs Identification Division.

B.3.3 Inter-program Communication

When the complete solution to a data processing problem is subdivided into more than one program, the programs
that make up the run unit must be able to communicate with each other. This communication has two pieces: the
transfer of control and the passing of parameters. The need for inter-program communication arises when the
programs in a run unit are separately compiled.

B.3.3.1 Transfer of Control

The CALL statement provides the means whereby control may be transferred from one program to another program
within a run unit. A called program may itself contain CALL statements.

When control is transferred to a called program, execution proceeds from statement to statement beginning with the
first nondeclarative statement. If control reaches a STOP RUN statement, this signals the logical end of the run unit.
If control reaches an EXIT PROGRAM statement, this signals the logical end of the called program only, and
control then reverts to the next executable statement following the CALL statement in the calling program. Thus the
EXIT PROGRAM statement terminates only the execution of the program in which it occurs, while the STOP RUN
statement terminates the execution of a run unit.

In order to call a program, a CALL statement specifies the program's name. The names assigned to each of the
separately compiled programs which constitute a run unit must be unique.

Any calling program may call any separately compiled program in the run unit.

A CALL statement may be used to call programs not written in COBOL, such as builtins or user-defined subroutines
added via the ICOBOL Link Kit.

59

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.3.3.2 Passing Parameters to Programs

A program calls another program in order to have the called program perform, on behalf of the calling program,
some defined part of the solution of a data processing problem. In many cases it is necessary for the calling program
to define to the called program the precise part of the problem solution to be executed by making certain data values,
which the called program requires, available to the called program. One method for ensuring the availability of these
data values is by passing parameters to a program, as is described in this paragraph. Another method is to share the
data. The data values passed as parameters also may identify some data to be shared; hence, the two methods are not
mutually independent.

B.3.3.2.1 Identifying Parameters

Data passed as parameters by a program calling another program must be accessible to the calling program, and the
data items receiving the data must be declared in the Data Division’s Linkage Section in the called program. In the
called program, the parameters are identified by listing the names in the Procedure Division header, in the USING
phrase, as well as declaring them in linkage Section entries. In the calling program, the parameters to be passed by
the calling program are identified by listing them in the USING phrase of the CALL statement.

Position in the list of parameters in the USING phrase, not name, is what establishes the correspondence between the
parameters, as they are known to the calling and called programs. That is, the first parameter on one list corresponds
to the first parameter on the other, the second to the second, etc.

Thus, a program which may be called by another program may include:

PROGRAM-ID. EXAMPLE.
PROCEDURE DIVISION USING NUM, PCODE, COST.

and may be called by executing:

CALL "EXAMPLE" USING NBR, PTYPE, PRICE.

thereby establishing the following correspondence:

Called program Calling

(EXAMPLE) program
NUM NBR

PCODE PTYPE

COST PRICE

EXAMPLE 1. Identifying parameters passed by a calling program
In addition, parameter count mismatch and parameter size mismatch are flagged only at runtime, with an
EXCEPTION STATUS code. That is, the number of parameters and the size of each parameter must be identical in
the calling and called programs.
B.3.3.2.2 Values of parameters

The individual parameters in the CALL statement's USING phrase are passed in one of two ways:

(1) BY REFERENCE. A called program is allowed to access and modify the value of the data referenced in the
calling program’s CALL statement. Both programs operate on the same data.

(2) BY CONTENT. This means that the values of the parameters are copied from the calling program to the

called program. Values in the calling program remain unchanged, even if modified in the called program. Storage is
not shared between calling and called programs.

60

COBOL Source Program (Structure)

The parameters referenced in a called program’s Procedure Division header must be described in the Linkage
Section of that program’s Data Division.
B.3.4 Intra-program Communication
The procedures which constitute the Procedure Division of a program communicate with one another by transferring
control or by referring to common data.
B.3.4.1 Transfer of Control
There are four methods of transferring control within a program:
(1) A GO TO statement.
(2) A PERFORM statement.

(3) A declarative procedure which is activated whenever certain conditions, including errors and exceptions,
occur.

(4) An input procedure associated with a SORT statement, or an output procedure associated with either a
SORT or MERGE statement.

An input-output procedure can be considered as an implicit PERFORM statement which is executed in conjunction
with a SORT or MERGE statement; and for this reason, the restrictions on the PERFORM statement apply equally to

input-output procedures.

Stricter restrictions than those for the PERFORM statement apply to declarative procedures.

B.3.4.2 Shared Data

All the data declared in a program's Data Division may be referenced by statements in the procedures and
declaratives which constitute that program.

C. Organization

With the exception of the COPY statement, the statements, entries, paragraphs, and sections of a COBOL source
program are grouped into four divisions, in the following order:

1. The Identification Division 3. The Data Division
2. The Environment Division 4. The Procedure Division

The end of a COBOL source program is indicated by the absence of additional source program lines.

61

Interactive COBOL Language Reference & Developer’s Guide - Part One

D. Structure

The following gives the general format and order of presentation of the entries and statements which constitute a
COBOL source program.

D.1. General Format

identification-division

[environment-division]

[data-division]

procedure-division

D.2 Syntax Rules

(1) The generic terms identification-division, environment-division, data-division, and procedure-division
represent a COBOL Identification Division, a COBOL Environment Division, a COBOL Data Division, and a
COBOL Procedure Division, respectively.

D.3 General Rules

(1) The beginning of a division in a program is indicated by the appropriate division header. The end of a
division is indicated by one of the following:

a. The division header of a succeeding division in that program.

b. That physical position after which no more source program lines occur.

E. Divisions

The Identification Division identifies the program. In addition, the user may include the date the program is written,
the date the compilation of the source program is accomplished and such other information as desired under the
paragraphs in the general format shown below.

The Environment Division specifies a standard method of expressing those aspects of a data processing problem that
are dependent upon the physical characteristics of a specific computer. This division allows specification of the
configuration of the compiling computer and the object computer. In addition, information relative to input-output
control, special hardware characteristics, and control techniques can be given.

The Data Division describes the data that the object program is to accept as input, to manipulate, to create, or to
produce as output.

The Procedure Division may contain declarative and nondeclarative procedures.

Execution begins with the first statement of the Procedure Division, excluding declaratives. Statements are then
executed in the order in which they are presented for compilation, except where the rules indicate some other order.

62

COBOL Source Program (COPY Statement)

F. Reference Format (Source)
F.1. General Description

The reference (source) format, which provides a standard method of describing COBOL source programs and
COBOL library text, is described in terms of character positions in a line on an input-output medium. Within these
definitions, each compiler accepts source programs written in reference format and produces an output listing of the
source program in reference format.

The rules for spacing given in the discussion of the reference format take precedence over all other rules for spacing.

The divisions of a COBOL source program must be ordered as follows: the Identification Division, then the
Environment Division, then the Data Division, then the Procedure Division. Each division must be written according
to the rules for the reference format.

The ICOBOL compiler supports three types of reference or source formats. These are ANSI Card Format,
Free-Form Format also known as CRT format, and Extended-Card Format, also known as xCard format. The
compiler will default to a format based on the extension of the source file and the dialect. Format switch (-F cl|f[x) is
used to select a specific format. The ICOBOL compiler supports source lines up to 255 characters in length in all
formats.

F.2. ANSI Card Format

In ANSI Card Format, the reference format for a line is represented as follows:

Margin Margin Margin Margin Margin
L C A B R
[1 ... | 61 7181 9] 10 | 11 | 12 | ... | 72 | 73 | ... | 255]
Sequence * * T **Area A***** ****Area B**** ***Comment***
Number Area | Area

Indicator Area
Margin L is immediately to the left of the left-most character position of a line.
Margin C is between the 6th and 7th character positions of a line.
Margin A is between the 7th and 8th character positions of a line.
Margin B is between the 11th and 12th character positions of a line.
Margin R is immediately to the right of the 72nd character position of a line.

The sequence number occupies six character positions (1-6), and is between margin L and margin C. Characters in
this area are placed in the listing, but are not further processed by the compiler.

The indicator area is the 7th character position of a line.
Area A occupies character positions 8, 9, 10, and 11, and is between margin A and B.

Area B occupies character positions 12 through 72. It begins immediately to the right of margin B and terminates
immediately to the left of margin R.

The comment area occupies character positions 73 through 255. Characters in this area are placed in the listing but
are not further processed by the compiler.

If a line is shorter than 73 characters, there is no comment area and Margin R is to the right of the last character.

63

Interactive COBOL Language Reference & Developer’s Guide - Part One

If tabs are used, the following rules apply:

(ANSI 74 and ANSI 85) A tab character in the sequence area indicates that the remainder of the line is to be
treated like a Free-Form line (see Free-Form Format below).

(VXCOBOL) A tab character in the sequence area indicates that the next character begins Area A and Areca B
begins 4 characters to the right.

A tab in the indicator area is flagged with a warning and treated as a space.

A tab in Area A is treated as a space, and it indicates that Area B is to begin with the next character.

A tab in Area B is treated as a space.

F.3. Free-Form Format (CRT)

In Free-Form format (CRT), there are no sequence number or comment areas. The only restrictions imposed are the
contents of areas A and B and the use of indicator characters. The compiler reads characters until it finds a line
terminator or until it has read 255 characters, whichever comes first. A line longer than 255 characters will produce

an error.

In Free-Form Format the reference format for a line is represented as one of the following:

Margin Margin Margin

C A B R

/1121131141561 7118|9110 11]| 12 | 13 | ... | 255 |
T ****Area A***** ****Area B**********

Indicator Area

Margin Margin Margin
A B R
1121131141561 71181911011]| 12 | 13 | ... | 255 |

****Area AKx K x kK ****Area Bx* k% xxkk*x*x

If the first character is a "-", "*", "/", "d", or "D", position 1 is the indicator area, Area A is positions 2 through 5,
and Area B is in positions 6 to the end of the line. Otherwise, there is no indicator area and Area A is in
positions 1 through 4 and Area B is in positions 5 to the end of the line.

Margin C is immediately to the left of the left-most character position of a line.

Margin A is between the 1st and 2nd character positions of a line with an Indicator area or immediately to the left of
the left-most character of a line.

Margin B is between the 5th and 6th character positions of a line with an indicator area and between the 4th or 5th
character positions otherwise.

Margin R is immediately to the right of the right-most character position of a line.
The indicator area is the 1st character position of a line.

Area A occupies character positions 2 through 5 with an indicator area and positions 1 through 4 otherwise. It is
between margin A and margin B.

Area B begins immediately to the right of margin B and terminates immediately to the left of margin R.
If tabs are used in the source, the following rules apply:

A tab in Area A is treated as a space, and it indicates that Area B is to begin with the next character.
A tab in Area B is treated as a space.

64

COBOL Source Program (COPY Statement)

F.4. Extended Card Format (xcard)

In Extended Card Format, the reference format for a line is represented as follows:

Margin Margin Margin Margin Margin

L C A B R
' 21 w1 6 1 7 1 8 1 9 1 10 | 11 | 12 | «iiiieeeenennnannn. | 255]
Sequence * * T **Area A***** ***Area B****

Number Area |
Indicator Area

Margin L is immediately to the left of the left-most character position of a line.
Margin C is between the 6th and 7th character positions of a line.

Margin A is between the 7th and 8th character positions of a line.

Margin B is between the 11th and 12th character positions of a line.

Margin R is immediately to the right of the right-most character position of a line.

The sequence number occupies six character positions (1-6), and is between margin L and margin C. Characters in
this area are placed in the listing, but are not further processed by the compiler.

The indicator area is the 7th character position of a line.
Area A occupies character positions 8, 9, 10, and 11, and is between margin A and B.

Area B occupies character positions 12 through the right-most character of the line. It begins immediately to the
right of margin B and terminates immediately to the left of margin R.

There is no comment area.

If tabs are used, the following rules apply:

(ANSI 74 and ANSI 85) A tab character in the sequence area indicates that the remainder of the line is to be
treated like a Free-Form line (see Free-Form Format below).

(VXCOBOL) A tab character in the sequence area indicates that the next character begins Area A and Areca B
begins 4 characters to the right.

A tab in the indicator area is flagged with a warning and treated as a space.

A tab in Area A is treated as a space, and it indicates that Area B is to begin with the next character.

A tab in Area B is treated as a space.

F.5. Sequence Numbers (ANSI Card Format)

The sequence number area may be used to label a source program line. The content of the sequence number area is
defined by the user and may consist of any character in the computer's character set. There is no requirement that the
content of the sequence number area appears in any particular sequence or be unique.

F.6. Continuation of Lines

Any sentence, entry, phrase, or clause may be continued by starting subsequent line(s) in area B. These subsequent

lines are called the continuation line(s). The line being continued is called the continued line. Any word, literal, or
PICTURE character-string may be broken in such a way that part of it appears on a continuation line.

65

Interactive COBOL Language Reference & Developer’s Guide - Part One

A hyphen in the indicator area of a line indicates that the first nonspace character in area B of the current line is the
successor of the last nonspace character of the preceding line, excluding intervening comment lines or blank lines,
without any intervening space. However, if the continued line contains a nonnumeric literal without closing
quotation mark, the first nonblank character in area B of the continuation line must be a quotation mark, and the
continuation starts with the character immediately after that quotation mark. All spaces at the end of the continued
line are considered part of the literal. Area A of a continuation line must be blank.

If there is no hyphen in the indicator area of a line, it is assumed that the first nonspace character in the line is
preceded by a space.

For the purposes of line continuation, numeric and nonnumeric hexadecimal literals are handled in the same manner
as nonnumeric literals.

F.7. Blank Lines

A blank line is one that is blank from margin C to margin R, inclusive. A blank line can appear anywhere in the
source program.

F.8. Comments

A comment consists of a comment indicator followed by comment-text. Any combination of characters from the
compile-time computer's coded character set may be included in comment-text.

Comments serve only as documentation and have no effect on the meaning of the compilation group. A comment
may be a comment line or an inline comment.

F.8.1 Comment lines

A comment line is identified by either a fixed comment indicator (an asterisk or slant) or a floating comment
indicator(*>). All characters following the comment indicator up to margin R are comment-text. A comment line
may be written as any line of a compilation group.

If a source listing is being produced, a comment line identified by the fixed comment indicator slant (/) causes page
ejection followed by printing of the comment line; comments identified by the fixed comment indicator asterisk (*)
are printed at the next available line position of the listing.

F.8.2 Inline comments

A floating comment indicator (*>) preceded by one or more character-strings in the program-text area identifies an
inline comment. All characters following the floating comment indicator up to margin R are comment-text. An
inline comment may be written on any line of a compilation group except on a line that contains a floating literal
continuation indicator.

F.9. Debugging Lines

A debugging line is any line with a "d' or "D’ in the indicator area of the line. When in Free-Form format the "d' or
D' must be followed by a space or tab. Any debugging line that consists solely of spaces from margin A to margin R

is considered the same as a blank line.

The content of a debugging line must be such that a syntactically correct program is formed with or without the
debugging lines being considered as comment lines.

66

COBOL Source Program (COPY Statement)

After all COPY statements have been processed, a debugging line will be considered to have all the characteristics of
a comment line, if the -G d compiler switch is not specified, and is treated as a regular source line if the -G d (with
Debug) compiler switch is specified.

Successive debug lines are allowed.

A debugging line is only permitted in the separately-compiled program after the OBJECT-COMPUTER paragraph.

F.10. Division, Section, and Paragraph Formats
F.10.1 Division Header

The division header must start in area A.

F.10.2 Section Header

The section header must start in area A.

A section consists of zero, one, or more paragraphs in the Environment Division or Procedure Division or zero, one,
or more entries in the Data Division.

F.10.3 Paragraph Header, Paragraph-Name, and Paragraph

A paragraph consists of a paragraph-name followed by the separator period and by zero, one, or more sentences, or a
paragraph header followed by one or more entries.

The paragraph header or paragraph-name starts in area A of any line following the first line of a division or a section.
The first sentence or entry in a paragraph begins either on the same line as the paragraph header or paragraph-name
or in area B of the next nonblank line that is not a comment line. Successive sentences or entries either begin in area
B of the same line as the preceding sentence or entry or in area B of the next nonblank line that is not a comment
line.

When the sentences or entries of a paragraph require more than one line, they may be continued on a subsequent line
or lines.

F.11. DATA DIVISION Entries

Each Data Division entry begins with a level indicator or a level-number, followed by a space, followed by the name
of the subject of entry, if specified, followed by a sequence of independent clauses describing the item. The last

clause is always terminated by a separator period.

There are two types of such entries: those which begin with a level indicator and those which begin with a
level-number.

In the Data Division, a level indicator is an FD or SD.

In those entries that begin with a level indicator, the level indicator begins in area A, followed by at least one space,
and then followed with the name of the subject of entry and appropriate descriptive information.

Those entries that begin with level-numbers are called data description entries.

67

Interactive COBOL Language Reference & Developer’s Guide - Part One

A level-number has a value taken from the set of values 01, 02, ... , 49, 66, 77, 88. Level-numbers in the range 01,
02, ..., 09 may be written either as a single digit or as a zero followed by a significant digit. At least one space must
separate a level-number from the word following the level-number.

In those data description entries that begin with a level-number 01 or 77, the level-number begins in area A, followed
by at least one space, and then followed with its associated record-name or item-name, if specified, and appropriate
descriptive information.

Data description entries may be indented. Any indentation is with respect to margin A. Each new data description
entry may begin any number of positions to the right of margin A, except data description entries that begin with
level-number 01 or 77 must begin in area A. The extent of indentation is determined only by the width of the
physical medium. The entries on the output listing need be indented only if the input is indented. Indentation does
not affect the magnitude of a level-number.

F.12. DECLARATIVES
The DECLARATIVES and the pair of keywords END DECLARATIVES that precede and follow, respectively, the

declaratives portion of the Procedure Division must each appear on a line by itself. Each must begin in area A and
be followed by the separator period.

68

COBOL Source Program (COPY Statement)

G. COPY Statement

G.1. Function

The COPY statement incorporates text into a COBOL source program.
G.2. General Format

text-name-1 OF text-name-2
M{ literal-1 } [{ I } { literal-2 } }

==pseudo-text-1== ==pseudo-text-2==
identifier-1 identifier-2
REPLACING literal-3 BY literal-4
word-1 word-2

G.3. Syntax Rules

(1) If more than one COBOL library is available during compilation, text-name-1 must be qualified by
text-name-2 identifying the COBOL library in which the text associated with fext-name-1 resides. Within one
COBOL library, text-name-1 must be unique.

(2) The COPY statement must be preceded by a space and terminated by the separator period.

(3) Pseudo-text-1 must contain one or more text words.

(4) Pseudo-text-2 must contain zero, one or more text words.

(5) Character-strings within pseudo-text-1 and pseudo-text-2 may be continued.

(6) Word-1 or word-2 may be any single COBOL word except 'COPY".

(7) A COPY statement may be specified in the source program anywhere a character-string or a separator, other
than the closing quotation mark, may occur except that a COPY statement must not occur within a COPY statement.

(8) Pseudo-text-1 must not consist entirely of a separator comma or a separator semicolon.

(9) If the word COPY appears in a comment-entry or in the place where a comment-entry may appear, it is
considered part of the comment entry.
G4 General Rules

(1) The compilation of a source program containing COPY statements is logically equivalent to processing all
COPY statements prior to the processing of the resulting source program.

(2) The effect of processing a COPY statement is that the library text associated with text-name-1 or literal-1 is
copied into the source program, logically replacing the entire COPY statement, beginning with the reserved word
COPY and ending with the punctuation character period, inclusive. If the IN/OF clause is specified, text-name-2 or
literal-2 represents the name of the directory containing text-name-1 or literal-1.

(3) If the REPLACING phrase is not specified, the library text is copied unchanged. If the REPLACING
phrase is specified. the library text is copied and each properly matched occurrence of pseudo-text-1, identifier-1,

69

Interactive COBOL Language Reference & Developer’s Guide - Part One

word-1, and literal-3 in the library text is replaced by the corresponding pseudo-text-2, identifier-2, word-2, or
literal-4.

(4) For purposes of matching, identifier-1, word-1, and literal-3 are treated as pseudo-text containing only
identifier-1, word-1, or literal-3, respectively.

(5) The comparison operation to determine text replacement occurs in the following manner:

a. The leftmost library text word which is not a separator comma or a separator semicolon is the first text
word used for comparison. Any text word or space preceding this text word is copied into the source program.
starting with the first text word for comparison and first pseudo-text-1, identifier-1, word-1, or literal-3 that was
specified in the REPLACING phrase, the entire REPLACING phrase operand that precedes the reserved word BY is
compared to an equivalent number of contiguous library text words.

b. Pseudo-text-1, identifier-1, word-1, or literal-3 match the library text if, and only if, the ordered
sequence of text words that forms pseudo-text-1, identifier-1, word-1, or literal-3 is equal, character for character, to
the ordered sequence of library text words. For purposes of matching, each occurrence of a separator comma,
semicolon, or space in pseudo-text-1 or in the library text is considered to be a single space.

c¢. If no match occurs, the comparison is repeated with each next successive pseudo-text-1, identifier-1,
word-1, or literal-3, if any, in the REPLACING phrase until either a match is found or there is no next successive
REPLACING operand.

d. When all the REPLACING phrase operands have been compared and no match has occurred, the
leftmost library text word is copied into the source program. The next successive library text word is then
considered as the leftmost library text word, and the comparison cycle starts again with the first pseudo-text-1,
identifier-1, word-1, or literal-3.

e. Whenever a match occurs between pseudo-text-1, identifier-1, word-1, or literal-3 and the library text,
the corresponding pseudo-text-2, identifier-2, word-2, or literal-4 is placed into the source program. The library text
word immediately following the rightmost text word that participated in the match is then considered as the leftmost
text word. The comparison cycle starts again with the first pseudo-text-1, literal-1, word-1, or literal-3 specified in
the REPLACING phrase.

f. The comparison operation continues until the rightmost text word in the library text has either
participated in a match or has been considered as a leftmost library text word and participated in a complete
comparison cycle.

(6) Comment lines or blank lines occurring in the library text and in pseudo-text-1 are ignored for purposes of
matching; and the sequence of text words in the library text, if any, and in pseudo-text-1 is determined by the rules
for the reference format. (Reference Format is described on page 63.) Comment lines or blank lines appearing in
pseudo-text-2 are copied into the resultant program unchanged whenever pseudo-text-2 is placed into the source
program as a result of text replacement. Comment lines or blank lines appearing in library text are copied into the
resultant source program unchanged with the following exception: a comment line or blank line in library text is not
copied if that comment line or blank line appears within the sequence of text words that match pseudo-text-1.

(7) Debugging lines are permitted within library text and pseudo-text. Text words within a debugging line
participate in the matching rules as if the 'D' or 'd' did not appear in the indicator area. A debugging line is specified
within pseudo-text if the debugging line begins in the source program after the opening pseudo-text-delimiter, but
before the matching closing pseudo-text-delimiter.

(8) The syntactic correctness of the library text cannot be independently determined. Except for COPY
statements, the syntactic correctness of the entire COBOL program cannot be determined until all COPY statements

have been completely processed.

(9) Each text word copied from the library but not replaced is copied so as to start in the same area of the line in
the resultant program as it begins in the line within the library. However, if a text word copied from the library

70

COBOL Source Program (COPY Statement)

begins in Area A but follows another text word which also begins in Area A of the same line, and if replacement of a
preceding text word in the line by replacement text of greater length occurs, the following text word begins in Area B
if it cannot begin in Area A. Each text word in pseudo-text-2 that is to be placed into the resultant program begins in
the same area of the resultant program as it appears in pseudo-text-2. Each identifier-2, literal-4, and word-2 that is
to be placed in the resultant program begins in the same area of the resultant program as the leftmost library text
word that participated in the match would appear if it had not been replaced.

Library text must conform to the rules of the COBOL reference format and be in the same format as the
source program.

If additional lines are introduced into the source program as a result of a COPY statement, each text word
introduced appears on a debugging line if the COPY statement begins on a debugging line or if the text word being
introduced appears on a debugging line in library text. When a text word in the preceding cases, only those text
words that are specified on debugging lines where the debugging line is within pseudo-text-2 appear on debugging
lines in the resultant program. If any literal specified as literal-4 or within pseudo-text-2 or library text is of too
great length to be accommodated on a single line without continuation to another line in the resultant program and
the literal is not being placed on a debugging line, additional continuation lines are introduced with contain the
remainder of the literal. If replacement requires that the continued literal be continued on a debugging line, the
program is in error.

(10) For purposes of compilation, text words after replacement are placed in the source program according to
the rules for reference format. When copying text words of pseudo-text-2 into the source program, additional spaces
may be introduced only between text words where there already exists a space (including assumed space between
source lines).

(11) If any additional lines are introduced into the source program as a result of the processing of COPY
statements, the indicator area of the introduced line contains the same character as the line on which the text being
replaced begins, unless the line contains a hyphen, in which case the introduced line contains a space. In the case
where a literal is continued onto an introduced line which is not a debugging line, a hyphen is placed into the
indicator area.

(12) If the REPLACING phrase is specified, the library text shall not contain a COPY statement and the source
text that results from processing the REPLACING phrase shall not contain a COPY statement.

(13) If the REPLACING phrase is not specified, the library text may contain a COPY statement that does not
include a REPLACING phrase. ICOBOL supports 10 levels of nesting, including the first COPY statement in the
sequence. Recursive copying of library text is not permitted; that is, the library text being copied shall not cause the
processing of a COPY statement that directly or indirectly copies itself.

71

Interactive COBOL Language Reference & Developer’s Guide - Part One

72

[o NN NaNgaR

IDENTIFICATION DIVISION (PROGRAM-ID)

lll. IDENTIFICATION DIVISION

A. General Description

The Identification Division identifies the program. The Identification Division is required in a COBOL source
program. In addition, the user may include the date the program is written and such other information as desired
under the paragraphs in the general format shown below.

B. Organization

Paragraph headers identify the type of information contained in the paragraph. The name of the program must be
given in the first paragraph, which is the PROGRAM-ID paragraph. The other paragraphs are optional and may be
included in this division at the user's choice, in order of presentation shown by the general format below.

The AUTHOR, INSTALLATION, DATE-WRITTEN, DATE-COMPILED and SECURITY paragraphs are
obsolete elements in Standard COBOL because they are to be deleted from the next revision of Standard COBOL.
We suggest that you convert them to comment lines.

B.1. Structure

The following is the general format of the paragraphs in the Identification Division, and it defines the order of
presentation in the source program. Sections C and D on the following pages define the PROGRAM-ID and the
DATE-COMPILED paragraphs. While the other paragraphs are not defined, each general format is formed in the
same manner.

B.1.1 General Format

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name [1S INITIAL PROGRAM] .
[AUTHOR. [comment-entry ...]

[INSTALLATION. [comment-entry]...]

[DATE-WRITTEN. [comment-entry ...]

[DATE-COMPILED. [comment-entry]...]

[SECURITY. [comment-entry]...]

B.1.2 Syntax Rules

(1) The comment-entry may be any combination of characters from the computer's character set. The
continuation of the comment-entry by the use of the hyphen in the indicator area is not permitted; however, the
comment-entry may be contained on one or more lines.

(2) A comment-entry is terminated by the next word in Area A.

(3) The optional phrases can be specified in any order.

73

Interactive COBOL Language Reference & Developer’s Guide - Part One

74

IDENTIFICATION DIVISION (PROGRAM-ID)

C. PROGRAM-ID Paragraph

C.1. Function

The PROGRAM-ID paragraph specifies the name by which a program is identified and optionally assigns the
INITIAL attribute to that program..

C.2. General Format

PROGRAM-ID. program-name [IS INITIAL PROGRAM].

C.3. Syntax Rules

(1) The program-name must conform to the rules for formation of a user-defined word.

C.4. General Rules

(1) The program-name is currently used for documentation purposes only. The name identifying the object
program and all listings is determined from the source file name and/or specific compile-time options.

(2) Although the ANSI COBOL 85 Standard requires that all CALL's use the program-name as specified in the
PROGRAM-ID when performing CALL's, this is not enforced by ICOBOL.

(3) The INITIAL clause specifies that the program is initial. When an initial program is activated, the data items
and file connectors contained in it are set to their initial states: VALUE clauses are applied, PERFORM controls are
reset, files are put in the closed mode. See page 59 Program Classes for more information.

(4) External data is always in the last-used state except when the run unit is activated and it is in the initial state.

D. DATE-COMPILED Paragraph

D.1. Function

The DATE-COMPILED paragraph provides the compilation date in the Identification Division source program
listing. The DATE-COMPILED paragraph is an obsolete element in Standard COBOL because it is to be deleted
from the next revision of Standard COBOL.

D.2. General Format

DATE-COMPILED. [comment-entry]...

D.3. Syntax Rules
(1) The comment-entry may be any combination of the characters from the computer's character set. The
continuation of the comment-entry by the use of the hyphen in the indicator area is not permitted; however, the

comment-entry may be contained on one or more lines.

(2) A comment-entry is terminated by the next word in Area A.

75

Interactive COBOL Language Reference & Developer’s Guide - Part One

D.4. General Rules

(1) The paragraph-name DATE-COMPILED causes the current date to be inserted in the program listing during
program compilation. If a DATE-COMPILED paragraph is present, it is replaced during compilation with a
paragraph of the form:

DATE-COMPILED. current date.

76

ENVIRONMENT DIVISION (Concepts)

IV. ENVIRONMENT DIVISION

A. General Description

The Environment Division specifies a standard method of expressing those aspects of a data processing problem that
are dependent upon the physical characteristics of a specific computer. The Environment Division is optional in a
COBOL source program.

B. Concepts
B.1. External Switch

An external switch is a software device, which is used to indicate that one of two alternate states exists. These
alternate states are referred to as the on status and the off status of the associated external switch.

The status of an external switch may be interrogated by testing condition-names associated with that switch. The
association of a condition-name with an external switch and the association of a user-specified mnemonic-name with
the literal that names an external switch is established in the SPECIAL-NAMES paragraph of the Environment
Division.

The scope of an external switch is the run unit and each literal that names such an external switch refers to one and
only one such switch, the status of which is available to each object program functioning within that run unit.

An external switch may be altered by the SET statement, except in the VXCOBOL dialect.

C. Organization
Two sections make up the Environment Division: the Configuration Section and the Input-Output Section.

The Configuration Section deals with the characteristics of the source computer and the object computer. This
section is divided into three paragraphs: the SOURCE-COMPUTER paragraph, which describes the computer
configuration on which the source program is compiled; the OBJECT-COMPUTER paragraph, which describes the
computer configuration on which the object program produced by the compiler is to be run; and the
SPECIAL-NAMES paragraph, which provides a means for specifying the currency sign, choosing the decimal point,
specifying symbolic-characters, relating switch literals to user-specified mnemonic-names, relating alphabet-names
to character sets or collating sequences, and relating class-names to sets of characters.

The Input-Output Section deals with the information needed to control transmission and handling of data between
external media and the object program. This section is divided into two paragraphs: the FILE-CONTROL paragraph
which names and associates the files with external media; and the I-O-CONTROL paragraph which defines special
control techniques to be used in the object program.

The following is the general format of the sections and paragraphs in the Environment Division, and defines the
order of presentation in the source program.

77

Interactive COBOL Language Reference & Developer’s Guide - Part One

ENVIRONMENT DIVISION.
[CONFIGURATION SECTION.

[SOURCE-COMPUTER. [source-computer-entry] |
[OBJECT-COMPUTER. [object-computer-entry]]
[SPECIAL-NAMES. [special-names-entry 1] 1]

[INPUT-OUTPUT SECTION.
FILE-CONTROL.
{ file-control-entry }...

[1-O-CONTROL.
REEL
[END OF] {_LLNJI } OF file-name

[RERUN [ON file-name] EVERY integer RECORDS]... (Notin VXCOBOL)

integer CLOCK-UNITS

condition-name
RECORD
[SAME SORT AREA FOR file-name { file-name }...]...
SORT-MERGE

[MULTIPLE FILE TAPE CONTAINS { file-name [POSITION integer1}...]...
11

78

ENVIRONMENT DIVISION (CONFIGURATION SECTION)

D. CONFIGURATION SECTION

The Configuration Section is located in the Environment Division of a source program. The Configuration Section
deals with the characteristics of the source computer and the object computer. This section also provides a means for
specifying the currency sign; choosing the decimal point; specifying symbolic-characters; relating switch-names to
user-specified mnemonic-names; relating alphabet-names to character sets or collating sequences; and relating
class-names to sets of characters. The Configuration Section is optional in the Environment Division of a COBOL
source program.

The general format of the Configuration Section is shown below.

CONFIGURATION SECTION.

[SOURCE-COMPUTER. [source-computer-entry]]
[OBJECT-COMPUTER. [object-computer-entry 1]
[SPECIAL-NAMES. [special-names-entry]]

D.1. SOURCE-COMPUTER Paragraph
D.1.1 Function

The SOURCE-COMPUTER paragraph provides a means of describing the computer upon which the program is to
be compiled.

D.1.2 General Format

SOURCE-COMPUTER. [computer-name [WITH DEBUGGING MODE | .]

D.1.3 Syntax Rules

(1) Computer-name is a user-defined word.

D.1.4 General Rules

(1) The WITH DEBUGGING MODE clause is ignored. All debugging lines are compiled as if they were
comment lines. This behavior may be changed by using the -G d compiler switch.

(2) The SOURCE-COMPUTER computer-name is used for documentation purposes only.

79

Interactive COBOL Language Reference & Developer’s Guide - Part One

D.2. OBJECT-COMPUTER Paragraph
D.2.1 Function

The OBJECT-COMPUTER paragraph provides a means of describing the computer on which the program is to be
executed. The MEMORY SIZE clause is an obsolete element in Standard COBOL because it is to be deleted from
the next revision of Standard COBOL.

D.2.2 General Format (ANSI 74 and ANSI 85)
WORDS

OBJECT-COMPUTER. [computer-name [MEMORY SIZE integer { CHARACTERS 1]
MODULES

[PROGRAM COLLATING SEQUENCE IS alphabet-name] . |

D.2.3 General Format (VXCOBOL)

OBJECT-COMPUTER.

WORDS

[computer-name [MEMORY SIZE integer { CHARACTERS |]
MODULES

ASCII
EBCDIC
[PROGRAM COLLATING SEQUENCE IS NATIVE |
STANDARD-1
alphabet-name

[SEGMENT-LIMIT IS integer]] .

D.2.4 Syntax Rules

(1) Computer-name is a user-defined word.

D.2.5 General Rules

(1) The OBJECT-COMPUTER paragraph is used for documentation purposes only.

D.3. SPECIAL-NAMES Paragraph
D.3.1 Function

The SPECIAL-NAMES paragraph provides a means for specifying the currency sign, choosing the decimal point,
relating switches to user-specified mnemonic-names and relating alphabet-names to character sets or collating
sequences. ANSI 74 and ANSI 85 provide a way to specify symbolic characters and to relate class-names to sets of
characters.

80

d

d

ENVIRONMENT DIVISION (CONFIGURATION SECTION)

D.3.2 General Format (ANSI 74 and ANSI 85)

SPECIAL-NAMES.

[literal-1 1S mnemonic-1]...
["@AUDIT" IS mnemonic-1]

ON
[SWITCH literal-2 [IS mnemonic-name] [{ OFE } STATUS IS condition-name 1...]...

NATIVE
[alphabet-name-11S | sTANDARD [1
NATIVE
STANDARD
STANDARD-1
[ALPHABET alphabet-name-1 IS 1 STANDARD-2 1.

THROUGH { o or0
literal-1 THRU iterar-
{ALSO literal-3}...

[SYMBOLIC CHARACTERS { { { symbolic-character-1}... {AEE } {integer-1}... }...
[IN alphabet-name-211}1...

) THROUGH| .
[CLASS class-name-1 1S { literal-4 | THRU literal-51}... ...
[CURRENCY SIGN IS literal-6] [DECIMAL-POINT IS COMMA] . 1]

D.3.3 General Format (VXCOBOL)

SPECIAL-NAMES.

[literal-1 IS mnemonic-name-11]...
[CHANNEL integer-1 IS identifier]...

ON
[SWITCH literal-2 [IS mnemonic-name-2] [{ OFF } STATUS IS condition-name ...]...

ASCIl

STANDARD-1
EBCDIC L
THRU | .o,
literal-3 | | THROUGH ["€ra”-
{ ALSO Jiteral-5 }

[alphabet-name-1 IS

[CURRENCY SIGN IS literal-6]
[DECIMAL-POINT IS COMMAT .]

D.3.4 Syntax Rules (ANSI 74 and ANSI 85)

(0) Literal-1 is an alphanumeric literal that specifies the name of a system I/O device or file.

(1) Literal-2 must be a nonnumeric literal that is either a single or multiple character alphanumeric literal.

Mnemonic-name may be specified only in the SET statement.

(2) If the literal phrase of the ALPHABET clause is specified, a given character must not be specified more

than once in that clause.

(3) The literals specified in the literal phrase of the ALPHABET clause:

81

Interactive COBOL Language Reference & Developer’s Guide - Part One

a. If numeric, must be unsigned integers and have a value within the range of one through the maximum
number of characters in the native character set (256).

b. If nonnumeric and associated with a THROUGH or ALSO phrase, must each be one character in length.

(4) Literal-1, literal-2, literal-3, literal-4, and literal-5 must not specify a symbolic-character figurative
constant.

(5) The words THRU and THROUGH are equivalent.

(6) The same symbolic-character-1 must appear only once in a SYMBOLIC CHARACTERS clause.

(7) The relationship between each symbolic-character-1 and the corresponding integer-1 is by position in the
SYMBOLIC CHARACTERS clause. The first symbolic-character-1 is paired with the first integer-1; the second
symbolic-character-1 is paired with the second integer-1; and so on.

(8) There must be a one-to-one correspondence between occurrences of symbolic-character-1 and integer-1.

(9) The ordinal position specified by integer-1 must exist in the native character set. If the IN phrase is
specified, the ordinal position must exist in the character set named by alphabet-name-2.

(10) The literals specified in the literal-4 phrase:

a. If numeric, must be unsigned integers and must have a value within the range of one through the
maximum number of characters in the native character set (256).

b. If nonnumeric and associated with a THROUGH phrase, must each be one character in length.
(11) Literal-6 must not specify a figurative constant.

(12) The ALPHABET phrase that does not have the ALPHABET keyword is an ANSI 74 format that is
supported for compatibility purposes only. A warning will be issued when it is used.

(13) @AUDIT must be all upper-case.

D.3.5 Syntax Rules (VXCOBOL)
(1) Literal-1 is an alphanumeric literal that specifies the name of a system I/O device or file.
(2) Mnemonic-name-1 is a mnemonic-name used in the program to refer to literal-1.
(3) Integer-1 is an integer literal that specifies a channel number with a value from 1 through 12.
(4) Literal-2 must be a nonnumeric literal that is either a single or multiple character alphanumeric literal.

(5) Ifthe literal phrase of the alphabet clause is specified, a given character must not be specified more than
once in that clause.

(6) The literals specified in the literal phrase of the alphabet clause:

a. If numeric, must be unsigned integers and have a value within the range of one through the maximum
number of characters in the native character set (256).

b. If nonnumeric and associated with a THROUGH or ALSO phrase, must each be one character in length.

(7) The words THRU and THROUGH are equivalent.

82

ENVIRONMENT DIVISION (CONFIGURATION SECTION)

(8) Literal-6 must not specify a figurative constant.

D.3.6 General Rules (ANSI 74 and ANSI 85)
(0) The “literal-1 1S mnemonic-1" clause is for documentation purposes only.

(1) The on status and/or off status of a switch literal may be associated with condition-names. The status of that
switch may be interrogated by testing these condition-names.

(2) The status of a switch may be altered by execution of a Format 3 SET statement which specifies as its
operand the mnemonic-name associated with that switch. See the SET Statement.

(3) The ALPHABET clause provides a means for relating a name to a specified character code set and/or
collating sequence. When alphabet-name-1 is referenced in the SYMBOLIC CHARACTERS clause, the
ALPHABET clause specifies a character code set.

a. If the STANDARD-1 phrase is specified, the character code set or collating sequence identified is that
defined in the ANSI X3.4-1977, Code for Information Interchange. If the STANDARD-2 phrase is specified, the
character code set identified is the International Reference Version of the ISO 7-bit code defined in International
Standard 646, 7-bit Coded Character Set for Information Processing Interchange. Each character of the standard
character set is associated with its corresponding character of the native character set.

b. If the NATIVE phrase is specified, the native character code set or collating sequence is used.

c. If the literal phrase is specified, the alphabet-name may not be referenced in a CODE-SET clause. The
collating sequence identified is that defined according to the following rules:

1) The value of each literal specifies:

a) The ordinal number of a character within the native character set, if the literal is numeric. This
value must not exceed the value which represents the number of characters in the native character set (256).

b) The actual character within the native character set, if the literal is nonnumeric. If the value of
the nonnumeric literal contains multiple characters, each character in the literal, starting with the leftmost character,
is assigned successive ascending positions in the collating sequence being specified.

2) The order in which literals appear in the ALPHABET clause specifies, in ascending sequence, the
ordinal number of the character within the collating sequence being specified.

3) Any characters within the native collating sequence, which are not explicitly specified in the literal
phrase, assume a position, in the collating sequence being specified, greater than any of the explicitly specified
characters. The relative order within the set of these unspecified characters is unchanged from the native collating
sequence.

4) If the THROUGH phrase is specified, the set of contiguous characters in the native character set
beginning with the character specified by the value of /iteral-1, and ending with the characters specified by the value
of literal-2, is assigned a successive ascending position in the collating sequence being specified. In addition, the set
of contiguous characters specified by a given THROUGH phrase may specify characters of the native character set in
either ascending or descending sequence.

5) If the ALSO phrase is specified, the characters of the native character set specified by the value of
literal-1 and literal-3 are assigned to the same ordinal position in the collating sequence being specified or in the
character code set that is used to represent the data, and if alphabet-name-1 is referenced in a SYMBOLIC
CHARACTERS clause, only literal-1 is used to represent the character in the native character set.

83

Interactive COBOL Language Reference & Developer’s Guide - Part One

(4) When specified as literals in the SPECIAL-NAMES paragraph, the figurative constants HIGH-VALUE and
LOW-VALUE are associated with those characters having the highest and lowest positions, respectively, in the
native collating sequence.

(5) If the IN phrase is not specified, symbolic-character-1 represents the character whose ordinal position in the
native character set is specified by integer-1. If the IN phrase is specified, infeger-1 specifies the ordinal position of
the character that is represented in the character set name by alphabet-name-2.

(6) The internal representation of symbolic-character-1 is the internal representation of the character that is
represented in the native character set.

(7) The CLASS clause provides a means for relating a name to the specified set of characters listed in that
clause. Class-name can be referenced only in a class-condition. The characters specified by the values of the literals
in this clause define the exclusive set of characters of which this class-name consists.

The value of each literal specifies:

a. The ordinal number of a character within the native character set, if the literal is numeric. This value
must not exceed the value which represents the number of characters in the native character set.

b. The actual character within the native character set, if the literal is nonnumeric. If the value of the
nonnumeric literal contains multiple characters, each character in the literal is included in the set of characters
identified by class-name-1.

If the THROUGH phrase is specified, the contiguous characters in the native character set beginning with
the character specified by the value /iteral-4, and ending with the character specified by the value of literal-5, are
included in the set of characters identified by class-name-1. In addition, the contiguous characters specified by a
given THROUGH phrase may specify characters of the native character set in either ascending or descending
sequence.

(8) Literal-6 which appears in the CURRENCY SIGN clause is used in the PICTURE clause to represent the
currency symbol. The literal must be nonnumeric and is limited to a single character. It may be any character from
the computer's character set except one of the following:

a. digits 0 through 9;

b. alphabetic characters consisting of the uppercase letters A, B, C, D, P, R, S, V, X, Z; the lowercase
letters a through z; or the space;

c. Special characters *+-,.; ()" =/

If this clause is not present, only the currency sign defined in the COBOL character set ($) may be used as
the currency symbol in the PICTURE clause.

(9) The clause DECIMAL-POINT IS COMMA means that the functions of comma and period are exchanged in
the character-string of the PICTURE clause and in numeric literals.
D.3.7 General Rules (VXCOBOL)

(1) The DEVICE clause (literal-1 IS mnemonic-name-1) is for documentation purposes only.

(2) The CHANNEL clause declares a line printer control channel. You can use channel names in the
ADVANCING clause of a WRITE statement to format printed forms.

(3) The on status and/or off status of a switch literal may be associated with condition-names. The status of that
switch may be interrogated by testing these condition-names.

84

ENVIRONMENT DIVISION (CONFIGURATION SECTION)

(4) The ALPHABET clause provides a means for relating a name to a specified character code set and/or
collating sequence.

a. If the ASCII, NATIVE, or STANDARD-1 phrase is specified, the character code set or collating
sequence identified is that defined in the ANSI X3.4-1977, Code for Information Interchange. Each character of the
standard character set is associated with its corresponding character of the native character set. APPENDIX J, on
page 899, provides a copy of the ASCII character set.

b. If the EBCDIC phrase is specified, the EBCDIC character code set or collating sequence is used.
APPENDIX K, on page 901, provides a copy of the EBCDIC character set.

c. The collating sequence identified is that defined according to the following rules:
1) The value of each literal specifies:

a) The ordinal number of a character within the native character set, if the literal is numeric. This
value must not exceed the value which represents the number of characters in the native character set.

b) The actual character within the native character set, if the literal is nonnumeric. If the value of
the nonnumeric literal contains multiple characters, each character in the literal, starting with the leftmost character,
is assigned successive ascending positions in the collating sequence being specified.

2) The order in which literals appear in the ALPHABET clause specifies, in ascending sequence, the
ordinal number of the character within the collating sequence being specified.

3) Any characters within the native collating sequence, which are not explicitly specified in the literal
phrase, assume a position, in the collating sequence being specified, greater than any of the explicitly specified
characters. The relative order within the set of these unspecified characters is unchanged from the native collating
sequence.

4) If the THROUGH phrase is specified, the set of contiguous characters in the native character set
beginning with the character specified by the value of literal-3, and ending with the characters specified by the value
of literal-4, is assigned a successive ascending position in the collating sequence being specified. In addition, the set
of contiguous characters specified by a given THROUGH phrase may specify characters of the native character set in
either ascending or descending sequence.

5) If the ALSO phrase is specified, the characters of the native character set specified by the value of
literal-3 and literal-5 are assigned to the same ordinal position in the collating sequence being specified or in the
character code set that is used to represent the data.

(5) When specified as literals in the SPECIAL-NAMES paragraph, the figurative constants HIGH-VALUE and
LOW-VALUE are associated with those characters having the highest and lowest positions, respectively, in the
native collating sequence.

(6) Literal-6, which appears in the CURRENCY SIGN clause, is used in the PICTURE clause to represent the
currency symbol. The literal must be nonnumeric and is limited to a single character. It may be any character from
the computer's character set except one of the following:

a. digits 0 through 9;

b. alphabetic characters consisting of the uppercase letters A, B, C, D, P, R, S, V, X, Z; the lowercase
letters a through z; or the space;

c. Special characters *+-,.; ()" =/

If this clause is not present, only the currency sign defined in the COBOL character set ($) may be used as
the currency symbol in the PICTURE clause.

&5

Interactive COBOL Language Reference & Developer’s Guide - Part One

(7) The DECIMAL-POINT IS COMMA clause means that the functions of comma and period are exchanged in
the character-string of the PICTURE clause and in numeric literals.

D.3.8 Examples
(1) This example shows how a program switch is defined in the SPECIAL-NAMES paragraph in the

ENVIRONMENT DIVISION, and then illustrates how it is used it in the procedure division paragraph,
CHECK-SECURITY.

SPECIAL-NAMES.
SWITCH "MGR" ON STATUS IS MANAGER-JOB.

CHECK-SECURITY.
IF MANAGER-JOB MOVE 9 TO WS-SECURITY-CODE.

EXAMPLE 2. Using a Program Switch

The next several examples show how to modify the collating sequence from the native order, for the current
program.

(2) The following will cause characters to collate in the order: <space>, 1-9, a-z, null, |, ', #, ... All characters
not explicitly defined will follow in their native order.

ANSI 74 and ANSI 85:

SPECIAL-NAMES.
ALPHABET NEW-SEQ IS " ", "1" THRU "9", "a" THRU "z".

VXCOBOL.:

SPECIAL-NAMES.
NEW-SEQ IS " ", "1" THRU "9", "a" THRU "z".

EXAMPLE 3. Modifying the collating sequence for a program

(3) The following leaves the native system intact, with the exception of making the underscore (95) the highest
character.

ANSI 74 and ANSI 85:

SPECIAL-NAMES.
ALPHABET NEW-SEQ IS 1 THRU 94, 96 THRU 126, 95.

VXCOBOL.:

SPECIAL-NAMES.
NEW-SEQ IS 1 THRU 94, 96 THRU 126, 95.

EXAMPLE 4. Changing 1 character in the collating sequence

(4) The following equates the space with zero, giving them the same ordinal position in the collating sequence.

86

ENVIRONMENT DIVISION (CONFIGURATION SECTION)

ANSI 74 and ANSI 85:

SPECIAL-NAMES.
ALPHABET NEW-SEQ IS " " ALSO "O0".

VXCOBOL.:

SPECIAL-NAMES.
NEW-SEQ IS " " ALSO "QO", "a" ALSO "A".

EXAMPLE 5. Making multiple characters the same in the collating sequence

(5) The following reverses the typical collating sequence for digits and uppercase alphabet characters. Note,

however, that all other characters not explicitly defined will follow in their usual order.

ANSI 74 and ANSI 85:

SPECIAL-NAMES.
ALPHABET REVERSE-SEQ IS "9" THRU "O", "zZ" THRU "A".

VXCOBOL.:

SPECIAL-NAMES.
REVERSE-SEQ IS "9" THRU "O", "Z" THRU "A".

EXAMPLE 6. Reversing collating sequence for digits, uppercase alphabet

87

Interactive COBOL Language Reference & Developer’s Guide - Part One

88

ENVIRONMENT DIVISION (INPUT-OUTPUT SECTION)

E. INPUT-OUTPUT SECTION

The Input-Output Section is located in the Environment Division of a source program. The Input-Output Section
deals with the information needed to control transmission and handling of data between external media and the
object program. The Input-Output Section is optional in the Environment Division of a COBOL source program.

ANSI 74 and ANSI 85:

INPUT-OUTPUT SECTION.

FILE-CONTROL.
{ file-control-entry }...

[I-O-CONTROL.

REEL
[END OF] { UNIT } OF file-name-2
[RERUN [ON file-name-1] EVERY integer-1 RECORDS
integer-2 CLOCK-UNITS
condition-name-1

RECORD

[SAME SORT AREA FOR file-name-3 { file-name-4}...]...
SORT-MERGE

[MULTIPLE FILE TAPE CONTAINS { file-name-5 [POSITION integer-31}...]...

VXCOBOL

INPUT-OUTPUT SECTION.

FILE-CONTROL.
{ file-control-entry }...

[I-O-CONTROL.

RECORD
[SAME SORT AREA FOR file-name-1 { file-name-2}...]...
SORT-MERGE

[MULTIPLE FILE TAPE CONTAINS { file-name-3 [POSITION integer]}...]...

]

E.1. FILE-CONTROL Paragraph
E.1.1 Function

The FILE-CONTROL paragraph allows specification of file-related information.

E.1.2 General Format

FILE-CONTROL.
{ file-control-entry }...

89

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.2. File Control Entry
E.2.1 Function

The file control entry declares the relevant physical attributes of a sequential, relative, indexed, sort, or merge file.

E.2.2 General Format
The clauses for each SELECT are given in alphabetical order since they are order independent.
Sequential File (ANSI 74 and ANSI 85):

SELECT [OPTIONAL] file-name
[ACCESS MODE IS SEQUENTIAL]

[ASSIGN TO 1 INPUT (]

identifier
literal

[DATA SIZE is integer-1]
[FILE STATUS IS data-name]

LINE
[[ORGANIZATION IS | ginaRY] SEQUENTIAL]

integer-2
[QUEUE IS {identiﬁer—S }]
STANDARD-1
BINARY LENGTH
ASCIl LENGTH
[RECORD DELIMITER IS SIZE]-

DATA-SENSITIVE [DELIMITER INTO identifier-1]
literal [DELIMITER INTO identifier-2]

Sequential File (VXCOBOL):

SELECT [OPTIONAL] file-name
[ACCESS MODE IS SEQUENTIAL]

ASSIGN TO
{ PRINTER-1 } identifier-1
literal-1
DISK
] DISPLAY identifier-1
KEYBOARD literal-1
{’d/‘?t';trlgfq-1 } [VOLUME SIZE IS integer-2 [CONTIGUOUS [[NO]INITIALIZATION]]]

[FILE STATUS IS data-name]
[INFOS STATUS IS data-name]
[[ORGANIZATION IS] SEQUENTIAL]

90

d

d

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (File Control Entry)

OoDD
[PARITY IS § gven (]

, AREA
[RESERVE integer [AREAS]].

Relative File (ANSI 74 and ANSI 85):

SELECT [OPTIONAL] file-name

SEQUENTIAL [RELATIVE KEY IS data-name]

[ACCESS MODE IS || RANDOM i]
—_— {{DZZH?MIC RELATIVE KEY IS data-name

DISK
[ASSIGN TO | identifier {-..]
literal

[DATA SIZE IS integer]
[INDEX SIZE IS integer]

LOGICAL
[DELETE IS {El NSICAL }]

[FILE STATUS IS data-name]
[ORGANIZATION IS] RELATIVE .

Relative File (VXCOBOL):

SELECT file-name

SEQUENTIAL [RELATIVE KEY IS data-name]

[ACCESS MODE IS {{ RANDOM } RELATIVE KEY IS data-name]

DYNAMI
ASSIGN TO
identifier-1
DISK { literal-1 }
{’d;l?t’;"r’gfﬂ } [VOLUME SIZE IS integer-2 [CONTIGUOUS [[NO]INITIALIZATION]]]

[FILE STATUS IS data-name]
[INFOS STATUS IS data-name]
[ORGANIZATION IS] RELATIVE

. AREA
[RESERVE integer [AREAS] 1.

Indexed File (ANSI 74 and ANSI 85):

SELECT [OPTIONAL] file-name

SEQUENTIAL
[ACCESS MODE IS RANDOM |
DYNAMIC
ALSO id-3...
[ALTERNATE RECORD KEY IS id-1[= id-2 PLUS id-3...
[PLUS id-3...] OCCURS integer TIMES

[ORDER BY ALPHABETIC-UPPER]
[SUPPRESS WHEN literal]

91

[=N [oNEoREaN

o

Interactive COBOL Language Reference & Developer’s Guide - Part One

ASCENDING
[VALUES ARE | pesceNDING

[WITH DUPLICATES 1]...
DISK
[ASSIGN TO | identifier]
literal

[DATA SIZE IS integer]
[INDEX SIZE IS integer]

LOGICAL
[DELETE IS { puySICAL

[FILE STATUS IS data-name]
[ORGANIZATION IS] INDEXED
RECORD KEY IS id-1[= id-2 PLUS {id-3}...]
[ORDER BY ALPHABETIC-UPPER]
ASCENDING
[VALUES ARE {DESQENDINQ } .

Indexed File (VXCOBOL):
SELECT file-name
SEQUENTIAL
[ACCESS MODE IS RANDOM]
DYNAMIC

KEY 1S
[ALTERNATE RECORD i «gys ARE [data-name

[KEY LENGTH IS integer]
[WITH DUPLICATES]]...
ASSIGN INDEX TO

identifier-1
M{ literal-1 }

identifier-1
{ literal-1
[ROOT MERIT IS integer]
[SPACE MANAGEMENT]
[TEMPORARY]
HIERARCHICAL
LRU

[COMPRESSION]
[KEY COMPRESSION] [DATA COMPRESSION]

[DATA SIZE IS integer]

[INDEX SIZE IS integer]

[FILE STATUS IS data-name]

[INFOS STATUS IS data-name]
[ORGANIZATION IS] INDEXED

KEY IS
RECORD KEYS ARE data-name

[KEY LENGTH IS integer]

[RESERVE integer INDEX { AARREEA% }]

}[MERIT integer][VOLUME SIZE IS integer-2[CONTIGUOUS [[NO]INITIALIZATION]]]

_ AREA
[RESERVE integer DATA { AREAS } l.

92

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (File Control Entry)

Sort-Merge File (ANSI 74 and ANSI 85):

DISK
SELECT file-name [ASSIGN TO 1 identifier (...] .
literal

Sort-Merge File (VXCOBOL):

DISK
SELECT file-name ASSIGN TO [idenﬁfier , [[ORGANIZATION IS] SEQUENTIAL].

literal

INFOS Files (VXCOBOL):
SELECT file-name
SEQUENTIAL
[ACCESS MODE IS RANDOM]
DYNAMIC

[ALLOW SUB-INDEX
[LEVELS IS integer]]
identifier

ASSIGN INDEX TO {{ itoral } [MERIT integer] [VOLUME SIZE IS integer [CONTIGUOUS

[[NO] INITIALIZATION] 11}...
[TEMPORARY]

[SPACE MANAGEMENT]

[ROOT MERIT IS integer]
[HIERAR HI AL}

LRU

identifier ,
[ASSIGN DATA TO {{ literal } [MERIT integer]
[VOLUME SIZE IS infeger [CONTIGUOUS [[NO] INITIALIZATION]]1}...
[SPACE MANAGEMENT 1]
[COMPRESSION]
[KEY COMPRESSION] [DATA COMPRESSION]

[DATA SIZE IS integer]

[INDEX SIZE IS integer]

[FILE STATUS IS data-name]

[INFOS STATUS IS data-name]
[ORGANIZATION IS] INDEXED

KEY IS
RECORD KEYS ARE { data-name

identifier
[KEY LENGTH IS{ literal }]
[WITH DUPLICATES [OCCURRENCE IS identifier]]}...

, AREA
[RESERVE integer INDEX { AREAS }]

[RESERVE integer DATA { :RREEA% } l.

93

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.2.3 Syntax Rules:

(1) The SELECT clause must be specified first in the file control entry. The clauses which follow the SELECT
clause may appear in any order.

(2) Each file-name in the Data Division must be specified only once in the FILE-CONTROL paragraph. Each
file-name specified in the SELECT clause must have a file description entry in the Data Division of the same
program.

(3) Literal must be a nonnumeric literal and must not be a figurative constant.

(4) Each sort or merge file in the Data Division must be specified only once in the FILE-CONTROL paragraph.
Each sort or merge file specified in the SELECT clause must have a sort-merge file description entry in the Data

Division of the same program.

(5) For Sort-Merge Entry. Since file-name represents a sort or merge file, only the ASSIGN clause is permitted
to follow file-name in the FILE-CONTROL paragraph.

(6) The OPTIONAL phrase is only allowed for ANSI 85 and VXCOBOL.

For ANSI 74 and ANSI 85.

(7) The ORDER BY ALPHABETIC-UPPER phrase applies to version 7 or greater ICISAM indexed files.
(8) The DELETE clause applies only to version 7 or greater ICISAM files.

(9) The RECORD DELIMITER clause can only be specified on SEQUENTIAL files with the RECORD IS
VARYING clause in the FD. If the RECORD DELIMITER clause is absent and RECORD IS VARYING is
specified, the length of the record written is determined by the DEPENDING ON variable or implied by the record
definitions.

E.2.4 General Rules

(1) For ANSI 85, the OPTIONAL phrase applies only to files opened in input, I-O, or extend mode. Its
specification is required for files that are not necessarily present each time the object program is executed. See
OPEN for more information.

For VXCOBOL, the OPTIONAL phrase applies only to sequential files opened in input mode. Its
specification is required for files that are not necessarily present each time the object program is executed. If you
specify this clause and the file is not present, the first READ statement for the file signals an end-of-file condition.

(2) For VXCOBOL, the PARITY, DATA SIZE, INDEX SIZE, INITIALIZATION, TEMPORARY,
HIERARCHICAL/LRU, RESERVE, RESERVE INDEX, and RESERVE DATA clauses are used for documentation
purposes only.

For relative, indexed, and INFOS files:

(3) The native character set is assumed for data on the external media.

(4) For an indexed file or INFOS, the collating sequence associated with the native character set is assumed.
This is the sequence of values of a given key of reference used to process the file sequentially.

(5) The ASSIGN clause specifies the association of the file referenced by file-name to a storage medium
referenced by the specified name or literal.

94

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (File Control Entry)

(6) For ANSI 74 and ANSI 85, the INDEX SIZE and DATA SIZE clauses are used for documentation
purposes only.

95

Interactive COBOL Language Reference & Developer’s Guide - Part One

E 3. ACCESS MODE Clause
E.3.1 Function

The ACCESS MODE clause specifies the order in which records are to be accessed in the file.

E.3.2 General Format

Sequential File:
ACCESS MODE IS SEQUENTIAL

Relative File:

SEQUENTIAL [RELATIVE KEY IS data-name-1]

ACCESS MODE IS {MOM

DYNAMIC } RELATIVE KEY IS data-name-1

Indexed File (all ICOBOL dialects) and INFOS File (VXCOBOL):

SEQUENTIAL

ACCESS MODE IS RANDOM
DYNAMIC

E.3.3 Syntax Rules:

(1) ACCESS MODE is DYNAMIC or RANDOM can only be used for relative, indexed, or INFOS files.
For relative files:

(1) Data-name-1 may be qualified.

(2) Data-name-1 must reference an unsigned integer data item whose description does not contain the
PICTURE symbol "P'.

(3) If arelative file is referenced by a START statement, the RELATIVE KEY phrase within the ACCESS
MODE clause must be specified for that file.

(4) For ANSI 74 and ANSI 85, data-name-1 must not be defined in a record description entry associated with
that file-name.

E.3.4 General Rules
(1) If the ACCESS MODE clause is not specified, sequential access is assumed.

(2) Records in the file are accessed in the sequence dictated by the file organization. For sequential files, this
sequence is specified by predecessor-successor record relationships established by the execution of WRITE
statements when the file is created or extended. For relative files, this sequence is ascending relative record number
of existing records in the file. For indexed or INFOS files, this sequence is ascending within a given key of reference
according to the collating sequence of the file.

96

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (ACCESS MODE)

For relative files:

(3) Ifthe access mode is random, the value of the relative key data item for relative files indicates the record to
be accessed.

(4) If the access mode is dynamic, records in the file may be accessed sequentially and/or randomly.
(5) All records stored in a relative file are uniquely identified by relative record numbers. The relative record
number of a given record specifies the record's logical ordinal position in the file. The first logical record has a

relative record number of 1, and subsequent logical records have relative record numbers 2, 3,

(6) The data item specified by data-name-1 is used to communicate a relative record number between the user
and the file system.

(7) The relative key data item associated with the execution of an input-output statement is the data item
referenced by data-name-1 in the ACCESS MODE clause.

For indexed files:

(8) If the access mode is random, the value of a record key data item for indexed files indicates the record to be
accessed.

For INFOS files (VXCOBOL):

(9) If the access mode is random, the value of a series of record key data items (with their associated occurrence
values, if any) and a relative motion specifier indicates the record to be accessed.

(10) If the access mode is sequential, the sequence of access is in ascending order by keys within a given index
or subindex. The subindex may be changed with a relative motion specifier.

97

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.4. ALLOW SUB-INDEX and LEVELS Clauses (VXCOBOL)

E.4.1 Function

The ALLOW SUB-INDEX and LEVELS clauses must be used to define the maximum number of subindex levels
permitted in an INFOS file.

E.4.2 General Format

ALLOW SUB-INDEX [LEVELS IS integer]

E.4.3 Syntax Rules

(1) Integer is a positive integer between 1 and 8 that specifies the maximum number of index and subindex
levels the file can have.
E.4.4 General Rules

(1) ALLOW SUB-INDEX must be specified for any file that already has subindexing or will allow
subindexing.

(2) The LEVELS clause indicates the expected maximum number of index and subindex levels that the file will
have. If you do not specify this clause on file creation, the maximum number of levels will default to the number of

keys in the RECORD KEY clause.

(3) The maximum number of levels for a U/FOS file is 8.

98

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (ALTERNATE RECORD KEY)

E.5. ALTERNATE RECORD KEY Clause (ANSI 74 and ANSI 85)
E.5.1 Function

The ALTERNATE RECORD KEY clause specifies an alternate record key access path to the records in an indexed
file. The ALSO, ORDER BY ALPHABETIC-UPPER, PLUS, SUPPRESS, and VALUES phrases are extensions to
ANSI COBOL.

E.5.2 General Format
ALSO id-3...

ALTERNATE RECORD KEY IS id-1[= id-2 PLUS id-3...
[PLUS id-3...] OCCURS integer TIMES

[ORDER BY ALPHABETIC-UPPER]
[SUPPRESS WHEN literal]

ASCENDING
[VALUES ARE | pESCENDING |]
[WITH DUPLICATES |

E.5.3 Syntax Rules
(0) The ALTERNATE RECORD KEY clause may occur at most 16 times for ICISAM files.

(1) The phrases following the ALTERNATE RECORD KEY clauses (ORDER BY, SUPPRESS WHEN,
VALUES ARE, and WITH DUPLICATES) may be specified in any order.

(2) id-1 must not reference an item whose left-most character position corresponds to the left-most character
position of the primary record key or of any other alternate record key associated with this file. NOT ENFORCED
BY ICOBOL.

(3) Ifid-2 is not specified, id-1 may be qualified and must reference a data-item of category alphanumeric
within a record description entry associated with the file-name to which the ALTERNATE RECORD KEY is
subordinate. /d-/ must not reference a group item containing a variable occurrence data-item.

If id-2 is specified, id-1 must be a unique word within the program and is not defined elsewhere. Id-/ may be
referenced only in the KEY IS phrases of the READ or START statements.

(4) Each instance of id-2 or id-3 must reference a data-item of category alphanumeric within a record
description entry associated with the file-name to which the ALTERNATE RECORD KEY is subordinate. No
instance of id-2 or id-3 may reference a group item which contains a variable occurrence data-item

(5) Ifthe ALSO phrase is specified, id-3 may be specified up to six times. If the ALSO phrase is not specified
i.e., the case), id-3 may be specified up to three times.
(i.e., the PLUS), id-3 b ified hree ti

(6) Ifid-2 is not specified, the length of id-/ may not exceed 255 bytes for ICISAM files.

If id-2 is specified, each instance of id-2 and id-3 must have a length that does not exceed 255 bytes. If the
ALSO phrase is specified, each id-3 must have the same length as id-2. If the ALSO phrase is not specified, the sum
of the lengths of id-2 and each id-3 must not exceed 255 bytes.

(7) If the OCCURS phrase is specified, integer must be in the range from 1 to 31. id-2 and each id-3 must each

be in the same record definition. Additionally, they must be subordinate to a common OCCURS phrase which is
defined as occurring integer times. Each of the identifiers must be specified without a subscript.

99

Interactive COBOL Language Reference & Developer’s Guide - Part One

If the OCCURS phrase is not specified, none of the identifiers may have an OCCURS phrase in their description
or be subordinate to an item which has an OCCURS phrase its definition.

(8) Within the record definition the byte positions of id-2 and each id-3 must be disjoint, i.e., they may not
overlap.

(9) If the SUPPRESS WHEN phrase is specified, /it may be either a single character alphanumeric literal or a
figurative constant.

(10) If the index files contains variable length records, each alternate record key must be contained within the
first x character positions of the record where x equals the minimum record size for the file.

E.5.4 General Rules

(1) The ALTERNATE RECORD KEY clause specifies an alternate record key for the file with which this
clause is associated. It may specify that one or more key values to be entered into the associated index for each
record.

The alternate key may consist of a single data-item (id-/ with no additional phrases). It may also be a composite
key (identified by the key name id-1) defined as a root key (id-2) plus one or more key suffixes (id-3). The value of
a composite alternate key is determined by appending the values of the root key and each key suffix together in the
order in which they appear in the ALTERNATE RECORD KEY clause.

Multiple key values (inversions) may be entered into the index for a given alternate key in two ways:

a. The ALSO phrase may be specified. In this case, the key-name id-/ represents an alternate record key
which supports multiple key values. A value is entered into the index for id-2 and each instance of id-3. This
allows for scattered fields in the record to be entered into the index as key values.

b. The OCCURS phrase may be specified. In this case, the key-name id-1 represents an alternate record
key which supports multiple key values in a tabularized form. For each occurrence of id-2 in the record definition,
optionally suffixed by occurrences of id-3, a key value is entered into the index.

(2) The data description and relative location within a record of id-/ (if it is used alone) and of id-2 and each
id-3 must be the same as that used when the file was created.

(3) If the file has more than one record description entry, id-/ (if it is used alone) or id-2 and each id-3 need
only be described in one of these record description entries except when the OCCURS phrase is present. If the
OCCURS phrase is present id-2 and each id-3 must be in the same record description entry. In all cases, the
identical character positions referenced by id-1 (if it is used alone), id-2, and each id-3 that appear in one record
description are implicitly referenced as keys for all other record description entries of that file.

(4) The ORDER BY ALPHABETIC-UPPER phrase applies to version 7 or greater ICISAM files. It specifies
that all values for this alternate key are entered into the index as uppercase only. Lookups for this key path will be
performed in uppercase. The effect is that the keys on this key path are processed in a case insensitive manner. If
ORDER BY ALPHABETIC-UPPER is not present, then key values are entered and looked up as they appear in the
record.

(5) The SUPPRESS WHEN lit phrase specifies that when all characters of a key value are equal to the character
specified by lit, that key value should not be entered into the index. This phrase applies to version 7 or greater
ICISAM files.

(6) The VALUES ARE phrase is used to specify the order in which key values are entered into the index. If the

ASCENDING phrase is specified, key values are entered in ascending order. That is, key values appear with
increasing values. If the DESCENDING phrase is specified, key values are entered in descending order. That is,

100

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (ALTERNATE RECORD KEY)

key values appear with decreasing values -- in reverse sequential order. If the VALUES ARE phrase is not present,
VALUES ARE ASCENDING is implied. This phrase applies to version 7 or greater ICISAM files.

(7) The WITH DUPLICATES phrase specifies that the value or values of the associated ALTERNATE
RECORD KEY may be duplicated within any of the records in the file and within the record itself if multiple key
values are specified. If the WITH DUPLICATES phrase is not specified, the value or values of the associated
alternate key must not be duplicated among any of the records in the file or within the record itself if multiple key
values are specified. If the phrase is not present, duplicate key values are not allowed. Version 7 and greater
indexed files observe the duplicates option correctly.

(8) Alternate record keys are sorted based on the following criteria:

a. ascending root segment position of id-/ (if it is a data-item) or by id-2 if it is present.
b. ascending root segment length of id-/ (if it is a data-item) or by id-2 if it is present.

c. absence of ALSO keys and, if present, ascending number of ALSO and ascending ALSO’s position.

d. absence of suffixes and, if present, ascending number of suffixes, ascending suffix position, and
ascending suffix length.

e. absence of OCCURS and, if present, ascending number of OCCURS and ascending occurs span.
f. absence of duplicates allowed.
g. absence of descending order.
h. absence of uppercase conversion.
i. absence of SUPPRESS when value and, if present, ascending suppress when value.
(9) If the associated file connector is an external file connector, every file control entry in the run unit which is
associated with that file connector must specify the same data description entry for data-name-1, the same relative

location within the associated record, the same number of alternate record keys, and the same DUPLICATES
phrase.

101

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.6. ALTERNATE RECORD KEY Clause (VXCOBOL)

E.6.1 Function

The ALTERNATE RECORD KEY clause specifies an alternate record key access path to the records in an indexed
file.

E.6.2 General Format

KEY 1S
ALTERNATE RECORD kevs aRe [data-name

[KEY LENGTH IS integer]
[WITH DUPLICATES]

E.6.3 Syntax Rules
(1) Data-name may be qualified.

(2) Data-name must be defined as a data item of the category alphanumeric within a record description entry
associated with the file-name to which the ALTERNATE RECORD KEY clause is subordinate. Data-name must
not reference a group item that contains a variable occurrence data-item.

(3) Data-name must not reference an item whose left-most character position corresponds to the left-most
character position of the primary record key or of any other alternate record key associated with this file. NOT
ENFORCED BY ICOBOL.

(4) integer must be exactly the length of the item referenced by data-name.

(5) If the index file contains variable length records, data-name must be contained within the maximum record
size number of characters. If data-name is not contained within the specified minimum record size, the minimum
record size will be adjusted upward to contain data-name.

E.6.4 General Rules

(1) An ALTERNATE RECORD KEY clause specifies an alternate record key for the file with which this clause
is associated. The ALTERNATE RECORD KEY clause may be specified no more than 16 times.

(2) The data description of data-name as well as its relative location within a record must be the same as that
used when the file was created. The number of alternate record keys for the file must also be the same as that used
when the file was created.

(3) The DUPLICATES phrase specifies that the value of the associated alternate record key may be duplicated
within any of the records in the file. If the DUPLICATES phrase is not specified, the value of the associated
alternate record key must not be duplicated among any of the records in the file.

(4) If the file has more than one record description entry, data-name need only be described in one of these
record description entries. The identical character positions referenced by data-name in any one record description

entry are implicitly referenced in keys for all other record description entries of that file.

(5) Alternate keys are sorted by their leftmost character position. Under ICOBOL, if multiple alternate keys
start at the same position, they are sorted in ascending order by length (smallest to largest).

102

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (ALTERNATE RECORD KEY)

(6) If the associated file connector is an external file connector, every file control entry in the run unit which is
associated with that file connector must specify the same data description entry for data-name, the same relative
location within the associated record, the same number of alternate record keys, and the same DUPLICATES
phrase.

103

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.7. ASSIGN Clause
E.7.1 Function

The ASSIGN clause specifies the association of the file referenced to a defined storage medium.

E.7.2 General Format (ANSI 74 and ANSI 85)

Sequential File:

PRINTER
PRINTER-1
DISPLAY
KEYBOARD
ISK
ASSIGN TO INPUT
INPUT-OUTPUT
OUTPUT
RANDOM
identifier-1
literal-1

©

Relative, Indexed, and Sort-Merge Files:

DISK
ASSIGN TO | identifier-1 |-..
literal-1

E.7.3 General Format (VXCOBOL)

Sequential:

ASSIGN TO
PRINTER-1 | | ‘dentifier-1
DISK literal-1
| DISPLAY identifier-1
KEYBOARD literal-1
{Id’i’zt’lgﬂ1 } [VOLUME SIZE IS integer-2 [CONTIGUOUS [[NO]INITIALIZATION]]]
Relative:
ASSIGN TO

identifier-1
DI K{ literal-1 }

{ identifier-1

i } [VOLUME SIZE IS infeger-2[CONTIGUOUS [[NO]INITIALIZATION]]]

104

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (ASSIGN)

Indexed:

ASSIGN INDEX TO
identifier-1
DISK { literal-1 }
identifier-1
literal-1
d [ROOT MERIT IS integer] [SPACE MANAGEMENT][TEMPORARY]
HIERARCHICAL
R

} [VOLUME SIZE IS infeger-2[CONTIGUOUS [[NO]INITIALIZATION]]]

Sort-Merge File:

DISK
ASSIGN TO | identifier |---
literal

INFOS Files:

ASSIGN INDEX TO {{'d,,‘i";tr'gfr} [MERIT integer] [VOLUME SIZE IS integer
d [CONTIGUOUS [[NO] INITIALIZATION]]] }...
d [TEMPORARY |
[SPACE MANAGEMENT]
[ROOT MERIT IS integer]
HIERARCHICAL
LRU

o

[ASSIGN DATA TO {{ 16" | [MERIT integer

d [VOLUME SIZE IS integer [CONTIGUOUS [[NO] INITIALIZATION]] }...
[SPACE MANAGEMENT]]

E.7.4 Syntax Rules

(1) Only one storage medium (PRINTER, PRINTER-1, DISPLAY, KEYBOARD, DISK, INPUT,
INPUT-OUTPUT, OUTPUT, or RANDOM) may be specified.

(2) Only one external filename specifier (identifier-1 or literal-1) may be specified except for INFOS files.
For VXCOBOL.:

(3) Integer-1 and integer-4 are positive integer literals between 1 and 32 that specify the merit factor of a
volume. If not specified the merit factor is 1.

(4) Integer-2 and integer-5 are positive integer literals that specify a number of 512-byte blocks.

(5) Integer-3 is a positive integer literal between 1 and 32 that specifies which volume priority has the highest
level root node.

105

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.7.5 General Rules
(1) If no storage medium is specified DISK is assumed.

(2) If no identifier-1 or literal-1 is specified, the default external filename is defined below for sequential files.

Device Default Filename VXCOBOL Default Filename ANSI 74/85
PRINTER QLPT SLPT

PRINTER-1 QLPT1 $SLPT1

DISPLAY QCONSOLE $TTO

KEYBOARD QCONSOLE STTI

DISK, INPUT, Characters of the internal First ten character of the
INPUT-OUTPUT, filename with $ replacing - internal filename with $
OUTPUT, RANDOM replacing -.

TABLE 1. Default External Filenames for Sequential Files
NOTE: The -N h compiler switch will suppress the translation of “-“ to “$” in the generation of default filenames.

(3) For VXCOBOL, relative, indexed, and INFOS files have no default external filename. For ANSI 74 and
ANSI 85, an external filename is generated from the internal name by selecting the characters of the internal name
and replacing - with $.

(4) Only sequential files may be ASSIGN'ed to PRINTER, PRINTER-1, KEYBOARD, DISPLAY, INPUT,
INPUT-OUTPUT, or OUTPUT.

(5) For INFOS files, VOLUME SIZE sets the maximum volume size. It is ignored on sequential, relative, and
indexed files.

(6) For sequential files, RANDOM is equivalent to DISK.

(7) When INPUT is specified, the assigned storage medium is DISK and the compiler restricts the file usage to
only those operations that are compatible with an input-only usage: OPEN INPUT, READ, and as a USING file in a
SORT-MERGE operation.

(8) When OUTPUT is specified, the assigned storage medium is DISK, and the compiler restricts the file usage
to only those operations that are compatible with an output-only usage: OPEN OUTPUT or EXTEND, WRITE, and
as a GIVING file in a SORT-MERGE operation.

(9) When INPUT-OUTPUT is specified, the assigned storage medium is DISK with no further restrictions.

106

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (COMPRESSION)
E.8. COMPRESSION Clauses (VXCOBOL)

E.8.1 Function

The COMPRESSION clauses enable INFOS space saving.
E.8.2 General Format

[KEY COMPRESSION] [DATA COMPRESSION]
[COMPRESSION]

E.8.3 General Rules
(1) KEY COMPRESSION enables space saving in an INFOS indexed file.
(2) DATA COMPRESSION enables space saving in an INFOS data file.
(3) COMPRESSION enables both KEY COMPRESSION and DATA COMPRESSION.

(4) U/FOS ignores the KEY COMPRESSION clause and the implied key compression in the COMPRESSION
clause.

107

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.9. DELETE LOGICAL/PHYSICAL Clause (ANSI 74 and ANSI 85)

E.9.1 Function

The DELETE LOGICAL/PHYSICAL clause specifies whether DELETE record operations should be either logical
(thus allowing the record to be UNDELETE'd) or physical (allowing reuse of the record area for a new record and
thus NOT allowing an UNDELETE). DELETE LOGICAL/PHYSICAL is an extension to ANSI COBOL.

E.9.2 General Format

LOGICAL
DELETE IS {PHY | AL}

E.9.3 Syntax Rules

(1) The DELETE clause applies to version 7 or greater ICISAM (relative and indexed) files.

E.9.4 General Rules

(1) The DELETE clause specifies the value of the "delete-is-physical" attribute in version 7 or greater ICISAM
files and controls the default behavior for record deletions. If the DELETE IS LOGICAL clause is specified, a
deleted record is retained in the file and is simply flagged as being deleted. It may be undeleted. If DELETE IS
PHYSICAL is specified, the space used by the deleted record is made available for reuse. The record may not be
undeleted. The default behavior may be overridden by including the LOGICAL or PHYSICAL phrases on the
DELETE statement.

(2) If this clause is specified and an existing file is opened, the value of the specification must agree with the
value of the file's "delete-is-physical" attribute.

(3) Ifthis clause is omitted and a file is created, the default is DELETE IS LOGICAL.

108

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (FILE STATUS)

E.10. FILE STATUS Clause
E.10.1 Function

The FILE STATUS clause specifies a data item which contains the status of an input-output operation.

E.10.2 General Format

FILE STATUS IS data-name

E.10.3 Syntax Rules

(1) Data-name may be qualified.

(2) Data-name must be defined in the Data Division as a two-character data item of the category alphanumeric
and must not be defined in the File Section.
E.10.4 General Rules

(1) If the FILE STATUS clause is specified, the data item referenced by data-name is always updated to
contain the value of the I-O status whenever the I-O status is updated. This value indicates the status of execution of
the statement. See I-O Status, page 267 or the APPENDIX on FILE STATUS codes for the values.

(2) The data item referenced by data-name which is updated during the execution of an input-output statement
is the one specified in the file control entry associated with that statement.
For VXCOBOL

(3) If either FILE STATUS or INFOS STATUS clause is specified for a file, then even if there is no
declaratives to trap an exception, the program proceeds. Only if there is neither a FILE STATUS nor INFOS
STATUS nor a declaratives entry will the program abort with a Fatal Error.

(4) FILE STATUS and INFOS STATUS are updated at the same time.

(5) INFOS STATUS values are either an octal number representing an INFOS or AOS/VS compatible error
code or a string beginning with an ‘X’ followed by a decimal number representing an exception status code.

109

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.11. INDEX SIZE, DATA SIZE Clauses
E.11.1 Function
These clauses are comment fields. They allow older programs with these clauses to compile without errors. INDEX
SIZE and DATA SIZE are extensions to ANSI COBOL.
E.11.2 General Format
DATA SIZE is integer
INDEX SIZE is integer
E.11.3 General Rules
(1) The INDEX clause can only be used for relative, indexed, and INFOS files.

(2) The DATA SIZE and INDEX SIZE clauses are used for documentation purposes only.

110

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (INFOS STATUS)
E.12. INFOS STATUS Clause (VXCOBOL)

E.12.1 Function

The INFOS STATUS clause specifies a data item which contains the INFOS status of an input-output operation.

E.12.2 General Format

INFOS STATUS IS data-name

E.12.3 Syntax Rules

(1) Data-name may be qualified.

(2) Data-name must be defined in the Data Division as a four-character to eleven-character data item of the
category alphanumeric and must not be defined in the File Section.
E.12.4 General Rules

(1) If the INFOS STATUS clause is specified, the data item referenced by data-name is always updated to
contain the value of the INFOS STATUS whenever the status is updated. This value indicates the status of execution

of the statement.

(2) The data item referenced by data-name which is updated during the execution of an input-output statement
is the one specified in the file control entry associated with that statement.

(3) If either a FILE STATUS or INFOS STATUS clause is specified for a file, then even if there is no
declaratives to trap an exception, the program proceeds. Only if there is neither a FILE STATUS nor INFOS
STATUS nor a declaratives entry will the program abort with a Fatal Error.

(4) FILE STATUS and INFOS STATUS are updated are the same time.

(5) INFOS STATUS values are either an octal number representing an INFOS or AOS/VS compatible error
code or a string beginning with an 'X' followed by a decimal number representing an exception status code.

111

Interactive COBOL Language Reference & Developer’s Guide - Part One
E.13. ORGANIZATION Clause

E.13.1 Function

The ORGANIZATION clause specifies the type (sequential, relative, or indexed) of organization as the logical
structure of a file and, for sequential files, may also imply information about the record format.

E.13.2 General Format

E.7.2 General Format ()

ANSI 74 and ANSI 85 Sequential File:

LINE
[ORGANZAHONIS][BmmRX]SEQUENﬂAL

Others:
EQUENTIAL
[ORGANIZATION IS]{ RELATIVE
INDEXED

E.13.3 General Rules

(1) The ORGANIZATION IS SEQUENTIAL clause specifies sequential organization as the logical structure of
a file. The file organization is established at the time a file is created and cannot subsequently be changed.

(2) Sequential organization is a permanent logical file structure in which a record is identified by a
predecessor-successor relationship established when the record is placed into the file.

(3) The ORGANIZATION IS LINE SEQUENTIAL clause specifies sequential organization and it specifies
that the record format is data sensitive. If the ORGANIZATION IS LINE SEQUENTIAL clause is specified, the
RECORDING MODE clause of the file’s FD may not be specified.

(4) The ORGANIZATION IS BINARY SEQUENTIAL clause specifies sequential organization and it specifies
that the record format is binary and not data-sensitive. If the ORGANIZATION IS BINARY SEQUENTIAL clause
is specified, the RECORDING MODE clause of the file’s FD may not be specified.

(5) When the ORGANIZATION clause is not specified, sequential organization is implied (without the optional
LINE or BINARY option).

(6) The ORGANIZATION IS RELATIVE clause specifies relative organization as the logical structure of a
file. The file organization is established at the time a file is created and cannot subsequently be changed.

(7) Relative organization is a permanent logical file structure in which each record is uniquely identified by an
integer value greater than zero, which specifies the record's logical ordinal position in the file.

(8) The ORGANIZATION IS INDEXED clause specifies indexed organization as the logical structure of a file.
The file organization is established at the time a file is created and cannot subsequently be changed. For

VXCOBOL, the file may be either an indexed file or INFOS file.

(9) Indexed organization is a permanent logical file structure in which each record is identified by the value of
one or more keys within that record.

112

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (QUEUE)
E.14. QUEUE Clause (ANSI 74 and ANSI 85)

E.14.1 Function

The QUEUE clause allows the specification of a destination printer control queue for the sequential file.

E.14.2 General Format

integer
identifier

QUEUE IS {
E.14.3 Syntax Rules

(1) integer must be in the range 0 through 2047 inclusive. (Was 127 in pre-3.30 versions).

(2) identifier may be qualified, but may not be subscripted.

(3) identifier must be defined in the Data Division as an integer data-item and must not be defined in the File
Section.
E.14.4 General Rules

(1) If identifier is specified, its value must be in the range 0 through 2047 inclusive.

(2) The value specified in identifier us used to represent a particular printer control queue (PCQ). Zero
identifies @PCQO, one identifies @PCQI, two identifies @PCQ2, etc. The name of the specified file will be

entered into that queue.

(3) At runtime, the selected queue should correspond to a queue which is available.

113

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.15. RECORD DELIMITER Clause (ANSI 74 and ANSI 85)
E.15.1 Function

The RECORD DELIMITER clause indicates the method of determining the length of a variable-length record on the
external medium.

E.15.2 General Format

STANDARD-1
BINARY LENGTH
ASCII LENGTH
RECORD DELIMITER IS SIZE f
DATA-SENSITIVE [DELIMITER INTO identifier-1]

literal [DELIMITER INTO identifier-2]

E.15.3 Syntax Rules

(1) The RECORD DELIMITER clause may be specified only for sequential files that have variable-length
records. Such a file contains the RECORD IS VARYING clause in the FD.

(2) If the RECORD DELIMITER clause is absent and RECORD IS VARYING is specified, the implied
RECORD DELIMITER for a file with LINE SEQUENTIAL organization is DATA-SENSITIVE, and for others is
BINARY LENGTH.

(3) If the RECORD DELIMITER clause is specified, the RECORDING MODE clause of the file’s FD may not
be specified.

(4) identifier-1 must be a 2-byte alphanumeric data-item, not defined in the FILE Section.

(5) identifier-2 must be a 1-byte alphanumeric data-item not defined in the FILE Section.

E.15.4 General Rules
(1) The RECORD DELIMITER options are described below:
a. STANDARD-1 is for documentation purposes only and is processed in the same manner as SIZE.

b. BINARY LENGTH indicates the presence of a record header with the length of the record stored as a
2-byte big-endian unsigned binary value. This is the traditional ICOBOL format. The stored length does not
include the length of the header. The BINARY LENGTH option may not be specified if the organization is LINE
SEQUENTIAL.

c. ASCII LENGTH indicates the presence of a record header with the length of the record stored as 4
ASCII digits. This is the traditional VXCOBOL and AOS/VS format. The stored length includes the 4 bytes
occupied by the header. The ASCII LENGTH option may not be specified if the organization is LINE
SEQUENTIAL.

d. SIZE indicates that the size of the record is determined completely by the record length requested. The
file itself has no underlying structure and is simply a stream of bytes. If RECORD DELIMITER IS SIZE is
specified, then the RECORD IS VARYING clause must include a DEPENDING ON id from which the record's size
is obtained for both read and write operations. The SIZE option may not be specified if the organization is LINE
SEQUENTIAL.

114

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (RECORD DELIMITER)

e. DATA-SENSITIVE indicates that the size of the record is determined by the presence of a delimiter
from the set NL, CR, FF, NUL and the CR-NL pair. On WRITE operations, the length of the record is the minimum
of that which is explicitly specified in the RECORD IS VARYING clause and the size determined due to the
presence of a delimiter within the record itself. If a delimiter is in the record, it is emitted on the WRITE.
Otherwise, the standard delimiter for the operating system is emitted, i.e. NL on Linux and the CR-NL pair on
Windows. For READ operations with the ASSIGN TO KEYBOARD phrase, the delimiter is included in the record
area. If the DELIMITER INTO phrase is present, the delimiter is stored in the identifier. (The delimiter will be
stored with a LOW-VALUE as its second character if it is any delimiter other than the CR-NL pair.) The
DATA-SENSITIVE option may not be specified if the organization is BINARY SEQUENTIAL.

f. Literal is an alphanumeric literal in which each character serves as a record delimiter. On WRITE
operations, the length of the record is the minimum of that which is explicitly specified in the RECORD IS
VARYING clause and the size determined due to the presence of a delimiter within the record itself. If a delimiter is
in the record it is emitted on the WRITE. Otherwise, the character from the literal with the lowest ASCII value is
emitted as the record delimiter. For READ operations with the ASSIGN TO KEYBOARD phrase, the delimiter is
included in the record area in other cases it is not. If the DELIMITER INTO phrase is present, the delimiter is
stored in the identifier. The Literal option may not be specified if the organization is BINARY SEQUENTIAL.

(2) At the time of a successful execution of an OPEN statement, the record delimiter is the one specified in the

RECORD DELIMITER clause in the file control entry associated with the file-name specified in the OPEN
statement.

115

Interactive COBOL Language Reference & Developer’s Guide - Part One
E.16. RECORD KEY Clause

E.16.1 Function

The RECORD KEY clause specifies the primary record key access path to the records in an indexed file. For an
INFOS file, it specifies the valid indexes for this file. The ORDER BY ALPHABETIC-UPPER, PLUS, VALUES
ARE, KEY LENGTH, and OCCURRENCE phrases are extensions to ANSI COBOL.

E.16.2 General Format (ANSI 74 and ANSI 85)
RECORD KEY IS id-1[= id-2 PLUS {id-3}...] [ORDER BY ALPHABETIC-UPPER]

ASCENDING
[VALUES ARE | pESCENDING

E.16.3 General Format (VXCOBOL)
Indexed:

KEY 1S
RECORD{KEYS ARE } data-name-1[KEY LENGTH IS literal-1]

INFOS:

KEY IS
RECORD 1 kgys ARe ({ data-name-1

identifier-1
[KEY LENGTH IS { literal-1 }]

[WITH DUPLICATES [OCCURRENCE IS identifier-211}...

E.16.4 Syntax Rules (ANSI 74 and ANSI 85)

(1) The phrases following the RECORD KEY clause (ORDER BY and VALUES ARE) may be specified in
any order.

(2) Ifid-2 is not specified, id-1 may be qualified and must reference a data-item of category alphanumeric
within a record description entry associated with the file-name to which the RECORD KEY is subordinate. /d-/

must not reference a group item which contains a variable occurrence data item.

If id-2 is specified, id-1 must be a unique word within the program and is not defined elsewhere. Id-/ may be
referenced only in the KEY IS phrases of the READ or START statements.

(3) Each instance of id-2 or id-3 must reference a data-item of category alphanumeric within a record
description entry associated with the file-name to which the RECORD KEY is subordinate. No occurrence of id-2 or
id-3 may reference a group item which contains a variable occurrence data item.

(4) If id-2 is not specified, the length of id-/ may not exceed 255 bytes for indexed files.

If id-2 is specified, each instance of id-2 and id-3 must have a length that does not exceed 255 bytes. The sum
of the lengths of id-2 and each id-3 must not exceed 255 bytes.

(5) Within the record definition the byte positions of id-2 and each id-3 must be disjoint, i.e., they may not
overlap.

116

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (RECORD KEY)
(6) id-3 may be specified at most three(3) times.

(7) If the indexed file contains variable length records, id-1 or all occurrences of id-2 and id-3 must be
contained in the first x character positions of the record where x equals the minimum record size specified for the
file.

E.16.5 Syntax Rules (VXCOBOL)
(1) Data-name-1 may be qualified.

(2) For indexed files, data-name-1 must reference a data item of the category alphanumeric within a record
description entry associated with the file-name to which the RECORD KEY clause is subordinate. Data-name-1
must not reference a group item that contains a variable occurrence data item.

(3) Identifier-1 or literal-1 specifies the length of the associated key. Identifier-1 must be an unsigned integer
data item and /iferal-1 must be a positive integer literal. If neither is specified, the key length defaults to be the
length of the item referenced by data-name-1. When used with an indexed file, liferal-1 must be exactly equal to the
length of the item referenced by data-name-1.

(4) Identifier-2 is an unsigned integer or alphanumeric data item that receives an occurrence number. It can
hold up to 10 digits (PIC 9(10)). It must be defined in Working-Storage.

(5) If the indexed file contains variable length records, data-name-1 must be contained within the maximum
record size number of characters. If data-name-1 is not contained within the specified minimum record size, the
minimum record size will be adjusted upward to contain data-name-1.

E.16.5 General Rules (ANSI 74 and ANSI 85)

(1) The RECORD KEY clause specifies the primary key record key for the file with which this clause is
associated. The values of the primary key must be unique among all records of the file. The record key may consist
of a single data-item (id-/ with no additional phrases). It may also be a composite key (identified by the key name
id-1) defined as a root key (id-2) plus one or more key suffixes (id-3). The value of a composite primary key is
determined by appending the values of the root key and each key suffix together in the order in which they appear in
the RECORD KEY clause.

(2) The data description and relative location within a record of id-/ (if it is used alone) and of id-2 and each
id-3 must be the same as that used when the file was created.

(3) If the file has more than one record description entry, id-/ (if it is used alone) or id-2 and each id-3 need
only be described in one of these record description entries. In all cases, the identical character positions referenced
by id-1 (if it is used alone), id-2, and each id-3 that appear in one record description are implicitly referenced as keys
for all other record description entries of that file.

(4) The ORDER BY ALPHABETIC-UPPER phrase applies to version 7 or greater ICISAM files. It specifies
that all values for this alternate key are entered into the index as uppercase only. Lookups for this key path will be
performed in uppercase. The effect is that the keys on this key path are processed in a case insensitive manner. If
ORDER BY ALPHABETIC-UPPER is not present, then key values are entered and looked up as they appear in the
record.

(5) The VALUES ARE phrase is used to specify the order in which key values are entered into the index. If the
ASCENDING phrase is specified, key values are entered in ascending order. That is, key values appear with
increasing values. If the DESCENDING phrase is specified, key values are entered in descending order. That is,
key values appear with decreasing values -- in reverse sequential order. If the VALUES ARE phrase is not present,
VALUES ARE ASCENDING is implied. This phrase applies to version 7 or greater [CISAM files.

117

Interactive COBOL Language Reference & Developer’s Guide - Part One

(6) If the associated file connector is an external file connector, all file description entries in the run unit which
are associated with that file connector must specify the same data description entry for data-name-1 with the same
relative location within the associated record.

E.16.7 General Rules (VXCOBOL)

(1) Forindexed, the RECORD KEY clause specifies the primary record key for the file with which this clause
is associated. The values of the primary record key must be unique among records of the file. For INFOS, the
RECORD KEY clause specifies a list of data-items which may be used as keys. These items may occur in any order
and there may be more or less keys specified that subindex levels in the file.

(2) For indexed, the data description of data-name-1 as well as its relative location within a record must be the
same as that used when the file was created.

(3) For indexed, if the file has more than one record description entry, data-name-1 need only be described in
one of these record description entries. The identical character positions referenced by data-name-1 in any one
record description entry are implicitly referenced as keys for all other record description entries of that file.

(4) For INFOS, if identifier-1 or literal-1 is given, then on an open of a file for output, that value is the
maximum key length for the main level, on a WRITE statement the value represents the number of characters in
data-name-1 that will be stored as the value of that record's index, and when you specify a READ with a GENERIC
clause, the value represents the number of characters in data-name-1 that must be matched in order to access a given
record.

(5) If you use the OCCURRENCE clause, an occurrence number is assigned for each duplicate key. With
INFOS II, occurrence numbers are only unique within a subindex. With U/FOS, occurrence numbers are unique
through the entire database.

(6) The occurrence number and length of a key can be obtained by issuing a RETRIEVE KEY statement.

(7) After a WRITE or a RETRIEVE statement, the occurrence number associated with the first key named in
the SELECT is updated.

(8) If the associated file connector is an external file connector, all file description entries in the run unit which

are associated with that file connector must specify the same data description entry for data-name-1 with the same
relative location within the associated record.

118

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (RESERVE)
E.17. RESERVE Clause (VXCOBOL) (Documentation only)

E.17.1 Function

The RESERVE clause allows the user to specify the number of input-output areas allocated.

E.17.2 General Format

Sequential and Relative:

RESERVE integer | Amcas |

Indexed and INFOS:

RESERVE integer DATA | o |

RESERVE integer INDEX [:RRE%S]

E.17.3 General Rules

(1) Under ICOBOL, the RESERVE clause is used for documentation only. ICOBOL buffers sequential disk
files as part of its implementation.

119

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.18. I-O-CONTROL Paragraph
E.18.1 Function

The I-O-CONTROL paragraph specifies the memory area which is to be shared by different files.

E.18.2 General Format (ANSI 74 and ANSI 85)

[-O-CONTROL.

REEL
[END OF] UNIT OF file-name-2
[RERUN [ON file-name-1] EVERY integer-1 RECORDS
integer-2 CLOCK-UNITS

condition-name-1

RECORD
[SAME SORT AREA FOR file-name-1 { file-name-2}...]...
SORT-MERGE
[MULTIPLE FILE TAPE CONTAINS { file-name-5[POSITION integer-31}... 1...

E.18.3 General Format (VXCOBOL)

I-O-CONTROL.
RECORD
[SAME SORT AREA FOR file-name-1 { file-name-2}...]...
SORT-MERGE

[MULTIPLE FILE TAPE CONTAINS { file-name-5 [POSITION integer-31}...]...

E.18.4 Syntax Rules
(1) The order of appearance of the clauses is immaterial.

(2) The RERUN and MULTIPLE FILE TAPE clauses are used for documentation purposes only. Both clauses
are obsolete elements in Standard COBOL are to be deleted from the next revision of the standard.

120

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (SAME)

E.19. SAME Clause
E.19.1 Function

The SAME clause specifies the memory area which is to be shared by different files.

E.19.2 General Format

RECORD

SAME SORT AREA FOR file-name-1 { file-name-2 }...
SORT-MERGE

E.19.3 Syntax Rules
(1) File-name-1 and file-name-2 must be specified in the FILE-CONTROL paragraph of the same program.
(2) More than one SAME clause may be included in the program, subject to the following restrictions:
a. A file-name must not appear in more than one SAME AREA clause.
b. A file-name must not appear in more than one SAME RECORD AREA clause.

(3) The files referenced in the SAME AREA or SAME RECORD AREA clause need not all have the same
organization or access.

(4) SORT and SORT-MERGE are equivalent.

(5) A file-name that represents a sort or merge file must not appear in the SAME clause unless the SORT,
SORT-MERGE, or RECORD phrase is used, i.e. it may not appear in a SAME AREA clause.

(6) filename-1 and filename-2 may not reference external file connectors.

E.19.4 General Rules

(1) The SAME AREA clause is for documentation purposes only. We recommend that you remove them or
make them comment lines.

(2) The SAME RECORD AREA clause specifies that two or more files referenced by file-name-1, file-name-2
are to use the same memory area for processing of the current logical record. All of these files may be in the open
mode at the same time. A logical record in the SAME RECORD AREA is considered as a logical record of each file
open in the output mode whose file-name appears in this SAME RECORD AREA clause and of the most recently
read file open in the input mode whose file-name appears an this SAME RECORD AREA clause. This is equivalent
to an implicit redefinition of the area, i.e., records are aligned on the left-most character position.

(3) Ifthe SAME SORT AREA or SAME SORT-MERGE AREA is used, at least one of the file-names must

represent a sort or merge file. The SAME SORT AREA and SAME SORT-MERGE AREA clause is for
documentation purposes only. We recommend that you remove them or make them comment lines.

121

Interactive COBOL Language Reference & Developer’s Guide - Part One

122

DATA DIVISION (Concepts)

V. DATA DIVISION

A. General Description

The Data Division describes the data that is to be processed by the object program. The Data Division is optional in
a COBOL source program.

B. Concepts

To make data as computer-independent as possible, the characteristics or properties of the data are described in
relation to a standard data format rather than an equipment-oriented format. This standard data format is oriented to
general data processing applications and uses the decimal system to represent numbers (regardless of the radix used
by the computer) and all characters of the COBOL character set to describe nonnumeric data items.

B.1. Logical Record Concept

In order to separate the logical characteristics of data from the physical characteristics of the data storage media,
separate clauses or phrases are used. The following paragraphs discuss the characteristics of files.

B.1.1 Physical Aspects of a File

The physical aspects of a file describe the data as it appears on the input or output media and includes the means by
which the file can be identified.

B.1.2 Conceptual Characteristics of a File

The conceptual characteristics of a file are the explicit definition of each logical entity within the file itself. In a
COBOL program, the input or output statements refer to one logical record.

A COBOL logical record is a group of related information, uniquely identifiable, and treated as a unit,

In this document, references to records mean references to logical records.

The concept of a logical record is not restricted to file data but is carried over into the definition or working storage.
Thus, working storage is grouped into logical records and defined by a series of record description entries.

B.1.3 Record Concepts

The record description consists of a set of data description entries which describe the characteristics of a particular
record. Each data description entry consists of a level-number followed by a data-name, if required, followed by a
series of independent clauses, as required.

B.2. Concept of Levels

A level concept is inherent in the structure of a logical record. This concept arises from the need to specify
subdivision of a record for the purpose of data reference. Once a subdivision has been specified, it may be further
subdivided to permit more detailed data referral.

The most basic subdivisions of a record, that is, those not further subdivided, are called elementary items;

consequently, a record is said to consist of a sequence of elementary items, or the record itself may be an elementary
item.

123

Interactive COBOL Language Reference & Developer’s Guide - Part One

In order to refer to a set of elementary items, the elementary items ate combined into groups. Each group consists of
a named sequence of one or more elementary items. Groups, in turn, may be combined into groups of two or more
groups, etc. Thus, an elementary item may belong to more than one group.

B.2.1 Level-Numbers

A system of level-numbers shows the organization of elementary items and group items. Since records are the most
inclusive data items, level-numbers for records start at 01. Less inclusive data items are assigned higher (not
necessarily successive) level-numbers not greater in value than 49. There are special level-numbers, 66, 77, and 88,
which are exceptions to this rule (see below). Separate entries are written in the source program for each
level-number used.

A group includes all group and elementary items following it until a level-number less than or equal to the
level-number of that group is encountered. All items which are immediately subordinate to a given group item must
be described using identical level-numbers greater than the level-number used to describe that group item.

Three types of entries exist for which there is no true concept of level. These are:

(1) Entries that specify elementary items or groups introduced by a RENAMES clause. Entries describing items
by means of RENAMES clauses for the purpose of re-grouping data items have been assigned the special
level-number 66.

(2) Entries that specify noncontiguous working storage and linkage data items. Entries that specify
noncontiguous data items, which are not subdivisions of other items, and are not, themselves, subdivided, have been
assigned the special level-number 77.

(3) Entries that specify condition-names. Entries that specify condition-names, to be associated with particular
values of a conditional variable, have been assigned the special level-number 88.
B.3. Concept of Class and Category of Data
Every elementary data item, every literal, and every identifier has a class and a category. The class and category of a
data item are defined by its picture character-string, by the BLANK WHEN ZERO clause, or by its usage. The class
and category of an identifier are the class and category of the unique data item referenced by that identifier, as
defined in the section on identifiers on page 133. The class and category of a literal are defined in the section on
literals beginning on page 47. The following table depicts the relationship of the class and categories of data items.

The class and category of a group item is alphanumeric.

(ISQL) The class and category of an item with usage CHARACTER is alphanumeric; and the class and category of
an item with usage INTEGER, SMALLINT, or NUMERIC is numeric.

124

DATA DIVISION - Concepts (Character Representation)

LEVEL OF ITEM CLASS CATEGORY
Elementary Alphabetic Alphabetic
Numeric Numeric
Alphanumeric Numeric edited
" Alphanumeric edited
" Alphanumeric
Index Index
Date-Time** Date**
" Time**
" Timestamp**
Interval*x* Year-to-Month**
" Day-to-Time**
Indicator** Indicator**
Nonelementary Alphanumeric Alphanumeric
(group)

** ISQL only

** ISQL only

TABLE 2. Relationship of the Class and Categories of Data Items

B.4. Selection of Character Representation and Radix

The value of a numeric item may be represented in either binary or decimal form depending on the equipment. In
addition there are several ways of expressing decimal. Since these representations are actually combinations of bits,
they are commonly called binary-coded decimal forms. The selection of radix is generally dependent upon the
arithmetic capability of the computer. If more than one arithmetic radix is provided, the selection is dependent upon
the specification of the USAGE clause.

The size of an elementary data item or a group item is the number of characters in standard data format of the item.
Synchronization and usage may cause a difference between this size and that required for internal representation.
B.5. Algebraic Signs

Algebraic signs fall into two categories: operational signs, which are associated with signed numeric data items and
signed numeric literals to indicate their algebraic properties; and editing signs, which appear, for example on edited
reports to identify the sign of the item.

The SIGN clause permits the programmer to state explicitly the location of the operational sign. This clause is
optional; if it is not used, operational signs will be represented as defined by ICOBOL. See The USAGE clause,
pages 195, 198, 233.

Editing signs are inserted into a data item through the use of the sign control symbols of the PICTURE clause.

B.6. Standard Alignment Rules

The standard rules for positioning data within an elementary item depend on the category of the receiving item.
These rules are:

(1) If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved to the receiving digit positions with zero fill or
truncation on either end as required.

b. When an assumed decimal point is not explicitly specified, the data item is treated as if it has an assumed
decimal point immediately following its right-most digit and is aligned as in paragraph 1la.

(2) If the receiving data item is a numeric edited data item, the data moved to the edited data item is aligned by

decimal point with zero fill or truncation at either end as required within the receiving character positions of the data
item, except where editing requirements cause replacement of the leading zeros.

125

Interactive COBOL Language Reference & Developer’s Guide - Part One

(3) Ifthe receiving data item is alphanumeric (other than a numeric edited data item), alphanumeric edited, or
alphabetic, the sending data is moved to the receiving character positions and aligned at the left-most character
position in the data item with space fill or truncation to the right, as required.

If the JUSTIFIED clause is specified for the receiving item, these standard rules are modified.

(4) (ISQL) If the receiving data item is an interval, the data is aligned by the fields that compose the interval
with re-computation of high-order fields or truncation of low order fields as necessary. With regard to fractional
seconds, the seconds and fractional seconds are treated as a standard numeric data item with regard to alignment.
For example, moving INTERVAL “48:12:13.1234" HOUR TO SECOND interval to INTERVAL DAY TO
MINUTE will result in the value INTERVAL “2 0:12" DAY TO MINUTE, where the high-order is re-computed and
the low-order is truncated.

B.7. Item Alignment for Increased Object-Code Efficiency

Some computer memories are organized in such a way that there are natural addressing boundaries in the computer
memory (e.g., word boundaries, half-word boundaries, byte boundaries). The way in which data is stored is
determined by the object program, and need not respect these natural boundaries.

However, certain uses of data (e.g., in arithmetic operations or in subscripting) may be facilitated if the data is stored
so as to be aligned on these natural boundaries. Specifically, additional machine operations in the object program
may be required for the accessing and storage of data if portions of two or more data items appear between adjacent
natural boundaries, or if certain natural boundaries bifurcate a single data item.

Data items which are aligned on these natural boundaries in such a way as to avoid such additional machine
operations are defined to be synchronized.

Synchronization can be accomplished in two ways:
(1) By use of the SYNCHRONIZED clause.

(2) By recognizing the appropriate natural boundaries and organizing the data suitably without the use of the
SYNCHRONIZED clause.

ICOBOL treats the SYNCHRONIZED clause as documentation. However, it aligns each 77 and 01 level item on an
even byte address. (This default alignment can be altered with the -B compiler switch to select 1, 2, or 4 byte
alignment.)

B.8. Table Handling

Tables of data are common components of business data processing problems. Although the repeating items that
make up a table could be otherwise described by a series of separate data description entries all having the same
level-number and all subordinate to the same group item, there are two reasons why this approach is not satisfactory.
First, from a documentation standpoint, the underlying homogeneity of the items would not be readily apparent; and
second, the problem of making available an individual element of such a table would be severe when there is a
decision as to which element is to be made available at object time.

Tables of data items are defined in COBOL by including the OCCURS clause in their data description entries. This
clause specifies that the item is to be repeated as many times as stated. The item is considered to be a table element
and its name and description apply to each repetition or occurrence. Since each occurrence of a table element does
not have assigned to it a unique data-name, reference to a desired occurrence may be made only by specifying the
data-name of the table element together with the occurrence number of the desired table element. The occurrence
number is known as a subscript.

The number of occurrences of a table element may be specified to be fixed or variable.

126

DATA DIVISION - Concepts (Table Handling)
(ISQL) An SQL table is very similar to a simple two-dimensional data table in COBOL. It can be defined quite
simply as one or more columns and zero or more rows with each row containing one elementary value for each
column.

B.8.1 Table Definition

To define a one-dimensional table, the programmer uses an OCCURS clause as part of the data description of the
table element, but the OCCURS clause must not appear in the description of group items which contain the table
element. The following example shows a one-dimensional table defined by the item TABLE-ELEMENT.

01 TABLE-1.
02 TABLE-ELEMENT OCCURS 20 TIMES.
03 DOG...
03 FOX...

EXAMPLE 7. Definition for a one-dimensional table

In the next example, TABLE-ELEMENT defines a one-dimensional table, but DOG does not since there is an
OCCURS clause in the description of the group item (TABLE-ELEMENT) which contains DOG.

02 TABLE-1.
03 TABLE-ELEMENT OCCURS 20 TIMES.
04 DOG OCCURS 5 TIMES.
05 EASY...
05 FOX...

EXAMPLE 8. Another one-dimensional table
In both of the two previous examples, the complete set of occurrences of TABLE-ELEMENT has been assigned the
name TABLE-1. However, it is not necessary to give a group name to the table unless it is desired to refer to the

complete table as a group item.

None of the three one-dimensional tables which appear in the following two examples has a group name.

Example 9A:

01 ABLE.
02 BAKER...
02 CHARLIE OCCURS 20 TIMES...
02 DOG...

Example 9B:

01 ABLE.
02 BAKER OCCURS 20 TIMES...
02 CHARLIE...
02 DOG OCCURS 5 TIMES...

EXAMPLE 9. Three one-dimensional tables without group names

Defining a one-dimensional table within each occurrence of an element of another one-dimensional table gives rise
to a two-dimensional table. To define a two-dimensional table, then, an OCCURS clause must appear in the data
description of the element of the table, and in the description of only one group item which contains that table
element. Thus, in the next example, DOG is an element of a two-dimensional table; it occurs 5 times within each
element of the item BAKER which itself occurs 20 times. BAKER is an element of a one dimensional table.

127

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 ABLE.
02 BAKER OCCURS 20 TIMES...
03 CHARLIE...
03 DOG OCCURS 5 TIMES...

EXAMPLE 10. Definition for a two-dimensional table

In the general case, to define an n-dimensional table, the OCCURS clause should appear in the data description of
the element of the table and in the descriptions of (n - 1) group items which contain the element.

B.8.2 Initial Values of Tables
In the Working-Storage Section, initial values of elements within tables are specified in one of the following ways:

(1) The table may be described as a series of separate data description entries all subordinate to the same group
item, each of which specifies the value of an element, or part of an element, of the table. In defining the record and
its elements, any data description clause (USAGE, PICTURE, etc.) may be used to complete the definition, where
required. The hierarchical structure of the table is then shown by use of the REDEFINES entry and its associated
subordinate entries. The subordinate entries, following the REDEFINES entry, which are repeated due to OCCURS
clauses, must not contain VALUE clauses.

(2) All the dimensions of a table may be initialized by associating the VALUE clause with the description of the
entry defining the entire table. The lower level entries will show the hierarchical structure of the table; lower level
entries must not contain VALUE clauses.

(3) The value of selected table elements may be specified using VALUE clauses.

B.8.3 References to Table Items

Whenever the user references a table element or a condition-name associated with a table element, the reference
must indicate which occurrence of the element is intended. For access to a one-dimensional table the occurrence
number of the desired element provides complete information. For tables of more than one dimension, an
occurrence number must be supplied for each dimension of the table. In the previous example, then, a reference to
the fourth BAKER or the fourth CHARLIE would be complete, whereas a reference to the fourth DOG would not.
To reference DOG, which is an element of a two-dimensional table, the user must reference, for example, the fourth
DOG in the fifth BAKER.

01 ABLE.
02 BAKER OCCURS 20 TIMES...
03 CHARLIE...
03 DOG OCCURS 5 TIMES...

Invalid (DOG needs 2 subscripts):

DISPLAY BAKER (4) CHARLIE (4) DOG(4).

Valid:
DISPLAY BAKER (4) CHARLIE (4) DOG(5,4).

EXAMPLE 11. Referencing single- and multi-dimensional table elements

128

DATA DIVISION - Concepts (Table Handling)

B.8.4 Subscripting
Occurrence numbers are specified by appending one or more subscripts to the data-name.

The subscript can be represented either by an integer, a data-name which references an integer numeric elementary
item, or an index-name associated with the table. A data-name or index-name may be followed by either the operator
+ or the operator - and an integer, which is used as an increment or decrement, respectively. It is permissible to mix
integers, data-names, and index-names. In addition to these standard subscripting options, ICOBOL allows any
arithmetic expression which evaluates to a positive integer to be used as a subscript.

The subscripts, enclosed in parentheses, are written immediately following any qualification for the name of the table
element. The number of subscripts in such a reference must equal the number of dimensions in the table whose
element is being referenced. That is, there must be a subscript for each OCCURS clause in the hierarchy containing
the data-name including the data-name itself.

When more than one subscript is required, they are written in the order of successively less inclusive dimensions of
the data organization. If a multi-dimensional table is thought of as a series of nested tables and the most inclusive or
outermost table in the nest is considered to be the major table with the innermost or least inclusive table being the
minor table, the subscripts are written from left to right in the order major, intermediate, and minor.

A reference to an item must not be subscripted if the item is not a table element or an item or condition-name within
a table element.

The lowest permissible occurrence number is 1. The highest permissible occurrence number in any particular case is
the maximum number of occurrences of the item as specified in the OCCURS clause.

B.8.4.1 Subscripting Using Integers or Data-Names

When an integer or data-name is used to represent a subscript, it may be used to reference items within different
tables. These tables need not have elements of the same size. The same integer or data-name may appear as the only
subscript with one item and as one of two or more subscripts with another item.

B.8.4.2 Subscripting Using Index-Names

In order to facilitate such operations as table searching and manipulating specific items, a technique called indexing
is available. To use this technique, the programmer assigns one or more index-names to an item whose data
description entry contains an OCCURS clause. An index associated with an index-name acts as a subscript, and its
value corresponds to an occurrence number for the item to which the index-name is associated.

The INDEXED BY phrase, by which the index-name is identified and associated with its table, is an optional part of
the OCCURS clause. There is no separate entry to describe the index associated with index-name since its definition
is completely hardware oriented. At object time the contents of the index correspond to an occurrence number for
that specific dimension of the table with which the index is associated. The initial value of an index at object time is
undefined, and the index must be initialized before use. The initial value of an index is assigned with the PERFORM
statement with the VARYING phrase, the SEARCH statement with the ALL phrase, or the SET statement.

The use of an arithmetic-expression or data-name as a subscript referencing a table element or an item within a table
element does not cause the alteration of any index associated with that table.

An index-name can be used to reference only the table to which it is associated via the INDEXED BY phrase.

Relative indexing is an additional option for making references to a table element or to an item within a table
element. When the name of a table element is followed by a subscript of the form (index-name + or - integer), the
occurrence number required to complete the reference is the same as if index-name were set up or down by integer
via the SET statement before the reference. The use of relative indexing does not cause the object program to alter
the value of the index.

129

Interactive COBOL Language Reference & Developer’s Guide - Part One

The value of an index can be made accessible to an object program by storing the value in an index data item. Index
data items are described in the program by a data description entry containing a USAGE IS INDEX clause. The
index value is moved to the index data item by the execution of a SET statement.

The following example illustrates the subscripts needed for various elements in an example table.

EXAMPLE 12. Referencing elements in 1-, 2-, and 3-dimensional tables

Consider the following data definition:
02 XCOUNTER.. .

02 BAKER OCCURS 20 TIMES INDEXED BY BAKER-INDEX...
03 CHARLIE...
03 DOG OCCURS 5 TIMES...
04 EASY
88 MAX VALUE IS...
04 FOX...
05 GEORGE OCCURS 10 TIMES...
06 HARRY...
06 JIM...

The number of subscripts required to reference various table
elements is as follows, with an example for each:

1 subscript: BAKER (20)
CHARLIE (12)

2 subscripts: DOG(20,5)
EASY (5,5)
MAX (11, 3)
FOX (5,1)

3 subscripts: GEORGE (20,5,10)
HARRY (5,5,5)
JIM(12,1,1)

B.9. Uniqueness of Reference

The purpose of every user-defined name in a COBOL program is to name a resource that is to be used in solving a
data processing problem. (See User-defined words, on page 44.) In order to use a resource, a statement in a
COBOL program must contain a reference that uniquely identifies the resource. In order to ensure uniqueness of
reference, a user-defined name may be qualified, subscripted , or reference modified, as described in the following
paragraphs.

When the same name has been assigned in separate programs to two or more occurrences of a resource of a given
type, and when qualification by itself does not allow the reference in one of those programs to differentiate between
the two identically named resources, then certain conventions which limit the scope of names apply. These
conventions ensure that the resource identified is that described in the program containing the reference.

Unless otherwise specified by the rules for a statement, any subscripting and reference modification are evaluated
only once as the first operation of the execution of that statement.

B.9.1 Qualification

Every user-defined name explicitly referenced in a COBOL source program must be uniquely referenced because
either:

(1) No other name has the identical spelling and hyphenation.

(2) It is unique within the context of a REDEFINES clause.

130

DATA DIVISION - Concepts (Uniqueness of Reference)

(3) The name exists within a hierarchy of names such that reference to the name can be made unique by
mentioning one or more of the higher level names in the hierarchy.

These higher level names are called qualifiers and this process that specifies uniqueness is called qualification.
Identical user-defined names may appear in a source program; however, uniqueness must then be established through
qualification for each user-defined name explicitly referenced, except in the case of redefinition. All available
qualifiers need not be specified so long as uniqueness is established. The LINAGE-COUNTER identifier requires
qualification to provide uniqueness of reference whenever a source program would result in more than one
occurrence of the identifier.

Regardless of the above, the same data-name must not be used as the name of an external record and as the name of
any other external data item described in any program contained within or containing the program which describes
that external data record.

The general formats for qualification are:

Format 1:

IN il
of [file-name

} file-name

IN
~c (data-name-2 ...
data-name-1 {{ OF } ata-name }
condition-name

Lo
Format 2:

IN
paragraph-name { OF } section-name

Format 3:

LINAGE-COUNTER {Q_F } file-name

The rules for qualification are as follows:

(1) For each non-unique user-defined name that is explicitly referenced, uniqueness must be established through
a sequence of qualifiers which precludes any ambiguity of reference.

(2) A name can be qualified even though it does not need qualification; if there is more than one combination of
qualifiers that ensures uniqueness, then any such set can be used.

(3) IN and OF are logically equivalent.

(4) In Format 1, each qualifier must be the name associated with a level indicator, the name of a group item to
which the item being qualified is subordinate, or the name of the conditional variable with which the condition-name
being qualified is associated. Qualifiers are specified in the order of successively more inclusive levels in the
hierarchy.

(5) In Format 1, data-name-1 or data-name-2 may be a record-name.

(6) If explicitly referenced, a paragraph-name must not be duplicated within a section. When a
paragraph-name is qualified by a section-name, the word SECTION must not appear. A paragraph-name need not

be qualified when referred to from within the same section.

(7) LINAGE-COUNTER must be qualified each time it is referenced if more than one file description entry
containing a LINAGE clause has been specified in the source program.

131

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.9.2 Subscripting
B.9.2.1 Function

Subscripts are used when reference is made to an individual element within a table of like elements that have not
been assigned individual data-names.

B.9.2.2 General Format

integer-1

{ data-name-1 } ({data-name—2 } {+ } integer-2 | {...)

condition-name index-name
arithmetic-expression

B.9.2.3 Syntax Rules

(1) The data description entry containing data-name-1 or the data-name associated with condition-name must
contain an OCCURS clause or must be subordinate to a data description entry which contains an OCCURS clause.

(2) Except as defined in syntax rule 4, when a reference is made to a table element, the number of subscripts
must equal the number of OCCURS clauses in the description of the table element being referenced. When more
than one subscript is required, the subscripts are written in the order of successively less inclusive dimensions of the
table.

(3) Index-name must correspond to a data description entry in the hierarchy of the table being referenced which
contains an INDEXED BY phrase specifying that index-name.

(4) Each table element reference must be subscripted except when such reference appears:
a) in a REDEFINES clause.
b) as subject of a SEARCH statement,
¢) in the KEY IS phrase of an OCCURS clause.

(5) Data-name-2 may be qualified and must be a numeric elementary item representing an integer.

(6) Integer-1 may be signed and, if signed, it must be positive.

(7) Arithmetic-expression is any arithmetic expression that evaluates to a positive integer not more than the
number of occurrences specified in the OCCURS clause(s) associated with the table element being referenced.
(Note that all other forms are special cases of the arithmetic expression and are presented only for clarity.)

B.9.2.4 General Rules

(1) The value of the subscript must be a positive integer. The lowest possible occurrence number represented
by a subscript is 1. The first element of any given dimension of a table is referenced by an occurrence number of 1.
Each successive element within that dimension of the table is referenced by occurrence numbers of 2, 3, The
highest permissible occurrence number for any given dimension of the table is the maximum number of occurrences

of the item as specified in the associated OCCURS clause.

(2) The value of the index referenced by index-name corresponds to the occurrence number of an element in the
associated table.

132

DATA DIVISION - Concepts (Uniqueness of Reference)
(3) The value of the index referenced by index-name must be initialized before it is used as a subscript. An
index may be given an initial value by either a PERFORM statement with the VARYING phrase, or a SET
statement. An index may be modified only by the PERFORM and SET statements.

(4) If integer-2 is specified, the value of the subscript is determined by incrementing by the value of integer-2
(when the operator + is used) or by decrementing by the value of integer-2 (when the operator - is used) either the
occurrence number represented by the value of the index referenced by index-name or the value of the data item
referenced by data-name-2.

(5) If arithmetic-expression is specified, the value of the subscript is determined by evaluating the expression
and using this result to specify the occurrence number. This value must evaluate to a positive integer between 1 and
the specified maximum for the associated OCCURS clause.

B.9.3 Identifiers
B.9.3.1 Identifier

An identifier is a sequence of character-strings and separators used to reference a data item uniquely.

B.9.3.1.1 General format

Format 1 (function-identifier):

function-identifier-1

Format 2 (qualified-data-name-with-subscripts):

qualified-data-name-with-subscripts-1

Format 3 (reference-modification):

identifier-1 reference-modifier-1

Format 4 (predefined-address):

NULL

Format 5 (address-identifier):

ADDRESS OF identifier-1

Format 6 (qualified-linage-counter):

IN
LINAGE-COUNTER {Q_F } filename-1

Format 7 (sqlstate-identifier):

SQLSTATE

133

Interactive COBOL Language Reference & Developer’s Guide - Part One

Format 8 (length-identifier):

LENGTH OF identifier-1

B.9.3.1.2 Syntax rules
All Formats
(1) Identifier is defined recursively: whenever the format for an identifier allows another identifier to be
specified, that other identifier may be any of the formats for an identifier, including the one being defined provided
the rules for each format are followed.
Format 1
(2) Function-identifier is defined on page 135.
Format 2
(3) Qualified-data-name-with-subscripts is defined on page 131, under Subscripting.
Format 3
(4) Reference-modification is defined on page 136.
Format 4
(5) Predefined-address is defined on page 137. This format is not available under VXCOBOL.
Format 5
(6) Address-identifier is defined on page 137, 138. This format is not available under VXCOBOL.
Format 6
(7) Qualified-linage-counter is defined on page 138.
Format 7
(8) (ISQL) Sqlstate-identifier is defined on page 139.

Format 8

(9) Length-identifier is defined on page 138.

B.9.3.1.3 General rules

(1) The order in which the various components of an identifier are applied is as follows, with the first to be
applied listed first:

a. a qualified-data-name-with-subscript; a function-identifier without arguments; a
qualified-linage-counter, a sqlstate-identifier or a predefined address are atomic identifiers

b. an address-identifier or length-identifier applies to an identifier on the right
c. afunction-identifier with arguments applies the function-name on the left to a list of arguments enclosed

134

DATA DIVISION - Concepts (Uniqueness of Reference)

in parentheses on the right

d. a reference-modifier applies to the identifier on the left.

B.9.3.2 Function-identifier

A function-identifier references the unique data item that results from the evaluation of a function.

B.9.3.2.1 General format

FUNCTION { intrinsic-function-name-1} [([argument-1]...)]

B.9.3.2.2 Syntax rules
(1) A function-identifier shall not be specified as a receiving operand.
(2) The word FUNCTION is required.

(3) Ifa function's definition permits arguments and a left parenthesis immediately follows
intrinsic-function-name-1, the left parenthesis is always treated as the left parenthesis of that function's arguments.

NOTE — For a function that may be referenced either with or without
arguments, such as the RANDOM function, careful coding is necessary to
ensure correct interpretation.

For example, in the following

FUNCTION MAX (FUNCTION RANDOM (A) B)

'A' is treated as an argument to the RANDOM function. If 'A' is instead
meant to be a second argument to the MAX function, different coding is
necessary - either:

FUNCTION MAX ((FUNCTION RANDOM) (A) B)
or

FUNCTION MAX (FUNCTION RANDOM () A B)
or

FUNCTION MAX (FUNCTION RANDOM A B) .

EXAMPLE 13. Referencing an intrinsic function with and without arguments

(4) Argument-1 shall be an identifier, a literal, or an arithmetic expression. Specific rules governing the
number, class, and category of argument-1 are given for intrinsic functions in the definition of that intrinsic function.

(5) A numeric function shall not be specified where an integer operand is required, even though a particular
reference of the numeric function might yield an integer value.

(6) An integer function other than the integer form of the ABS function shall not be specified where an
unsigned integer is required.

B.9.3.2.3 General rules

(1) A function-identifier references a temporary data item whose value is determined when the function is
referenced at runtime.

If intrinsic-function-name-1 is specified, the temporary data item is an elementary data item whose description and
category are specified by the definition of that intrinsic function. The Intrinsic Functions section begins on page 613.

135

Interactive COBOL Language Reference & Developer’s Guide - Part One

(2) At the time reference is made to a function, its arguments are evaluated individually in the order specified in
the list of arguments, from left to right. An argument being evaluated may itself be a function-identifier or may be an
expression containing function-identifiers. There is no restriction preventing the function referenced in evaluating an
argument from being the same function as that for which the argument is specified. Additional rules for intrinsic
functions are given in the definitions for each intrinsic function, beginning on page 613.

(3) Ifarequired argument is omitted, the ICOBOL compiler gives an error. There is no runtime error for a
missing argument.

(4) Evaluation of the function-identifier proceeds as follows:
a. Each argument-1 is evaluated at the beginning of the evaluation of the function-identifier. If an
exception condition exists, no function is activated. If an exception condition does not exist, the values of

argument-1 are made available to the activated function at the time control is transferred to that function.

b. he function specified by the function-identifier is made available for execution and control is transferred
to the activated function in a manner consistent with the call convention for the function.

c. After control is returned from the activated function, any exception condition (e.g. SIZE ERROR) is
propagated from the function and execution continues.
B.9.3.3 Reference-modifier

Reference modification defines a unique data item by specifying an identifier, a leftmost position, and a length.

B.9.3.3.1 General format

identifier-1 (leftmost-position : [length])

B.9.3.3.2 Syntax rules

(1) Identifier-1 shall reference a data item that is an alphanumeric, elementary item, a group item, or a numeric
item with USAGE DISPLAY..

(2) If identifier-1 is a function-identifier, it shall reference an alphanumeric function.

(3) Identifier-1 shall not be a reference-modification format identifier.

(4) Leftmost-position and length shall be arithmetic expressions.

(5) Unless otherwise specified, reference modification is allowed anywhere an identifier referencing a data item
of class alphanumeric is permitted.
B.9.3.3.3 General rules

(1) Leftmost-position shall represent an alphanumeric position.

(2) If the data item referenced by identifier-1 is explicitly or implicitly described as usage DISPLAY and its
category is other than alphanumeric, it shall be operated upon for purposes of reference modification as if it were
redefined as a data item of class and category alphanumeric of the same size as the data item referenced by

identifier-1.

(3) Each position of the data item referenced by identifier-1 is assigned an ordinal number incrementing by one
from the leftmost position to the rightmost position. The leftmost position is assigned the ordinal number one. If the

136

DATA DIVISION - Concepts (Uniqueness of Reference)

data description entry for identifier-1 contains a SIGN IS SEPARATE clause, the sign position is assigned an ordinal
number within that data item.

(4) Reference modification creates a unique data item that is a subset of the data item referenced by identifier-1.
This unique data item is defined as follows:

a. Positions used in evaluation are character positions.

b. The evaluation of leftmost-position specifies the ordinal position of the leftmost character of the unique
data item in relation to the leftmost character of the data item referenced by identifier-1. Evaluation of
leftmost-position shall result in a positive nonzero integer less than or equal to the number of positions in the data
item referenced by identifier-1.

c. The evaluation of length specifies the number of character positions of the data item to be used in the
operation. The evaluation of length shall result in a positive nonzero integer. The sum of leftmost-position and length
minus the value one shall be less than or equal to the number of positions in the data item referenced by identifier-1.
If length is not specified, the unique data item extends from and includes the position identified by lefimost-position
up to and including the rightmost position of the data item referenced by identifier-1.

If the evaluation of leftmost-position or length results in a non-integer value or a value that references a position
outside the area of identifier-1, the ICOBOL runtime system will halt the program executing with an appropriate
error.

(5) The unique data item is considered to be an elementary data item without the JUSTIFIED clause. The
unique data item has the same class, category, and usage as that defined for identifier-1, except that the categories
numeric, numeric-edited, and alphanumeric-edited are considered class and category alphanumeric.

B.9.3.4 Predefined-address

NULL is a predefined address of class pointer.

B.9.3.4.1 General Format

NULL

B.9.3.4.2 Syntax Rules

(1) This format may be used only as a sending operand in a SET statement, in the VALUE clause of an item
with usage POINTER, or in a data-pointer relation-condition.

B.9.3.4.3 General Rules

(1) The predefined address NULL references a data item of category data-pointer that contains the null address;
i.e., it does not represent the address of any data item.

B.9.3.5 Data-address-identifier

A data-address-identifier references the unique data item that contains the address of a data item.

B.9.3.5.1 General Format

ADDRESS OF identifier-1

137

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.9.3.5.2 Syntax Rules

(1) Identifier-1 shall reference a data item defined in the file section, working-storage section, or linkage
section.

(2) This identifier format shall not be specified as a receiving operand in a SET statement or in a data-pointer
relation condition.

B.9.3.5.3 General Rules

(1) Data-address-identifier creates a unique data item of class pointer and category data-pointer that contains
the address of identifier-1.

B.9.3.6 Length-identifier

A length-identifier references the unique data item that contains the length of a data item.

B.9.3.6.1 General Format

LENGTH OF identifier-1

B.9.3.6.2 Syntax Rules

(1) Identifier-1 shall reference a data item defined in the file section, working-storage section, or linkage
section.

(2) This identifier format shall not be specified as a receiving operand in a SET statement or in a data-pointer
relation condition.

B.9.3.6.3 General Rules

(1) LENGTH OF references a temporary unsigned integer data item of class and category numeric whose size is
equal to the number of character positions in identifier-1.

B.9.3.7 LINAGE-COUNTER

The LINAGE-COUNTER identifier is generated by the presence of a LINAGE clause in a file description entry.

B.9.3.7.1 General format

IN
LINAGE-COUNTER {QE } filename-1

B.9.3.7.2 Syntax rules

(1) LINAGE-COUNTER shall only be referenced in procedure division statements.

138

DATA DIVISION - Concepts (Uniqueness of Reference)

(2) The LINAGE-COUNTER identifier shall not be referenced as a receiving operand or as an operand in the
USING list of a CALL or CALL PROGRAM statement..

(3) Qualification requirements for LINAGE-COUNTER are defined on page 130, under Qualification.

B.9.3.7.3 General rules

(1) LINAGE-COUNTER references a temporary unsigned integer data item of class and category numeric
whose size is equal to the page size specified in the LINAGE clause.

(2) The semantics of the LINAGE-COUNTER identifier is described on page 159, under the LINAGE clause
General Rules.
B.9.3.8 SQLSTATE (/ISQL)
The SQLSTATE identifier is generated by the presence of an ISQL feature-set. Conceptually it is similar to a
FILE STATUS item.
B.9.3.8.1 General format

SQLSTATE

B.9.3.8.2 Syntax rules
(1) SQLSTATE shall only be referenced in procedure division statements.

(2) The SQLSTATE identifier shall not be referenced as a receiving operand or as an operand in the USING list
of a CALL or CALL PROGRAM statement.

(3) The SQLSTATE identifier shall not be subscripted, but it may be reference modified.

B.9.3.8.3 General rules

(1) SQLSTATE references a predefined data item of class and category alphanumeric whose size is exactly five
characters and whose scope is the run unit.

(2) The value of the SQLSTATE data item is initialized to “00000" when the run unit is initialized.

(3) The value of the SQLSTATE data item is modified by the execution of the following ISQL statements:
CONNECT, DISCONNECT, EXECUTE, FETCH, PREPARE, and SET CONNECTION.

(4) The value of the SQLSTATE data item is defined to be composed of a two-character class field followed by
a three-character subclass field. Some common class field values are:

00 - Successful completion
01 - Warning

02 - Data not found

07 - Dynamic SQL error
08 - Connection error

0A - Feature not supported
21 - Cardinality violation
22 - Data exception

23 - Constraint violation

139

Interactive COBOL Language Reference & Developer’s Guide - Part One

24 - Invalid cursor

25 - Invalid transaction state
26 - Invalid SQL identifier
40 - Rollback

42 - Syntax or access error
44 - Check option violation
HY -

IC - Generated by ICOBOL ISQL driver
IM - Generated by ODBC Driver Manager

(5) Some common values and their meaning;:
00000 “Success”
From runtime/ISQL:

01000 “General Warning: The statement identifier does not exist"

01503 “The number of result columns is larger than the number of INTO items
02000 “No data was affected by the operation"

07001 “More data is needed"

07001 “The number of USING items is not the same as the number of parameter markers"
07004 “The USING clause is required for dynamic parameters"

07006 “Restricted data type attribute violation"

07500 “Numeric parameter conversion error”

07501 “Date parameter conversion error"

07502 “Time parameter conversion error"

07503 “Timestamp parameter conversion error”

07504 “Interval parameter conversion error"

08001 "Client unable to establish connection”

08002 "Connection name in use"

08003 "Comnnection does not exist"

08004 "Server rejected connection"

08S01 "Communication link failure"

22002 “Indicator variable required but not supplied"
22003 “Numeric value out of range"

22007 “Invalid datetime format"

22015 “Interval field overflow"

22018 “Invalid character value for cast specification"
24000 “Invalid cursor state"

26501 “The statement identifier does not exist"
28000 "Invalid authorization"

28001 “Authorization failure: ICSQL License could not be opened"
HYO000 "General error"

HYO001 "Memory allocation error"

HY004 “Invalid SQL type"

HYO009 "Invalid use of null pointer"

HYO010 "Invalud sequence error"

HYO013 "Memory management error"

HY090 "Invalid string or buffer length"

IC001 “General error: SQL is not loaded"

IC002 “Unable to load ODBC"

IC003 “Unable to load ODBC symbols"

IC004 “The ISQL subsystem is not properly initialized”
IC005 “Get Diagnostics exception number is out of range"
IC006 “Unable to allocate ODBC environment”

IC007 “Memory allocation error”

140

DATA DIVISION - Concepts (Uniqueness of Reference)

1C008 “Internal error"
IC009 “Unexpected Error from ODBC"
IC010 “Invalid Handle error from ODBC"

From driver/driver manager:

01001 “Cursor operation conflict”

01002 “Disconnect error”

01003 “NULL value eliminated in set function”
01004 “String data right truncated”

07002 “COUNT field incorrect”

08001 "Client unable to establish connection"
08002 "Connection name in use"

08003 "Connection does not exist"

08004 "Server rejected connection”

08S01 "Communication link failure"

23000 “Integrity constraint violation”

24000 "Invalid cursor"

25000 “Invalid transaction state”

28000 "Invalid authorization"

42000 “Syntax error or access violation”
HYO000 "General error"

HYO001 "Memory allocation error"
HYO009 "Invalid use of null pointer"
HYO010 "Invalud sequence error"

HYO013 "Memory management error"
HY090 "Invalid string or buffer length"

HYCO00 "Optional feature not implemented"

HYTO00 "Timeout expired before the connection was made"

HYTO1 "Connection timeout expired before the data source responded"
IMO001 "Driver does not support this function"

IM002 “Database not found”

IMO003 "Specified driver could not be connected to"

IM004 "Allocate on Environment failed"

IMO005 "Allocate on DBC failed"

IM009 "Unable to load translation DLL"

IMO10 "Data source name too long"

These are only some messages. The Driver Manager and/or Driver may have many more. Use the GET
DIAGNOSTICS statement to retrieve the text of the messages.

141

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.9.4. Condition-Name

A condition-name identifies a specific value, set of values, or range of values, within a complete set of values that a
data item may assume. The data item itself is called a conditional variable.

Condition-names may be defined in the data division or in the SPECIAL-NAMES paragraph within the environment
division where a condition-name shall be assigned to the on or off status, or both of implementor-defined switches.

A condition-name is used in conditions as an abbreviation for the relation condition; this relation condition posits
that the associated conditional variable is equal to one of the set of values to which that condition-name is assigned.
A condition-name is also used in a SET statement, indicating either that a value is moved to the associated
conditional variable that make the condition-name either ‘true’ or ‘false’, depending on the format of the SET
statement, or that an implementor-defined switch is set to ‘on’ or ‘off” status.

If explicitly referenced, a condition-name must be unique or be made unique through qualification and/or
subscripting except when the scope of the names conventions by themselves ensure uniqueness of reference.

If qualification is used to make a condition-name unique, the associated conditional variable may be used as the first
qualifier. If qualification is used, the hierarchy of names associated with the conditional variable itself must be used

to make the condition-name unique.

If references to a conditional variable require subscripting, reference to any of its condition-names also requires the
same combination of subscripting.

The format and restrictions on the combined use of qualification and subscripting of condition-names is exactly that
of a Format 2 “identifier' . See page 131 under Subscripting.

In the general format of the chapters that follow, ‘condition-name' refers to a condition-name qualified or
subscripted, as necessary.

142

DATA DIVISION (Organization)

C. Organization

The Data Division is subdivided into sections. These are the File, Working-Storage, Linkage, and Screen sections.
With the VXCOBOL dialect, there is an additional section: Virtual-Storage.

C.1.1 Function

The File Section defines the structure of data files. Each file is defined by a file description entry and one or more
record description entries, or by a file description entry and one or more report description entries. Record
description entries are written immediately following the file description entry.

The Virtual-Storage Section (VXCOBOL) and the Working-Storage Section describe records and subordinate data
items which are not part of external data files but are developed and processed internally. Also described in these
sections are data items whose values are assigned in the source program and whose values do not change during the
execution of the object program.

The Linkage Section appears in the called program and describes data items that are to be referred to by the calling
program and the called program. Its structure is the same as the Working-Storage Section.

The Screen Section describes various input and output structures called screens that can be used by the ACCEPT and
DISPLAY verbs to present and/or get entire screen of data including literal fields.

C.1.2 General Format

The following gives the general format of the sections in the Data Division, and defines the order of their
presentation in the source program. The VIRTUAL-STORAGE section is available only with the VXCOBOL

dialect.

DATA DIVISION.

[FILE SECTION.

file-description-entry { record-description-entry }...
sort-merge-file-description-entry { record-description-entry }... |~]

[WORKING-STORAGE SECTION.
77-level-description-entry

| record-description-entry | "]

[_VIRTUAL-STORAGE SECTION. (VXCOBOL only)
77-level-description-entry

| record-description-entry | "]

[LINKAGE SECTION.

[77-level-description-entry
| record-description-entry | "]

[SCREEN SECTION.
[screen-description-entry]...]

143

Interactive COBOL Language Reference & Developer’s Guide - Part One
D. FILE SECTION

The File Section is located in the Data Division of a source program. The File Section defines the structure of data
files and sort files and merge files. Each data file is defined by a file description entry and one or more record
description entries. Each sort or merge file is defined by a sort-merge file description entry and one or more record
description entries. Record description entries are written immediately following the file description entry.

The general format of the File Section is shown below.
FILE SECTION.

file-description-entry {record-description-entry}...
sort-merge-file-description-entry {record-description-entry}... |

D.1. File Description Entry/Sort-Merge Description Entry

In a COBOL program the file description entry (FD entry) represents the highest level of organization in the File
Section. The File Section header is followed by a file description entry consisting of a level indicator (FD), a
file-name, and a series of independent clauses. The clauses of a file description entry (FD entry) specify a number of
attributes of the file. The entry itself is terminated by a period.

In a COBOL program the sort-merge file description entry (SD entry) represents the highest level of organization in
the File Section. The File Section header is followed by a sort-merge file description entry consisting of a level
indicator (SD), a file-name, and a series of independent clauses. The clauses of a sort-merge file description entry
(SD entry) specify the size and the names of the data records associated with a sort file or a merge file. There are no
label procedures which the user can control, and the rules for blocking and internal storage are peculiar to the SORT
and MERGE statements. The entry itself is terminated by a period.

D.1.1 Function

The file description entry furnishes information concerning the physical structure, identification, and record-names
pertaining to a file.

The sort-merge file description entry furnishes information concerning the physical structure and record-names
pertaining to a sort or merge file.

144

DATA DIVISION - FILE SECTION (FD and SD entry)

D.1.2. General Format
Below is the general format with each phrase in alphabetical order since they are order independent.
Sequential File: (ANS/ 74 and ANSI 85)

FD file-name [IS EXTERNAL]

d [BLOCK CONTAINS integer [TO integer]{ Clms } |
ASCII
STANDARD-1
FIELD [IS
[CODE-SET IS NATIVE [{FIELDS [EAR]E] } identifier, ...]]

EBCDIC

alphabet-name

RECORD IS

RECORD IS STANDARD
d [LABEL |\ RecorDps ARE [| omTTED (!

identifier

literal } LINES

[[LINAGE |s{

identifier }]

[WITH FOOTING AT { literal

identifier
literal]

[LINES AT TOP {

identifier
literal [1]

[LINES AT BOTTOM {

CONTAINS integer CHARACTERS
IS VARYING IN SIZE [[EROM integer] [TO integer] CHARACTERS]

DEPENDING ON data-name
CONTAINS integer TO integer CHARACTERS

VARIABLE
[RECORDING MODE |s{ EIXED }].

145

Interactive COBOL Language Reference & Developer’s Guide - Part One

Sequential File: (VXCOBOL)
FD file-name [1S EXTERNAL]

]

RECORDS
CHARACTERS

d [BLOCK CONTAINS integer [TO integer] {
ASCII
STANDARD-1
EIELD [IS]
[CODE-SET[IS] NATIVE [{EIELD_S [ARE]

EBCDIC
alphabet-name

} identifier, ...]]

RECORD IS
d [DATA \ RECORDS ARE ({ data-name}...]

ASCII [integer]
} NATIVE [integer]

RECORD IS

d [LABEL {RE_C_QRD_S ARE STANDARD [integer] ¢]

EBCDIC [integer]
OMITTED

identifier

literal }LlNES
identifier
literal | |

[[LINAGE |s{

[WITH FOOTING AT {

identifier
literal]

[LINES AT TOP {

identifier
[LINES AT BOTTOM { literal } 1]

d [MULTIPLE I-O PROCEDURES]

4 [PADCHARACTERIS { entfier |

d [RECORD CONTAINS integer [TO integer] CHARACTERS]
[RECORDING MODE IS
EIXED
UNDEFINED [RECORD LENGTH IS identifier]
VARIABLE [RECORD LENGTH IS identifier]
DATA-SENSITIVE [DELIMITER IS literal] [RECORD LENGTH IS identifier]
DYNAMIC RECORD LENGTH IS identifier

[VALUE OF [OWNER IS identifier] [EXPIRATION DATE IS identifier]
[SEQUENCE NUMBER IS identifier] [GENERATION NUMBER IS identifier]
[ACCESSIBILITY IS identifier] [OFFSET IS identifier]

[VOLUME STATUS IS identifier] [USER VOLUME { Prrgn } identifier, ...]

Q. a oo

d [USER HEADER {LALQEB,_ESL ARE } identifier, ... |

d [USER TRAILER {LALQEBLESL ARE } identifier, ...]].

146

d

d

d

[=N (=N [o NNy aNyaN (=N

DATA DIVISION - FILE SECTION (FD and SD entry)

Relative File & Indexed File: (ANS/ 74 and ANSI 85)

FD file-name [IS EXTERNAL]

]

RECORDS
CHARACTERS

[BLOCK CONTAINS integer [TO integer]{

RECORD IS

RECORD IS STANDARD
[LABEL | RECORDS ARE OMITTED

CONTAINS integer CHARACTERS

IS VARYING IN SIZE [[EROM integer] [IO integer] CHARACTERS]

RECORD DEPENDING ON data-name

CONTAINS integer IO integer CHARACTERS

Relative File: (VXCOBOL)

ED file-name [1S EXTERNAL]

RECORD }]

[BLOCK CONTAINS integer[TO integer]{ CHARACTERS

RECORD IS
[DATA) RECORDS ARE { data-name }...]

RECORD IS STANDARD
[LABEL) RECORDS ARE [| OMITTED
identifier
[PAD CHARACTER IS { iteral }]

[RECORD CONTAINS integer [TO integer]| CHARACTERS]

[RECORDING MODE IS FIXED] .

Indexed File: (VXCOBOL)

ED file-name [1S EXTERNAL]

RECORD }]

[DATA BLOCK CONTAINS integer [TO integer]{CHARACTERS

RECORD IS
[DATA) RECORDS ARE { data-name }...]

[FEEDBACK IS identifier |
[MERIT IS identifier |
[INDEX BLOCK CONTAINS [integer TO | integer CHARACTERS |
[INDEX NODE SIZE IS integer CHARACTERS]

RECORD IS | [STANDARD
[LABEL | RecorDS ARE | | oMITTED | !
[RECORD CONTAINS integer [TO integer] CHARACTERS]

EIXED

[RECORDING MODE IS | yARIABLE [RECORD LENGTH IS identifier | }]

147

o a A o

Interactive COBOL Language Reference & Developer’s Guide - Part One

INFOS File: (VXCOBOL)

ED file-name [IS EXTERNAL]

[DATA BLOCK CONTAINS [integer TO] integer {CHARACTERS }]

RECORD IS

[FEEDBACK IS identifier]
[MERIT IS identifier |
[INDEX BLOCK CONTAINS [integer TO | integer CHARACTERS |
[INDEX NODE SIZE IS integer CHARACTERS]
RECORD IS STANDARD
[LABEL {REQQRDS ARE } { OMITTED }

[PARTIAL RECORD IS identifier]
[RECORD CONTAINS integer [TO integer]| CHARACTERS]
[RECORDING MODE IS VARIABLE [RECORD LENGTH IS identifier]] .

Sort-Merge File: (ANSI 74 and ANSI 85)

SD file-name

RECORD IS
[DATA) Recorps ARE | { data-name }...]
[RECORD CONTAINS integer [TO integer] CHARACTERS] .

Sort-Merge File: (VXCOBOL)

SD file-name

RECORD }]

[BLOCK CONTAINS integer [TO integer]{ CHARACTERS

[RECORDING MODE IS FIXED]

RECORD IS

[RECORD CONTAINS integer [TO integer] CHARACTERS] .

D.1.3 Syntax Rules
(1) The level indicator FD identifies the beginning of a file description entry and must precede file-name.

(2) The level indicator SD identifies the beginning of a sort-merge file description entry and must precede
file-name.

(3) The clauses which follow file-name may appear in any order.
(4) One or more record description entries must follow the file description entry.

(5) One or more record description entries must follow the sort-merge file description entry; however no input-
output statements may be executed for this sort or merge file.

148

DATA DIVISION - FILE SECTION (Record Description)

D.1.4 General Rules
(1) A file description entry associates file-name with a file connector.

(2) The following chart lists the file description clauses for all of the ICOBOL dialects, by file type. It also
indicates which ones are for documentation purposes only. The clauses are presented on the following pages in
alphabetical order, with one exception: INDEX BLOCK is described with DATA BLOCK. Of the “documentation
only” clauses, only BLOCK CONTAINS, DATA RECORD and LABEL RECORD, are included.

File ANSI 74 & 85 VXCOBOL
Description
Clause
BLOCK CONTAINS Sequential (doc only) Sequential (doc only)
Relative & Indexed (doc only) Relative & Indexed (doc only)
CODE-SET Sequential Sequential
DATA BLOCK N/A Indexed (doc only)
INFOS files
DATA RECORD Sequential (doc only) Sequential (doc only)
Relative & Indexed (doc only) Relative & Indexed (doc only)
EXTERNAL Sequential Sequential
Relative & Indexed Relative & Indexed
INFOS
FEEDBACK N/A Indexed (doc only)
INFOS (doc only)
INDEX BLOCK N/A Indexed (doc only)
INFOS
INDEX NODE N/A Indexed (doc only)
INFOS (doc only)
LABEL RECORD Sequential (doc only) Sequential (doc only)
Relative & Indexed (doc only) Relative & Indexed (doc only)
INFOS (doc only)
LINAGE Sequential Sequential
MERIT N/A Indexed & INFOS (doc only)
MULTIPLE N/A Sequential (doc only)
PAD CHARACTER N/A Sequential (doc only)
Relative (doc only)
PARTIAL RECORD N/A INFOS
RECORD Sequential Sequential (doc only)
Relative & Indexed Relative & Indexed (doc only)
INFOS (doc only)
RECORDING MODE Sequential Sequential
Relative & Indexed
INFOS
VALUE OF N/A Sequential (doc only)

TABLE 3. File Description Clauses by ICOBOL dialect and file type, noting which are documentation only

D.2. Record Description Structure

A record description consists of a set of data description entries which describe the characteristics of a particular
record. Each data description entry consists of a level-number followed by the data-name or FILLER clause, if
specified, followed by a series of independent clauses as required. A record description may have a hierarchical
structure and therefore the clauses used with an entry may vary considerably, depending upon whether or not it is
followed by subordinate entries. The structure of a record description and the elements allowed in a record
description entry are explained under Concept of Levels on page 123 and under Data Description Entry on page 172.

D.3. Initial Values

The initial value of a data item in the File Section is undefined.

149

Interactive COBOL Language Reference & Developer’s Guide - Part One

D.4. BLOCK CONTAINS Clause
D.4.1 Function
The BLOCK CONTAINS clause specifies the size of a physical record.

It is used for documentation purposes only.

D.4.2 General Format

ncress |

BLOCK CONTAINS integer-1[TO integer-2] {CHARACTERS

D.4.3 General Rules

(1) The BLOCK CONTAINS clause is used for documentation purposes only, although the compiler does make
some simple consistency checks on the values of integer-1 and integer-2.

150

DATA DIVISION - FILE SECTION (CODE-SET)

D.5. CODE-SET Clause
D.5.1 Function

The CODE-SET clause specifies the character code convention used to represent data on the external media.

D.5.2 General Format

ASCIl

STANDARD-1
FIELD [IS] | .
CODE-SET[IS] NATIVE H }:d—1,. }
— ERC FIELDS [ARE]

alphabet-name

D.5.3 Syntax Rules

(1) If the CODE-SET clause is specified for a file, all data in that file must be described as USAGE IS
DISPLAY and any signed numeric data must be described with the SIGN IS SEPARATE clause.

(2) The alphabet-name clause referenced by the CODE-SET clause must not specify the literal phrase.
(3) If specified, each id-1 must not be subscripted.

(4) id-1 must appear in a record-description for the associated file-connector, and if more than one id-/ is
specified all must appear within the same record-description.

(5) No two occurrences of id-1 may reference all or part of the same storage area.

D.5.4 General Rules

(1) ASCIIL, STANDARD-1, and NATIVE are equivalent and all represent the native character set of the
computer. For ICOBOL, this is ASCII. EBCDIC represents the EBCDIC character set.

(2) If the CODE-SET clause is specified:

a. Upon successful execution of an OPEN statement, the character set used to represent the data on the
external media is the one referenced by alphabet-name in the file-description entry associated with the file-name
specified in the OPEN statement.

b. It specifies the algorithm for converting the character set on the external media from/to the native
character set during the execution of an input or output operation. In particular, data is translated from the specified
character to the native character set upon execution of a READ statement, and from the native character set to the
specified character set upon execution of a WRITE or REWRITE statement. Note also that these translations also
occur as part of SORT and MERGE statements when records are read or written pursuant to processing the USING
or GIVING clauses.

c. If the FIELD IS/FIELDS ARE clause appears, the representation and conversion of data is restricted to
the fields referenced by each id-/. Otherwise, the entire data record is affected.

(3) Ifthe CODE-SET is not specified, the native character set is assumed for data on the external media.

(4) If the associated file-connector is an external file connector, all CODE-SET clauses in the run unit which are
associated with that file connector must have the same character set. In addition, if the FIELD IS/FIELDS ARE

151

Interactive COBOL Language Reference & Developer’s Guide - Part One

clause is specified, the number of occurrences and the offset and length of each id-/ within the data record must be
the same for each file-connector in the run unit that is associated with the external file-connector.

(5) If the associated file-connector is specified with RECORD DELIMITER IS DATA-SENSITIVE or literal
(ANSI 74 and ANSI 85) or with RECORDING MODE IS DATA-SENSITIVE (VXCOBOL), any delimiter
characters specified are assumed to be in the native character set and are translated to the character set specified by
the CODE-SET clause.

(6) If the associated file-connector is specified with RECORD DELIMITER IS ASCII LENGTH (ANSI 74 and
ANSI 85) or with RECORDING MODE IS VARIABLE (VXCOBOL), only the data contained within the record is
translated. The record header, which contains the length, is assumed to be in the native character set and is not
translated.

(7) If the associated file-connector is specified with ASSIGN TO PRINTER or ASSIGN TO DISPLAY, only
the data contained within the record is translated. All carriage control is assumed to be in the native character set

and is not translated.

(8) The record area accessible to the program is always specified in the native character set.

152

DATA DIVISION - FILE SECTION (DATA BLOCK, INDEX BLOCK)
D.6. DATA BLOCK and INDEX BLOCK Clauses (VXCOBOL)

D.6.1 Function

The DATA BLOCK and INDEX BLOCK clauses specifies the page sizes used when creating an INFOS file.

D.6.2 General Format

RECORDS
CHARACTERS

DATA BLOCK CONTAINS [integer-1 TO] integer-2] {

INDEX BLOCK CONTAINS [integer-3 TO] integer-4] CHARACTERS

D.6.3 Syntax Rules
(1) Integer-1 and integer-3 are ignored.

(2) Integer-2 is a positive integer literal that specifies the maximum number of characters or records that a
logical block in a data file can contain.

(3) Integer-4 is a positive integer literal that specifies the maximum number of characters that a logical block in
an indexed file can contain.

(4) Both clauses are ignored if specified for an indexed file.

D.6.4 General Rules

(1) DATA BLOCK and INDEX BLOCK clauses are used to specify the page sizes used when an INFOS file is
created. Only two page sizes are allowed: 2048 characters and 4096 characters. Any value less than or equal to
2048 will be treated as 2048, and any value greater that 2048 will be treated as 4096. If the RECORDS keyword is
specified in the DATA BLOCK CONTAINS clause, then integer-2 is multiplied by the record size and the result is
used to select either a 2048 or 4096 characters page.

(2) If DATA BLOCK or INDEX BLOCK is not specified 2048 is used.
(3) Note: U/FOS also supports page sizes of 512, 1024, and 8192 if the file is created with the ufos_create

utility. These may be specified in these clauses, but will result in runtime errors if a program attempts to create a file
using any of these three values.

153

Interactive COBOL Language Reference & Developer’s Guide - Part One

D.7. DATA RECORDS Clause

D.7.1 Function

The DATA RECORDS clause serves as documentation for the names of data records within their associated file.
The DATA RECORDS clause is an obsolete element in Standard COBOL because it is to be deleted from the next
revision of Standard COBOL. We suggest that you remove it from your source or change it to be a comment line.

D.7.2 General Format

RECORD IS
DATA \ RecORDS ARE [{ data-name }...

D.7.3 Syntax Rules

(1) Data-name is the name of a data record and must have an 01 level-number record description, with the same
name, associated with it.
D.7.4 General Rules

(1) The DATA RECORDS clause is used for documentation purposes only, although the compiler checks that
the specified names do occur as record descriptors.

(2) The presence of more than one data-name indicates that the file contains more than one type of data record.
These records may be of differing sizes, different formats, etc. The order in which they are listed is not significant.

(3) Conceptually, all data records within a file share the same area. This is in no way altered by the presence of
more than one type of data record within the file.

154

DATA DIVISION - FILE SECTION (EXTERNAL)

D.8. EXTERNAL Clause

D.8.1 Function

The EXTERNAL clause specifies that a file connector is external. The file and constituent data records are available
in a run unit to all programs that describe the file as external.

D.8.2 General Format

IS EXTERNAL

D.8.3 Syntax Rules

(1) If you define data items in the FD or SELECT statement of an EXTERNAL file, you must specify them as
EXTERNAL. For example, INFOS STATUS (VXCOBOL), FILE STATUS, RECORD LENGTH, etc. must be
EXTERNAL if the file is external. The compiler will flag these items with a warning if they are not EXTERNAL
but the file is EXTERNAL.

D.8 .4 General Rules
(1) The file connector associated with this file description entry is an external file connector.

(2) The data contained in all record description entries subordinate to that file description entry are external and
may be accessed by any runtime element in the run unit that describes the same file and records as external, subject
to the following rules.

(3) Any LINAGE-COUNTER data item associated with the file is external.

(4) An EXTERNAL file uses the declaratives of the program which it is currently running. To ensure that the
same action is taken for all exceptions, a COPY file for the declaratives should be used in all programs that reference
this file.

(5) An EXTERNAL file can only be opened once. An error will occur if you attempt to open the file again
either in the main program or a subprogram) without first explicitly closing the file.
g

(6) Ifrecord keys are declared for a file with the EXTERNAL clause, then the record keys must also be
declared EXTERNAL if there are not implicitly external by being in the data record, and in the same order in each
subprogram which references the file.

(7) Atruntime, if any of the file's characteristics do not match those of a previously referenced external file,

ICOBOL will generate an exception status 1296 "External item in called program does not match existing item" on
the call of a subprogram that contains an external file.

155

Interactive COBOL Language Reference & Developer’s Guide - Part One

D.9. FEEDBACK Clause (VXCOBOL)
D.9.1 Function

The FEEDBACK clause contains the location of records for an INFOS file.

D.9.2 General Format

FEEDBACK IS identifier

D.9.3 Syntax Rules

(1) Identifier is a 4-byte data item in Working-Storage that receives feedback information about the location of
records in INFOS files.

(2) This clause is ignored for an indexed file.

D.9.4 General Rules

(1) If you specify FEEDBACK for a file, each time you read, write, or rewrite a record in the file, the
FEEDBACK data item is updated with the location of the record you just accessed. A WRITE INVERTED uses the
FEEDBACK data item to obtain the location of the record to which another key is already pointing.

(2) READ, REWRITE, and WRITE update the FEEDBACK data items if specified.

(3) FEEDBACK can not be used to READ a particular record.

156

DATA DIVISION - FILE SECTION (INDEX NODE)

D.10. INDEX NODE Clause (VXCOBOL)
D.10.1 Function

The INDEX NODE clause specifies the size, in characters, of an index node in an INFOS file.

D.10.2 General Format

INDEX NODE SIZE IS integer CHARACTERS

D.10.3 Syntax Rules
(1) Integer is a positive integer literal that specifies the number of characters in an index node.

(2) This clause is ignored for an indexed file.

D.10.4 General Rules

(1) The node size must be large enough to hold three keys. If you omit this option, the system calculates the
size according to the maximum key length, the partial record length, and whether or not subindexing is allowed.

157

Interactive COBOL Language Reference & Developer’s Guide - Part One

D.11. LABEL RECORD Clause

D.11.1 Function

The LABEL RECORD clause specifies whether labels are present. The LABEL RECORD clause is an obsolete
element in Standard COBOL because it is to be deleted from the next revision of Standard COBOL.

D.11.2 General Format

ANSI 74 and ANSI 85

RECORD IS STANDARD
LABEL |\ RECORDS ARE [| OMITTED

VXCOBOL
ASCII [int-1]

LABEL { STANDARD [int-1]
RECORDS ARE | | “gBcpIC [int-2]

OMITTED

D.11.3 Syntax Rules
(1) int-1 is a positive integer literal indicating the level number of the tape; it may be either 1 or 3.

(2) int-2 is a positive integer literal indicating the level number of the tape; it may be either 1 or 2.

D.11.4 General Rules
(1) The LABEL RECORD clause is used for documentation purposes only.
(2) OMITTED specifies that no explicit labels exist for the file or the device to which the file is assigned.

(3) STANDARD specifies that labels exist for the file or the device to which the file is assigned and the labels
conform to the label specifications.

(4) For VXCOBOL, EBCDIC indicates IBM format labels. If int-2 is not specified it is assumed to be 2.

ASCII is equivalent to STANDARD. NATIVE refers to Data General Format. If in#-1 is not specified it is assumed
to be 3.

158

DATA DIVISION - FILE SECTION (LINAGE)

D.12. LINAGE Clause
D.12.1 Function

The LINAGE clause provides a means for specifying the depth of a logical page in terms of number of lines. It also
provides for specifying the size of the top and bottom margins on the logical page, and the line number, within the
page body, at which the footing area begins.

D.12.2 General Format

data-name-1

integer-1 } LINES

LINAGE IS {

data-name-2 }]

[WITH FOOTING AT { integer-2

data-name-3 } |

[LINES AT TOP { integer-3

]

data-name-4 }

[LINES AT BOTTOM { integer-4

D.12.3 Syntax Rules

(1) Data-name-1, data-name-2, data-name-3, and data-name-4 must reference elementary unsigned numeric
data items.

(2) Data-name-1, data-name-2, data-name-3, and data-name-4 may be qualified.
(3) Integer-2 must not be greater than integer-1.

(4) Integer-3 and integer-4 may be zero.

D.12.4 General Rules

(0) The associated file must have been specified with PRINTER or PRINTER-1 in the ASSIGN Clause of the
SELECT statement. If no device or DISK is specified and the LINAGE clause is present, the file will be treated as if
PRINTER was specified in the ASSIGN clause.

(1) The LINAGE clause provides a means for specifying the size of a logical page in terms of number of lines.
The logical page size is the sum of the values referenced by each phrase except the FOOTING phrase. If the LINES
AT TOP or LINES AT BOTTOM phrases are not specified, the values of these items are zero. If the FOOTING
phrase is not specified, no end-of-page condition independent of the page overflow condition exists.

There is not necessarily any relationship between the size of the logical page and the size of a physical page.

(2) Integer-1 or the value of the data item referenced by data-name-1 specifies the number of lines that can be
written and/or spaced on the logical page. The value must be greater than zero. That part of the logical page in
which these lines can be written and/or spaced is called the page body.

(3) Integer-2 or the value of the data item referenced by data-name-2 specifies the line number within the page
body at which the footing begins. The value must be greater than zero and not greater than integer-1 or the value of
the data item referenced by data-name-1.

The footing area comprises the area of the page body between the line represented by integer-2 or the value
of the data item referenced by data-name-2 and the line represented by integer-1 or the value of the data item
referenced by data-name-1, inclusive.

159

Interactive COBOL Language Reference & Developer’s Guide - Part One

(4) Integer-3 or the value of the data item referenced by data-name-3 specifies the number of lines that
comprise the top margin on the logical page. The value may be zero.

(5) Integer-4 or the value of the data item referenced by data-name-4 specifies the number of lines that
comprise the bottom margin on the logical page. The value may be zero.

(6) Integer-1, integer-3, and integer-4, if specified, are used at the time the file is opened by the execution of an
OPEN statement with the OUTPUT phrase, to specify the number of lines that comprise each of the indicated
sections of a logical page. Integer-2, if specified, is used at that time to define the footing area. These values are
used for all logical pages written for that file during a given execution of the program.

(7) The values of the data items referenced by data-name-1, data-name-3, and data-name-4, if specified, are
used as follows:

a. The values of the data items, at the time an OPEN statement with the OUTPUT phrase is executed for the
file, are used to specify the number of lines that are to comprise each of the indicated sections for the first logical

page.

b. The values of the data items, at the time a WRITE statement with the ADVANCING PAGE phrase is
executed or a page overflow condition occurs, are used to specify the number of lines that are to comprise each of
the indicated sections for the next logical page. (See the WRITE Statement.)

(8) The value of the data item referenced by data-name-2, if specified, at the time an OPEN statement with the
OUTPUT phrase is executed for the file, is used to define the footing area for the first logical page. At the time a
WRITE statement with the ADVANCING PAGE phrase is executed or a page overflow condition occurs, it is used
to define the footing area for the next logical page.

(9) A LINAGE-COUNTER is generated by the presence of a LINAGE clause. The value in the
LINAGE-COUNTER at any given time represents the line number at which the device is positioned within the
current page body. The rules governing the LINAGE-COUNTER are as follows:

a. A separate LINAGE-COUNTER is supplied for each file described in the File Section whose file
description entry contains a LINAGE clause.

b. LINAGE-COUNTER may be referenced only in Procedure Division statements; however, only the
input-output control system may change the value of LINAGE-COUNTER. Since more than one
LINAGE-COUNTER may exist in a program, the user must qualify LINAGE-COUNTER by file-name when
necessary.

c. LINAGE-COUNTER is automatically modified, according to the following rules, during the execution of
a WRITE statement to an associated file:

1) When the ADVANCING PAGE phrase of the WRITE statement is specified, the
LINAGE-COUNTER is automatically reset to one. During the resetting of LINAGE-COUNTER to the value one,
the value of LINAGE-COUNTER is implicitly incremented to exceed the value specified by integer-1 or the data
item referenced by data-name-1.

2) When the ADVANCING identifier-2 or integer-1 phrase of the WRITE statement is specified, the
LINAGE-COUNTER is incremented by integer-1 or the value of the data item referenced by identifier-2.

3) When the ADVANCING phrase of the WRITE statement is not specified, the LINAGE-COUNTER
is incremented by the value one. (See the WRITE Statement.)

4) The value of LINAGE-COUNTER is automatically reset to one when the device is repositioned to
the first line that can be written on for each of the succeeding logical pages. (See the WRITE Statement.)

160

DATA DIVISION - FILE SECTION (LINAGE)

d. The value of LINAGE-COUNTER is automatically set to one at the time an OPEN statement with the
OUTPUT phrase is executed for the associated file. An OPEN with the EXTEND phrase leaves the value of
LINAGE-COUNTER undefined.

(10) Each logical page is contiguous to the next with no additional spacing provided.

(11) If the file connector associated with this file description entry is an external file connector, all file
description entries in the run unit which are associated with this file connector must have:

a. A LINAGE clause, if any file description entry has a LINAGE clause.
b. The same corresponding values for integer-1, integer-2, integer-3, and integer-4, if specified.

c. The same corresponding external data items referenced by data-name-1, data-name-2, data-name-3, and
data-name-4.

161

Interactive COBOL Language Reference & Developer’s Guide - Part One

D.13. MERIT Clause (VXCOBOL)
D.13.1 Function

The MERIT clause allows record distribution to be optimized in an INFOS file.

D.13.2 General Format

MERIT IS identifier

D.13.3 Syntax Rules

(1) Identifier is an integer data item that specifies a merit factor from 1 to 32. Two volumes can have the same
merit factor.
D.13.4 General Rules

(1) If a merit factor is given for a record, INFOS places the record on the first volume that has both available
space and a merit factor equal to or less than the record's merit factor. If the system cannot find a volume that
satisfies these criteria, it places the record on the volume with the lowest merit factor that is higher than the one

specified.

(2) This clause is ignored.

162

DATA DIVISION - FILE SECTION (PARTIAL RECORD)

D.14. PARTIAL RECORD Clause (VXCOBOL)
D.14.1 Function

The PARTIAL RECORD clause allows a frequently used portion of the record to be accessed with a key.

D.14.2 General Format

PARTIAL RECORD IS identifier

D.14.3 Syntax Rules

(1) Identifier is an alphanumeric data item that receives the partial record data. It receives the partial record on
every operation that accesses a data record (unless the partial record is suppressed.)

D.14.4 General Rules
(1) The size of the data item specified by identifier determines the length that the partial record can have. This
length cannot be larger than the maximum size of the partial record set at index or subindex creation time (up to

255). When a data record for this file is accessed, the partial record is returned to identifier.

(2) With INFOS II, the partial record is stored in the index with the key. With U/FOS, the partial record is
stored as a second data record.

163

Interactive COBOL Language Reference & Developer’s Guide - Part One

D.15. RECORD Clause (ANSI 74 and ANSI 85)
D.15.1 Function
The RECORD clause specifies the number of character positions in a fixed length record, or specifies the range of

character positions in a variable length record. If the number of character positions does vary, the clause specifies
the minimum and maximum number of character positions.

D.15.2 General Format

Format 1 (fixed-length):

RECORD CONTAINS integer-1 CHARACTERS

Format 2 (variable-length):

RECORD IS VARYING IN SIZE [[FROM integer-2 1[TO integer-3] CHARACTERS]
[DEPENDING ON data-name-1]

Format 3 (fixed or variable length):

RECORD CONTAINS integer-4 TO integer-5 CHARACTERS

D.15.3 Syntax Rules

Format 1:
(1) No record description entry for the file may specify a number of character positions greater than integer-1.
(2) For VXCOBOL, this format is for documentation purposes only.

Format 2:
(3) This format is not supported under VXCOBOL.

(4) No record description entry for the file may specify a number of character positions less than integer-2 or
greater than integer-3.

(5) Integer-3 shall be greater than integer-2.
(6) Data-name-1 shall describe an elementary unsigned integer in working storage or linkage section.
(7) Integer-2 shall be greater than zero.
(8) This format may not be specified if the RECORDING MODE clause is specified.
Format 3:
(9) For VXCOBOL, this format is for documentation purposes only.
(10) Integer-4 shall be greater than zero.

(11) Integer-5 shall be greater than integer-4.

164

DATA DIVISION - FILE SECTION (RECORD)

D.15.4 General Rules
All Formats:
(1) Each integer in a RECORD clause specifies a record size in terms of alphanumeric character positions.

(2) The implicit or explicit RECORD clause specifies the size of the records in the record area. The size of
records on physical storage media may be different due to control information required by the operating
environment.

(3) The size of each data record is specified in terms of the number of alphanumeric character positions
required to store the logical record, regardless of the types of characters used to represent the items within the logical
record. The size of the record is determined by the sum of the number of alphanumeric character positions in all
fixed length elementary items plus the sum of the maximum number of alphanumeric character positions in any
variable-length data item subordinate to the record.

(4) If the RECORD clause is not specified, an implicit format 1 or format 2 RECORD clause is assumed to be
specified. This implicit RECORD clause is defined with the following characteristics:

a. Format 1 is implied when RECORDING MODE clause is absent or FIXED. Integer-1 shall be the
record size of the largest record description entry in this file description entry.

b. Format 2 is implied when the RECORDING MODE IS VARIABLE. Integer-2 shall be the record size
of the smallest record description entry in this file description entry, and integer-3 shall be the largest record
description entry in this file description entry. The DEPENDING ON phrase is assumed to be omitted.

Format 1:

(5) Format 1 is used to specify fixed length records. Integer-1 specifies the number of character positions
contained in each record in the file.

Format 2:

(6) Format 2 is used to specify variable-length records. Integer-2 specifies the minimum number of
alphanumeric character positions to be contained in any record of the file. Integer-3 specifies the maximum number
of alphanumeric character positions in any record of the file.

(7) The number of alphanumeric character positions associated with a record description is determined by the
sum of the number of alphanumeric character positions in all elementary data items excluding redefinitions and
renamings, plus any implicit FILLER due to synchronization. If a table is specified:

a. The minimum number of table elements described in the record is used in the summation above to
determine the minimum number of alphanumeric character positions associated with the record description.

b. The maximum number of table elements described in the record is used in the summation above to
determine the maximum number of alphanumeric character positions associated with the record description.

(8) If integer-2 is not specified, the minimum number of alphanumeric character positions to be contained in
any record of the file is equal to the least number of alphanumeric character positions described for a record in that
file.

(9) If integer-3 is not specified, the maximum number of alphanumeric character positions to be contained in
any record of the file is equal to the greatest number of alphanumeric character positions described for a record in
that file.

165

Interactive COBOL Language Reference & Developer’s Guide - Part One

(10) If data-name-1 is specified, the number of alphanumeric character positions in the record shall be placed
into the data item referenced by data-name-1 before any RELEASE, REWRITE, or WRITE statement is executed
for the file.

(11) If data-name-1 is specified, the execution of a DELETE, RELEASE, REWRITE, START, or WRITE
statement or the unsuccessful execution of a READ or RETURN statement does not alter the content of the data item
referenced by data-name-1.

(12) During the execution of a RELEASE, REWRITE, or WRITE statement, the number of alphanumeric
character positions in the record is determined by the following conditions:

a. If data-name-1 is specified, by the content of the data item referenced by data-name-1.

b. If data-name-1 is not specified and the record does not contain a variable-occurrence data item, by the
number of alphanumeric character positions in the record.

c. If data-name-1 is not specified and the record does contain a variable-occurrence data item, by the sum
of the fixed portion and that portion of the table described by the number of occurrences at the time of execution of
the output statement.

d. If the file had been specified with a RECORD DELIMITER IS DATA-SENSITIVE or RECORD
DELIMITER IS literal, by the first occurrence of a delimiter character or as determined by rules a) - ¢) if that
number of alphanumeric character positions is less.

(13) If the number of alphanumeric character positions in the record to be written is less than integer-2 or
greater than integer-3, then if a RELEASE, REWRITE, or WRITE statement is being executed, exception 185
condition is set to exist, and the execution of the RELEASE, REWRITE, or WRITE statement is unsuccessful with
I-O status 92 (ANSI 74) or I-O status 44 (ANSI 85).

(14) If data-name-1 is specified, after the successful execution of a READ or RETURN statement for the file,
the contents of the data item referenced by data-name-1 will indicate the number of alphanumeric character positions
in the record just read.

(15) If the INTO phrase is specified in the READ or RETURN statement, the number of alphanumeric
character positions in the current record that participate as the sending operands in the implicit MOVE statement is
determined by the following conditions:

a. If data-name-1 is specified, by the content of the data item referenced by data-name-1.

b. If data-name-1 is not specified, by the value that would have been moved into the data item referenced
by data-name-1 had data-name-1 been specified.

If the number of alphanumeric character positions determined as above is zero, the record is a zero-length
item.

(16) INDEXED and RELATIVE files are varying length within a fixed allocation. SEQUENTIAL files are
written with a varying length and format based on the RECORD DELIMITER clause of the SELECT statement.

Format 3

(17) Format 3 of the RECORD clause produces fixed-length records if the RECORDING MODE clause is
absent or FIXED. Format 3 produces variable-length records if the RECORDING MODE is VARIABLE.

(18) When format 3 of the RECORD clause is used, integer-4 and integer-5 refer to the minimum number of
alphanumeric characters in the smallest size data record and the maximum number of alphanumeric characters in the
largest size data record, respectively. However, in this case, the size of each data record is completely defined in the
record description entry.

166

DATA DIVISION - FILE SECTION (RECORD)

(19) If the number of alphanumeric character positions in the logical record to be written is less than integer-4
or greater than integer-5, then if a RELEASE, REWRITE, or WRITE statement is being executed, the exception 185
is set to exist and the execution of the RELEASE, REWRITE, or WRITE statement is unsuccessful with I-O status
92 (ANSI 74) or 44 (ANSI 85).

167

Interactive COBOL Language Reference & Developer’s Guide - Part One

D.16. RECORDING MODE Clause (ANSI 74 and ANSI 85)

D.16.1 Function

The RECORDING MODE clause specifies whether a sequential disk file is have a fixed length record or a variable
length record based on the specified record. This clause is obsolete; variable sequential files may be obtained with
the RECORD DELIMITER IS BINARY LENGTH and RECORD IS VARYING clauses. The RECORDING
MODE clause is an extension to ANSI COBOL.

D.16.2 General Format

VARIABLE
RECORDING MODE |s{ FIXED }

D.16.3 Syntax Rules
(1) RECORDING MODE is only allowed for sequential disk files.

(2) This clause may not be specified with the RECORD IS VARYING clause.

D.16.4 General Rules

(1) If this clause is not specified, RECORDING MODE IS FIXED is assumed.

168

DATA DIVISION ((FILE) RECORDING MODE)

D.17. RECORDING MODE Clause (VXCOBOL)
D.17.1 Function

The RECORDING MODE clause specifies the record format used in the file. The RECORDING MODE clause is
an extension to ANSI COBOL.

D.17.2 General Format

RECORDING MODE IS
FIXED
UNDEFINED [RECORD LENGTH IS identifier-1]
VARIABLE [RECORD LENGTH IS identifier-1]
DATA-SENSITIVE [DELIMITER IS literal-1] [RECORD LENGTH IS identifier-1]
DYNAMIC RECORD LENGTH IS identifier-1

D.17.3 Syntax Rules
(1) Identifier-1 is an integer data item that either specifies or receives a number of characters.

(2) Literal-1 is a numeric literal specifying a character that delimits the end of a record, replacing the default
delimiter.

(3) RECORDING MODE IS FIXED is the only format allowed for relative files.
(4) RECORDING MODE IS VARIABLE is the only format allowed for INFOS files.

(5) RECORDING MODE IS FIXED and RECORDING MODE IS VARIABLE are allowed for indexed files.

D.17.4 General Rules

(1) If this clause is not specified, RECORDING MODE IS FIXED is assumed for sequential and relative.
RECORD MODE IS VARIABLE is assumed for indexed and INFOS files.

(2) If FIXED is specified, all records have the same number of characters, the length of which is determined by
the size of the file's record area.

(3) If VARIABLE is specified, the maximum length for records can be specified in the RECORD LENGTH
clause. No two records in the file need to be the same length. However, they cannot exceed the maximum length
and they must never be 1. If a RECORD LENGTH clause is not used, the number of characters in a record
determines the maximum length for that record. For an index file, the record length must always be large enough to
include the RECORD key and all the ALTERNATE keys.

(4) If DYNAMIC is specified, the value of the data item specified in the RECORD LENGTH clause is used as
the length of the record. Therefore the RECORD LENGTH clause must be specified when using DYNAMIC.

(5) If DATA-SENSITIVE is specified, the length of the record is determined by the occurrence of a special
character (literal-1). If a delimiter character is not specified, carriage-return, form feed, null, or newline is used.
The RECORD LENGTH clause can also be used to set a maximum length for a data-sensitive record. The delimiter
should be counted as part of the record. DATA-SENSITIVE is ignored for printer files unless you use the
DELIMITER IS clause to specify the delimiters.

169

Interactive COBOL Language Reference & Developer’s Guide - Part One

(6) If undefined is specified, the file is read only as a sequence of binary bytes rather than a sequence of
records.

(7) Ifall cases, if RECORD LENGTH is omitted, a record cannot be more than the length of the file's record
area. If RECORD LENGTH is specified, the number of characters read from a record is returned. On output in
variable record format, identifier will specify the number of characters to write.

170

DATA DIVISION - WORKING-STORAGE SECTION (General Format)
E. WORKING-STORAGE SECTION

The Working-Storage Section is located in the Data Division of a source program. The Working-Storage Section
describes records and subordinate data items which are not part of data files.

The Working-Storage Section is composed of the section header, followed by record description entries and/or data
description entries for noncontiguous data items.

The general format of the Working-Storage Section is shown below.

WORKING-STORAGE SECTION.

77-level-description-entry
record-description-entry

E.1. Noncontiguous Working Storage

Items and constants in working storage which bear no hierarchical relationship to one another need not be grouped
into records, provided they do not need to be further subdivided. Instead, they are classified and defined as
noncontiguous elementary items. Each of these items is defined in a separate data description entry which begins
with the special level-number, 77.

The following data clauses are required in each data description entry:

1. level-number 77

2. data-name

3. the PICTURE clause, the USAGE IS INDEX clause, or the USAGE IS POINTER (ANSI 74and ANSI 85)
clause

Other data description clauses are optional and can be used to complete the description of the item if necessary.

E.2. Working Storage Records

Data elements in working storage which bear a definite hierarchical relationship to one another must be grouped into
records according to the rules for formation of record descriptions. Data elements in the Working-Storage Section
which bear no hierarchical relationship to any other data item may be described as records which are single
elementary items. All clauses which are used in record descriptions in the File Section can be used in record
descriptions in the Working-Storage Section.

E.3. Record Description Structure

A record description consists of a set of data description entries which describe the characteristics of a particular
record. Each data description entry consists of a level-number followed by the data-name or FILLER clause, if
specified, followed by a series of independent clauses as required. A record description may have a hierarchical
structure and therefore the clauses used within an entry may vary considerably, depending upon whether or not it is
followed by subordinate entries. The structure of a record description and the elements allowed in a record
description entry are explained in Concept of Levels and in The Data Description Entry.

E.4. Initial Values
The initial value of any data item in the Working-Storage Section except an index data item is specified by

associating the VALUE clause with the data item. The initial value of any index data item or any data item not
associated with a VALUE clause is undefined.

171

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.5. Data Description Entry
E.5.1 Function

A data description entry specifies the characteristics of a particular item of data.

E.5.2 General Format

Format 1:
level-number | 2 | [1s EXTERNAL |
[BLANK WHEN ZERO]
JUSTIFIED
[JusT RIGHT]
integer TIMES
[OCCURS {integer IO integer TIMES DEPENDING ON identifier }]
ASCENDING
[{DES:ENDINE } KEY IS {data-name}... | ...
[INDEXED BY { index-name}...]]
PICTURE _
{ PIC } IS character-string |

[REDEFINES data-name-2]
LEADING
[[SIGN IS] 1RAILING ([SEPARATE CHARACTER]]
SYNCHRONIZED LEFT
[SYNC RIGHT

[usage-clause]

literal

NULL
[VALUE IS\ vaLID

OVERFLOW

Where usage-clause is:

For ANSI 74 and ANSI 85:

BINARY
COMPUTATIONAL | COMP
COMPUTATIONAL-3 | COMP-3
COMPUTATIONAL-5 | COMP-5 |
[USAGE IS] DISPLAY
INDEX
PACKED-DECIMAL
POINTER

172

DATA DIVISION - WORKING-STORAGE SECTION (Data Description Entry)

For VXCOBOL.:
COMPUTATIONAL | COMP
COMPUTATIONAL-3 | COMP-3
[USAGE IS] DISPLAY

INDEX

For ISQL: add the following selections:

CHARACTER .
{ CHAR }[MARMLNQ] [(integer-1)1]
DATE
INDICATOR
INT
INTEGER

YEAR (integer-2) [IO MONTH]
MONTH (integer-2)
HOUR
[USAGE IS] DAY (integer-2) [TO MINUTE]
INTERVAL SECOND [(integer-3)]
MINUTE

ﬂQuR(i"mge“z)[3EQ{§EQQND[(inwgeP3)]]
MINUTE (integer-2) [TO SECOND [(integer-3)]1]
SECOND (integer-2 [integer-3 1)

NUMERIC (integer-4 [integer-51)
SMALLINT
TIME [(integer-3) 1]
TIMESTAMP [(integer-3)]

Format 2:

THROUGH
66 data-name-1 RENAMES data-name-2 [{ THRU } data-name-31 .

Format 3:
88 diti VALUE IS literal-1 THROUGH literal-2
conaition-name VALUES ARE Iteral- THRU Iteral- e

173

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.5.3 Syntax Rules

(1) Level number in Format 1 may be any number from 01 through 49 or 77.

(2) In Format 1, the data-name-1 or FILLER clause, if specified, must immediately follow the level number.
The REDEFINES clause, if specified, must immediately follow the data-name-1 or FILLER clause if either is
specified; otherwise, it must immediately follow the level-number. The remaining clauses may be written in any

order.

(3) The EXTERNAL clause and the REDEFINES clause must not be specified in the same data description
entry.

(4) Data-name-1 must be specified for an entry containing the EXTERNAL clause or for record descriptions
associated with a file description entry which contains the EXTERNAL clause.

(5) The PICTURE clause must be specified for every elementary item except an index or pointer data item in
which case use of this clause is prohibited.

(6) The words THRU and THROUGH are equivalent.

(7) (ISQL) The words CHAR and CHARACTER are equivalent.

(8) (ISQL) The words INT and INTEGER are equivalent.

(9) The EXTERNAL clause may be specified only in data description entries in the Working-Storage Section
whose level-number is 01 or 77.
E.54 General Rules

(1) The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO must not be specified
except for an elementary item.

(2) Format 3 is used for each condition-name. Each condition-name requires a separate entry with
level-number 88. Format 3 contains the name of the condition and the value, values, or range of values associated
with the condition-name. The condition-name entries for a particular conditional variable must immediately follow
the entry describing the item with which the condition-name is associated. A condition-name can be associated with
any data description entry which contains a level-number except the following:

a. Another condition-name.

b. A level 66 item.

c. A group containing items with descriptions including JUSTIFIED, SYNCHRONIZED, or USAGE
(other than USAGE IS DISPLAY).

d. An index or pointer data item.

(3) Multiple level 01 entries subordinate to any given level indicator (i.e., FD or SD) represent implicit
redefinitions of the same area.

174

DATA DIVISION - WORKING-STORAGE SECTION (BLANK WHEN ZERO)
E.6. BLANK WHEN ZERO Clause

E.6.1 Function

The BLANK WHEN ZERO clause permits the blanking of an item when its value is zero.

E.6.2 General Format

BLANK WHEN ZERO

E.6.3 Syntax Rules

(1) The BLANK WHEN ZERO clause can be specified only for an elementary item whose PICTURE is
specified as numeric or numeric edited.

(2) The numeric or numeric edited data description entry to which the BLANK WHEN ZERO clause applies
must be described, either implicitly or explicitly, as USAGE IS DISPLAY.
E.6.4 General Rules

(1) When the BLANK WHEN ZERO clause is used, the item will contain nothing but spaces if the value of the
item is zero.

(2) When the BLANK WHEN ZERO clause is used for an item whose PICTURE is numeric, the category of
the item is considered to be numeric edited.

175

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.7. Data-Name or FILLER Clause
E.7.1 Function

A data-name specifies the name of the data item being described. The keyword FILLER may be used to specify a
data item which is not referenced explicitly.

E.7.2 General Format

data-name-1
FILLER

E.7.3 Syntax Rules
(1) In the File, Working-Storage, and Linkage Sections, data-name-1 or the keyword FILLER, if either is
specified, must be the first word following the level-number in each data description entry.
E.7.4 General Rules
(1) If this clause is omitted, the data item being described is treated as though FILLER had been specified.
(2) The keyword FILLER may be used to name a data item. Under no circumstances can a FILLER item be

referred to explicitly. However, the keyword FILLER may be used to name a conditional variable because such use
does not require explicit reference to the data item itself, but only to the value contained therein.

176

DATA DIVISION - WORKING-STORAGE SECTION (EXTERNAL)

E.8. EXTERNAL Clause
E.8.1 Function

The EXTERNAL clause specifies that a data item is external. A data item is external if the storage associated with
that object is associated with the run unit rather than with any particular program within the run unit. The constituent
data items and group data items of an external data record are available to every program in the run unit which
describes that record.

E.8.2 General Format

IS EXTERNAL

E.8.3 Syntax Rules

(1) The EXTERNAL clause may be specified only in data description entries in the Working-Storage Section
whose level number is 01 or 77. For VXCOBOL, the EXTERNAL clause may be specified on a data description in
the FILE SECTION as long as it is also specified on the FD of the file.

(2) In the same program, the data-name specified as the subject of the entry whose level-number is 01 or 77 that
includes the EXTERNAL clause must not be the same data-name specified for any other data description entry
which includes the EXTERNAL clause.

(3) The EXTERNAL clause shall not be specified for a data item of class pointer.

E.8.4 General Rules

(1) The data contained in the data description entry named by the data-name clause is external and may be
accessed and processed by any program in the run unit which describes and optionally, redefines it subject to the
following general rules.

(2) Within a run unit, if two or more programs describe the same external data record or elementary item, each
record-name or data-name of the associated data description entries must be the same and the data descriptions must
define the same number of standard format characters. The items must be of the same type. However, a program
which describes an external record may contain a data description entry including the REDEFINES clause which
redefines the complete external record, and this complete redefinition need not occur identically in other programs in
the run unit.

(3) If the VALUE clause is specified for a data description entry with the EXTERNAL clause or subordinate to
a data description entry with an EXTERNAL clause, then every program describing that external item must specify
an identical VALUE clause on its declaration of the external item.

(4) On the call of a subprogram that contains the declaration of an EXTERNAL item, if any of the external data
item's characteristics fail to match those of a previously loaded external item of the same name, ICOBOL will
generate an exception status 1296 "External item in called program does not match existing item" and the call will
fail.

177

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.9. JUSTIFIED Clause
E.9.1 Function
The JUSTIFIED clause permits alternate positioning of data within a receiving data item, specifically right

justification.

E.9.2 General Format

JUSTIFIED
JusT [RIGHT

E.9.3 Syntax Rules
(1) The JUSTIFIED clause can be specified only at the elementary item level.
(2) JUST is an abbreviation for JUSTIFIED.

(3) The JUSTIFIED clause cannot be specified for any data item described as numeric or for which editing is
specified. (i.e., it can only be used with an unedited alphabetic or alphanumeric data item.)

(4) The JUSTIFIED clause must not be specified for an index data item.

E.9.4 General Rules

(1) When the receiving data item is described with the JUSTIFIED clause and the sending data item is larger
than the receiving data item, the left-most characters are truncated. When the receiving data item is described with
the JUSTIFIED clause and it is larger than the sending data item, the data is aligned at the right-most character
position in the data item with space fill for the left-most character positions.

(2) When the JUSTIFIED clause is omitted, the standard rules for aligning data within an elementary item
apply.

178

DATA DIVISION - WORKING-STORAGE SECTION (Level-Number)

E.10. Level-Number

E.10.1 Function

The level-number indicates the position of a data item within the hierarchical structure of a logical record. In
addition, it is used to identify entries for working storage items, linkage items, condition-names and the RENAMES
clause.

E.10.2 General Format

level-number

E.10.3 Syntax Rules
(1) A level-number is required as the first element in each data description entry.

(2) Data description entries subordinate to a FD or SD entry must have level-numbers with the values 01
through 49, 66, or 88.

(3) Data description entries in the Working-Storage Section and Linkage Section must have level-numbers 01
through 49, 66, 77, or 88.

(4) Data description entries in the Screen Section must have level-numbers 01 through 49.

(5) A level number in the range 01 through 09 may be specified as 1 through 9.

E.10.4 General Rules
(1) The level-number 01 identifies the first entry in each record description.
(2) Special level-numbers have been assigned to certain entries where there is no real concept of hierarchy:

a. Level-number 77 is assigned to identify noncontiguous working storage data items, noncontiguous
linkage data items, and can be used only as described by Format 1 of the data description entry.

b. Level-number 66 is assigned to identify RENAMES entries and can be used only as described by Format
2 of the data description entry.

c. Level-number 88 is assigned to entries which define condition-names associated with a conditional
variable and can be used only as described by Format 3 of the data description entry.

(3) Multiple level 01 entries subordinate to any given level indicator (i.e., FD or SD) represent implicit
redefinitions of the same area.

179

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.11. OCCURS Clause
E.11.1 Function

The OCCURS clause eliminates the need for separate entries for repeated data items and supplies information
required for the application of subscripts.

E.11.2 General Format

integer-2 TIMES
OCCURS {integer—1 IO integer-2 TIMES DEPENDING ON data-name-1 }

ASCENDING
DESCENDING

[INDEXED BY { index-name-1}...]

} KEY IS { data-name-2 } ... | ...

E.11.3 Syntax Rules

(1) The OCCURS clause must not be specified in a data description entry that has a level-number of 01, 66, 77,
88, or which has a variable occurrence data-item subordinate to it. For VXCOBOL, the occurs clause may occur on
a data description entry that has a level number or 01.

(2) Data-name-1 and data-name-2 may be qualified.

(3) The first specification of data-name-2 must be the name of either the entry containing the OCCURS clause
or an entry subordinate to the entry containing the OCCURS clause. Subsequent specification of data-name-2 must
be subordinate to the entry containing the OCCURS clause.

(4) Data-name-2 must be specified without the subscripting that is normally required.

(5) Integer-2 must be greater than zero.

(6) If integer-1 is given it must be greater than or equal to zero, and integer-2 must be greater than integer-1 but
less than or equal to 16,777,216.

(7) Data-name-1 must describe an integer and its picture must not include the character P. The data item
described by data-name-1 must not occupy a character position within the range of the first character position
defined by the data description entry containing the OCCURS clause and the last character position defined by the
record description entry containing that OCCURS clause.

(8) If the OCCURS clause is specified in a data description entry included in a record description entry
containing the EXTERNAL clause, data-name if specified, must reference a data item possessing the external

attribute which is described in the same Data Division.

(9) A data description entry that contains a DEPENDING ON may only be followed, within that record
description, by data description entries which are subordinate to it.

(10) The data item identified by data-name-2 must not contain an OCCURS clause except when data-name-2 is
the subject of the entry.

(11) There must not be an entry that contains an OCCURS clause between the descriptions of the data items
identified by data-names in the KEY IS phrase and the subject of the entry.

180

DATA DIVISION - WORKING-STORAGE SECTION (OCCURS)

(12) An INDEXED BY phrase is required if the subject of this entry, or an entry subordinate to this entry, is to
be referenced by indexing. The index-name-1 identified by this phrase is not defined elsewhere since its allocation
and format are dependent on the hardware and, not being data, cannot be associated with any data hierarchy.

(13) Index-name-1 must be a unique word within the program.

E.11.4 General Rules

(1) Except for the OCCURS clause itself, all data description clauses associated with an item whose description
includes an OCCURS clause apply to each occurrence of the item described.

(2) If the DEPENDING ON phrase is not given, the value of integer-2 represents the exact number of
occurrences of the subject entry. If the DEPENDING ON phrase is given, the number of occurrences of the subject
entry is defined to be the value of the data item referenced by data-name-1. In this case the subject of the entry has a
variable number of occurrences. The value of integer-2 represents the maximum number of occurrences and the
value of integer-1 represents the minimum number of occurrences. This does not imply that the length of the subject
entry is variable, but that the number of occurrences is variable.

At the time the subject entry is referenced or any data item subordinate or superordinate to the subject of
entry is referenced, the value of the data item referenced by identifier must fall within the range of integer-1 through
integer-2. The contents of the data items whose occurrence numbers exceed the value of the data item referenced by
data-name-1 are undefined. ICOBOL will raise an "Index out of range" error in this case.

(3) When a group data item, having subordinate to it an entry that specifies a DEPENDING ON, is referenced,
the part of the table area used in the operation is determined as follows:

a. If the data item referenced by data-name-1 is outside the group, only that part of the table area that is
specified by the value of the data item referenced by data-name-1 at the start of the operation will be used.

b. If the data item referenced by data-name-1 is included in the same group and the group data item is
referenced as a sending item, only that part of the table area that is specified by the value of the data item referenced
by data-name-1 at the start of the operation will be used in the operation. If the group is a receiving item, the
maximum length of the group will be used. (This last sentence is different than how AOS/VS COBOL behaves.)

(4) When the KEY IS phrase is specified, the repeated data must be arranged in ascending or descending order
according to the values contained in data-name-3. The ascending or descending order is determined according to
the rules for the comparison of operands. The data-names are listed in their descending order of significance.

(5) Atmostten (10) KEY IS phrases may be specified.

(6) If the OCCURS WITH DEPENDING is specified in a record description entry and the associated file
description or sort-merge description entry contains the VARYING phrase of the RECORD clause, the records are
variable length. If the DEPENDING ON phrase of the RECORD clause is not specified, the content of the data item
referenced by data-name-1 of the OCCURS clause must be set to the number of occurrences to be written before the
execution of any RELEASE, REWRITE, or WRITE statement.

181

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.12. PICTURE Clause
E.12.1 Function

The PICTURE clause describes the general characteristics and editing requirements of an elementary item.

E.12.2 General Format

PICTURE)
PIC IS character-string

E.12.3 Syntax Rules
(1) The PICTURE clause can be specified only at the elementary item level.

(2) A character-string consists of certain allowable combinations of characters in the COBOL character set
used as symbols. The allowable combinations determine the category of the elementary item.

(3) The lowercase letters corresponding to the uppercase letters representing the PICTURE symbols A, B, P, S,
V, X, Z, CR, and DB are equivalent to their uppercase representations in a PICTURE character-string. All other
lowercase letters are not equivalent to their corresponding uppercase representations.

(4) The maximum number of characters allowed in the character-string is 30.

(5) The PICTURE clause must be specified for every elementary item except an index data item. In that case
the use of this clause is prohibited.

(6) PIC is an abbreviation for PICTURE.

(7) The asterisk, when used as the zero suppression symbol, and the clause BLANK WHEN ZERO may not
appear in the same entry.

(8) In the Screen section, unless the SIGN IS phrase is specified, the S PICTURE character is ignored by the
compiler to be consistent with older versions of Interactive COBOL.

(9) In the Screen section, the PICTURE symbols P, V, CR, and DB can only be used with output (FROM)
fields.
E.12.4 General Rules

(1) There are five categories of data that can be described with a PICTURE clause: alphabetic, numeric,
alphanumeric, alphanumeric edited, and numeric edited.

(2) To define an item as alphabetic:
a. Its PICTURE character-string can contain only the symbol "A'; and

b. Its content, when represented in standard data format, must be one or more alphabetic characters.

182

DATA DIVISION - WORKING-STORAGE SECTION (PICTURE)

(3) To define an item as numeric:

a. Its PICTURE character-string can contain only the symbols '9', 'P', °S', and "V'. The number of digit
positions that can be described by the PICTURE character-string must range from 1 to 18 inclusive; and

b. Ifunsigned, its content when represented in standard data format must be one or more numeric
characters; if signed, the item may also contain a "+, *-', or other representation of an operational sign.

(4) To define an item as alphanumeric:

a. Its PICTURE character-string is restricted to certain combinations of the symbols A, "X, *9', and the
item is treated as if the character-string contained all *X's. A PICTURE character-string which contains all "A's or all
'9's does not define an alphanumeric item, and;

b. Its content, when represented in standard data format, must be one or more characters in the computer's
character set.

(5) To define an item as alphanumeric edited:

a. Its PICTURE character-string is restricted to certain combinations of the following symbols: A, "X', '9',
'B', *0', and */'; and must contain at least one "A' or ‘X' and must contain at least one B’ or '0' (zero) or /' (slant).

b. Its content when represented in standard data format must be two or more characters in the computer's
character set.

(6) To define an item as numeric edited:

a. Its PICTURE character-string is restricted to certain combinations of the symbols "B', /', "P', "V, "Z', 0",
oLt O+ U "CRY, "DBY and the currency symbol. The allowable combinations are determined from the
order of precedence of symbols and the editing rules; and

1) The number of digit positions that can be represented in the PICTURE character-string must range
from 1 to 18 inclusive; and

2) The character-string must contain at least one *0', 'B', */', "Z', **', "+, "', *.", *-', "CR/, "DB}, or the
currency symbol.

b. The content of each of the character positions must be consistent with the corresponding PICTURE
symbol.

(7) The size of an elementary item, where size means the number of character positions occupied by the
elementary item in standard data format, is determined by the number of allowable symbols that represent character
positions. An unsigned nonzero integer which is enclosed in parentheses following the symbols “A', *,', X', 9", "P',
7', B/, C0Y, T+, T or the currency symbol indicates the number of consecutive occurrences of the symbol.
The following symbols may appear only once in a given PICTURE: S', "V', *.", "CR', and 'DB".

(8) The functions of the symbols, used to describe an elementary item are explain as follows:

A Each "A' in the character-string represents a character position which can contain only an alphabetic
character and is counted in the size of the item.

B Each "B' in the character-string represents a character position into which the space character will be
inserted and is counted in the size of the item.

P Each "P' in the character-string indicates an assumed decimal scaling position and is used to specify the

location of an assumed decimal point when the point is not within the number that appears in the data item. The
scaling position character "P' is not counted in the size of the data item. Scaling position characters are counted in

183

Interactive COBOL Language Reference & Developer’s Guide - Part One

determining the maximum number of digit positions (18) in numeric edited items or numeric items. The scaling
position character. "P' can appear only as a continuous string of 'P's in the left-most or right-most digit positions
within a PICTURE character-string; since the scaling position character "P' implies an assumed decimal point (to the
left of "P's if "P's are left-most PICTURE symbols and to the right if "P's are right-most PICTURE symbols), the
assumed decimal point symbol "V' is redundant as either the left-most or right-most character within such a
PICTURE description. The symbol "P' and the insertion symbol " .' (period) cannot both occur in the same
PICTURE character-string.

In certain operations that reference a data item whose PICTURE character-string contains the symbol "P',
the algebraic value of the data item is used rather than the actual character representation of the data item. This
algebraic value assumes the decimal point in the prescribed location and zero in place of the digit position specified
by the symbol "P'. The size of the value is the number of digit positions represented by the PICTURE
character-string. These operations are any of the following:

a. Any operation requiring a numeric sending operand.

b. A MOVE statement where the sending operand is numeric and its PICTURE character-string contains
the symbol "P'.

c. A MOVE statement where the sending operand is numeric edited and its PICTURE character-string
contains the symbol "P' and the receiving operand is numeric or numeric edited.

d. A comparison operation where both operands are numeric.

In all other operations the digit positions specified with the symbol "P' are ignored and are not counted in the size of
the operand.

S The 'S'is used in a character-string to indicate the presence, but neither the representation nor,
necessarily, the position of an operational sign; it must be written as the left-most character in the PICTURE. The 'S’
is not counted in determining the size (in terms of standard data format characters) of the elementary item unless the
entry is subject to a SIGN clause which specifies the optional SEPARATE CHARACTER phrase.

V The "V'is used in a character-string to indicate the location of the assumed decimal point and may only
appear once in a character-string. The "V' does not represent a character position and therefore is not counted in the
size of the elementary item. When the assumed decimal point is to the right of the right-most symbol in the string
representing a digit position or scaling position, the "V' is redundant.

X Each X' in the character-string is used to represent a character position which contains any allowable
character from the computer's character set and is counted in the size of the item.

Z Each "Z' in a character-string may only be used to represent the left-most leading numeric character
positions which will be replaced by a space character when the content of that character position is a leading zero.

Each "Z' is counted in the size of the item.

9 Each "9'in the character-string represents a digit position which contains a numeric character and is
counted in the size of the item.

0 Each "0' (zero) in the character-string represents a character position into which the character zero will be
inserted. The '0'is counted in the size of the item.

/ Each */' (slant) in the character-string represents a character position into which the slant character will be
inserted. The */' is counted in the size of the item.

, Each .’ (comma) in the character-string represents a character position into which the character °,' will be
inserted. This character position is counted in the size of the item.

184

DATA DIVISION - WORKING-STORAGE SECTION (PICTURE)

. When the symbol "." (period) appears in the character-string it is an editing symbol which represents the
decimal point for alignment purposes and, in addition, represents a character position into which the character *."' will
be inserted. The character *.' is counted in the size of the item. For a given program the functions of the period and
comma are exchanged if the clause DECIMAL-POINT IS COMMA is stated in the SPECIAL-NAMES paragraph.
In this exchange the rules for the period apply to the comma and the rules for the comma apply to the period
wherever they appear in a PICTURE clause.

+ - CR DB These symbols are used as editing sign control symbols. When used, they represent the
character position into which the editing sign control symbol will be placed. The symbols are mutually exclusive in
any one character-string and each character used in the symbol is counted in determining the size of the data item.

* Each **' (asterisk) in the character-string represents a leading numeric character position into which an
asterisk will be placed when the content of that position is a leading zero. Each "*'is counted in the size of the item.

cs The currency symbol in the character-string represents a character position into which a currency symbol
is to be placed. The currency symbol in a character-string is represented by either the currency sign ($) or by the
single character specified in the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph. The currency
symbol is counted in the size of the item.

E.12.5 Editing Rules

(1) There are two general methods of performing editing in the PICTURE clause, either by insertion or by
suppression and replacement. There are four types of insertion editing available. They are:

a. Simple insertion c. Fixed insertion
b. Special insertion d. Floating insertion

There are two types of suppression and replacement editing:

a. Zero suppression and replacement with spaces
b. Zero suppression and replacement with asterisks

(2) The type of editing which may be performed upon an item is dependent upon the category to which the item
belongs. The following table specifies which type of editing may be performed upon a given category:

| CATEGORY ! TYPE OF EDITING |

Alphabetic None

Numeric None

Alphanumeric None

Alphanumeric edited Simple insertion ‘0', 'B', and /'
Numeric edited All, subject to rule 3 below

TABLE 4. PICTURE Editing

(3) Floating insertion editing and editing by zero suppression and replacement are mutually exclusive in a
PICTURE clause. Only one type of replacement may be used with zero suppression in a PICTURE clause.

(4) Simple insertion editing. The *,' (comma), 'B' (space), '0' (zero), and /' (slant) are used as the insertion
characters. The insertion characters are counted in the size of the item and represent the position in the item into
which the character will be inserted. If the insertion character °,' (comma) is the last symbol in the PICTURE
character-string, the PICTURE clause must be the last clause of the data description entry and must be immediately
followed by the separator period. This results in the combination of °,." appearing in the data description entry, or, if
the DECIMAL POINT IS COMMA clause is used, in two consecutive periods.

(5) Special insertion editing. The ".' (period) is used as the insertion character. In addition to being an insertion
character it also represents the decimal point for alignment purposes. The insertion character used for the actual

185

Interactive COBOL Language Reference & Developer’s Guide - Part One

decimal point is counted in the size of the item. The use of the assumed decimal point, represented by the symbol
"V' and the actual decimal point, represented by the insertion character, in the same PICTURE character-string is
disallowed. If the insertion character is the last symbol in the PICTURE character-string, the PICTURE clause must
be the last clause of that data description entry and must be immediately followed by the separator period. This
results in two consecutive periods appearing in the data description entry, or in the combination of °,." if the
DECIMAL-POINT IS COMMA clause is used. The result of special insertion editing is the appearance of the
insertion character in the item in the same position as shown in the character-string.

(6) Fixed insertion editing. The currency symbol and the editing sign control symbols "+, *-', "CR', and ‘DB’
are the insertion characters. Only one currency symbol and only one of the editing sign control symbols can be used
in a given PICTURE character-string. When the symbols 'CR' or "DB' are used they represent two character
positions in determining the size of the item and they must represent the right-most character positions that are
counted in the size of the item. If these character positions contain the symbols "CR' or "DB', the uppercase letters
are the insertion characters. The symbol '+ or '-' when used, must be either the left-most or right-most character
position to be counted in the size of the item. The currency symbol must be the left-most character position to be
counted in the size of the item except that it can be preceded by either a *+' or a *-' symbol. Fixed insertion editing
results in the insertion character occupying the same character position in the edited item as it occupied in the
PICTURE character-string. Editing sign control symbols produce the following results depending upon the value of
the data item:

EDITING SYMBOL IN PICTURE RESULT
CHARACTER-STRING
DATA ITEM DATA ITEM
POSITIVE OR NEGATIVE
ZERO
_ |

+ + -

- space -

CR 2 spaces CR

DB 2 spaces DB

TABLE 5. Sign Control in Fixed PICTURE Editing

(7) Floating insertion editing. The currency symbol and editing sign control symbols "+' and *-' are the floating
insertion characters and as such are mutually exclusive in a given PICTURE character-string.

Floating insertion editing is indicated in a PICTURE character-string by using a string of at least two of the
floating insertion characters. This string of floating insertion characters may contain any of the simple insertion
characters or have simple insertion characters immediately to the right of this string. These simple insertion charac-
ters are part of the floating string. When the floating insertion character is the currency symbol, this string of floating
insertion characters may have the fixed insertion characters "CR' and 'DB' immediately to the right of this string.

The left-most character of the floating insertion string represents the left-most limit of the floating symbols
in the data item. The right-most character of the floating string represents the right-most limit of the floating symbols
in the data item.

The second floating character from the left represents the left-most limit of the numeric data that can be
stored in the data item. Nonzero numeric data may replace all the characters at or to the right of this limit.

In a PICTURE character-string, there are only two ways of representing floating insertion editing. One way
is to represent any or all of the leading numeric character positions on the left of the decimal point by the insertion
character. The other way is to represent all of the numeric character positions in the PICTURE character-string by
the insertion character.

If the insertion character positions are only to the left of the decimal point in the PICTURE character-string,
the result is that a single floating insertion character will be placed into the character position immediately preceding
either the decimal point or the first nonzero digit in the data represented by the insertion symbol string, whichever is
farther to the left in the PICTURE character-string. The character positions preceding the insertion character are
replaced with spaces.

186

DATA DIVISION - WORKING-STORAGE SECTION (PICTURE)

If all numeric character positions in the PICTURE character-string are represented by the insertion
character, at least one of the insertion characters must be to the left of the decimal point.

When the floating insertion character is the editing control symbol "+' or *-' the character inserted depends
upon the value of the data item:

EDITING SYMBOL IN PICTURE RESULT
CHARACTER-STRING
DATA ITEM DATA ITEM
POSITIVE OR NEGATIVE
ZERO
_ |
+ + -
- space -

TABLE 6. Sign Control in Floating PICTURE Editing

If all numeric character positions in the PICTURE character-string are represented by the insertion
character, the result depends upon the value of the data. If the value is zero the entire data item will contain spaces.
If the value is not zero, the result is the same as when the insertion character is only to the left of the decimal point.

To avoid truncation, the minimum size of the PICTURE character-string for the receiving data item must be
the number of characters in the sending data item, plus the number of nonfloating insertion characters being edited
into the receiving data item, plus one for the floating insertion character. If truncation does occur, the value of the
data that is used for editing is the value after truncation.

(8) Zero suppression editing. The suppression of leading zeros in numeric character positions is indicated by
the use of the alphabetic character *Z' or the character **' (asterisk) as suppression symbols in a PICTURE
character-string. These symbols are mutually exclusive in a given PICTURE character-string. Each suppression
symbol is counted in determining the size of the item. If 'Z'is used the replacement character will be the space and if
the asterisk is used, the replacement character will be “*'.

Zero suppression and replacement is indicated in a PICTURE character-string by using a string of one or
more of the allowable symbols to represent leading numeric character positions which are to be replaced when the
associated character position in the data contains a leading zero. Any of the simple insertion characters embedded in
the string of symbols or to the immediate right of this string are part of the string.

In a PICTURE character-string, there are only two ways of representing zero suppression. One way is to
represent any or all of the leading numeric character positions to the left of the decimal point by suppression
symbols. The other way is to represent all of the numeric character positions in the PICTURE character-string by
suppression symbols.

If the suppression symbols appear only to the left of the decimal point, any leading zero in the data which
corresponds to a symbol in the string is replaced by the replacement character. Suppression terminates at the first
nonzero digit in the data represented by the suppression symbol string or at the decimal point, whichever is
encountered first.

If all numeric character positions in the PICTURE character-string are represented by suppression symbols
and the value of the data is not zero the result is the same as if the suppression characters were only to the left of the
decimal point. If the value is zero and the suppression symbol is *Z', the entire data item, including any editing
characters, is spaces. If the value is zero and the suppression symbol is **' the entire data item, including any
insertion editing symbols except the actual decimal point, will be **'. In this case, the actual decimal point will
appear in the data item.

(9) The symbols "+, *-', **', "Z' and the currency symbol, when used as floating replacement characters, are
mutually exclusive within a given character-string.

187

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.12.6 Precedence Rules

The following table shows the order of precedence when using characters as symbols in a character-string. An "X' at
an intersection indicates that the symbol(s) at the top of the column may precede (but not necessarily immediately),
in a given character-string, the symbol(s) at the left of the row. Two arguments appearing together indicate that the
symbols are mutually exclusive. The currency symbol is indicated by the symbol “cs'.

At least one of the symbols "A', X', "Z', 9", or **', or at least two occurrences of one of the symbols "+, *-', or “cs'
must be present in a PICTURE character-string.

Nonfloating insertion symbols "+' and *-', floating insertion symbols "Z', **', *+', *-', and “cs', and other symbol P’
appear twice in the PICTURE character precedence chart in the table. The left-most column and upper-most row for
each symbol represents its use to the left of the decimal point position. The second appearance of the symbol in the
chart represents its use to the right of the decimal point position.

Non-floating Insertion Floating
First Symbol Symbols Insertion Other Symbols
Symbols
Second Blo|/ |, |- |+ |+ |CR |cs |z]Z |+ |+ |cs |cs ||9]|2 |s |V |p |P
Symbol - |- |DB ¥ == X
B x|x |x |x |x |x X x|x |x |z [x |x X |x X X
Non-
floating x|x |x |x |x |x X x|x |x |z [x |x X |x X X
Insertion |/ |Ix|x |x |x |x |x x Ix]x |x |x|x |x |[x]x x x
Symbols
, x|x |x |x |x |x X x|x |x |z [x |x X X X
x|x |x |x X X X X X X
+
+ x|x |x |x |x x x|[x x |x x x |x |x
CR ||x|x |x |x |x X X [x X |x X X |x [x
DB
cs X
Z x[x |x |x X x x
Floating |*
Insertion
Symbols x[x |x |x |x |x X x|x X X
+ x|x |x |x X X
+ x|x |x |x |x X x |x X X
cs ||x]|x |x |x X X
cs ||x|x |x |x |x |x X |x X X
9 x|x |x |x |x |x X X X X x|x |x |x X
Other A
Symbols xx [xx
X
S
\ XX |x |x X X X X X X X X
P XX |x |x X X X X X X X X
P X X X |x X

TABLE 7. PICTURE Precedence Rules

Note: When two of the same symbols appear twice in the chart, the left-most column and
upper-most row symbol represents its use to the left of the decimal point position.
The second appearance of the symbol in the chart represents its use to the right of
the decimal point position.

188

DATA DIVISION - WORKING-STORAGE SECTION (REDEFINES)

E.13. REDEFINES Clause
E.13.1 Function

The REDEFINES clause allows the same computer storage area to be described by different data description entries.

E.13.2 General Format

data-name-1
level-number EILLER [REDEFINES data-name-2]
Note: Level-number, data-name-1, and FILLER are shown in the above format to improve clarity. Level-number, data-name-1, and

FILLER are not part of the REDEFINES clause.

E.13.3 Syntax Rules

(1) The REDEFINES clause, when specified, must immediately follow the subject of the entry.

(2) The level-numbers of data-name-2 and the subject of the entry must be identical, but must not be 66 or 88.

(3) This clause must not be used in level 01 entries in the File Section.

(4) The data description entry for data-name-2 cannot contain an OCCURS clause. However, data-name-2
may be subordinate to an item whose data description entry contains an OCCURS clause. In this case, the reference
to data-name-2 in the REDEFINES clause may not be subscripted. Neither the original definition nor the

redefinition can include a variable occurrence item.

(5) Data-name-2 must not be qualified even if it is not unique; no ambiguity of reference exists in this case
because of the required placement of the REDEFINES clause within the source program.

(6) Multiple redefinitions of the same character positions are permitted. Multiple redefinitions of the same
character positions must all use the data-name of the entry that originally defined the area.

(7) The entries giving the new description of the character positions must not contain any VALUE clauses,
except in condition-name entries.

(8) No entry having a level-number numerically lower than the level-number of data-name-2 and the subject of
the entry may occur between the data description entries of data-name-2 and the subject of the entry.

(9) The entries giving the new descriptions of the character positions must follow the entries defining the area
of data-name-2, without intervening entries that define new character positions.

(10) Data-name-2 may be subordinate to an entry which contains a REDEFINES clause.

(11) If the data item referenced by data-name-2 is either declared to be an external data record or is specified
with a level-number other than 01, the number of character positions it contains must be equal to the number of
character positions in the data item referenced by the subject of this entry. If the data-name referenced by
data-name-2 is specified with a level-number of 01 and is not declared to be an external data record, there is no such
constraint.

189

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.13.4 General Rules

(1) Storage allocation starts at data-name-2 and continues over a storage area sufficient to contain the number
of character positions in the data item referenced by the data-name-1 or FILLER clause.

(2) When the same character position is defined by more than one data description entry, the data-name
associated with any of those data description entries can be used to reference that character position.

190

DATA DIVISION - WORKING-STORAGE SECTION (RENAMES)

E.14. RENAMES Clause
E.14.1 Function

The RENAMES clause permits alternative, possibly overlapping, groupings of elementary items.

E.14.2 General Format

THROUGH
66 data-name-1 RENAMES data-name-2 [THRU data-name-3] .

Note: Level-number 66 and data-name-1 are shown in the above format to improve clarity. Level-number 66 and data-name-1 are
not part of the RENAMES clause.

E.14.3 Syntax Rules
(1) Any number of RENAMES entries may be written for a logical record.

(2) All RENAMES entries referring to data items within a given logical record must immediately follow the last
data description entry of the associated record description entry.

(3) Data-name-1 cannot be used as a qualifier, and can only be qualified by the names of the associated level
01, FD, or SD entries. Neither data-name-2 nor data-name-3 may have an OCCURS clause in its data description
entry nor be subordinate to an item that has an OCCURS clause in its data description entry.

(4) Data-name-2 and data-name-3 must be names of elementary items or groups of elementary items in the
same logical record, and cannot be the same data-name. A 66 level entry cannot rename another 66 level entry nor
can it at rename a 77, 88, or 01 level entry.

(5) Data-name-2 and data-name-3 may be qualified.

(6) None of the items within the range, including data-name-2 and data-name-3, if specified, can be variable
occurrence data items.

(7) The words THROUGH and THRU are equivalent.

(8) The beginning of the area described by data-name-3 must not be to the left of the beginning of the area
described by data-name-2. The end of the area described by data-name-3 must be to the right of the end of the area
described by data-name-2. Data-name-3, therefore, cannot be subordinate to data-name-2.

E.14.4 General Rules

(1) When data-name-3 is specified, data-name-1 is a group item which includes all elementary items starting
with data-name-2 (if data-name-2 is an elementary item) or the first elementary item in data-name-2 (if
data-name-2 is a group item), and concluding with data-name-3 (if data-name-3 is an elementary item) or the last

elementary item in data-name-3 (if data-name-3 is a group item).

(2) When data-name-3 is not specified, all of the data attributes of data-name-2 become the data attributes for
data-name-1.

191

Interactive COBOL Language Reference & Developer’s Guide - Part One
E.15. SIGN Clause

E.15.1 Function

The SIGN clause specifies the position and the mode of representation of the operational sign when it is necessary to
describe these properties explicitly.

E.15.2 General Format

LEADING
[SIGN IS] {IBEII NG } [SEPARATE CHARACTER |

E.15.3 Syntax Rules

(1) The SIGN clause may be specified only for a numeric data description entry whose PICTURE contains the
character 'S'.

(2) The numeric data description entries to which the SIGN clause applies must be described, implicitly or
explicitly, as USAGE IS DISPLAY.

(3) If the CODE-SET clause is specified in a file description entry, any signed numeric data description entries
associated with that file description entry must be described with the SIGN IS SEPARATE clause.

E.15.4 General Rules

(1) The optional SIGN clause, if present, specifies the position and the mode of representation of the
operational sign for the numeric data description entry to which it applies, or for each numeric data description entry
subordinate to the group to which it applies. The SIGN clause applies only to numeric data description entries
whose PICTURE contains the character *S'; the *S' indicates the presence of, but neither the representation nor,
necessarily, the position of the operational sign.

(2) If a SIGN clause is specified in a group item subordinate to a group item for which a SIGN clause is
specified, the SIGN clause specified in the subordinate group item takes precedence for that subordinate group item.

(3) If a SIGN clause is specified in an elementary numeric data description entry subordinate to a group item for
which a SIGN clause is specified, the SIGN clause specified in the subordinate elementary numeric data description
entry takes precedence for that elementary numeric data item.

(4) A numeric data description entry whose PICTURE contains the character *S', but to which no optional
SIGN clause applies, has an operational sign, but neither the representation, nor, necessarily, the position of the
operational sign is specified by the character 'S'. For items whose USAGE IS DISPLAY, the default operational
sign is the same as SIGN IS TRAILING. For items whose USAGE IS COMPUTATION, the operational sign is
inherent in the binary representation of the value. General rules 5 through 7 do not apply to such default signed
numeric data items.

(5) If the optional SEPARATE CHARACTER phrase is not present, then:

a. The operational sign will be presumed to be associated with the leading (or, respectively, trailing) digit
position of the elementary numeric data item, more commonly called over punched.

b. The letter °S' in a PICTURE character-string is not counted in determining the size of the item (in terms
of standard data format characters).

192

DATA DIVISION - WORKING-STORAGE SECTION (SIGN)

c. The table below defines the valid sign(s) for data items.

Digit Positive Negative
0 { <173> } <175>
1 A <101> J <112>
2 B <102> K <113>
3 C <103> L <114>
4 D <104> M <115>
5 E <105> N <116>
6 F <106> O <117>
7 G <107> P <120>
8 H <110> Q <121>
9 I <111> R <122>

TABLE 8. SIGN Overpunch Characters
(6) If the optional SEPARATE CHARACTER phrase is present, then:

a. The operational sign will be presumed to be the leading (or, respectively, trailing) character position of
the elementary numeric data item; this character position is not a digit position.

b. The letter 'S' in a PICTURE character-string is counted in determining the size of the item (in terms of
standard data format characters).

c. The operational signs for positive and negative are the standard data format characters "+ and "-'
respectively.

(7) Every numeric data description entry whose PICTURE contains the character "S' is a signed numeric data

description entry. If a SIGN clause applies to such an entry and conversion is necessary for purposes of computation
or comparisons, conversion takes place automatically.

193

Interactive COBOL Language Reference & Developer’s Guide - Part One
E.16. SYNCHRONIZED Clause (Documentation only)

E.16.1 Function
The SYNCHRONIZED clause specifies the alignment of an elementary item on the natural boundaries of the

computer memory.

E.16.2 General Format

SYNCHRONIZED LEFT
SYNC

E.16.3 Syntax Rules
(1) This clause may only appear with an elementary item.

(2) SYNC is an abbreviation for SYNCHRONIZED.

E.16.4 General Rules

(1) The SYNCHRONIZED clause is used for documentation only. All data items within a record are aligned
on the next available byte in storage.

(2) All 01 and 77 level items are aligned on an even byte boundary. This default alignment may be overridden
with the -B compiler switch.

194

DATA DIVISION - WORKING-STORAGE SECTION (USAGE)

E.17. USAGE Clause
E.17.1 Function

The USAGE clause specifies the format of a data item in the computer storage.

E.17.2 General Format (ANSI 74 and ANSI 85)

BINARY
COMPUTATIONAL | COMP
COMPUTATIONAL-3 | COMP-3
COMPUTATIONAL-5 | COMP-5

[USAGE IS] DISPLAY
INDEX
PACKED-DECIMAL
POINTER

E.17.3 General Format (VXCOBOL)
COMPUTATIONAL | COMP
COMPUTATIONAL-3 | COMP-3
[USAGE IS] DISPLAY
INDEX

E.17.4 Syntax Rules

(1) A USAGE clause specifying BINARY, COMPUTATION-5, PACKED-DECIMAL, or POINTER may not
be used with the VXCOBOL dialect.

(2) The USAGE clause may be written in any data description entry with a level-number other than 66 or 88.

(3) If the USAGE clause is written in the data description entry for a group item, it may also be written in the
data description entry for any subordinate elementary item or group item, but the same usage must be specified in
both entries.

(4) An elementary data item whose declaration contains, or an elementary data item subordinate to a group item
whose declaration contains, a USAGE clause specifying BINARY, COMPUTATIONAL, COMPUTATIONAL-3,
COMPUTATIONAL-5, or PACKED-DECIMAL, must be declared with a PICTURE character-string that describes
a numeric item, i.e., a PICTURE character-string that contains only the symbols "P', °S', "V', and '9'.

(5) COMP is an abbreviation for COMPUTATIONAL.

(6) COMP-3 is an abbreviation for COMPUTATIONAL-3.

(7) COMP-5 is an abbreviation for COMPUTATIONAL-5.

(8) An index data item can be referenced explicitly only in a SET statement, a relation condition, the USING
phrase of a Procedure Division header, or the USING phrase of a CALL statement.

(9) The BLANK WHEN ZERO, JUSTIFIED, PICTURE, SIGN, SYNCHRONIZED, and VALUE clauses must
not be specified for data items whose usage is INDEX.

195

Interactive COBOL Language Reference & Developer’s Guide - Part One

(10) An elementary data item described with a USAGE IS INDEX or USAGE IS POINTER clause must not be
a conditional variable.

(11) An elementary data item described with a USAGE IS POINTER must contain no other data description
clauses other than VALUE IS NULL.

E.17.5 General Rules
(1) If the USAGE clause is written at a group level, it applies to each elementary item in the group.

(2) The USAGE clause specifies the manner in which a data item is represented in the storage of a computer. It
may affect the use of the data item, and the specifications for some statements in the Procedure Division may restrict
the USAGE clause of the operands referred to. The USAGE clause may affect the radix or type of character
representation of the item.

(3) The USAGE IS BINARY or COMPUTATIONAL clause specifies a twos-complement big-endian binary
representation of the numeric item in the storage of the computer. The table below lists the bytes required to store
BINARY and COMPUTATIONAL items.

VXCOBOL ANSI 74 and ANSI 85 =
Number of Decimal Digits Number of Decimal Digits
Unsigned Signed Bytes Required
1-2 1-2 1-2 1
3-4 3-4 3-4 2
5-6 5-7 5-6 3
7-9 8-9 7-9 4
10-11 10-12 10-11 5
12-14 13-14 12-14 6
15-16 15-16 15-16 7
17-18 17-18 17-18 8

TABLE 9. BINARY & COMPUTATIONAL Storage Allocation

(4) The USAGE IS DISPLAY clause (whether specified explicitly or implicitly) specifies that a standard data
format is used to represent a data item in the storage of the computer, and that the data item is aligned on a character
boundary. The data is stored as ASCII characters in bytes.

(5) If the USAGE clause is not specified for an elementary item, or for any group to which the item belongs, the
usage is implicitly DISPLAY.

(6) The USAGE IS COMPUTATIONAL-3 and PACKED-DECIMAL clauses specify that a radix of 10
(packed decimal) is used to represent a numeric item in the storage of the computer. Furthermore, this clause
specifies that each digit position must occupy the minimum possible configuration in computer storage.
COMPUTATIONAL-3 and PACKED-DECIMAL items are stored most significant digit first as a string of 4-bit
half-bytes (nibbles). Each nibble except the rightmost, contains a hexadecimal digit of 0 through 9; the remaining
nibble contains a hexadecimal C if the data is positive or unsigned or D if the data is negative. The sign nibble is
always present as the last nibble. Because there must be an even number of nibbles (i.e., you cannot store a
half-byte) and a sign nibble is always stored, the number of digits stored is always rounded up to an odd number.
Thus a PIC 99 is stored the same as a PIC 999.

(7) The usage is COMPUTATIONAL-S clause specifies a twos-complement binary representation of the
numeric item in the storage of the computer. The format of a COMPUTATIONAL-5 item differs from that of a
COMPUTATIONAL item in that in is stored in an order that is natural to the host computer. On "big-endian"
machines, data is stored with high-order bytes at the lowest addresses and successively lower-order bytes at
successively higher addresses. On "little-endian" machines, data is stored in the reverse order, i.e., the lower the
address the lower the significance of the byte. For example, a computational item with a four byte hexadecimal

196

DATA DIVISION - WORKING-STORAGE SECTION (USAGE)

value of 12 34 56 78 would be stored as 12 34 56 78 on a “big-endian” machine and as 78 56 34 12 on a
“little-endian” machine. Most RISC processors are “big-endian” and most Intel processors are “little-endian”.

NOTE: Data stored in a COMPUTATIONAL-S field may not be transportable to a different machine since
different machines have different byte orderings.

The number of bytes required to store COMPUTATIONAL-S5 items is described in the following table. Storage does
not differ between signed and unsigned items.

Number of Decimal Digits Bytes Required
1-2 1
3-4 2
5-9 4
10-18 8

TABLE 10. COMPUTATIONAL-5 Storage Allocation

(8) The USAGE IS INDEX clause specifies that a data item is an index data item and contains a value which
must correspond to an occurrence number of a table element. INDEX items are represented internally as 4-byte
unsigned items.

(9) The USAGE IS POINTER clause specifies a data-item in which the address of a data item can be stored. A
pointer item requires 4 bytes with compiler revisions 6 and below and 8 bytes for revision 7 and greater. The format
of the item is machine dependent. USAGE IS POINTER data items have their values assigned by the SET or
INITTALIZE statements and may appear in relational conditions for equality and inequality.

(10) When a MOVE statement or an input-output statement that references a group item that contains an index
data item or a pointer data item is executed, no conversion of the data item takes place.

(11) The ON SIZE condition is processed as follows for the various usages:
a. For a BINARY item, the number of digits used in the check is based on the picture specified.

b. For a COMPUTATIONAL item, the check is based on the picture specified except for ANSI 74 where it
is based on storage size rather than the picture. (The -G p and -G b compiler switches allow COMPUTATIONAL
items to be size checked based on picture and storage respectively thus allowing the default behavior to be
overridden.)

c. For a PACKED-DECIMAL item, the number of digits used in the check is based on the picture
specified.

d. For a COMPUTATIONAL-3 item, the check is based on storage size rather than the picture; i.e., it uses
the rounded-up digit count as explained in rule 8.

e. Fora COMPUTATIONAL-S item, the check is based on storage size rather than picture.

197

Interactive COBOL Language Reference & Developer’s Guide - Part One
E.18. USAGE Clause (ISQL)

E.18.1 Function

This USAGE clause specifies the format of a data item in the computer storage when used with the ZSQL feature set..

E.18.2 General Format

BIGINT
{QM— m{ } [VARYING] [(integer-1)]
DATE
INDICATOR
INT
INTEGER

YEAR (integer-2) [TO MONTH]
MONTH (integer-2)
HOUR
DAY (integer-2) [TO MINUTE]
INTERVAL 1 SECOND [(integer-3)] (
. MINUTE
HOUR (integer-2) [TQ § oe~onp [(integer-3) |]
MINUTE (integer-2) [TO SECOND [(integer-3)] 1]
SECOND (integer-2 [integer-3 1)

[USAGE IS]

NUMERIC (integer-4 [integer-51])
SMALLINT
TIME [(integer-3)]
TIMESTAMP [(integer-3)]

E.18.3 Syntax Rules

(1) A USAGE clause specifying BIGINT, CHARACTER, DATE, INDICATOR, INTEGER, INTERVAL,
NUMERIC, SMALLINT, TIME, or TIMESTAMRP is available only when the ISQL feature-set is enabled and
appear as USAGE options that are in addition to certain dialect-specific options.

(2) The USAGE clause may be written in any data description entry with a level-number other than 66 or 88.

(3) A USAGE clause specifying BIGINT, CHARACTER, DATE, INDICATOR, INTEGER, INTERVAL,
NUMERIC, SMALLINT, TIME, or TIMESTAMP must not be specified at the group level.

(4) If the USAGE clause is written in the data description entry for a group item, it may also be written in the
data description entry for any subordinate elementary item or group item, but the same usage must be specified in
both entries.

(5) CHAR is an abbreviation for CHARACTER.

(6) INT is an abbreviation for INTEGER.

(7) The BLANK WHEN ZERO, JUSTIFIED, PICTURE, SIGN, and SYNCHRONIZED clauses must not be

specified for data items whose usage is BIGINT, CHARACTER, DATE, INDICATOR, INTEGER, INTERVAL,
NUMERIC, SMALLINT, TIME, or TIMESTAMP.

198

DATA DIVISION - WORKING-STORAGE SECTION (USAGE (/SQL))

(8) The value of integer-1 must be greater than zero and less than or equal to 65535. If infeger-1 is omitted it is
assumed to have a value of one.

(9) The value of integer-2 must be greater than zero and less than the values specified in the general rules
below.

(10) The value of integer-3 must be greater than zero and less than or equal to six.
(11) The value of integer-4 must be greater than zero and less than or equal to 18.

(12) The value of integer-5 must be greater than or equal to zero and less than or equal to the value of
integer-4. 1f integer-5 is omitted it is assumed to have a value of zero.

E.18.4 General Rules
(1) If the USAGE clause is written at a group level, it applies to each elementary item in the group.

(2) The USAGE clause specifies the manner in which a data item is represented in the storage of a computer. It
may affect the use of the data item, and the specifications for some statements in the Procedure Division may restrict
the USAGE clause of the operands referred to. The USAGE clause may affect the radix or type of character
representation of the item.

(3) The USAGE IS BIGINT clause specifies a data item which can store an SQL integer value. It has the same
storage format and runtime behavior as a signed 8-byte COMPUTATIONAL-5 data item.

(4) The USAGE IS CHARACTER clause specifies a data-item which can store an SQL character string value.
The value of integer-1 specifies the number of characters that can be stored in the item. If integer-1 is omitted, it is
assumed to have a value of one. The maximum value for integer-1 is 65535.

If the VARYING phrase is specified, the data item may vary in length from zero characters to the number of
characters specified by integer-1. The format of an elementary item in storage has a two-byte binary current-length
field (equivalent to a 2-byte unsigned COMPUTATIONAL field) followed by the alphanumeric data field. The
format is equivalent to the following data redefinition:

01 TOP-LEVEL.
02 VARYING-ITEM CHARACTER VARYING (20).
02 VARYING-RED REDEFINES VARYING-ITEM.
03 RED-LENGTH PIC 9(4) COMPUTATIONAL.
03 RED-ITEM PIC X(20).

When the data item is referenced at execution, the value of the length field is implicitly referenced to determine the
effective length of the data field. Only the data positions encompassed by the current length are referenced.

(5) The USAGE IS DATE clause specifies a data item which can store an SQL date value. The value is stored
as a sequence of 8 ASCII decimal digits (yyyymmdd), with the leftmost four-digits specifying the year field, the next
two-digits specifying the month field, and the final two digits specifying the day of the month field. The values or
the various fields must meet the rules for valid month and day values in the Gregorian calendar. The size of a DATE
data item is 8 bytes.

(6) The USAGE IS INTEGER clause specifies a data item which can store an SQL integer value. It has the
same storage format and runtime behavior as a signed 4-byte COMPUTATIONAL-5 data item.

199

Interactive COBOL Language Reference & Developer’s Guide - Part One

(7) The USAGE IS INDICATOR clause specifies a data item which can store the value that indicates whether
an item has no value (is NULL), has a valid value (is VALID), or has a truncated value (is OVERFLOW). The value
can be set by using the SET statement or by specifying the data-item in the INDICATOR clause in the parameter list
of an SQL statement.

(8) The USAGE IS INTERVAL clause specifies a data item which can store an SQL interval value. The value
is stored as a sign, containing an ASCII ‘+’ or ‘-¢ character, followed by a sequence of ASCII decimal digits
expressing the interval value in units of the rightmost field. Thus “10:08" MINUTE TO SECOND is stored as
+0608. The number of digits in the leftmost field can be set by specifying integer-2. The maximum and default
values for integer-2 depend on the type of the leftmost field specifier and are specified in the following table. The
size is 1 byte plus the sum of the sizes of the individual fields in the range, except for the DAY TO SECOND
interval, which is one less (just the sum of the sizes of the individual fields.) This yields a minimum size of 2 bytes
(sign plus a single field of precision 1) and a maximum size of 19 bytes.

Field Maximum Precision Default Precision
as Leftmost Field

YEAR 4 4

MONTH 6 2

DAY 7 2

HOUR 8 2
MINUTE 10 2
SECOND 12 2

TABLE 11. INTERVAL Field Maximum Precision (ISQL)

(9) The USAGE IS NUMERIC clause specifies a data item that can store an SQL decimal numeric value. It has
the same storage format and runtime behavior as an numeric data item declared as follows.

If integer-5 is not specified:
PICTURE S9(integer-4) SIGN IS LEADING SEPARATE USAGE IS DISPLAY
If integer-5 is specified:
PICTURE S9(integer-4 — integer-5)V9(integer-5) SIGN IS LEADING SEPARATE USAGE IS DISPLAY

(10) The USAGE IS SMALLINT clause specifies a data item which can store an SQL small integer value. It
has the same storage format and runtime behavior as a signed 2-byte COMPUTATIONAL-S data item.

(11) The USAGE IS TIME clause specifies a data item which can store an SQL time value. The value is stored
as a sequence of 6 (hhmmss) plus integer-3 ASCII decimal digits, with the leftmost two-digits specifying the hours
field, the next two-digits specifying the minutes field, the next two-digits specifying the seconds field, and the final
integer-3 digits specifying the fractional seconds field. If infeger-3 is omitted, it is assumed to be zero. The value of
integer-3 must be less than or equal to 6. The values for the various fields must meet the rules for time keeping
using a 24 hour clock, i.e., 00-23 for hours and 00-59 for minutes and seconds. Thus size of a TIME item is 6 plus
integer-3 bytes, with a maximum of 12 bytes.

(12) The USAGE IS TIMESTAMP clause specifies a data item which can store an SQL timestamp value. The
value is stored as a DATE data item directly followed by a TIME data item with integer-3 fraction digits. The size
of a TIMESTAMP data item is 14 plus integer-3 bytes.

(13) When a MOVE statement or an input-output statement that references a group item that contains an
indicator data item is executed, no conversion of the data item takes place.

(14) The ON SIZE condition is processed as follows for the various usages:

a. For an INTEGER or SMALLINT item, the check is based on storage size rather than picture.

200

DATA DIVISION - WORKING-STORAGE SECTION (USAGE (/SQL))

b. For a NUMERIC item, the check is based on the declared precision.

(14) Uninitialized DATE and TIME items can cause exceptions if used before a valid value is stored.

201

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.19. VALUE Clause
E.19.1 Function

The VALUE clause defines the initial value of Working-Storage data items and the values associated with
condition-names.

E.19.2 General Format

Format 1:
literal-1
NULL
VALUE IS VALID
OVERFLOW
Format 2:
VALUE IS . THROUGH |
{1 /ALUES ARE } {Ilteral-Z { THRU } literal-3 }

E.19.3 Syntax Rules
(1) The words THROUGH and THRU are equivalent.

(2) A signed numeric literal must have associated with it a signed numeric PICTURE character-string or a
usage that represents a signed numeric item.

(3) All numeric literals in a VALUE clause of an item must have a value which is within the range of values
indicated by the PICTURE clause, and must not have a value which would require truncation of nonzero digits.

Items whose USAGE enables size checking by storage must have a value which will fit in the storage allocated.

(4) Nonnumeric literals in a VALUE clause of an item must not exceed the size indicated by the PICTURE
clause.

(5) The word NULL may only be specified for an item with usage POINTER or (/SQL) INDICATOR.
(6) (ISQL) The words VALID and OVERFLOW may only be specified for an item of usage INDICATOR.

(7) (ISQL) If the class of the item is date-time or interval, the literals in the VALUE clause must be of the
same category and must not have a value which would require the truncation of nonzero digits.

(8) Literal-1 may not be specified for an item with usage POINTER or (ISQL) usage INDICATOR.

E.19.4 General Rules

(1) The VALUE clause must not conflict with other clauses in the data description of the item or in the data
description within the hierarchy of the item.

(2) If the category of the item is numeric, all literals in the VALUE clause must be numeric. If the literal

defines the value of a working storage item, the literal is aligned in the data item according to the standard alignment
rules.

202

DATA DIVISION - WORKING-STORAGE SECTION (VALUE)

(3) If the category of the item is alphabetic, alphanumeric, alphanumeric edited, or numeric edited, all literals in
the VALUE clause must be nonnumeric literals. The literal is aligned in the data item as if the data item had been
described as alphanumeric. Editing characters in the PICTURE clause are included in determining the size of the
data item but have no effect on initialization of the data item. Therefore, the VALUE for an edited item must be
specified in an edited form.

(4) Initialization is not affected by any BLANK WHEN ZERO or JUSTIFIED clause that may be specified.

(5) (ISQL) If the category of the item is date, time, or timestamp the literals in the VALUE clause must be of
the same category. If the literal defines the value of a working-storage item, the literal may also be a simple
nonnumeric literal whose content matches the content of a literal of the same category as the item.

(6) (ISQL) If the category of the item is year-to-month or day-to-time, the literals in the VALUE clause must be
of the same category and have the same range of field specifiers. If the literal defines the value of a working-storage
item, the literal may also be a simple nonnumeric literal whose content matches the content of a literal of the same
category and with the same range of field specifiers as the item.

E.19.5 Condition-Name Rules
(1) In a condition-name entry, the VALUE clause is required. The VALUE clause and the condition-name
itself are the only two clauses permitted in the entry. The characteristics of a condition-name are implicitly those of

its conditional variable.

(2) Format 2 can be used only in conjunction with condition-names. Whenever the THRU phrase is used,
literal-2 must be less than /iteral-3.

(3) A condition-name entry may not be used if the conditional variable is defined with usage POINTER, usage
INDEX or (ISQL) usage INDICATOR.
E.19.6 Data Description Entries Other Than Condition-Names

(1) Rules governing the use of the VALUE clause differ with the respective sections of the Data Division:

a. In the File Section, the VALUE clause may be used only in condition-name entries; therefore, the initial
value of the data item in the File Section is undefined.

b. In the Linkage Section, the VALUE clause may only be used in condition-name entries.

c. In the Working-Storage Section, the VALUE clause must be used in condition-name entries. VALUE
clauses in the Working-Storage Section of a program take effect only when the program is placed into its initial state.
If the VALUE clause is used in the description of the data item, the data item is initialized to the defined value. If
the VALUE clause is not associated with a data item, the initial value of that data item is undefined.

d. In the Screen Section a figurative constant cannot be used.

(2) The VALUE clause must not be stated in a data description entry that contains a REDEFINES clause, or in
an entry that is subordinate to an entry containing a REDEFINES clause. This rule does not apply to condition-name
entries.

(3) If the VALUE clause is used in an entry at the group level, the literal must be a figurative constant or a
nonnumeric literal, and the group area is initialized without consideration for the individual elementary or group

items contained within this group. The VALUE clause cannot be stated at the subordinate levels within this group.

(4) The VALUE clause must not be specified for a group item containing items subordinate to it with
descriptions including JUSTIFIED, SYNCHRONIZED, or USAGE (other than USAGE IS DISPLAY).

203

Interactive COBOL Language Reference & Developer’s Guide - Part One

(5) A Format 1 VALUE clause specified in a data description entry that contains an OCCURS clause or in a
entry that is subordinate to an OCCURS clause causes every occurrence of the associated data item to be assigned
the specified value.

(6) If a VALUE clause is specified in a data description entry of a data item which is associated with a variable
occurrence data item, the initialization of the data item behaves as if the value of the data item referenced by the
DEPENDING ON phrase in the OCCURS clause specified for that variable occurrence data item is set to the
maximum number of occurrences as specified by the OCCURS clause. A data item is associated with a variable
occurrence data item in any of the following cases:

a. Itis a group data item containing a variable occurrence data item.
b. Itis a variable occurrence data item.
c. It is subordinate to a variable occurrence data item.

If a VALUE clause is associated with the data item referenced by a DEPENDING ON phrase, that value is
considered to be placed in the data item after the variable occurrence data item has been initialized.

(7) (ISQL) If the VALUE clause is specified in a data description entry that contains the VARYING phrase, the

current length of the data item is also initialized to the length of the literal item specified in the VALUE clause. If
the literal item is a figurative constant, the length is the length of a single occurrence of the constant.

204

DATA DIVISION - VIRTUAL-STORAGE SECTION
F. VIRTUAL-STORAGE SECTION (VXCOBOL)

The Virtual-Storage Section is located in the Data Division of a source program. The Virtual-Storage Section is
treated as an extension of the Working-Storage Section.

The general format of the Virtual-Storage Section is the same as that shown for the Working-Storage Section.

All rules that apply to the Working-Storage Section apply equally to the Virtual-Storage Section.

205

Interactive COBOL Language Reference & Developer’s Guide - Part One

G. LINKAGE SECTION

The Linkage Section is located in the Data Division of a source program. The Linkage Section appears in the called
program and describes data items that are to be referred to by the calling program and the called program.

The Linkage Section in a program is meaningful if and only if the object program is to function under the control of
a CALL statement, and the CALL statement in the calling program contains a USING phrase or if the program was
passed data from another program with a CALL PROGRAM statement that contained a USING phrase or the
program was started with data passed in when the runtime system was initially started.

The Linkage Section is used for describing data that is available through the calling program but is to be referred to
in both the calling and the called program. The mechanism by which a correspondence is established between the
data items described in the Linkage Section of a called program and data items described in the calling program is
described elsewhere in these specifications. In the case of index-names, no such correspondence is established and
index-names in the called and calling programs always refer to separate indices.

The structure of the Linkage Section is the same as that previously described for the Working-Storage Section,
beginning with a section header, followed by noncontiguous data items and/or record description entries.

The general format of the Linkage Section is shown below.

LINKAGE SECTION.

77-level-description-entry
record-description-entry

If a data item in the Linkage Section is accessed in a program which is not a called program, the effect is undefined.

G.1. Noncontiguous Linkage Storage
Items in the Linkage Section that bear no hierarchical relationship to one another need not be grouped into records
and are classified and defined as noncontiguous elementary items. Each of these items is defined in a separate data
description entry which begins with the special level-number 77.
The following data clauses are required in each data description entry:

1. level-number 77

2. data-name

3. the PICTURE clause or a USAGE clause that precludes the use of a PICTURE clause.

Other data description clauses are optional and can be used to complete the description of the item if necessary.

G.2. Linkage Records

Data elements in the Linkage Section which bear a definite hierarchical relationship to one another must be grouped
into records according to the rules for formation of record descriptions. Data elements in the Linkage Section which
bear no hierarchical relationship to any other data item may be described as records which are single elementary
items.

G.3. Initial Values

The VALUE clause must not be specified in the Linkage Section except in condition-name entries (level-number
88).

206

DATA DIVISION - SCREEN SECTION (General Format)

H. SCREEN SECTION

The Screen Section is located in the Data Division of a source program. The Screen Section defines the attributes of
screens to be used in interactive screen I/O. Screen section entries are referenced in the procedure Division with the
ACCEPT and DISPLAY verbs. The Screen Section is an extension to ANSI COBOL.

The Screen Section is composed of the section header, followed by screen description entries.

The general format of the Screen Section is shown below.

SCREEN SECTION.
[screen-description-entry |...

H.1. Screen Description

A screen description consists of a set of screen description entries which describe the characteristics of a particular
screen. Each screen description entry consists of a level-number followed by the screen-name, if specified, followed
by a series of independent clauses as required. A screen description may have a hierarchical structure and therefore
the clauses used within an entry may vary considerably, depending upon whether or not it is followed by subordinate
entries.

In its simplest form, the screen description consists of a single, named 01 level item that can be a screen-literal or
screen-data format entry. In its more complex form, the screen description consists of a named 01 level item that is a
screen-group format item. The screen description consists of the 01 level item and all items subordinate to it. It can
have the same type of hierarchical structure as a record description.

The screen description entry and the allowable elements are explained in the next section.

H.2. Screen Description Entry

H.2.1 Function

A screen description entry specifies the characteristics of a particular item in a screen.

Screen data description entries can be screen-literal, screen-data, or screen-group format items. Screen-literal format
is used to display constant information, such as prompts. Screen-data format is used to perform input/output
operations and transfer data between the screen-data and data items in the File, Working-Storage, and Linkage
sections. Screen-group format is used to organize multiple screen-literal and screen-data items into logical groups

for input/output operations as well as to specify attributes that apply to several screen-data items.

Screen description entries consist of a level number, an optional screen-name, and optional clauses that specify the
position of a field, along with various attributes.

207

Interactive COBOL Language Reference & Developer’s Guide - Part One

H.2.2 General Format

Screen-Literal Format: (ANSI 74 and ANSI 85)

screen-name
FILLER

g

level-number [{

BACKGROUND-COLOR | integer | |
BACKGROUND color-name
I identifier | |
| (FOREGROUND-COLOR S integer | |
FOREGROUND color-name
I identifier]
PLUS
COLUMN + integer
{ coL }[NUMBER IS | miNnus {identiﬁer
PLUS
integer
LINE [NUMBER IS | \Nus {identiﬁer}]
LINE
[BLANK { REMAINDER |]
SCREEN
LINE
SCREEN
EOL
[ERASE EOS]
END OF LINE
END OF SCREEN
BELL
BEEP
[BLINK]
BOLD
BRIGHT
[{ INO] HIGHLIGHT
DIM
LOWLIGHT
REVERSE-VIDEOQ
[{ REVERSE
REVERSED
UNDERLINED

[{ UNDERLINE }]
[[VALUE IS] literal] .

208

b

DATA DIVISION - SCREEN SECTION (General Format)

Screen-Literal Format: (VXCOBOL)

01 screen-name [VIRTUAL]

{ screen-name }

level-number

EILLER
[BELL]
LINE
[BLANK { REMAINDER]
SCREEN
[BLINK]
[_BOLD]
PLUS
COLUMN + integer
{ coL }[NUMBER S| minus {idem‘iﬁer}]
PLUS
+ infeger
LINE [NUMBER IS |, {idenﬁﬁer}]

[[VALUE IS] literal] .

209

Interactive COBOL Language Reference & Developer’s Guide - Part One

Screen-Data Format: (ANS/ 74 and ANSI 85)

sScreen-name
Ievel-number[{ FILLER }]

BACKGROUND color-name

| [BACKGROUND-COLOR integer | |
{ bs
identifier

| [EOREGROUND-COLOR integer | |
{ EOREGROUND } IS { color-name
identifier

PLUS

COLUMN + integer
{ COoL }[NUMBER IS MINUS {identiﬁer]

PLUS

+ integer
LINE [NUMBER 1S MINUS {identiﬁer}]

LINE
[BLANK { REMAINDER 1]
SCREEN

EOL
[ERASE -]

[OCCURS integer TIMES]
[AUTO]
[BLANK WHEN ZERO]

[CONVERTING {D_LQ%A%LN}]

[FULL]

JUSTIFIED
{ UST }MGHT]

PICTURE ,
PIC IS character-string

[REQUIRED]

210

DATA DIVISION - SCREEN SECTION (General Format)

[SECURE HW&EEQHQEQHQ H]

LEADING
[[SIGNIS] {IBEII NG } SEPARATE CHARACTER]
[[USAGE IS] DISPLAY]

arith-éxp
EROM | identifier ; [TQ identifier]
literal
{ arith-exp (.
TO identifier | EROM { identifier
literal
USING identifier
For ISQL Add:
DATE
YEAR (integer-2) [TO MONTH]
MONTH (integer-2)
HOUR
DAY (integer-2) [IO MINUTE 1
< i — ’
[[USAGE IS |} INTERVAL SECOND [(integer-3)]]
HOUR (integer-2) [TO]
9 SECOND [(integer-3)]
MINUTE (integer-2) [TO SECOND [(integer-3)] 1]
SECOND (integer-2 [integer-3 1)
TIME [(integer-3)]
TIMESTAMP [(integer-3)]

211

Interactive COBOL Language Reference & Developer’s Guide - Part One

Screen-Data Format: (VXCOBOL)

01 screen-name [VIRTUAL]

screen-name
level-number { FILLER }
[AUTO]
[BELL]
LINE

[BLANK { REMAINDER |]

SCREEN
[BLANK WHEN ZERO]
[BLINK]
[B D]

PLUS
+ integer
{ } [NUMBER 1S MINUS {identiﬁer}]
PLUS

[FULL]

JUSTIFIED

ds:

LINE [NUMBER IS

}HGHT]

+ integer]
MINUS | | identifier

PICTURE ,
PIC IS character-string

[REQUIRED]
[SECURE]

LEADING
[[SIGNIS] {IBEII NG } SEPARATE CHARACTER]
[[USAGE IS] DISPLAY]

literal

! {idgnﬁfier } [TO identifier |

. - identifier
TO identifier | EROM { literal }
USING identifier
For ISQL Add:
DATE
YEAR (integer-2) [TO MONTH]
MONTH (integer-2)
HOUR
DAY (integer-2) [IO MINUTE 1
[[USAGE IS |; INTERVAL 3 SECOND [(integer-3) 1]
HOUR (integer-2) [IO MINUTE 1
SECOND [(integer-3)]
MINUTE (integer-2) [TO SECOND [(integer-3)] 1
SECOND (integer-2 [integer-3 1)

TIME [(integer-3)]
TIMESTAMP [(integer-3)]

212

(]

DATA DIVISION - SCREEN SECTION (General Format)

Screen-Group Format: (ANSI 74 and ANSI 85)

sScreen-name
Ievel-number[{ FILLER }]

BACKGROUND color-name
identifier

(e o 5|

| [EOREGROUND-COLOR integer | |
{ EOREGROUND } IS { color-name
identifier

PLUS

COLUMN + integer
{ COoL }[NUMBER 1S MINUS {identiﬁer]

PLUS

+ integer
LINE [NUMBER 1S MINUS {identiﬁer}]

[BLANK SCREEN]

BELL
[{BEEP}]

BOLD

BRIGHT

[{ [NO] HIGHLIGHT ¢ |
DIM

LOWLIGHT

[\ REVERSED
REVERSE-VIDEO

{UNDERUNED}

REVERSE]
]

UNDERLINE

[OCCURS integer TIMES]
[AUTO]
[FULL]
[REQUIRED]
WITH ECHO
[SECURE { NO ECHO }]

[[USAGE IS] DISPLAY]
LEADING
[[SIGNIS] {IBEII NG } SEPARATE CHARACTER].

screen-data-item
screen-literal-item |

213

Interactive COBOL Language Reference & Developer’s Guide - Part One

Screen-Group Format: (VXCOBOL)

01 screen-name [VIRTUAL]
level-number

screen-name
FILLER

[AUTO]

— PLUS

COLUMN + integer

{ - }[NUMBER'S MINUS {mmnmmr}]

PLUS

n integer
LINE [NUMBER IS | \\ Nus {identiﬁer}]

[BLANK SCREEN]
[BELL |

[BOLD |

[FULL |

[REQUIRED]

[SECURE |

{ screen-data-item }

screen-literal-item

214

DATA DIVISION - SCREEN SECTION (General Format)

H.2.3 Syntax Rules
(1) Level-number may be any number from 01 through 49.
(2) Screen-name is required for level 01.
(3) In all formats, if screen-name is present it must immediately follow the level number.
(4) The literal in the VALUE clause must be a nonnumeric literal and it cannot be a figurative constant.

(5) Unnamed items cannot be referenced individually, but only indirectly by referencing a containing named
screen-group item.

(6) A screen-literal format item cannot specify a PICTURE clause.
(7) A screen-data format item cannot specify a VALUE clause.

(8) A screen-data format item must include a PICTURE clause as well as one of the following combinations of
the TO, FROM, and USING clauses:

a FROM clause,

a TO clause,

a FROM clause and a TO clause, or
a USING clause.

aoc o

(9) The JUSTIFIED and BLANK WHEN ZERO clauses may only be specified for a screen-data format item
and are subject to the same PICTURE compatibility restrictions as apply to a data item in Working Storage.

(10) If more than one clause is specified for an entry, the clauses may occur in any order. Since at execution
time a specific order is followed, it is useful to follow this same order in the source program.

The order of execution for a DISPLAY statement is as follows:

For ANSI 74 and ANSI 85:

BACKGROUND-COLOR & FOREGROUND-COLOR
BLANK SCREEN

COLUMN and LINE positioning

BLANK LINE/ERASE EOL, ERASE EOS, ERASE LINE
BELL

display literal or data with appropriate attributes

For VXCOBOL.:

BLANK SCREEN

COLUMN and LINE positioning

BLANK LINE

BELL

display literal or data with appropriate attributes

215

Interactive COBOL Language Reference & Developer’s Guide - Part One

The order of execution for an ACCEPT statement is as follows:

For ANSI 74 and ANSI 85:

BACKGROUND-COLOR & FOREGROUND-COLOR
COLUMN and LINE positioning
accept data with appropriate attributes

For VXCOBOL.:

COLUMN and LINE positioning
accept data with appropriate attributes

(11) USAGE IS DISPLAY is for documentation purposes only as USAGE IS DISPLAY is the default.

Additional Syntax Rule for VXCOBOL.:

(12) The VIRTUAL clause is used for documentation only, but may only be specified for an 01 level entry.

H.2.4 General Rules

(1) The PICTURE, JUSTIFIED, and BLANK WHEN ZERO clauses have the same meaning for screen-data
items as for data items in Working Storage. The other clauses are described more fully in the sections that follow.

(2) A screen-data item with a FROM clause and no TO clause is described as an output field.

(3) A screen-data item with a TO clause and no FROM clause is described as an input field.

(4) A screen-data item with both a FROM clause and a TO clause is described as an input-output field.
(5) A screen-data item with a USING clause is described as an update field.

(6) The relationship of the level numbers in a screen description are used to differentiate between the
screen-group format items and the elementary format items, which are screen-literal and screen-data.

(7) For the two elementary format items, the presence of a PICTURE clause is used to differentiate between a
screen-data format item and a screen-literal format item.

Notes:
1. The default appearance for literal and output fields is DIM.
2. The default appearance for input, input-output, and update fields is BOLD.

216

DATA DIVISION - SCREEN SECTION (AUTO, FULL, REQUIRED)
H.3. AUTO, FULL, REQUIRED Clauses

H.3.1 Function

The clauses AUTO, FULL, and REQUIRED affect the behavior of data entry to input, input-output, and update
fields during the execution of an ACCEPT statement.

H.3.2 General Format

AUTO
FULL
REQUIRED

H.3.3 Syntax Rules

(1) These clauses can only be used with input, input-output, or update screen-data items or with screen-group
items.
H.3.4 General Rules

(1) If one of these clauses is written at a screen-group level, it applies to each elementary input, input-output,
and update item in the screen-group.

(2) These clauses have no effect during the execution of a DISPLAY statement.

(3) The AUTO clause causes data entry for the field to automatically terminate when data is entered into the last
character position in the field. If this field is the last field in the screen the ACCEPT is terminated as if a normal
terminator (any key with an ESCAPE KEY value of 00) had been entered.

(4) The FULL clause requires that a character or space must be entered in every position of a field, if any
character is entered. USING fields are initially always full.

(5) The REQUIRED clause requires that there must be at least one non-blank character in the data entry field
before data entry for the field can be terminated.

Note: A non-blank update field will always satisfy this requirement.

217

Interactive COBOL Language Reference & Developer’s Guide - Part One

H.4. BACKGROUND-COLOR, FOREGROUND-COLOR Clauses (ANSI 74 and ANSI 85)
H.4.1 Function
The BACKGROUND-COLOR and FOREGROUND-COLOR clauses set the background and foreground color for a

screen item.

H.4.2 General Format

BACKGROUND color-name
identifier

)| 5

EOREGROUND-COI OR integer
s

{ FOREGROUND color-name
identifier

H.4.3 Syntax Rules
(1) BACKGROUND-COLOR and BACKGROUND are synonyms.

(2) FOREGROUND-COLOR and FOREGROUND are synonyms.

H.4.4 General Rules
(1) The BACKGROUND-COLOR clause determines the background color for a screen item.
(2) The FOREGROUND-COLOR clause determines the foreground color for a screen item.
(3) These clauses are effective only with color screens.

(4) The color is specified by entering an integer from 0 to 7, the appropriate color-name, or and integer whose
value ranges from 0 to 7. The color-names with their integer values are shown in the chart below.

Color BLACK BLUE GREEN CYAN RED MAGENTA BROWN WHITE

Integer 0 1 2 3 4 5 6 7

TABLE 12. BACKGROUND-COLOR and FOREGROUND-COLOR

(5) If the value of identifier falls outside of the range 0 through 7, then the associated BACKGROUND-
COLOR or FOREGROUND-COLOR clause is ignored.

(6) When used at the screen-group level, these clauses apply to all subordinate screen items. If no colors are
specified, the terminal uses its default background and foreground colors.

218

DATA DIVISION - SCREEN SECTION (BELL)

H.5. BELL Clause

H.5.1 Function

The BELL clause sounds the tone on the user's display device.

H.5.2 General Format
BELL
BEEP

H.5.3 Syntax Rules

(1) The words BELL and BEEP are synonyms.

H.5.4 General Rules

(1) The BELL clause is effective only during the execution of a DISPLAY statement.

(2) If BELL is specified on a screen-group format item, the tone is only sounded when the screen-group item is
processed, not when each item subordinate to the screen-group item is processed.

219

Interactive COBOL Language Reference & Developer’s Guide - Part One
H.6. BLANK Clause

H.6.1 Function

The BLANK clause is used to erase part or all of the user's display device during the execution of a DISPLAY
statement.

H.6.2 General Format

LINE
BLANK < REMAINDER
SCREEN

H.6.3 General Rules

(1) The BLANK LINE, BLANK SCREEN, and BLANK REMAINDER clauses are effective only during the
execution of a DISPLAY statement.

(2) BLANK SCREEN erases the entire screen and positions the cursor to line 1 column 1.

(3) BLANK SCREEN is processed before any LINE and COLUMN positioning clauses because it has an
implicit positioning of the cursor.

(4) BLANK LINE erases the current line from the cursor position to the end of the line without changing the
cursor position.

(5) BLANK REMAINDER erases the screen starting at the cursor position to the end of the screen. The cursor
is not affected.

(6) BLANK LINE and BLANK REMAINDER are processed after the LINE and COLUMN positioning clauses
and before any screen-literal or screen-data items so that they can be used to clear data previously displayed on the
screen before displaying new data at the same position.

NOTE: If the compiler’s ISO screen behavior option (-G e) is specified, the BLANK LINE clause will erase the
entire line starting in column 1 rather than starting at the specified or implied column position.

220

DATA DIVISION - SCREEN SECTION (BLINK, BOLD, REVERSE, UNDERLINE)

H.7. BLINK, BOLD/BRIGHT/HIGHLIGHT/DIM/LOWLIGHT, REVERSE/REVERSED/REVERSED-VIDEO,
UNDERLINE/UNDERLINED Clauses

H.7.1 Function

These clauses are used to control the appearance of data that is displayed on the user's display device.

H.7.2 General Format (ANSI 74 and ANSI 85)

H.7.3 General Format (VXCOBOL)
BLINK

BOLD

H.7.4 Syntax Rules

(1) These clauses can be specified for a screen-literal format item, a screen-data format item, or a screen-group
format item.

H.7.5 General Rules
(1) These clauses apply to both ACCEPT and DISPLAY.
(2) The BLINK clause causes the field to blink.
(3) The BOLD, BRIGHT, or HIGHLIGHT clauses cause the field to be displayed at high intensity.
(4) The DIM, LOWLIGHT, or NO HIGHLIGHT clauses cause the field to be displayed at low intensity.

(5) The REVERSE, REVERSED, or REVERSE-VIDEO clauses cause the field to be displayed in reverse-
video.

(6) The UNDERLINE or UNDERLINED clauses cause a field to be displayed underlined.

(7) The clauses can be combined to provide combined effects, such as bold and underlined. However, not all
video display devices are capable of displaying all of the combinations.

221

Interactive COBOL Language Reference & Developer’s Guide - Part One

Notes:
1. The default appearance for literal and output fields is DIM.
2. The default appearance for input, input-output, and update fields is BOLD.

222

DATA DIVISION - SCREEN SECTION (BLANK, ERASE)

H.8. CONVERTING Clause
H.8.1 Function

The CONVERTING clause is used to insure that accepted data is in a consistent case.

H.8.2 General Format
i

CONVERTING {MN

H.8.3 Syntax Rules

(1) The CONVERTING clause may only be specified in a screen description which includes either the TO or
USING clauses.

H.8.4 General Rules

(1) The CONVERTING clause is effective only during the execution of an ACCEPT statement.

(2) If CONVERTING UP is specified character data entered during an ACCEPT is echoed to the screen and
stored in uppercase. In particular characters between ‘a’ and ‘z’ inclusive are converted to the corresponding
character between ‘A’ and ‘Z’.

(3) If CONVERTING DOWN is specified character data entered during an ACCEPT is echoed to the screen

and stored in lowercase. In particular characters between ‘A’ and ‘Z’ inclusive are converted to the corresponding
character between ‘a’ and ‘z.

223

Interactive COBOL Language Reference & Developer’s Guide - Part One

H.9. ERASE Clause
H.9.1 Function

The ERASE clause is used to erase part or all of the user's display device during the execution of a DISPLAY
statement.

H.9.2 General Format

ERASE

H.9.3 Syntax Rules
(1) The word EOL is equivalent to the phrase END OF LINE.
(2) The word EOS is equivalent to the phrase END OF SCREEN.
H.9.4 General Rules
(1) The ERASE clause is effective only during the execution of a DISPLAY statement.

(2) ERASE SCREEN and ERASE with no additional modifiers erases the entire screen and positions the cursor
to line 1 column 1.

(3) ERASE LINE erases the current line from column 1 to the end of the line without changing the cursor
position.

(4) ERASE EOL and ERASE END OF LINE erase the screen starting at the cursor position to the end of the
line. The cursor is not affected.

(5) ERASE EOS and ERASE END OF SCREEN erase the screen starting at the cursor position and continuing
to the end of the screen. The cursor position is not changed.

(6) ERASE and ERASE SCREEN are processed before any LINE and COLUMN positioning clauses because
they have an implicit positioning of the cursor. All other ERASE clauses are processed after the LINE and
COLUMN positioning clauses and before any screen-literal or screen-data items so that they can be used to clear
data previously displayed on the screen before displaying new data at the same position.

NOTE: If the compiler’s ISO screen behavior option (-G e) is specified, the ERASE LINE

clause will erase the line beginning at the cursor position and continuing to the end of the line. Similarly,
the ERASE SCREEN clause will erase from the cursor position to the end of the screen.

224

DATA DIVISION - SCREEN SECTION (FROM, TO, USING)

H.10. FROM, TO, USING Clauses
H.10.1 Function
These clauses are used to determine the types of input-output operations (ACCEPT and DISPLAY) that can be

performed on an item, as well as the associated data items or values.

H.10.2 General Format

EROM {idﬁtgl;igfq'1 } [IO identifier-2]

. - identifier-1
TO identifier-2 [FROM { literal1 } }

USING identifier-3

H.10.3 General Rules
(1) A FROM clause with no TO clause defines the field as an output field.
(2) A TO clause with no FROM clause defines the field as an input field.
(3) A FROM clause and a TO clause together define a field as an input-output field.
(4) A USING clause defines the field as an update field.

(5) The default attribute for output fields is DIM, and for input, input-output, or update fields is BOLD. This
may be overridden by using the appropriate attribute.

(6) When a DISPLAY statement is executed, an input field is displayed as underscore characters. The number
of underscores displayed corresponds to the number of characters in the picture string.

(7) The item specified by literal-1 or identifier-1 (for an output or input-output field) or by identifier-3 (for an
update field) must be compatible with the screen-data according to the rules for the MOVE statement, where
literal-1, identifier-1, or identifier-3 is the sending item, and the screen-data is the receiving item.

(8) The item specified by identifier-2 (for an input or input-output field) or identifier-3 (for an update field)
must be compatible with the screen-data according to the rules for the MOVE statement, where screen-data is the
sending item and identifier-2 or identifier-3 is the receiving item, with the exception that the combination of a

numeric edited sending item and numeric receiving item is allowed.

(9) If the subject of the TO, FROM or USING entry is subject to an OCCURS clause,
identifier-1, identifier-2, or identifier-3 shall be specified without the subscripting normally required.

(10) For more on how each clause works see ACCEPT screen, page 289; or DISPLAY screen, page 346.

225

Interactive COBOL Language Reference & Developer’s Guide - Part One
H.11. LINE and COLUMN Clauses

H.11.1 Function

The LINE and COLUMN clauses specify the vertical and horizontal location of the cursor on the user's display
device (and thus the location of the erase, input, or output operation being specified.)

H.11.2 General Format

PLUS
+ integer-1
LINE [NUMBER IS | \;/\ijs {identiﬁer—1 }]
PLUS
COLUMN + integer-2
{ coL }[NUMBER IS MiNUs {identiﬁer—2 }]

H.11.3 Syntax Rules
(1) Integer-1 and integer-2 must be unsigned and non-zero.
(2) Identifier-1 and identifier-2 must represent an unsigned elementary numeric data item.
(3) The word COL is an abbreviation for the word COLUMN.
(4) PLUS and + are synonyms.
(5) MINUS and - are synonyms.
(6) Neither the PLUS nor MINUS phrase shall be specified for the first elementary item in a screen record.

(7) If generating for code revision 1, identifier-1 and identifier-2 may not be specified if either the PLUS or
MINUS clauses are present.

H.11.4 General Rules

(1) The screen description entries in a screen description are processed beginning with the 01 level item and
proceeding through all screen description entries subordinate to the 01 level item in the order in which they appear in
the source program.

(2) As the screen description entries are processed, the compiler maintains a current cursor position for the
screen description. The current cursor position determines the placement of fields on the user's display screen when
an ACCEPT or DISPLAY statement is executed. This current cursor position is composed of two components, the
current cursor line and the current cursor column, with the upper left corner of the display being line 1, column 1.

(3) The current cursor position cannot be greater than line 128 or column 128 at the beginning of a BLANK
LINE operation or as the starting character position for a screen-literal or screen-data item.

(4) The current cursor position after a screen-literal or screen-data cannot be greater than line 128 or column
256.

(5) Atexecution time, if the current cursor position exceeds the size of the display device, the component of the
position that exceeds the display size (line or column or both), is re-computed to be the remainder of the original

226

DATA DIVISION - SCREEN SECTION (LINE, COLUMN)

value divided by the display size, e.g., a cursor position of line 20 column 132 on a 24 line, 80 column display is re-
computed as line 20, column 52.

(6) Each screen description is assumed to start (at the 01 level) with a current cursor position of line 1, column

(7) If no LINE or COLUMN clause is specified, the current cursor position is not modified before the
processing of any input, output, input-output, or update field that might be present, except by the BLANK SCREEN
or ERASE SCREEN clause (which sets the current cursor position to line 1, column 1.)

(8) In the rules that follow, the components of the current cursor position are often treated independently.

(9) Line and/or column positions may be specified in one of three ways: Absolute positioning; Relative
positioning; and Variable positioning.

(10) Absolute line positioning is defined by a LINE clause with integer-1 and without either PLUS or MINUS.
The value of integer-1 becomes the new current cursor line value. It may not exceed the value 128 and should not
exceed the usual number of lines in the display device. If a COLUMN phrase is also specified, it is handled
independently. If one is not specified, it is assumed to be the same as specifying COLUMN 1.

(11) Absolute column positioning is defined by a COLUMN clause with integer-2 and without either PLUS or
MINUS. The value of integer-2 becomes the current cursor column value. It may not exceed the value 128 and
should not exceed the usual number of columns in the display device.

(12) Relative line positioning is defined by using the LINE clause with either the PLUS or MINUS phrase and
integer-1 or identifier-1. If PLUS is specified, the current cursor line is incremented by the value of integer-1 or the
contents of identifier-1. 1f MINUS is specified, the current cursor line is decremented by the value of integer-1 or
the contents of identifier-1. The resulting value must not exceed 128 or be less than 1. If a COLUMN phrase is also
specified, it is handled independently. If one is not specified, it is assumed to be the same as specifying COLUMN
1.

(13) Relative column positioning is defined by using the COLUMN clause with either the PLUS or MINUS
phrase and integer-2 or identifier-2. 1f PLUS is specified, the current cursor column is incremented by the value of
integer-2 or the contents of identifier-2. If MINUS is specified, the current cursor column is decremented by the
value of integer-2 or the contents of identifier-2. The resulting value must not exceed 128 or be less than 1.

(14) Variable line positioning is defined by using the LINE clause with identifier-1 and without either PLUS or
MINUS. The actual line value is not known until execution time. If a COLUMN phrase is also specified, it is
handled independently. If one is not specified, it is assumed to be the same as specifying COLUMN 1.

(15) Variable column positioning is defined by using the COLUMN clause with identifier-2 and without either
PLUS or MINUS. The actual column value is not known until execution time.

(16) If generating for code revision 1, relative line positioning cannot be specified for an entry that follows an
entry with variable line positioning unless there is an intervening entry with absolute line positioning. If generating
for code revision 2 or greater, the this restriction does not apply.

(17) If generating for code revision 1, relative column positioning cannot be specified for an entry that follows
an entry with variable column positioning unless there is an intervening entry with absolute column positioning. The
absolute column positioning may be derived from the COLUMN 1 clause that is implied in certain cases. If
generating for code revision 2 or greater, this restriction does not apply.

(18) If the screen description entry also contains a VALUE clause or is an input, output, input-output, or update
field, the value of the current cursor position is associated with the literal or field item. The current cursor column is
also updated to be positioned at the first column after the literal or field item (i.e., it is incremented by the length of
the literal or field item) unless the current cursor column is currently undefined because of variable column
positioning. The updated current column position cannot exceed 256.

227

Interactive COBOL Language Reference & Developer’s Guide - Part One

(19) The effects of LINE and COLUMN clauses in combination with each other is defined in the following
table:

LINE Clause COLUMN Clause Field Position

No clause No clause No change
COoL Same line, column plus 1
COL n Same line, column n
COL PLUS n Same line, column plus n
COL id Same line, column id
LINE No clause Line plus 1, column 1
COoL Line plus 1, column plus 1
COL n Line plus 1, column n
COL PLUS n Line plus 1, column plus n
COL id Line plus 1, column id
LINE m No clause Line m, column 1
COL Line m, column plus 1
COL n Line m, column n
COL PLUS n Line m, column plus n
COL id Line m, column id
LINE PLUS m No clause Line plus m, column 1
COoL Line plus m, column plus 1
COL n Line plus m, column n
COL PLUS n Line plus m, column plus n
COL id Line plus m, column id
LINE id No clause Line id, column 1
COL Line id, column plus 1
COL n Line id, column n
COL PLUS n Line id, column plus n
COL id Line id, column id

TABLE 13. LINE and COLUMN relationship

228

DATA DIVISION - SCREEN SECTION (OCCURS)

H.12. OCCURS Clause
H.12.1 Function

The OCCURS clause is similar to the OCCURS clause defined in the Working-Storage Section. It is eliminates the
need for separate entries for repeated screen items and supplies information needed for the application of subscripts.

H.12.2 General Format

OCCURS integer TIMES

H.12.3 Syntax Rules
(1) The maximum number of dimensions for a table described in a screen description entry is two.

(2) If a screen description entry includes the OCCURS clause, then if it or any item subordinate to it has a
description that includes the TO, FROM, or USING clause, that screen description entry shall be part of a table with
the same number of dimensions and number of occurrences in each dimension as the identifier representing the
receiving or sending operand. The identifier representing the receiving or sending operand shall not be subordinate
to an OCCURS clause with the DEPENDING phrase.

(3) If ascreen description entry that includes the OCCURS clause also contains the COLUMN clause, then the
COLUMN clause shall include the PLUS or MINUS phrase, unless the screen description entry also includes a LINE
clause with a PLUS or MINUS phrase.

(4) If a screen description entry that includes the OCCURS clause also contains the LINE clause, then the LINE
clause shall include the PLUS or MINUS phrase, unless the screen description entry also includes a COLUMN
clause with a PLUS or MINUS phrase.

H.12.4 General Rules

(1) During a DISPLAY screen or an ACCEPT screen statement that references a screen item whose description
includes the OCCURS clause and whose description or whose subordinate’s description includes a FROM, TO, or
USING clause, the data values for corresponding table elements are moved from the data table element to the screen
table element or from the screen table element to the data table element.

(2) If the description of a screen item includes the OCCURS clause, the positioning within the screen record of
each occurrence of that screen item is as follows:

a. If the description of that screen item contains a COLUMN clause, each occurrence behaves as though it
had the same column clause specified.

b. If that screen item is a group item with a subordinate screen item whose description contains a
COLUMN clause with the PLUS or MINUS phrase and that group screen item is subordinate to a screen item whose
description contains a LINE clause, each occurrence behaves as though it had the same subordinate entries with the
same COLUMN clause specified.

c. If the description of that screen item contains a LINE clause with the PLUS or MINUS phrase, each
occurrence behaves as though it had the same LINE clause specified.

d. If that screen item is a group item with a subordinate screen item whose description contains a LINE

clause with the PLUS or MINUS phrase, each occurrence behaves as though it had the same subordinate entries with
the same LINE clause specified.

229

Interactive COBOL Language Reference & Developer’s Guide - Part One

H.13. PICTURE Clause

H.13.1 Function

The PICTURE clause is similar to the PICTURE clause defined in the Working-Storage Section. It is used to
determine the size of a screen-data, the format of the data when it is presented to the user through the execution of a
DISPLAY statement, and the data validation rules to apply to the data when it is entered by the user in response to
the execution of an ACCEPT statement.

H.13.2 General Format

PICTURE)
PIC IS character-string

H.13.3 Syntax Rules

(1) The picture characters P, V, CR, and DB can be used only with output (FROM) fields.

H.13.4 General Rules

(1) The rules for compatibility between the screen-data PICTURE and the literal or data items specified in the
TO, FROM, or USING clauses are specified under the section for TO, FROM, and USING.

(2) Unless the SIGN IS clause is also specified, the S PICTURE character is ignored by the compiler to be
consistent with older versions of Interactive COBOL.

230

DATA DIVISION - SCREEN SECTION (SECURE)

H.14. SECURE Clause
H.14.1 Function

This clause affects the behavior of data entry to input fields while in an ACCEPT and how the entry is displayed
during an ACCEPT.

ANSI 74 and ANSI 85:

The SECURE or SECURE ECHO clause causes asterisks to be echoed on the display during data entry or data
display. The SECURE NO ECHO clause prevents characters from echoing on the display during data entry or
data display.

VXCOBOL.:

The SECURE clause prevents characters from echoing on the display during data entry or data display.

H.14.2 General Format (ANSI 74 and ANSI 85)

WITH ECHO
SECURE | 1 no Echo

H.14.3 General Format (VXCOBOL)

SECURE

H.14.4 Syntax Rules

(1) This clause can only be used with input, input-output, or update screen-data items or with screen-group
format items.
H.14.5 General Rules

(1) The SECURE clause is effective only during the execution of an ACCEPT statement.

(2) Ifthe SECURE clause is specified for a screen-group item, the clause applies to each elementary input,
input-output, and update item subordinate to the screen-group item.

ANSI 74 and ANSI 85:
(3) During the execution of an ACCEPT statement for a screen item that contains SECURE or SECURE
ECHO, any characters entered by the user will be echoed as asterisks.

(4) During the execution of an ACCEPT statement for a screen item that contains SECURE NO ECHO, any
characters entered by the user will not be echoed, and the cursor will not move as the characters are entered.

VXCOBOL:
(5) During the execution of an ACCEPT statement, any characters entered by the user will not be echoed.
Additionally, the cursor will not move as the characters are entered.

231

Interactive COBOL Language Reference & Developer’s Guide - Part One
H.15. SIGN Clause

H.15.1 Function

The SIGN clause specifies the position and the mode of representation of the operational sign when it is necessary to
describe these properties explicitly.

H.15.2 General Format

LEADING
[SIGN IS] {TRAMNQ } SEPARATE CHARACTER

H.15.3 Syntax Rules

(1) The SIGN clause may be specified only for a numeric data description entry whose PICTURE contains the
character 'S'.

(2) The numeric data description entries to which the SIGN clause applies must be described, implicitly or
explicitly, as USAGE IS DISPLAY.

H.15.4 General Rules

(1) The optional SIGN clause, if present, specifies the position and the mode of representation of the
operational sign for the numeric data description entry to which it applies, or for each numeric data description entry
subordinate to the group to which it applies. The SIGN clause applies only to numeric data description entries
whose PICTURE contains the character *S'; the "S' indicates the presence of, but neither the representation nor,
necessarily, the position of the operational sign.

(2) If a SIGN clause is specified in a group item subordinate to a group item for which a SIGN clause is
specified, the SIGN clause specified in the subordinate group item takes precedence for that subordinate group item.

(3) If a SIGN clause is specified in an elementary numeric data description entry subordinate to a group item for
which a SIGN clause is specified, the SIGN clause specified in the subordinate elementary numeric data description
entry takes precedence for that elementary numeric data item.

(4) a. The operational sign will be presumed to be the leading (or, respectively, trailing) character position of
the elementary numeric data item; this character position is not a digit position.

b. The letter *S' in a PICTURE character-string is counted in determining the size of the item (in terms of
standard data format characters).

c. The operational signs for positive and negative are the standard data format characters "+' and "-'
respectively.

(5) Every numeric data description entry whose PICTURE contains the character "S' is a signed numeric data

description entry. If a SIGN clause applies to such an entry and conversion is necessary for purposes of computation
or comparisons, conversion takes place automatically.

232

DATA DIVISION - SCREEN SECTION (USAGE)

H.16. USAGE Clause (ISQL)

H.16.1 Function

The USAGE clause specifies the special formatting of the data for the corresponding usage in the TO, FROM, or
USING data items or literals.

H.16.2 General Format

DATE

YEAR (integer-2) [TO MONTH]
MONTH (integer-2)

HOUR
DAY (integer-2) [TO MINUTE]
[USAGE IS | INTERVAL S_EQ_QND'\[M(Nlnt_It_ager—S)]
HOUR (integer-2) [TO {SLC_OM—U_[(integer-3) | }]

MINUTE (integer-2) [TO SECOND [(integer-3)] 1]
SECOND (integer-2 [integer-3 1)

TIME [(integer-3)]
TIMESTAMP [(integer-3)]

H.16.3 Syntax Rules

(1) The USAGE clause specifying DATE, INTERVAL, TIME, or TIMESTAMP is available only when the
ISQL feature-set is enabled and appear as USAGE options that are in addition to certain dialect-specific options.

(2) A USAGE clause specifying DATE, INTERVAL, TIME, or TIMESTAMP must not be specified at the
group level.

(3) The BLANK WHEN ZERO, JUSTIFIED, PICTURE, and SIGN clauses must not be specified for screen
items whose usage is DATE, INTERVAL, TIME, or TIMESTAMP.

(4) The value of integer-2 must be greater than zero and less than the values specified in the general rules
below.

(5) The value of integer-3 must be greater than zero and less than or equal to six.

E.17.5 General Rules
(1) If the USAGE clause is not specified, the usage is implicitly DISPLAY.

(2) The USAGE IS DATE clause specifies a screen item that can accept and display an SQL date value. Upon
output, the date value will be formatted with intervening hyphens in the same manner as a date literal. Upon input,
the field will appear as three separate fields separated by intervening hyphens. The system will automatically skip
over the hyphens. The entered value will be tested to be a valid date and an appropriate message will be displayed to
the user if it is not. A screen field of usage DATE occupies 10 characters. (yyyy-mm-dd)

(3) The USAGE IS INTERVAL clause specifies a screen item that can accept or display an SQL interval value.

Upon output, the interval value will be formatted in the same manner as the corresponding interval literal. The
number of digits in the leftmost field can be set by specifying infeger-3. The maximum and default values for

233

Interactive COBOL Language Reference & Developer’s Guide - Part One

integer-3 depend on the type of the leftmost field specifier and are specified in the following table. The size of the
screen field is 1 byte plus the sum of the sizes of the individual fields in the range, plus the number of fields minus
one for the intervening formatting characters. Upon input, the field will appear as separate fields (one for each of the
interval fields) separated by the appropriate punctuation. The system will automatically skip over the punctuation.
The entered value will be tested to be a valid interval and an appropriate message will be displayed to the user if it is
not. The field has a minimum size of 2 characters (sign plus a single field of precision 1) and a maximum size of 24
characters.

For example, DAY (7) TO SECOND (6) may have a value that displays as:

+1234567 12:34:56.123456

Field Maximum Precision Default Precision
as Leftmost Field

YEAR 4 4

MONTH 6 2

DAY 7 2

HOUR 8 2
MINUTE 10 2
SECOND 12 2

TABLE 14. INTERVAL Field Maximum Precision (ISQL)

(4) The USAGE IS TIME clause specifies a screen item that can accept and display an SQL time value. If
integer-3 is omitted, it is assumed to be zero. The value of integer-3 must be less than or equal to 6 and specifies the
number of fractional seconds field. Upon output, the data is formatted in the same manner as a time literal with the
intervening colons and an optional decimal point. Upon input, the field will appear as three (or four) separate fields
separated by the colons and an optional decimal point. The system will automatically skip over the colons (and
decimal point) as data is entered. The entered value will be tested to be a valid time and an appropriate message will
be displayed to the user if it is not. A screen field of usage TIME occupies from 8 to 15 characters on the screen.
LE., from hh:mm:ss to hh:mm:ss.nnnnnn.

(5) The USAGE IS TIMESTAMP clause specifies a screen item that can accept and display an SQL timestamp

value. The screen item is a composite of a date screen field and a time screen field with an intervening space. A
TIMESTAMP screen item occupies from 19 to 26 characters, depending on the number of fractional second digits.

234

DATA DIVISION - SCREEN SECTION (VALUE)

H.17. VALUE Clause
H.17.1 Function

The VALUE clause specifies literal information to be displayed.

H.17.2 General Format

[VALUE 1S] literal-1

H.17.3 Syntax Rules
(1) Literal-1 must be a nonnumeric-literal.
(2) Literal-1 must not be a figurative constant.

(3) The words VALUE IS are not required.

H.17.4 General Rules

(1) During the execution of a DISPLAY statement, the contents of /iteral-1 are displayed on the user's display
device at the current cursor position (see LINE and COLUMN clauses).

(2) Literals are displayed DIM unless the BOLD/BRIGHT/HIGHLIGHT attribute was specified.

235

Interactive COBOL Language Reference & Developer’s Guide - Part One

236

PROCEDURE DIVISION

VI. PROCEDURE DIVISION

A. General Description

The Procedure Division contains procedures to be executed by the object program. The Procedure Division is
optional in a COBOL source program.

A.1. DECLARATIVES

Declarative sections must be grouped at the beginning of the Procedure Division preceded by the keyword
DECLARATIVES and followed by the keywords END DECLARATIVES.

A.2. Procedures

A procedure is composed of a paragraph, or a group of successive paragraphs, or a section, or a group of successive
sections within the Procedure Division. If one paragraph is in a section, all paragraphs must be in sections. A
procedure-name is a word used to refer to a paragraph or section in the source program in which it occurs. It
consists of a paragraph-name (which may be qualified) or a section-name.

A section consists of a section header followed by zero, one, or more successive paragraphs. A section ends
immediately before the next section or at the end of the Procedure Division or, in the declaratives portion of the
Procedure Division, at the keywords END DECLARATIVES.

A paragraph consists of a paragraph-name followed by a period and a space and by zero, one, or more successive
sentences. A paragraph ends immediately before the next paragraph-name or section-name or at the end of the
Procedure Division or, in the declaratives portion of the Procedure Division, at the keywords END
DECLARATIVES. A sentence consists of one or more statements and is terminated by the separator period.

A statement is a syntactically valid combination of words, literals, and separators beginning with a COBOL verb.

The term “identifier' is defined as the word or words necessary to make unique reference to a data item.

A.3. Execution

Execution begins with the first statement of the Procedure Division, excluding declaratives. Statements are then
executed in the order in which they are presented for compilation, except where the rules indicate some other order.

The general formats of the Procedure Division are shown below.

237

Interactive COBOL Language Reference & Developer’s Guide - Part One

Format 1:

PROCEDURE DIVISION [USING { data-name }...] .

[DECLARATIVES.

{ section-name SECTION [segment-number] .
USE statement.

[paragraph-name.
[sentence]...]... }...

END DECLARATIVES.]

{ section-name SECTION [segment-number] .
[paragraph-name.

[sentence ...]... }...

Format 2:

PROCEDURE DIVISION [USING { data-name}...] .

{ paragraph-name.

[sentence]... }...

B. Concepts

B.1. Arithmetic Expressions

B.1.1 Definition of an Arithmetic Expression

An arithmetic expression can be an identifier of a numeric elementary item, a numeric literal, the figurative constant
ZERO (ZEROS, ZEROES), such identifiers, figurative constants, and literals separated by arithmetic operators, two
arithmetic expressions separated by an arithmetic operator, or an arithmetic expression enclosed in parentheses. Any
arithmetic expression may be preceded by a unary operator. The permissible combinations of identifiers, numeric
literals, arithmetic operators, and parentheses are given in the table, Combination of Symbols in Arithmetic
Expressions, below.

Those identifiers and literals appearing in an arithmetic expression must represent either numeric elementary items or
numeric literals on which arithmetic may be performed.

B.1.2 Arithmetic Operators

There are five binary arithmetic operators and two unary arithmetic operators that may be used in arithmetic
expressions. They are represented by specific characters that must be preceded by a space and followed by a space.

238

PROCEDURE DIVISION - Concepts (Arithmetic Expressions)

Binary
Arithmetic Operator Meaning
+ Addition
- Subtraction
* Multiplication
/ Division
ok Exponentiation
Unary
Arithmetic Operator Meaning
+ The effect of multiplication by the numeric literal +1

- The effect of multiplication by the numeric literal -1

B.1.3 Formation and Evaluation Rules

(1) Parentheses may be used in arithmetic expressions to specify the order in which elements are to be
evaluated. Expressions within parentheses are evaluated first, and, within nested parentheses, evaluation proceeds
from the least inclusive set to the most inclusive set. When parentheses are not used, or parenthesized expressions
are at the same level of inclusiveness, the following hierarchical order of execution is implied:

1st - Unary plus and minus

2nd - Exponentiation

3rd - Multiplication and division
4th - Addition and subtraction

(2) Parentheses are used either to eliminate ambiguities in logic where consecutive operations of the same
hierarchical level appear, or to modify the normal hierarchical sequence of execution in expressions where it is
necessary to have some deviation from the normal precedence. When the sequence of execution is not specified by
parentheses, the order of execution of consecutive operations of the same hierarchical level is from left to right.

(3) The ways in which identifiers, literals, operators, and parentheses may be combined in an arithmetic
expression are summarized in the table below, where:

a. The letter "P' indicates a permissible pair of symbols.

b. The character '-' indicates an invalid pair.

SECOND SYMBOL

FIRST SYMBOL

Identifier + - *) x* Unary + ()

or Literal or -
Identifier or - P - - P
Literal
+ -k k¥ P - P P -
Unary + or - P - - P -
(P - P P -
) - - - - P

TABLE 15. Combination of Symbols in Arithmetic Expressions
(4) An arithmetic expression may only begin with the symbol *(', "+, -, an identifier, or a literal and may only

end with a *)', an identifier, or a literal. There must be a one-to-one correspondence between left and right
parentheses of an arithmetic expression such that each left parenthesis is to the left of its corresponding right

239

Interactive COBOL Language Reference & Developer’s Guide - Part One

parenthesis. If the first operator in an arithmetic expression is a unary operator, it must be immediately preceded by
a left parenthesis if that arithmetic expression immediately follows an identifier or another arithmetic expression.

(5) The following rules apply to evaluation of exponentiation in an arithmetic expression:

a. If the value of an expression to be raised to a power is zero, the exponent must have a value greater than
zero. Otherwise, the size error condition exists.

b. If the evaluation yields both a positive and a negative real number, the value returned as the result is the
positive number.

c. If no real number exists as the result of the evaluation, the size error condition exists.

(6) Arithmetic expressions allow the user to combine arithmetic operations without the restrictions on
composite of operands and/or receiving data items.

(7) (ISQL) The following table summarizes the valid arithmetic operations involving items of class date-time
and interval.

First Operand Operator (s) Second Operand Result
date-time - date-time interval
date-time + - interval date-time
interval + date-time date-time
interval + - interval interval
interval + - * / number interval
number + * interval interval

(8) (ISQL) The following rules apply to arithmetic operations involving items of class date-time and interval:
a. If both operands are of class date-time, they must both have the same category.

b. If both operands are of class interval, they must both have the same category. The result is of the same
category with a span of fields that encompasses the span of fields of both operands. For example. Adding a DAY TO
HOUR interval to an HOUR TO MINUTE interval will yield a DAY TO MINUTE interval as the result.

c. If one operand is class date-time and the other operand is class interval, the category of the interval
operand must be defined such that it contains date-time fields that are also contained in the date-time operand. The
category of the date-time result is of the same as the category of the date-time operand.

d. The difference of two timestamp operands, two date operands, or two time operands is a day-time
interval.

e. The computation of an interval combined with a number is accomplished by first converting the interval
into an equivalent interval value consisting of just the lowest order field, performing the arithmetic on that value,
discarding any fraction that cannot be contained in the field, and then converting back to the original interval
(normalized). For example, INTERVAL “4:30.25" MINUTE TO SECOND(2) / 2 is handled by converting to the
equivalent INTERVAL “270.25" SECOND (3, 2), dividing by 2 to yield INTERVAL “135.12" SECOND (3,2),
discarding the .005 second fraction, and then converting back to the original format INTERVAL “2:15.12"
MINUTE TO SECOND (2).

B.2. Conditional Expressions

Conditional expressions identify conditions that are tested to enable the object program to select between alternate
paths of control depending upon the truth value of the condition. A conditional expression has a truth value

240

PROCEDURE DIVISION - Concepts (Conditional Expressions)

represented by either true or false. Conditional expressions are specified in the EVALUATE, IF, PERFORM, and
SEARCH statements. There are two categories of conditions associated with conditional expressions: simple
conditions and complex conditions. Each may be enclosed within any number of paired parentheses, in which case
its category is not changed.

B.2.1 Simple Conditions

The simple conditions are the relation, class, condition-name, switch-status, and sign conditions. A simple condition
has a truth value of true or false. The inclusion in parentheses of simple conditions does not change the simple
condition truth value.

B.2.1.1 Relation Condition

A relation condition causes a comparison of two operands, each of which may be the data item referenced by an
identifier, a literal, the value resulting from an arithmetic-expression, or an index-name. A relation condition has a
truth value of true if the relation exists between the operands. Comparison of two numeric operands is permitted
regardless of the formats specified in their respective USAGE clauses. However, for all other comparisons, the
operands must have the same usage. If either of the operands is a group item, the nonnumeric comparison rules
apply. Comparisons involving POINTER items have their own explicit rules. See section B.2.1.1.4 on page 243,
244.

The format for a relation condition is as follows:

EQUAL TO
GREATER THAN
>
identifier-1 LESS THAN identifier-2

' literal-1 IS { [NOT] < ' literal-2
arithmetic-expression-1 GREATER THAN OR EQUAL TO| | | anthmetic-expression-2
index-name-1 e index-name-2

LESS THAN OR EQUAL TO

<=

<>

The first operand (identifier-1, literal-1, arithmetic-expression-1, or index-name-1) is called the subject of the
condition; the second operand (identifier-2, literal-2, arithmetic-expression-2, or index-name-2) is called the object
of the condition. The relation condition must contain at least one reference to a variable.
The relational operators specify the type of comparison to be made in a relation condition. A space must precede
and follow each reserved word comprising the relational operator. When used, NOT and the next keyword or
relation character are one relational operator that defines the comparison to be executed for truth value. The
following relational operators are equivalent:

IS NOT GREATER THAN is equivalent to IS LESS THAN OR EQUAL TO;

IS NOT LESS THAN is equivalent to IS GREATER THAN OR EQUAL TO.

IS <> is equivalent to IS NOT =.

IS NOT <> is equivalent to IS =.

241

Interactive COBOL Language Reference & Developer’s Guide - Part One

| Relational Operator Meaning I

IS [NOT] GREATER THAN Greater than OR

IS [NOT] > not greater than

IS [NOT] LESS THAN Less than OR

IS [NOT] < not less than

IS [NOT] EQUAL TO Equal to OR

IS [NOT] = not equal to

IS [NOT] GREATER THAN OR EQUAL TO Greater than or equal to OR
IS [NOT] >= not greater than or equal to
IS [NOT] LESS THAN OR EQUAL TO Less than or equal to OR

IS [NOT] <= not less than or equal to
IS <> Not equal to

TABLE 16. Relational Operators

B.2.1.1.1 Comparison of Numeric Operands

For operands whose class is numeric, a comparison is made with respect to the algebraic value of the operands. The
length of the literal or arithmetic-expression operands, in terms of the number of digits represented, is not significant.
Zero is considered a unique value regardless of the sign.

Comparison of these operands is permitted regardless of the manner in which their usage is described. Unsigned
numeric operands are considered positive for purposes of comparison.

B.2.1.1.2 Comparison of Nonnumeric Operands

For nonnumeric operands, or one numeric and one nonnumeric operand, a comparison is made with respect to a
specified collating sequence of characters. If one of the operands is specified as numeric, it must be an integer data
item or an integer literal and:

(1) If the nonnumeric operand is an elementary data item or a nonnumeric literal, the numeric operand is treated
as though it were moved to an elementary alphanumeric data item of the same size as the numeric data item (in terms
of standard data format characters), and the content of this alphanumeric data item were then compared to the
nonnumeric operand.

(2) If the nonnumeric operand is a group item, the numeric operand is treated as though it were moved to a
group item of the same size as the numeric data item (in terms of standard data format characters), and the content of
this item were then compared to the nonnumeric operand.

(3) A non-integer numeric operand cannot be compared to a nonnumeric operand.

The size of an operand is the total number of standard data format characters in the operand. Numeric and
nonnumeric operands may be compared only when their usage is the same.

When comparing two nonnumeric operands there are two cases to consider: operands of equal size and operands of
unequal size.

(1) Operands of equal size. If the operands are of equal size, comparison effectively proceeds by comparing
characters in corresponding character positions starting from the high order end and continuing until either a pair of
unequal characters is encountered or the low order end of the operand is reached, whichever comes first. The
operands are determined to be equal if all pairs of corresponding characters are equal.

The first encountered pair of unequal characters is compared to determine their relative position in the

collating sequence. The operand that contains the character that is positioned higher in the collating sequence is
considered to be the greater operand.

242

PROCEDURE DIVISION - Concepts (Conditional Expressions)

(2) Operands of unequal size. If the operands are of unequal size, comparison proceeds as though the shorter
operand were extended on the right by sufficient spaces to make the operands of equal size.
B.2.1.1.3 Comparisons Involving Index-Names and/or Index Data Items
Relation tests may be made only between:

(1) Two index-names. The result is the same as if the corresponding occurrence numbers were compared.

(2) An index-name and a data item (other than an index data item) or literal. The occurrence number that
corresponds to the value of the index-name is compared to the data item or literal.

(3) An index data item and an index-name or another index data item. The actual values are compared without
conversion.
B.2.1.1.4 Comparisons Involving USAGE POINTER Data Items (ANSI 74 and ANSI 85)
Two data items that are explicitly or implicitly defined as USAGE POINTER can be compared. Pointer

comparisons can include only relational operators which test for equality or inequality. The general format of such
comparisons is:

ADDRESS OF identifier-1 EQUAL TO ADDRESS OF identifier-3
identifier-2 IS { [NOT] = identifier-4
NULL - NULL
Syntax Rules:

(1) Identifier-1 and identifier-3 can refer to any data items defined in the Data Division.

(2) Identifier-2 and identifier-4 must be defined as USAGE IS POINTER.

General Rules:

(1) If ADDRESS OF clause is specified, the address if the named identifier is referenced, not the contents of the
identifier.

(2) The operands are equal if the two address are identical. Otherwise, they are unequal.

(3) This type of condition is allowed in the IF, PERFORM and Format 1 SEARCH statement. It is not allowed
in a Format 2 SEARCH statement (SEARCH ALL) since there is no implied ordering to pointer data items.
B.2.1.1.5 Comparisons Involving Date-Time Items (/SQL)

General Rules:
(1) Two items of class date-time may be compared provided that they have the same category.

(2) Comparisons are performed in accordance with chronological ordering.

243

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.2.1.1.6 Comparisons Involving Interval Items (ISQL)
General Rules:
(1) Two items of class interval may be compared provided that they have the same category.

(2) An item of class interval and a numeric item may be compared provided that the interval item consists of
only a single date-time field. The interval items is treated as a signed integer item for the purpose of the comparison.

(3) Comparisons are performed in accordance with the sign and magnitude.

(4) When the set of fields of the two intervals match, the comparison is straightforward and proceeds field by
field from left to right.

(5) When the set of fields of the two intervals does not match, the comparison extends either operand as
necessary with additional fields of value zero such that the set of fields matches. The extended values are
‘normalized’ by beginning with the rightmost field and normalizing it to its usual range and carrying any overflow to
the next field to the left. Comparison then proceeds as in rule 4.

For example:

Taking the comparison (INTERVAL “1:45" HOUR TO MINUTE < INTERVAL “105:23" MINUTE TO
SECOND) and applying the rules of extension above, we would have INTERVAL “1:45:00" HOUR TO
SECOND < INTERVAL “0:105:23" HOUR TO SECOND) and normalizing the second operand yields
(INTERVAL “1:45:00" HOUR TO SECOND < INTERVAL “1:45:23" HOUR TO SECOND), which evaluates
to TRUE.

B.2.1.2 Class Condition

The class condition determines whether an operand is numeric, alphabetic, or contains only the characters in the set
of characters specified by the CLASS clause as defined in the SPECIAL-NAMES paragraph of the Environment
Division.

B.2.1.2.1 General Format

ANSI 74 and ANSI 85

NUMERIC
ALPHABETIC
identifier IS [NOT]y ALPHABETIC-LOWER
ALPHABETIC-UPPER
class-name-1

VXCOBOL
identifier IS [NOT]{ALEHABEIIQ }

B.2.1.2.1 Syntax Rules

(1) If the NUMERIC phrase is specified, the usage of the operand being tested must be described as DISPLAY,
except for VXCOBOL where the NUMERIC test will allow any numeric item.

244

PROCEDURE DIVISION - Concepts (Conditional Expressions)

(2) If the NUMERIC phrase is specified, the operand being tested must not be an item whose data description
describes the item as alphabetic or as a group item composed of elementary items whose data description indicates
the presence of operational sign(s).

(3) If the NUMERIC phrase is not specified, the usage of the operand being tested must be described as
DISPLAY.

(4) Ifthe ALPHABETIC, ALPHABETIC-UPPER, ALPHABETIC-LOWER, or class-name-1 phrase is
specified, the operand being tested must not be an item whose data description describes the item as numeric.

B.2.1.2.2 General Rules

(1) When used, NOT and the next keyword specify one class condition that defines the class test to be executed
for truth value and which has the opposite truth value from the test without the NOT. So, e.g., NOT NUMERIC is a
truth test for determining that an operand is nonnumeric. The remaining rules are expressed in terms of the truth of
the condition expressed without the NOT.

(2) When the operand being tested is a zero-length item, the result of the test is always false.
(3) If the NUMERIC phrase is specified, the following rules apply:

a. If the data description of the item being tested does not indicate the presence of an operational sign, the
item being tested is determined to be numeric only if the content is numeric and an operational sign is not present. If
the data description of the item does indicate the presence of an operational sign, the item being tested is determined
to be numeric only if the content is numeric and a valid operational sign is present. Valid operational signs for data
items described with the SIGN IS SEPARATE clause are the standard data format characters + and -; see The
USAGE clause on page 195, 198, 233 for more information.

b. (VXCOBOL) The result is true for a usage display operand if it consists entirely of the characters 0, 1,
2, ... 9 and space with or without the operation sign; however, if the ‘-G a’ compiler switch is used, space is not
allowed. The result is true for non-display identifiers if their content is in agreement with the data description.

c. (ANSI 74 and ANSI 85) The result is true if the operand consists entirely of the characters 0, 1,2, 3, ...,
9, with or without an operational sign.

(4) If the ALPHABETIC phrase is specified, the following rules apply:

a. (ANSI 74 and VXCOBOL) The result is true if the operand consists entirely of the uppercase letters A,
B, C, ..., Z, or space, or any combination of the uppercase letters and spaces.

b. (ANSI 85) The result is true if the operand consists entirely of the uppercase letters A, B, C, ..., Z,
space, or the lowercase letters a, b, c, ... , z, or any combination of the uppercase and lowercase letters and spaces.

(5) If the ALPHABETIC-LOWER phrase is specified, the result is true if the operand consists entirely of the
lowercase letters a, b, c, ..., z, or space, or any combination of the lowercase letters and spaces.

(6) If the ALPHABETIC-UPPER phrase is specified, the result is true if the operand consists entirely of the
uppercase letters A, B, C, ..., Z, or space, or any combination of the uppercase letters and spaces.

(7) If the class-name-1 phrase is specified, the result is true if the operand consists entirely of the characters
listed in the definition of class-name-1 in the SPECIAL-NAMES paragraph.

245

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.2.1.3 Condition-Name Condition (Conditional Variable)

In a condition-name condition, a conditional variable is tested to determine whether or not its value is equal to one of
the values associated with condition-name-1. The general format for the condition-name condition is as follows:

condition-name-1

If condition-name-1 is associated with a range or ranges of values, then the conditional variable is tested to
determine whether or not its value falls in this range, including the end values.

The rules for comparing a conditional variable with a condition-name value are the same as those specified for
relation conditions.

The result of the test is true if one of the values corresponding to condition-name-1 equals the value of its associated
conditional variable.

B.2.1.4 Switch-Status Condition

A switch-status condition determines the on or off status of an external switch. The switch-name and the on or off
value associated with the condition must be named in the SPECIAL-NAMES paragraph of the Environment
Division. (See The SPECIAL-NAMES paragraph on page 80 for the description of switch conditions.) The general
format for the switch-status condition is as follows:

condition-name-1

The result of the test is true if the switch is set to the specified position corresponding to condition-name-1.

B.2.1.5 Sign Condition

The sign condition determines whether or not the algebraic value of an arithmetic expression is less than, greater
than, or equal to zero. The general format for a sign condition is as follows:

POSTIVE
arithmetic-expression-1 1S [NOT] y NEGATIVE
ZERO

When used, NOT and the next keyword specify one sign condition that defines the algebraic test to be executed for
truth value; e.g., NOT ZERO is a truth test for a nonzero (positive or negative) value. An operand is positive, if its
value is greater than zero, negative if its value is less than zero, and zero if its value is equal to zero.
Arithmetic-expression-1 must contain at least one reference to a variable.

B.2.1.6 (ISQL) Indicator Condition

The indicator condition determines the status of an indicator value. The general format for an indicator condition is
as follows:

NULL

identifier IS [NOT] VALID
OVERFLOW

When used, NOT and the next keyword specify one indicator condition that defines the test to be executed for truth
value. Since there are only three valid values, the NOT test is a test for either one of the values other than the one
specified, e.g., NOT VALID is a truth test for either NULL or OVERFLOW. An indicator value of NULL means

246

PROCEDURE DIVISION - Concepts (Conditional Expressions)

that the database item was a NULL item and the corresponding data item was not set. An indicator value of VALID
means that the database item was fetched and stored in the corresponding data item. An indicator value of
OVERFLOW means that the database item was fetched, but it had to be truncated in order to be stored in the data
item.

B.2.2 Complex Conditions

A complex condition is formed by combining simple conditions and/or complex conditions with logical connectors
(logical operators "AND' and 'OR'") or by negating these conditions with logical negation (the logical operator
'NOT'")'. The truth value of a complex condition, whether parenthesized or not, is that truth value which results from
the interaction of the stated logical operators on its constituent conditions.

The logical operators and their meanings are:

Logical Operator Meaning
AND Logical conjunction; the truth value is true if both of the conjoined conditions are true; false if

both of the conjoined conditions is false.

OR Logical inclusive OR; the truth value is true if one or both of the included conditions is true;
false if both included conditions are false.

NOT Logical negation or reversal of truth value; the truth value is true if the condition is false; false
if the condition is true.

The logical operators must be preceded by a space and followed by a space.

B.2.2.1 Negated Conditions

A condition is negated by use of the logical operator "NOT" which reverses the truth value of the condition to which
it is applied. Thus, the truth value of a negated condition is true if and only if the truth value of the condition being
negated is false; the truth value of a negated condition is false if and only if the truth value of the condition being
negated is true. Including a negated condition in parentheses does not change its truth value.

The general format for a negated condition is:

NOT condition-1

B.2.2.2 Combined Conditions

A combined condition results from connecting conditions with one of the logical operators "AND' or "OR". The
general format of a combined condition is:

condition { { OR } condition }...

B.2.2.3 Precedence of Logical Operators and the Use of Parentheses

In the absence of the relevant parentheses in a complex condition, the precedence (i.e., binding power) of the logical
operators determines the conditions to which the specified logical operators apply and implies the equivalent
parentheses. The order of precedence is 'NOT', "AND', ‘OR". Thus, specifying “condition-1 OR NOT condition-2
AND condition-3' implies and is equivalent to specifying "condition-1 OR ((NOT condition-2) AND condition-3)'.

247

Interactive COBOL Language Reference & Developer’s Guide - Part One

Where parentheses are used in a complex condition, they determine the binding of conditions to logical operators.
Parentheses can, therefore, be used to depart from the normal precedence of logical operators as specified above.
Thus, the example complex condition above can be given a different meaning by specifying it as "(condition-1 OR
(NOT condition-2)) AND condition-3'.

The following table indicates the ways in which conditions and logical operators may be combined and parenthe-
sized. There must be a one-to-one correspondence between left and right parentheses such that each left parenthesis
is to the left of its corresponding right parenthesis.

In a conditional In a left-to-right sequence of
Given the expression: elements:
following
element : May May Element, when Element, when
element element not first, may not last, may
be be be immediately be immediately
first? last? followed by followed by
only: only:
simple- Yes Yes OR, NOT, AND, (OR, AND,)
condition
OR or AND No No simple- simple-
condition,) condition,
NOT, (
NOT Yes No OR, AND, (simple-
condition, (
(Yes No OR, NOT, AND, (simple-
condition,
NOT, (
) No Yes simple- OR, AND,)
condition,)

TABLE 17. Combinations of Conditions, Logical Operators, and Parentheses

Thus, the element pair ‘OR NOT" is permissible, while the pair 'NOT OR' is not permissible; the pair "NOT (' is
permissible, while the pair 'NOT NOT' is not permissible.
B.2.3 Abbreviated Combined Relation Conditions
When simple or negated simple relation conditions are combined with logical connectives in a consecutive sequence
such that a succeeding relation condition contains a subject or subject and relational operator that is common with
the preceding relation condition, and no parentheses are used within such a consecutive sequence, any relation
condition except the first may be abbreviated by:

(1) The omission or the subject of the relation condition, or

(2) The omission of the subject and relational operator of the relation condition.

The format for an abbreviated combined relation condition is:
relation-condition { or ([NOT][relational-operator | object }...

Within a sequence of relation conditions both of the above forms of abbreviation may be used. The effect of using
such abbreviations is as if the last preceding stated subject were inserted in place of the omitted subject, and the last
stated relational operator were inserted in place of the omitted relational operator. The result of such implied
insertion must comply with the rules of TABLE 17. This insertion of an omitted subject and/or relational operator
terminates once a complete simple condition is encountered within a complex condition.

The interpretation applied to the use of the word NOT in an abbreviated combined relation condition is as follows:

(1) If the word immediately following NOT is GREATER, >, LESS, <, EQUAL, =, then the NOT participates
as part of the relational operator; otherwise,

248

PROCEDURE DIVISION - Concepts (Conditional Expressions)

(2) The NOT is interpreted as a logical operator and, therefore, the implied insertion of subject or relational
operator results in a negated relation condition.

Some examples of abbreviated combined and negated combined relation conditions and expanded equivalents
follow.

Abbreviated Combined Expanded Equivalent

Relation Condition

a > b AND NOT < ¢ OR d ((a2 > b) AND (a NOT < c)) OR (a NOT < d)

a NOT EQUAL b OR c (a NOT EQUAL b) OR (a NOT EQUAL c)

NOT a = b OR c (NOT (a = b)) OR (a = c)

NOT (a GREATER b OR < c¢) NOT ((a GREATER b) OR (a < c))

NOT (a NOT > b AND c¢ AND NOT d) NOT (((a NOT > b) AND (a NOT > c)) AND
(NOT (a NOT > d)))

EXAMPLE 14. Abbreviated combined and negated combined relation conditions

B.2.4 Order of Evaluation of Conditions

Parentheses, both explicit and implicit, denote a level of inclusiveness within a complex condition. Two or more
conditions connected by only the logical operator *AND' or only the logical operator "OR' at the same level of
inclusiveness establish a hierarchical level within a complex condition. Thus, an entire complex condition may be
considered to be a nested structure of hierarchical levels with the entire complex condition itself being the most
inclusive hierarchical level. Within this context, the evaluation of the conditions within an entire complex condition
begins at the left of the entire complex condition and proceeds according to the following rule recursively applied
where necessary:

(1) The constituent connected conditions within a hierarchical level are evaluated in order from left to right, and
evaluation of that hierarchical level proceeds until all the constituent connected conditions within that hierarchical

level have been evaluated.

Negated conditions are evaluated when it is necessary to evaluate the complex condition that they represent.

249

Interactive COBOL Language Reference & Developer’s Guide - Part One

Application of the above rules is shown in the 4 figures that follow.

Evaluate
condition-1

condition-1
false?

y

ye

no

A 4

Evaluate
condition-2

A 4

condition-2

—
false? =

no

A 4

Evaluate
contition-n

A 4

condition-n

eg ———
false? Y

no

v

truth value truth value
is true is false

FIGURE 1. Evaluation of condition-1 AND condition-2 AND ... condition-n

250

PROCEDURE DIVISION - Concepts (Conditional Expressions)

Evaluate
condition-1

A 4

condition-1
true?

y

ye

no

A 4

Evaluate
condition-2

A 4

condition-2
[yes—P
true?

no

A 4

Evaluate
contition-n

A 4

condition-n
———— yes—————

EEue?

no
A\
truth value truth value
is false is true

FIGURE 2. Evaluation of condition-1 OR condition-2 OR ... condition-n

251

Interactive COBOL Language Reference & Developer’s Guide - Part One

Evaluate
condition-1

condition-1
true?

yes———

no

A 4

Evaluate
condition-2

A 4

condition-2

s false?

no

A 4

Evaluate
condition-3

A 4

condition-3

[+— yes:
false?

no ——

A\

v

truth value truth value
is false is true

FIGURE 3. Evaluation of condition-1 OR condition-2 AND condition-3

252

PROCEDURE DIVISION - Concepts (ROUNDED Phrase)

Evaluate
condition-1

A 4

condition-1
true?

yes——»

no

Y
Evaluate
NOT
condition-2

A 4
NOT
condition-2 yes——
false? v

no Evaluate
condition-3

A 4

condition-1

[—— yes
true?

no
A 4

Evaluate
condition-4

A 4

condition-4
[—— yes

false?
no
v l
truth value truth value
is false is true

FIGURE 4. Evaluation of (condition-1 OR NOT condition-2) AND condition-3 AND condition-4

B.3. Common Options and Rules for Statements

Paragraph B and its subordinate paragraphs provide a description of the common options and conditions that pertain
to or appear in several different statements.

B.3.1 ROUNDED Phrase

If, after decimal point alignment, the number of places in the fractions of the result of an arithmetic operation is
greater than the number of places provided for the fraction of the resultant identifier, truncation is relative to the size
provided for the resultant identifier. When rounding is requested, the absolute value of the resultant identifier is
increased by one in the low-order position whenever the most significant digit of the excess is greater than or equal
to five.

When the low-order integer positions in a resultant identifier are represented by the character P in the PICTURE for
that resultant identifier, rounding or truncation occurs relative to the right-most integer position for which storage is
allocated.

253

Interactive COBOL Language Reference & Developer’s Guide - Part One
B.3.2 ON SIZE ERROR Phrase

The size error condition occurs under the following circumstances:

(1) Violation of the rules for evaluation of exponentiation always terminates the arithmetic operation and
always causes a size error condition.

(2) Division by zero always terminates the arithmetic operation and always causes a size error condition.

(3) If, after radix point alignment, the absolute value of a result exceeds the largest value that can be contained
in the associated resultant identifier, a size error condition exists. If the ROUNDED phrase is specified, rounding
takes place before checking for size error.

(4) (ISQL) If, after adding or subtracting an interval from a date-time value, the resulting date-time value is not
a valid date-time value, the size error condition exists. For example, DATE “2001-01-30" + INTERVAL “1"
MONTH yields DATE “2001-02-30", which is not a valid date.

If the ON SIZE ERROR phrase is specified and a size error condition exists after the execution of the arithmetic
operations specified by an arithmetic statement, the values of the affected resultant identifiers remain unchanged
from the values they had before execution of the arithmetic statement. The values of resultant identifiers for which
no size error condition exists are the same as they would have been if the size error condition had not resulted for
any of the resultant identifiers. After completion of the arithmetic operations, control is transferred to the
imperative-statement specified in the ON SIZE ERROR phrase and execution continues according to the rules for
each statement specified in that imperative-statement. If a procedure branching or conditional statement which
causes explicit transfer of control is executed, control is transferred in accordance with the rules for that statement;
otherwise, upon completion of the execution of the imperative-statement specified in the ON SIZE ERROR phrase,
control is transferred to the end of the arithmetic statement and the NOT ON SIZE ERROR phrase, if specified, is
ignored.

If the ON SIZE ERROR phrase is not specified and a size error condition exists after the execution of the arithmetic
operations specified by an arithmetic statement, the values of the affected resultant identifiers are undefined. The
values of resultant identifiers for which no size error condition exists are the same as they would have been if the size
error condition had not resulted for any of the resultant identifiers. After completion of the arithmetic operations,
control is transferred to the end of the arithmetic statement and the NOT ON SIZE ERROR phrase, if specified, is
ignored.

If the size error condition does not exist after the execution of the arithmetic operations specified by an arithmetic
statement, the ON SIZE ERROR phrase, if specified, is ignored and control is transferred to the end of the arithmetic
statement or to the imperative-statement specified in the NOT ON SIZE ERROR phrase, if it is specified. In the
latter case, execution continues according to the rules for each statement specified in that imperative-statement. If a
procedure branching or conditional statement which causes explicit transfer of control is executed, control is
transferred in accordance with the rules for that statement; otherwise, upon completion of the execution of the
imperative-statement specified in the NOT ON SIZE ERROR phrase, control is transferred to the end of the
arithmetic statement

For the ADD or SUBTRACT statement with the CORRESPONDING phrase, if any of the individual operations
produces a size error condition, imperative-statement-1 in the ON SIZE ERROR phrase is not executed until all of
the individual additions or subtractions are completed.

B.3.3 CORRESPONDING Phrase

For the purpose of this discussion, D1 and D2 must each be identifiers that refer to group items. A pair of data
items, one from D1 and one from D2 correspond if the following conditions exist:

(1) A dataitem in D1 and a data item in D2 are not designated by the keyword FILLER and have the same
data-name and the same qualifiers up to, but not including, D1 and D2.

254

PROCEDURE DIVISION - Concepts (CORRESPONDING)

(2) Atleast one of the data items is an elementary data item and the resulting move is legal according to the
move rules in the case of a MOVE statement with the CORRESPONDING phrase; and both of the data items are
elementary numeric data items in the case of the ADD statement with the CORRESPONDING phrase or the
SUBTRACT statement with the CORRESPONDING phrase.

(3) The description of D1 and D2 must not contain level-number 66, 77, or 88, the USAGE IS INDEX clause,
or (for ANSI 74 and ANSI 85) the USAGE IS POINTER clause.

(4) A data item that is subordinate to D1 or D2 and contains a REDEFINES, RENAMES, OCCURS, or
USAGE IS INDEX clause is ignored, as well as those data items subordinate to the data item that contains the
REDEFINES, OCCURS, USAGE IS INDEX clause, or (for ANSI 74 and ANSI 85) the USAGE IS POINTER
clause.

(5) The name of each data item which satisfies the above conditions must be unique after application of the
implied qualifiers.

The following examples demonstrate the MOVE CORRESPONDING and ADD CORRESPONDING
statements.

FD PATIENT-FILE.
01 PATIENT-RECORD.
03 PATIENT-KEY.

05 PATIENT-NO PIC 9(6).
05 PATIENT-EMPLOYER PIC X(30).
03 PATIENT-NAME PIC X (20).
03 PATIENT-INSURANCE-CO PIC X(15).
03 PATIENT-INS-GROUP-NO PIC 9(3).
03 TODAYS-CHARGES PIC 9(4)V99.
03 PATIENT-BALANCE.
05 0-30 PIC 9(4)V99.
05 31-60 PIC 9(4)V99.
05 OVER-60 PIC 9(4)V99.
01 BILL-DETAIL-LINE.
03 PATIENT-NAME PIC X (20).
03 FILLER PIC X(5) VALUE SPACE.
03 TODAYS-CHARGES. PIC 9(4)V99.
03 FILLER PIC X(5) VALUE SPACE.
03 PREVIOUS-BALANCE PIC 9(4)V99.
03 TOTAL-BALANCE PIC 9(6)V99.
01 ACCTS-REC-TOTALS
03 SUPPLIER-BALANCE PIC 9(8)V99.
03 PATIENT-BALANCE.
05 0-30 PIC 9(4)V99.
05 31-60 PIC 9(4)V99.
05 OVER-60 PIC 9(4)V99.

Sk Sk kK ko ke ok ke sk ok sk ok ok ok ok ok ok sk ke ok ok ok kb ok sk ok sk ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok k ks ke ok ok ok ok ok ok ok ok ok ok ok ok

*** The following MOVE statement is the equivalent to:

* kK

e MOVE PATIENT-NAME OF PATIENT-RECORD

ool TO PATIENT-NAME OF BILL-DETAIL-LINE.
e MOVE TODAYS-CHARGES OF PATIENT-RECORD

ool TO TODAYS-CHARGES OF BILL-DETAIL-LINE.

AR SR EEEEEEEEEEEEEE R SRR R EEEEEEEEEEEEEEEEEEEE R R R R R R R R R R R R

MOVE CORR PATIENT-RECORD TO BILL-DETAIL-LINE.

AR SR EEEEEEEEEEEEEE R SRR R EEEEEEEEEEEEEEEEEEEE R R R R R R R R R R R R

*** The following ADD statement is equivalent to:
* Kk x

K ADD 0-30 OF PATIENT-BALANCE OF PATIENT-RECORD

e TO 0-30 OF PATIENT-BALANCE OF ACCTS-REC-TOTALS.
K ADD 31-60 OF PATIENT-BALANCE OF PATIENT-RECORD

e TO 31-60 OF PATIENT-BALANCE OF ACCTS-REC-TOTALS.
K ADD OVER-60 OF PATIENT-BALANCE OF PATIENT-RECORD

e TO OVER-60 OF PATIENT-BALANCE OF ACCTS-REC-TOTALS.

Sk Sk kK ok ok ke ok ok sk ok sk ok ok ok ok ok ok sk ke sk ok sk kb ok sk ok sk ok ok ok ok ok ok ok ok sk ke sk ke ok ok ok ok ok ok ok ok ok sk k ok ok ok ok ok ok ke sk ok ok ok kb ok ok ok ok ok ok ok ok

ADD CORR PATIENT-BALANCE OF PATIENT-RECORD TO PATIENT-BALANCE
OF ACCTS-REC-TOTALS.

EXAMPLE 15. MOVE CORRESPONDING and ADD CORRESPONDING

255

Interactive COBOL Language Reference & Developer’s Guide - Part One

The following code demonstrates the MOVE CORRESPONDING statement.

WORKING-STORAGE SECTION.
01 SYSTEM-DATE PIC 9(8) VALUE ZERO.
01 SYSTEM-DATE-R REDEFINES SYSTEM-DATE.
03 SYSTEM-YEAR PIC 9(4).
03 SYSTEM-MONTH PIC 9(2).
03 SYSTEM-DAY PIC 9(2).
01 CURRENT-DATE.
03 SYSTEM-MONTH PIC 9(2).
03 SYSTEM-DAY PIC 9(2).
03 SYSTEM-YEAR PIC 9(4).
01 CURRENT-DATE-R REDEFINES CURRENT-DATE PIC 9(8).
ACCEPT SYSTEM-DATE FROM DATE YYYYMMDD.
MOVE CORRESPONDING SYSTEM-DATE-R TO CURRENT-DATE.

EXAMPLE 16. MOVE CORRESPONDING

B.3.4 Arithmetic Statements

The arithmetic statements are the ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements. They
have several common features.

(1) The data descriptions of the operands need not be the same; any necessary conversion and decimal point
alignment is supplied throughout the calculation.

(2) The maximum size of each operand is 18 decimal digits. The composite of operands, which is a
hypothetical data item resulting from the superimposition of specified operands in a statement aligned on their
decimal points, must not contain more than 18 decimal digits.

B.3.5 Overlapping Operands

When a sending and a receiving data item in any statement share a part or all of their storage areas, yet are not
defined by the same data description entry, the result of the execution of such a statement is undefined. For
statements in which the sending and receiving data items are defined by the same data description entry, the results
of the execution of the statement may or may not be defined depending on the general rules associated with the
applicable statement. If there are no specific rules addressing such overlapping operands, the results are undefined.

In the case of reference modification, the unique data item produced by reference modification is not considered to
be the same data description entry as any other data description entry. Therefore, if an overlapping situation exists,
the results of the operation are undefined.

B.3.6 Multiple Results in Arithmetic Statements

The ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements may have multiple results. Such
statements behave as though they had been written in the following way:

(1) A statement whose execution accesses all data items that are part of the initial evaluation of the statement,
performs any necessary arithmetic or combining of these data items and stores the result of this operation in a
temporary location. See the individual statements for the rules indicating which items are part of the initial
evaluation.

256

PROCEDURE DIVISION - Concepts (Statements and Sentences)

(2) A sequence of statements whose execution transfers or combines the value in this temporary location with
each single resulting data item. These statements are considered to be written in the same left-to-right sequence that
the multiple results are specified.

The result of the statement

ADD a, b, ¢, TO ¢, d(c), e

is equivalent to

ADD a, b, c GIVING temp
ADD temp TO c

ADD temp TO d(c)

ADD temp TO e

and the result of the statement
MULTIPLY a (i) BY i, a (i)
is equivalent to

MOVE a (i) TO temp
MULTIPLY temp BY i
MULTIPLY temp BY a (i)

in both cases, ‘temp' is an intermediate result item provided by the compiler.

B.3.7 Incompatible Data

Except for the class condition, when the content of a data item is referenced in the Procedure Division and the
content of that data item is not compatible with the class specified for that data item by its PICTURE clause, then the
result of such a reference is undefined.

B.4. Statements and Sentences

There are four types of statements: imperative statements, conditional statements, compiler directing statements, and
delimited scope statements.

There are three types of sentences: imperative sentences, conditional sentences, and compiler directing sentences.

B.4.1 Conditional Statements and Sentences
B.4.1.1 Definition of Conditional Statement

A conditional statement specifies that the truth value of a condition is to be determined and that the subsequent
action of the object program is dependent on this truth value.

A conditional statement is one of the following:
(1) An EVALUATE, IF, SEARCH, or RETURN statement.

(2) A READ statement that specifies the AT END, NOT AT END, INVALID KEY, or NOT INVALID KEY
phrase.

257

Interactive COBOL Language Reference & Developer’s Guide - Part One

(3) A WRITE statement that specifies the INVALID KEY, NOT INVALID KEY, END-OF-PAGE, or NOT
END-OF-PAGE phrase.

(4) A DEFINE SUB-INDEX, DELETE, EXPUNGE SUB-INDEX, LINK SUB-INDEX, RETRIEVE,
REWRITE, START, or UNDELETE statement that specifies the INVALID KEY or NOT INVALID KEY phrase.

(5) An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY, SUBTRACT) that specifies the ON
SIZE ERROR or NOT ON SIZE ERROR phrase.

(6) A STRING or UNSTRING statement that specifies the ON OVERFLOW or NOT ON OVERFLOW
phrase.

(7) A CALL statement that specifies the ON OVERFLOW, ON EXCEPTION, or NOT ON EXCEPTION
phrase.

(8) A CALL PROGRAM statement that specifies the ON EXCEPTION or NOT ON EXCEPTION phrase.

(9) An ACCEPT statement that specifies ON ESCAPE or NOT ON ESCAPE.

(10) (ISQL) A COMMIT, CONNECT, DEALLOCATE, DISCONNET, EXECUTE, EXECUTE
IMMEDIATE, FETCH, PREPARE, ROLLBACK, or SET CONNECTION statement that specifies ON
SQLERROR or NOT ON SQLERROR.

(11) (ISQL) A GET DIAGNOSTICS statement that specifies the ON EXCEPTION or NOT ON EXCEPTION
phrase.

B.4.1.1.1 Definition of Conditional Phrase

A conditional phrase specifies the action to be taken upon determination of the truth value of a condition resulting
from the execution of a conditional statement.

A conditional phrase is one of the following:
(1) an AT END or NOT AT END phrase when specified within a READ statement.

(2) an INVALID KEY or NOT INVALID KEY phrase when specified within a DELETE, READ, REWRITE,
START, UNDELETE, or WRITE statement.

(3) a SIZE ERROR or NOT SIZE ERROR phrase when specified within an ADD, COMPUTE, DIVIDE,
MULTIPLY, or SUBTRACT statement.

(4) an ON OVERFLOW or NOT ON OVERFLOW phrase when specified within a STRING or UNSTRING
statement.

(5) an ON OVERFLOW, ON EXCEPTION, NOT ON OVERFLOW, or NOT ON EXCEPTION phrase when
specified within a CALL statement.

(6) an ON EXCEPTION or NOT ON EXCEPTION phrase when specified within a CALL PROGRAM
statement.

(7) an END-OF-PAGE or NOT END-OF-PAGE phrase when specified with a WRITE statement.

(8) an ON ESCAPE or NOT ON ESCAPE phrase when specified with an ACCEPT statement.

258

PROCEDURE DIVISION - Concepts (Statements and Sentences)

(9) (ISQL) an ON SQLERROR or NOT ON SQLERROR phrase when specified with a COMMIT,
CONNECT, DEALLOCATE, DISCONNECT, EXECUTE, EXECUTE IMMEDIATE, FETCH, PREPARE,
ROLLBACK, SET CONNECTION statement.

(10) (ISQL) an ON EXCEPTION or NOT ON EXCEPTION phrase when specified within a GET
DIAGNOSTICS statement.
B.4.1.2 Definition of Conditional Sentence
A conditional sentence is a conditional statement, optionally preceded by an imperative statement, terminated by the
separator period.
B.4.2 Compiler Directing Statements and Sentences
B.4.2.1 Definition of Compiler Directing Statement
A compiler directing statement consists of a compiler directing verb and its operands. The compiler directing verbs
are COPY and USE. A compiler directing statement causes the compiler to take a specific action during
compilation.
B.4.2.2 Definition of Compiler Directing Sentence
A compiler directing sentence is a single compiler directing statement terminated by the separator period.
B.4.3 Imperative Statements and Sentences
B.4.3.1 Definition of Imperative Statement
An imperative statement begins with an imperative verb and specifies an unconditional action to be taken by the
object program or is a conditional statement that is delimited by its explicit scope terminator (delimited scope

statement). An imperative statement may consist of a sequence of imperative statements, each possibly separated
from the next by a separator. The imperative verbs are:

ACCEPT’ DISCONNECT ° LINK SUB-INDEX * SET (ISQL) °
ADD' DISPLAY MERGE SORT
CALL’ DIVIDE ' MOVE START 2
CALL PROGRAM °¢ EXECUTE "’ MULTIPLY ' STOP
CANCEL EXIT OPEN STRING *
CLOSE EXPUNGE PERFORM SUBTRACT '
COMPUTE ' EXPUNGE SUB-INDEX * PREPARE ’ UNDELETE 2
CONNECT’? FETCH® READ * UNSTRING *
CONTINUE GET® RELEASE WRITE #
DEALLOCATE’ GO TO RETRIEVE ?

DEFINE SUB-INDEX INITIALIZE REWRITE *

DELETE 2 INSPECT SET

without the optional ON SIZE ERROR and NOT ON SIZE ERROR phrases

without the optional INVALID KEY and NOT INVALID KEY phrases

without the optional ON OVERFLOW and NOT ON OVERFLOW phrases

without the optional AT END, NOT AT END, INVALID KEY, and NOT INVALID KEY phrases

without the optional ON OVERFLOW, ON EXCEPTION, and NOT ON EXCEPTION phrases

without the optional ON EXCEPTION and NOT ON EXCEPTION phrases

without the optional ON ESCAPE and NOT ON ESCAPE phrases

without the optional INVALID KEY, NOT INVALID KEY, END-OF-PAGE, and NOT END-OF-PAGE phrases
without the optional ON SQLERROR and NOT ON SQLERROR phrases

R T Y S SV R SR

259

Interactive COBOL Language Reference & Developer’s Guide - Part One

Whenever “imperative-statement' appears in the general format of statements, ‘imperative-statement' refers to that
sequence of consecutive imperative statements that must be ended by a period or by any phrase associated with a
statement containing that ‘imperative-statement'.

(ISQL) The COMMIT, CONNECT, DEALLOCATE, DISCONNECT, EXECUTE, EXECUTE IMMEDIATE,
FETCH, GET DIAGNOSTICS, PREPARE, ROLLBACK, and SET CONNECTION statements are only available
when the ISQL feature-set is enabled.

B.4.3.2 Definition of Imperative Sentence

An imperative sentence is an imperative statement terminated by the separator period.

B.5. Scope of Statements

A delimited scope statement is any statement which includes its explicit scope terminator. (See section B.6.5 on
page 262.)

When statements are nested within other statements, a separator period which terminates the sentence also implicitly
terminates all nested statements.

Whenever any statement is contained within another statement, the next phrase of the containing statement following
the contained statement terminates the scope of any unterminated contained statement.

When statements are nested within other statements which allow optional conditional phrases, any optional
conditional phrase encountered is considered to be the next phrase of the nearest preceding unterminated statement
with which that phrase is permitted to be associated according to the general format and the syntax rules for that
statement, but with which no such phrase has already been associated. An unterminated statement is one which has
not been previously terminated either explicitly or implicitly.

B.6. Explicit and Implicit Specifications

There are four types of explicit and implicit specifications that occur in COBOL source programs:
(1) Explicit and implicit Procedure Division references
(2) Explicit and implicit transfers of control
(3) Explicit and implicit attributes

(4) Explicit and implicit scope terminators

B.6.1 Explicit and Implicit Procedure Division References

A COBOL source program can reference data items either explicitly or implicitly in Procedure Division statements.
An explicit reference occurs when the name of the referenced item is written in a Procedure Division statement or
when the name of the referenced item is copied into the Procedure Division by the processing of a COPY statement.
An implicit reference occurs when the item is referenced by a Procedure Division statement without the name of the
referenced item being written in the source statement. An implicit reference also occurs, during the execution of a
PERFORM statement, when the index or data item referenced by the index-name or identifier specified in the
VARYING, AFTER, or UNTIL phrase is initialized, modified, or evaluated by the control mechanism associated
with that PERFORM statement. Such an implicit reference occurs if and only if the data item contributes to the
execution of the statement.

260

PROCEDURE DIVISION - Concepts (Explicit and Implicit Specifications)
B.6.2 Explicit and Implicit Transfers of Control

The mechanism that controls program flow transfers control from statement to statement in the sequence in which
they were written in the source program unless an explicit transfer of control overrides this sequence or there is no
next executable statement to which control can be passed. The transfer of control from statement to statement occurs
without the writing of an explicit Procedure Division statement, and, therefore, is an implicit transfer of control.

COBOL provides both explicit and implicit means of altering the implicit control transfer mechanism.

In addition to the implicit transfer of control between consecutive statements, implicit transfer of control also occurs
when the normal flow is altered without the execution of a procedure branching statement. COBOL provides the
following types of implicit control flow alterations which override the statement-to-statement transfers of control:

(1) If a paragraph is being executed under control of another COBOL statement (for example, PERFORM,
USE, SORT, and MERGE) and the paragraph is the last paragraph in the range of the controlling statement, then an
implied transfer of control occurs from the last statement in the paragraph to the control mechanism of the last
executed controlling statement. Further, if a paragraph is being executed under the control of a PERFORM
statement which paragraph is being executed under the control of a PERFORM statement which causes iterative
execution, and that paragraph is the first paragraph in the range of that PERFORM statement, an implicit transfer of
control occurs between the control mechanism associated with that PERFORM statement and the first statement in
that paragraph for each iterative execution of the paragraph.

(2) When a SORT or MERGE statement is executed, an implicit transfer of control occurs to any associated
input or output procedures.

(3) When any COBOL statement is executed which results in the execution of a declarative section, an implicit
transfer of control to the declarative section occurs. Another implicit transfer of control occurs after execution of the
declarative section, as described in paragraph 1 above.

An explicit transfer of control consists of an alteration of the implicit control transfer mechanism by the execution of
a procedure branching or conditional statement. An explicit transfer of control can be caused only by the execution
of a procedure branching or conditional statement. The procedure branching statement EXIT PROGRAM causes an
explicit transfer of control only when the statement is executed in a called program.

In this document, the term ‘next executable statement' is used to refer to the next COBOL statement to which control
is transferred according to the rules above and the rules associated with each language element.

There is no next executable statement when the program contains no Procedure Division or does contain the
following:

(1) The last statement in a declarative section when the paragraph in which it appears is not being executed
under the control of some other COBOL statement.

(2) The last statement in a declarative section when the statement is in the range of an active PERFORM
statement executed in a different section and this last statement of the declarative section is not also the last statement

of the procedure that is the exit of the active PERFORM statement.

(3) The last statement in a program when the paragraph in which it appears is not being executed under the
control of some other COBOL statement in that program.

(4) A STOP RUN statement or EXIT PROGRAM statement that transfers control outside the COBOL program.
When there is no next executable statement and control is not transferred outside the COBOL program, the program

flow of control is undefined unless the program execution is in the nondeclarative procedures portion of a program
under control of a CALL statement, in which case an implicit EXIT PROGRAM statement is executed.

261

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.6.3 Explicit and Implicit Attributes
Attributes may be implicitly or explicitly specified. Any attribute which has been explicitly specified is called an
explicit attribute. If an attribute has not been specified explicitly, then the attribute takes on the default specification.

Such an attribute is known as an implicit attribute.

For example, the usage of a data item need not be specified, in which case a data item's usage is DISPLAY.

B.6.4 Scope Terminators

Scope terminators serve to delimit the scope of certain Procedure Division. Scope terminators are of two types:
explicit and implicit.

B.6.5 Explicit Scope Terminators

The explicit scope terminators are the following:

END-ACCEPT END-DISCONNECT END-MULTIPLY END-SET
END-ADD END-DIVIDE END-PERFORM END-START
END-CALL END-EXECUTE END-PREPARE END-STRING
END-COMMIT END-EVALUATE END-READ END-SUBTRACT
END-COMPUTE END-EXPUNGE END-RETRIEVE END-UNDELETE
END-CONNECT END-FETCH END-RETURN END-UNSTRING
END-DEALLOCATE END-GET END-REWRITE END-WRITE
END-DEFINE END-IF END-ROLLBACK

END-DELETE END-LINK END-SEARCH

B.6.6 Implicit Scope Terminators
The implicit scope terminators are the following:

(1) At the end of any sentence, the separator period which terminates the scope of all previous statements not
yet terminated.

(2) Within any statement containing another statement, the next phrase of the containing statement following the

contained statement terminates the scope of any unterminated contained statement. Examples of such phrases are
ELSE, NOT AT END, etc.

262

PROCEDURE DIVISION (File Concepts)

C. File Concepts

A file is a collection of records which may be placed into or retrieved from a storage medium. The user not only
chooses the file organization, but also chooses the file processing method and sequence. Although the file
organization and processing method are restricted for sequential media, no such restrictions exist for mass storage
media.

When describing the capabilities of COBOL programs to manipulate files, the following conventions are used. The
term "file-name' means the user-defined word used in the COBOL source program to reference a file. The terms “file
referenced by file-name' and *file' mean the physical file regardless of the file-name used in the COBOL program.
The term “file connector' means the entity containing information concerning the file. All accesses to physical files
occur through file connectors. In various implementations, the file connector is referred to as a file information
table, a file control block, etc.

C.1. File Attributes

A file has several attributes which apply to the file at the time it is created and cannot be changed throughout the
lifetime of the file. The primary attribute is the organization of the file, which describes its logical structure. Other
fixed attributes of the file provided by the COBOL program are primary record key, alternate record keys, code set,
the minimum and maximum logical record size, the record type (fixed or variable), the collating sequence of the keys
for indexed files, the blocking factor, the padding character, and the record delimiter.

For ANSI 74 and ANSI 85, there are three organizations: sequential, relative, and indexed. For VXCOBOL, there
are four organizations: sequential, relative, indexed, and INFOS.

C.1.1 Sequential Organization

Sequential files are organized so that each record, except the last, has a unique successor record; each record, except
the first, has a unique predecessor record. The successor relationships are established by the order of execution of
WRITE statements when the file is created. Once established, successor relationships do not change except in the
case where records are added to the end of a file.

A sequentially organized mass storage file has the same logical structure as a file on any sequential medium;
however, a sequential mass storage file may be updated in place. When this technique is used, new records cannot
be added to the file and each replaced record must be the same size as the original record.

C.1.2 Relative Organization

A file with relative organization is a mass storage file from which any record may be stored or retrieved by providing
the value of its relative record number.

Conceptually, a file with relative organization comprises a serial string of areas, each capable of holding a logical
record. Each of these areas is denominated by a relative record number. Each logical record in a relative file is
identified by the relative record number of its storage area. For example, the tenth record is the one addressed by
relative record number 10 and is in the tenth record area, whether or not records have been written in any of the first
through the ninth record areas.

In order to achieve more efficient access to records in a relative file, the number of character positions reserved on

the medium to store a particular logical record may be different from the number of character positions in the
description of that record in the program.

263

Interactive COBOL Language Reference & Developer’s Guide - Part One

C.1.3 Indexed Organization

A file with indexed organization is a mass storage file from which any record may be accessed by giving the value of
a specified key in that record. For each key data item defined for the records of a file, an index is maintained. Each
such index represents the set of values from the corresponding key data item in each record. Each index, therefore,
is a mechanism which can provide access to any record in the file.

Each indexed file has a primary index which represents the primary record key of each record in the file. Each
record is inserted in the file, changed, or deleted from the file based solely upon the value of its primary record key.
The primary record key of each record in the file must be unique, and it must not be changed when updating a
record. The primary record key is declared in the RECORD KEY clause of the file control entry for the file.
Alternate record keys provide alternative means of retrieval for the records of a file. Such keys are named in the
ALTERNATE RECORD KEY clauses of the file control entry. The value of a particular alternate record key in
each record need not be unique. When these values may not be unique, the DUPLICATES phrase is specified in the
ALTERNATE RECORD KEY clause.

C.1.4 INFOS Organization (VXCOBOL)

NOTE: As of Revision 5.30, the U/FOS data manager that provided runtime support for INFOS files is no longer
sold or supported.

A file with INFOS organization is a mass storage file from which any record may be accessed by giving the value of
a specified key or keys. For each key data item defined for the records of a file, a subindex is maintained. Each such
index represents the set of values from the corresponding key data item. One or more keys can be associated with
each record in the file.
A key may or may not be contained within the record. A key may or may not be associated with a record.
A file with INFOS organization can have several modes of indexing:

(1) simple indexing (one index per file)

(2) alternate indexing (multiple paths to a record)

(3) multiple indexing

(4) multilevel indexing

ICOBOL requires the U/FOS data management software from Transoft, Inc. to provide INFOS support.

C.2. Logical Records

A logical record is the unit of data which is retrieved from or stored into a file. There are two types of records: fixed
length and variable length. When a file is created, it is declared to contain either fixed length or variable length
records. In any case, the content of the record does not reflect any information the implementor may add to the
record on the physical storage medium (such as record length headers), nor does the length of the record used by the
COBOL programmer reflect these additions.

C.2.1 Fixed Length Records

Fixed length records must contain the same number of character positions for all the records in the file. All
input-output operations on the file can only process this one record size.

264

PROCEDURE DIVISION - File Concepts (File Processing)

For ANSI 74 and ANSI 85, fixed length records may be explicitly selected by specifying a Format 1 RECORD
clause in the file description entry for the file regardless of the individual record descriptions.

For VXCOBOL, fixed length records may be explicitly selected by specifying RECORDING MODE IS FIXED
clause in the file description entry for the file regardless of the individual record descriptions.

C.2.2 Variable Length Records (ANSI 74 and ANSI 85)

Variable length records may contain differing numbers of character positions among the records on the file. To
define variable length records explicitly, the VARYING phrase may be specified in the RECORD clause in the file
description entry or the sort-merge file description entry for the file. The length of a record is affected by the
data-item referenced in the DEPENDING phrase of the RECORD clause or the DEPENDING phrase of an
OCCURS clause or by the length of the record description entry for this file. They may also be obtained with the
RECORDING MODE IS VARIABLE clause, however this is obsolete and applies to sequential files only.

C.2.3 Variable Length Records (VXCOBOL)

Variable length records may contain differing numbers of character positions among the records on the file. Variable
length records may be explicitly selected by selecting the RECORDING MODE IS VARIABLE clause in the file
regardless of the individual record descriptions.

C.3. File Processing

A file can be processed by performing operations upon individual records or upon the file as a unit, or (for INFOS
files when using the VXCOBOL dialect) by performing operations upon individual keys. Unusual conditions that
occur during processing are communicated back to the program.

C.4. Record Operations

The ACCESS MODE clause of the file description entry specifies the manner in which the object program operates
upon records within a file. The access mode may be sequential, random, or dynamic.

For files that are organized as relative, indexed, or INFOS, any of the three access modes can be used to access the
file regardless of the access mode used to create the file. A file with sequential organization may only be accessed in
sequential mode.

When a file is accessed in random mode, input-output statements are used to access the records in a
programmer-specified order. With the indexed organization, the programmer specifies the desired record by placing
the value of one of its record keys in a record key or an alternate record key data item.

With dynamic access mode, the programmer may change at will from sequential accessing to random accessing,
using appropriate forms of input-output statements.

C.4.1 Sequential Access Mode

A file can be accessed sequentially irrespective of the file organization.

For sequential organization, the order of sequential access is the order in which the records were originally written.
The START statement may be used to establish a starting point for a series of subsequent retrievals.

265

Interactive COBOL Language Reference & Developer’s Guide - Part One

For relative organization, the order of sequential access is ascending or descending based on the value of the relative
record numbers. Only records which currently exist in the file are made available. The START statement may be
used to establish a starting point for a series of subsequent sequential retrievals.

For indexed organization or INFOS, the order of sequential access is ascending or descending based on the value of
the key of reference according to the collating sequence associated with the native character set. Any of the keys
associated with the file may be established as the key of reference during the processing of the file. The order of
retrieval from a set of records which have duplicate key of reference values is the original order of arrival of those
records into the set. The START statement may be used to establish a starting point within an indexed file for a
series of subsequent sequential retrievals.

For VXCOBOL, cach individual I/O operation may be used to establish a starting point within an INFOS file for
subsequent sequential retrievals.

C.4.2 Random Access Mode

When a file is accessed in random mode, input-output statements are used to access the records in a
programmer-specified order. The random access mode may only be used with relative, indexed, or INFOS file
organizations.

For a file with relative organization, the programmer specifies the desired record by placing its relative record
number in a relative key data item. With the indexed organization, the programmer specifies the desired record by
placing the value of one of its record keys in a record key or an alternate record key data item. With INFOS
organization, the programmer specifies the desired record by placing the value of one or more of its record keys in
appropriate record key data items.

C.4.3 Dynamic Access Mode

With dynamic access mode, the programmer may change at will from sequential accessing to random accessing,
using appropriate forms of input-output statements. The dynamic access mode may only be used on files with
relative, indexed, or INFOS organizations.

C.4.4 Open Mode

The open mode of the file is related to the actions to be performed upon is in the file. The open modes and purposes
are: INPUT, to retrieve records; OUTPUT, to place records into a file; EXTEND, to append records to an existing
file; and I-O, to retrieve and update records. The open mode is specified in the OPEN statement.

When the open mode is INPUT, a file may be accessed by the READ and for VXCOBOL the RETRIEVE
statement. The START statement may also be used for files organized as indexed, relative, INFOS which are in
sequential or dynamic access modes or for files organized as sequential.

When the open mode is OUTPUT, the records are placed into the file by issuing WRITE statements.
When the open mode is EXTEND, new records are added to the logical end of a file by issuing WRITE statements.

Only mass storage files may be referenced in the open I-O mode. The additional capabilities of mass storage devices
permit updating in place, thus READ and REWRITE statements may always be used. A mass storage file may be
updated in the same manner as a file on a sequential medium, by transcribing the entire file into another file (perhaps
in a separate area of mass storage) using READ and WRITE statements. However, it is sometimes more efficient to
update a mass storage file in place. This mass storage file maintenance technique uses the REWRITE statement to
return to their previous locations on the storage medium only those records which have changed.

266

PROCEDURE DIVISION - File Concepts (File Operations)

READ, REWRITE, and START statements are the only operations allowed, while updating in place sequentially
organized files. However, for indexed, relative, or INFOS organized files, the following additional functions may be
applied: the DELETE Statement may be used with any access mode to remove a record logically from a file; the
UNDELETE Statement may be used with any access mode to add a record that had been logically removed from a
file; the WRITE statement may be used in random or dynamic access mode to insert a new record into the file.

C.4.5 Current Volume Pointer

The current volume pointer is a conceptual entity used in this document to facilitate exact specification of the current
physical volume of a sequential file. The status of the current volume pointer is affected by the CLOSE, OPEN,
READ, and WRITE statements.

C.4.6 File Position Indicator

The file position indicator is a conceptual entity used in this document to facilitate exact specification of the next
record to be accessed within a given file during certain sequences of input-output operations. The concept of a file
position indicator has no meaning for a file opened in the output or extend mode.

For sequential, relative, and indexed files, the setting of the file position indicator is affected only by the OPEN,
READ, and START statements. The file position indicator can be updated on all INFOS file operations.

C.5. File Operations

Several COBOL statements operate upon files as entities or as collections of records. These are the CLOSE,
DELETE FILE, and OPEN statements. For VXCOBOL, the EXPUNGE statement is also included.

C.6. Exception Handling

During the execution of any input or output operation, unusual conditions may arise which preclude normal
completion of the operation. There are four methods by which these conditions are communicated to the object
program; status keys, exception declaratives, optional phrases associated with the imperative statement, and the
ACCEPT FROM EXCEPTION STATUS statement. If a fatal I/O error is encountered and the program terminates,
the current Exception Status is displayed right after the current opcode location and current PC.

C.6.1 I-O Status (FILE STATUS)

The I-O status is a two-character conceptual entity whose value is set to indicate the status of an input-output
operation during the execution of a CLOSE, DEFINE SUB-INDEX, DELETE, DELETE FILE, EXPUNGE,
EXPUNGE SUB-INDEX, LINK SUB-INDEX, OPEN, READ, RETRIEVE, REWRITE, START, UNDELETE,
UNLOCK, or WRITE statement and prior to the execution of any imperative statement associated with that input-ou-
tput statement or prior to the execution of any applicable USE AFTER STANDARD EXCEPTION procedure. The
value of the FILE STATUS is made available to the COBOL program through the use of the FILE STATUS clause

in the file control entry for the file.

For VXCOBOL, whenever the 1-O status is updated the INFOS STATUS is also updated. INFOS STATUS is an
extension to ANSI COBOL.

The I-O status also determines whether an applicable USE AFTER STANDARD EXCEPTION procedure will be
executed. If any condition other than those contained under the heading "Successful Completion" below results,
such a procedure may be executed depending on rules stated elsewhere. If one of the conditions listed under the
heading "Successful Completion" below results, no such procedure will be executed. (See The USE Statement, page
491).

267

Interactive COBOL Language Reference & Developer’s Guide - Part One

Certain classes of I-O status values indicate critical error conditions. These are:

any that begin with the digit 3 or 4, and
any that begin with the digit 9.

If the value of the I-O status for an input-output operation indicates such an error condition, and an applicable USE
AFTER STANDARD EXCEPTION procedure exists, it is executed. After execution of the USE procedure, control
returns to the statement following the statement that caused the error. If no applicable USE AFTER STANDARD
EXCEPTION applies, after completion of the normal input-output control system error processing, and NO I-O
status (FILE STATUS) or INFOS STATUS was associated with this file, the COBOL program is terminated with a
Fatal Error indicating the type of error encountered and the COBOL pc. To prevent this from happening, a
Declaratives section with an applicable USE procedure should be defined.

C.6.2 1-O Status (ANSI 74)
I-O status expresses one of the following conditions upon completion of the input-output operation:
(1) Successful Completion (0x). The input-output statement was successfully executed.
(2) AtEnd (1x). A sequential READ statement was unsuccessfully executed as a result of an at end condition.

(3) Invalid Key (2x). The input-output statement was unsuccessfully executed as a result of an invalid key
condition.

(4) Permanent Error (3x). The input-output statement was unsuccessfully executed as the result of an error that
precluded further processing of the file. Any specified exception procedures are executed. The permanent
error condition remains in effect for all subsequent input-output operations on the file unless an
implementor-defined technique is invoked to correct the permanent error condition.

(5) 1COBOL-Defined (Implementor-Defined) (9x). The input-output statement was unsuccessfully executed as
a result of a condition that is specified by ICOBOL.

The following is a list of the values placed in the I-O status for the previously named conditions resulting from the
execution of an input-output operation on a file.

(1) Successful Completion

00 The input-output statement is successfully executed and no further information is available concerning the
input-output operation.

02 The input-output statement is successfully executed but a duplicate key is detected. SUPPORTED WITH
-G d OPTION TO ICRUN.

a. For a READ random or READ NEXT statement, the key value for the current key of reference is equal
to the value of the same key in the next record within the current key of reference. For a READ PREVIOUS
statement, the key value for the current key of reference is equal to the value of the same key in the previous record
within the current key of reference.

b. For a REWRITE or WRITE statement, the record just written created a duplicate key value for at least
one alternate record key for which duplicates are allowed.

04 A READ statement is successfully executed but the length of the record being processed does not conform
to the fixed file attributes for that file.

268

PROCEDURE DIVISION - File Concepts (ANSI 74 1-O Status)

(2) At End Condition With Unsuccessful Completion

10

A sequential READ statement is attempted and no next logical record exists in the file because:
a. The end of the file has been reached, or

b. A sequential READ statement is attempted for the first time on an optional input file that is not present.

(3) Invalid Key Condition With Unsuccessful Completion

21

22

23

24

A sequence error exists for a sequentially accessed indexed file. The primary record key value has been

changed by the program between the successful execution of a READ statement and the execution of the
next REWRITE statement for that file, or the ascending sequence requirements for successive record key
values are violated.

The duplicates condition exists because:

a. An attempt is made to write a record that would create a duplicate key in a relative file, on the primary
key, or on an alternate key that does not allow duplicates in an indexed file, or

b. An attempt is made to UNDELETE a record that was not deleted. THIS IS AN EXTENSION TO
ANSI COBOL.

The no record found condition exists because:

a) An attempt is made to randomly access a record that does not exist in the file, or

b) A START or random READ statement is attempted on an optional input file that is not present.

An attempt is made to write beyond the externally defined boundaries of a relative or indexed file. Under

ICOBOL this implies: for a relative file writing beyond the record number limit; and for an Indexed file the
index structure is full.

(4) Permanent Error Condition With Unsuccessful Completion

30

34

A permanent error exists and no further information is available concerning the input-output operation.
Generally related to some hardware condition.

A permanent error exists because of a boundary violation; an attempt is made to write beyond the externally
defined boundaries of a sequential file. Generally out of disk space.

(5) 1ICOBOL-Defined (Implementor-Defined) Condition With Unsuccessful Completion.

91

An OPEN error. The possible violations are:
a. An OPEN statement referred to a file that was nonexistent.

b. An OPEN statement referred to a file that was already open. This is a 41 with ANS/ 85.

c. An OPEN statement referred to a file that was had an illegal name.

d. A CLOSE statement referred to a file that had not been opened. This is a 42 with ANS/ 85.

e. On OPEN, the filename already existed.

f. On OPEN, a nondirectory argument was in the pathname.

269

Interactive COBOL Language Reference & Developer’s Guide - Part One

92

g. On OPEN, a zero-length filename was specified.
h. On OPEN, no more files could be opened from the operating system.
i. On OPEN, for devices the hardware is not present.

j. On a data-sensitive READ, the line is too long for the record. This is a 34 with ANSI 85.

An Access mode error. The possible violations are:
a. File not opened.

b. WRITE attempted to file opened for input. This is a 48 with ANSI 85.

c. DELETE attempted to file opened for input. This is a 49 with ANSI 85.

d. READ attempted for file opened for output. This is a 47 with ANSI 85.

e. OPEN attempted for file closed with lock. This is a 38 with ANSI 85.

f. DELETE or REWRITE statement not preceded by a READ statement for a file in sequential access

mode. This is a 43 with ANSI 85.

g. OPEN attempted on a file with insufficient access rights for OPEN mode. This is a 37 with ANSI 85.

h. An attempt is made to WRITE or REWRITE a record that is larger than the largest or smaller than the

smallest record allowed by the RECORD IS VARYING clause of the associated filename. This is a 44 with ANSI

85.

94

96
97
98
99

9A

9B

An In Use Error. The possible violations are:

a. File cannot be exclusively opened because it is in use.
b. Record cannot be accessed because it is locked.

c¢. DELETE FILE attempted for an opened file.

A directory named by the program does not exist.
Maximum number of open files exceeded.

Attempt to write more than 65,535 records to a relative file. This is a 24 with ANSI 85.

Printer control file is full.

File description inconsistency. Record length, key length, or key positions specified in program does not
agree with the data file. This is a 39 with ANSI 85. ICISAM file version is not valid.

Corruption error. The possible violations are:

a. After a successful OPEN of an ISAM file, the runtime system has detected possible corruption in the file.

Close this file; this sets the ISAM reliability flags and prevents further access to the file.

b. The data (.XD) portion of an Indexed or relative file is full. The ICISAM reliability flags are set.

¢. On an attempted OPEN of an ICISAM file, the runtime has detected that the file is possibly corrupt

although the ICISAM reliability flags are clear. The appropriate reliability flag(s) are set and the file is not opened.

270

PROCEDURE DIVISION - File Concepts (ANSI 85 I-O Status)

9C

9E

9F

9T

Index (.NX) portion of an Indexed or relative file is full. The ICISAM reliability flags are not set.

Record lock limit has been exceeded.

Possible corruption of an ICISAM file has been detected on an attempted OPEN of the file; i.e., one or both
of the ICISAM reliability flags had previously been set.

A time out condition has occurred on an I/O operation.

C.6.3 1-O Status (ANSI 85)

I-O status expresses one of the following conditions upon completion of the input-output operation:

(1)
)

€)

(4)

©)

(6)

Successful Completion (0x). The input-output statement was successfully executed.

At End (1x). A sequential READ statement was unsuccessfully executed as a result of an at end
condition.

Invalid Key (2x). The input-output statement was unsuccessfully executed as a result of an invalid key
condition.

Permanent Error (3x). The input-output statement was unsuccessfully executed as the result of an error
that precluded further processing of the file. Any specified exception procedures are executed. The
permanent error condition remains in effect for all subsequent input-output operations on the file unless
an implementor-defined technique is invoked to correct the permanent error condition.

Logic Error (4x). The input-output statement was unsuccessfully executed as a result of an improper
sequence of input-output operations that were performed on the file or as a result of violating a limit
defined by the user.

ICOBOL-Defined (Implementor-Defined) (9x) Condition With Unsuccessful Completion. The
input-output statement was unsuccessful executed as a result of a condition that is specified by
ICOBOL.

The following is a list of the values placed in the I-O status for the previously named conditions resulting from the
execution of an input-output operation on a file.

(1) Successful Completion

00 The input-output statement is successfully executed and no further information is available concerning the
input-output operation.

02

04

The input-output statement is successfully executed but a duplicate key is detected.

a)

b)

For a READ random or READ NEXT statement, the key value for the current key of reference is equal
to the value of the same key in the next record within the current key of reference. For a READ
PREVIOUS statement, the key value for the current key of reference is equal to the value of the same
key in the previous record within the current key of reference.

For a REWRITE or WRITE statement, the record just written created a duplicate key value for at least
one alternate record key for which duplicates are allowed.

A READ statement is successfully executed but the length of the record being processed does not conform
to the fixed file attributes for that file.

271

Interactive COBOL Language Reference & Developer’s Guide - Part One

05 An OPEN statement is successfully executed but the referenced optional file is not present at the time the
OPEN statement is executed. If the open mode is I-O or extend, the file has been created.

(2) At End Condition With Unsuccessful Completion
10 A sequential READ statement is attempted and no next logical record exists in the file because:
a. The end of the file has been reached, or
b. A sequential READ statement is attempted on an optional input file that is not present.

14 A sequential READ statement is attempted for a relative file and the number is larger than the size of the
relative key data item described for the file. NEVER GENERATED BY ICOBOL.

(3) Invalid Key Condition With Unsuccessful Completion
21 A sequence error exists for a sequentially accessed indexed file. The primary record key value has been
changed by the program between the successful execution of a READ statement and the execution of the
next REWRITE statement for that file, or the ascending sequence requirements for successive record key
values are violated.

22 The duplicates condition exists because:

a. An attempt is made to write a record that would create a duplicate key in a relative file, on the primary
key, or on an alternate key that does not allow duplicates in an indexed file.

b. An attempt is made to UNDELETE a record that was not deleted. THIS IS AN EXTENSION TO
ANSI COBOL.

23 The no record found condition exists because:
a. An attempt is made to randomly access a record that does not exist in the file; or
b. A START or random READ statement is attempted on an optional input file that is not present.

24 An attempt is made to write beyond the externally defined boundaries of a relative or indexed file. Under
ICOBOL this implies: for a relative file writing beyond the record number limit; and for an Indexed file the
index structure is full.

(4) Permanent Error Condition With Unsuccessful Completion

30 A permanent error exists and no further information is available concerning the input-output operation.
Generally related to some hardware condition.

34 A permanent error exists because of a boundary violation; an attempt is made to write beyond the externally
defined boundaries of a sequential file. Generally out of disk space. On a DATA-SENSITIVE READ the

line is too long for the record.

35 A permanent error exists because an OPEN statement with the INPUT, I-O, or EXTEND phrase is
attempted on a non-optional file that is not present.

37 A permanent error exists because an OPEN statement is attempted on a file and that file will not support the
open mode specified in the OPEN statement.

The possible violations are:

a. The EXTEND or OUTPUT phrase is specified but the file will not support write operations.

272

PROCEDURE DIVISION - File Concepts (ANSI 85 I-O Status)

b. The I-O phrase is specified but the file will not support the input and output operations that are permitted

for a sequential file when opened in the I-O mode.

38

39

¢. The INPUT phrase is specified but the file will not support read operations.
A permanent error exists because an OPEN statement is attempted on a file previously closed with lock.

The OPEN statement is unsuccessful because a conflict has been detected between the fixed file attributes
and the attributes specified for that file in the program.

(5) Logic Error Condition With Unsuccessful Completion.

41

42

43

44

An OPEN statement is attempted for a file in the open mode.

A CLOSE statement is attempted for a file not in open mode.

For a mass storage file in the sequential access mode, the last input-output statement executed for the
associated file prior to the execution of a REWRITE statement was not a successfully executed READ
statement.

A boundary violation exists because:

a. An attempt is made to write or rewrite a record that is larger than the largest or smaller than the smallest

record allowed by the RECORD IS VARYING clause of the associated file-name, or

b. An attempt is made to rewrite a record to a sequential, relative, or indexed file and the record is not the

same size as the record being replaced.

46

47

48

49

A sequential READ statement is attempted on a file open in the input or I-O mode and no valid next record
has been established because:

a. The preceding READ statement was unsuccessful but did not cause an at end condition, or

b. The preceding READ statement caused an at end condition.

c. The preceding START statement was unsuccessful.

The execution of a READ or START statement is attempted on a file not open in the input or I-O mode.
The execution of a WRITE statement is attempted on a file not open in the I-O, output or extend mode.

The execution of a DELETE, REWRITE, or UNDELETE statement is attempted file not open in the I-O
mode.

(6) ICOBOL-Defined (Implementor-Defined) Condition With Unsuccessful Completion.

91

An OPEN error. The possible violations are:

a. An OPEN statement referred to a file that was nonexistent.

b. An OPEN statement referred to a file that was had an illegal name.
¢. On OPEN, the filename already existed.

d. On OPEN, a nondirectory argument was in the pathname.

e. On OPEN, a zero-length filename was specified.

273

Interactive COBOL Language Reference & Developer’s Guide - Part One

92

94

96

97

99

9A

9B

9C

9E

9F

9T

f. On OPEN, no more files could be opened from the operating system.
g. On OPEN, for devices the hardware is not present.
An Access mode error. The possible violations are:

a. File not opened.

An In Use Error. The possible violations are:

a. File cannot be exclusively opened because it is in use.
b. Record cannot be accessed because it is locked.

c. DELETE FILE attempted for an opened file.

A directory named by the program does not exist.
Maximum number of open files exceeded.

Printer control file is full.

ICISAM file version is not valid.

Corruption error. The possible violations are:

a. After a successful OPEN of an ICISAM file, the runtime system has detected possible corruption in the
file. Close this file; this sets the ICISAM reliability flags and prevents further access to the file.

b. The data (.XD) portion of an Indexed or relative file is full. The ICISAM reliability flags are set.

¢. On an attempted OPEN of an ICISAM file, the runtime has detected that the file is possibly corrupt
although the ICISAM reliability flags are clear. The appropriate reliability flag(s) are set and the file is not opened.

Index (.NX) portion of an Indexed or relative file is full. The ICISAM reliability flags are not set.

Record lock limit has been exceeded.

Possible corruption of an ICISAM file has been detected on an attempted OPEN of the file; i.e., one or both

of the ICISAM reliability flags had previously been set.

A time out condition has occurred on an I/O operation.

C.6.4 1-O Status (VXCOBOL)

I-O status expresses one of the following conditions upon completion of the input-output operation:

(1)

(2) AtEnd (1x). A sequential READ statement was unsuccessfully executed as a result of an at end condition.

(3) Invalid Key (2x). The input-output statement was unsuccessfully executed as a result of an invalid key

Successful Completion (0x). The input-output statement was successfully executed.

condition.

(4) Permanent Error (3x). The input-output statement was unsuccessfully executed as the result of an error that
precluded further processing of the file. Any specified exception procedures are executed. The permanent error

274

PROCEDURE DIVISION - File Concepts (VXCOBOL I-O Status)

condition remains in effect for all subsequent input-output operations on the file unless an implementor-defined
technique is invoked to correct the permanent error condition.

(5) ICOBOL-Defined (Implementor-Defined) (9x). The input-output statement was unsuccessfully executed as
a result of a condition that is specified by ICOBOL.

The following is a list of the values placed in the I-O status for the previously named conditions resulting from the
execution of an input-output operation on a file.

(1) Successful Completion

00 The input-output statement is successfully executed and no further information is available concerning the
input-output operation.

02 The input-output statement is successfully executed but a duplicate key is detected.
a. For a READ random or READ NEXT statement, the key value for the current key of reference is equal
to the value of the same key in the next record within the current key of reference. Fora READ BACKWARD
statement, the key value for the current key of reference is equal to the value of the same key in the previous record

within the current key of reference.

b. For a REWRITE or WRITE statement, the record just written created a duplicate key value for at least
one alternate record key for which duplicates are allowed.

(2) At End Condition With Unsuccessful Completion
10 A sequential READ statement is attempted and no next logical record exists in the file because:
a. The end of the file has been reached,
b. The end of a subindex has been reached, or
c. A sequential READ statement is attempted for the first time on an optional input file that is not present.
(3) Invalid Key Condition With Unsuccessful Completion
21 A sequence error exists for a sequentially accessed indexed file. The primary record key value has been
changed by the program between the successful execution of a READ statement and the execution of the
next REWRITE statement for that file, or the ascending sequence requirements for successive record key
values are violated.
22 The duplicates condition exists because:
a. An attempt is made to write a record that would create a duplicate key in a relative file, on the primary
key, or on an alternate key that does not allow duplicates in an indexed file, or any key which does not allow
duplicates in an INFOS file.

b. For an INFOS file, an attempt has been made to write a record or partial record which already exists.

c. For an INFOS file, an attempt to write a duplicate key in a subindex which does not allow duplicate
keys.

23 The no record found condition exists because:
a. An attempt is made to randomly access a key, data record, or partial record that does not exist in the file;

b. A START or random READ statement is attempted on an optional input file that is not present.

275

Interactive COBOL Language Reference & Developer’s Guide - Part One

c. Relative key is too large.

d. For relative and indexed files, no valid current record pointer has been established.
e. A subindex referenced in an INFOS key path does not exist.

f. The total length of an INFOS key path is too long or is a single null byte.

g. Attempt to UNDELETE a record which is not logically deleted.

24 An attempt is made to write beyond the externally defined boundaries of a relative or indexed file. Under
ICOBOL, this implies that the index structure is full.

(4) Permanent Error Condition With Unsuccessful Completion
30 A permanent error exists and no further information is available concerning the input-output operation.
Generally related to some hardware condition or any condition for which there is no logical I-O status.

(more specific information is found in EXCEPTION Status.)

34 A permanent error exists because of a boundary violation; an attempt is made to write beyond the externally
defined boundaries of a file. Generally out of disk space.

(5) ICOBOL-Defined (Implementor-Defined) Condition With Unsuccessful Completion.
91 An OPEN error. The possible violations are:
a. An OPEN statement referred to a file that was nonexistent.
b. An OPEN statement referred to a file that was already open.
c. An OPEN statement referred to a file that was had an illegal name.
d. On OPEN, the filename already existed.
e. On OPEN, a nondirectory argument was in the pathname.
f. On OPEN, a zero-length filename was specified.
g. On OPEN, no more files could be opened from the operating system.
h. On OPEN, for devices the hardware is not present.
1. On OPEN, access to the file or device is denied.
j- Any consistency errors on open of an INFOS file.
92 An Access mode error. The possible violations are:
a. An I/O operation referred to a file that was not opened.
b. WRITE attempted to file opened for input.
c. DELETE attempted to file opened for input.
d. READ attempted for file opened for output.

e. OPEN attempted for file closed with lock.

276

PROCEDURE DIVISION - File Concepts (VXCOBOL I-O Status)

94

96

97

99

9A

9B

f. OPEN attempted on a file with insufficient access rights for OPEN mode.
An In Use Error. The possible violations are:

a. File cannot be exclusively opened because it is in use.

b. Record cannot be accessed because it is locked.

c¢. DELETE FILE attempted for an opened file.

The record the program is trying to access has been previously marked as logically deleted either globally
or locally.

REWRITE or DELETE attempted without executing previous READ statement for an indexed file with
sequential access.

On a data-sensitive READ, the line is too long for the record, or for INFOS, an INFOS error has occurred
for which there is no corresponding file status code. See INFOS Status for more information.

File description inconsistency. Record length, key length, or key positions specified in program does not
agree with the data file. ICISAM file version is not valid.

Corruption error. The possible violations are:

a. After a successful OPEN of an ICISAM file, the runtime system has detected possible corruption in the

file. Close this file; this sets the ICISAM reliability flags and prevents further access to the file.

b. The data (.XD) portion of an ICISAM file is full. The ICISAM reliability flags are set.

¢. On an attempted OPEN of an ICISAM file, the runtime has detected that the file is possibly corrupt

although the ICISAM reliability flags are clear. The appropriate reliability flag(s) are set and the file is not opened.

9C

9E

9F

9T

Index (.NX) portion of an ICISAM file is full. The ICISAM reliability flags are not set.
Record lock limit has been exceeded.

Possible corruption of an ICISAM file has been detected on an attempted OPEN of the file; i.e., one or both
of the ICISAM reliability flags had previously been set.

A time out condition has occurred on an I/O operation.

277

Interactive COBOL Language Reference & Developer’s Guide - Part One

C.6.5 INFOS Status (VXCOBOL)

The INFOS STATUS data item receives a value representing an exception code that INFOS II, U/FOS, or the
operating system returns during an input-output operation. Whenever the I-O status (FILE Status) is updated,
INFOS STATUS is also updated. INFOS STATUS is an 11-character item taking one of two forms:

(1) A string representing an octal AOS/VS error message code. For example, "00000007030" represents the
octal AOS/VS error code 7030, "Keyed positioning error".

(2) A string beginning with the letter ‘X' and representing a decimal ICOBOL exception status. For example,
"X0000000073" corresponds to exception status 73, "Reliability flag indicates the .NX file may be corrupt.".

In the first form, an AOS/VS-compatible error code is returned even on Linux or Windows systems.

On a successful input-output operation INFOS STATUS will be set to zero, i.e. "00000000000".

C.6.6 The At End Condition

The at end condition can occur as a result of the execution of a READ or RETRIEVE statement.

C.6.7 The Invalid Key Condition

The invalid key condition can occur as a result of the execution of a DEFINE SUB-INDEX, DELETE, EXPUNGE
SUB-INDEX, LINK SUB-INDEX, READ, RETRIEVE, REWRITE, START, UNDELETE, or WRITE statement.
When the invalid key condition occurs, execution of the input-output statement which recognized the condition is
unsuccessful and the file is not affected.

If the invalid key condition exists after the execution of the input-output operation specified in an input-output
statement, the following actions occur in the order shown:

(1) The I-O status of the file connector associated with the statement is set to a value indicating the invalid key
condition.

(2) If the INVALID KEY phrase is specified in the input-output statement, any USE AFTER STANDARD
EXCEPTION procedure associated with the file connector is not executed and control is transferred to the
imperative-statement specified in the INVALID KEY phrase. Execution then continues according to the rules for
each statement specified in that imperative-statement. If a procedure branching or conditional statement which
causes explicit transfer of control is executed, control is transferred in accordance with the rules for that statement;
otherwise, upon completion of the execution of the imperative-statement specified in the INVALID KEY phrase,
control is transferred to the end of the input-output statement and the NOT INVALID KEY phrase is ignored, if
specified.

(3) If the INVALID KEY phrase is not specified in the input-output statement, a USE AFTER STANDARD
EXCEPTION procedure must be associated with the file connector and that procedure is executed and control is
transferred according to the rules of the USE statement. The NOT INVALID KEY phrase is ignored, if specified.

(4) For VXCOBOL, if neither the INVALID KEY phrase nor a USE procedure is applicable, then control
proceeds to the end of the input-output statement if either INFOS STATUS or FILE STATUS is specified.
Otherwise the program is aborted.

If the invalid key condition does not exist after the execution of the input-output operation specified by an

input-output statement, the INVALID KEY phrase is ignored, if specified. The I-O status of the file connector
associated with the statement is updated and the following actions occur:

278

PROCEDURE DIVISION - File Concepts (File Attribute Conflict Condition)

(1) If an exception condition which is not an invalid key condition exists, control is transferred according to the
rules of the USE statement following the execution of any USE AFTER STANDARD EXCEPTION procedure
associated with the file connector. (See The USE Statement, page 491.) For VXCOBOL, if there is no applicable
USE statement and either INFOS STATUS or FILE STATUS has been specified, control passes to the end of the
input-output statement. Otherwise, for all dialects, the program is aborted.

(2) If no exception condition exists, control is transferred to the end of the input-output statement or to the
imperative-statement specified in the NOT INVALID KEY phrase, if it is specified. In the latter case, execution
continues according to the rules for each statement specified in that imperative-statement. If a procedure branching
or conditional statement which causes explicit transfer of control is executed, control is transferred in accordance
with the rules for that statement; otherwise, upon completion of the execution of the imperative-statement in the
NOT INVALID KEY phrase, control is transferred to the end of the input-output statement.

C.6.8 The File Attribute Conflict Condition

The file attribute conflict condition can result from the execution of an OPEN, REWRITE, or WRITE statement.
When the file attribute conflict condition occurs, execution of the input-output statement that recognized the
condition is unsuccessful and the file is not affected. (See The OPEN Statement, page 411; The REWRITE
Statement, page 445; and The WRITE Statement, page 495.)

When the file attribute conflict condition is recognized, these actions take place in the following order:

(1) A value is placed in the I-O status associated with the file-name to indicate the file attribute conflict
condition.

(2) A USE AFTER STANDARD EXCEPTION procedure, if any, associated with the file-name is executed.

C.6.9 Exception Declaratives
A USE AFTER STANDARD EXCEPTION procedure, when one is specified for the file, is executed whenever an
input or output condition arises which results in an unsuccessful input-output operation. However, the exception
declarative is not executed if the condition is invalid key and the INVALID KEY phrase is specified, or if the
condition is at end and the AT END phrase is specified.
C.6.10 Optional Phrases
The INVALID KEY and NOT INVALID KEY phrases may be associated with the DEFINE SUB-INDEX,
DELETE, EXPUNGE SUB-INDEX, LINK SUB-INDEX, READ, RETRIEVE, REWRITE, START, UNDELETE,
or WRITE statements.
Some of the conditions that give rise to an invalid key condition are:

(1) A requested key does not exist in the file (DELETE, READ, START, or UNDELETE statements),

(2) A key is already in a file and duplicates are not allowed (WRITE statement),

(3) A key does not exist in the file, or

(4) A key was not the last key read (REWRITE statement).

If the invalid key condition occurs during the execution of a statement for which the INVALID KEY phrase has been
specified, the statement identified by that INVALID KEY phrase is executed.

279

Interactive COBOL Language Reference & Developer’s Guide - Part One

The AT END and NOT AT END phrase may be associated with a READ statement. The at end condition occurs in
a sequentially accessed file when no next logical record exists in the file, when the number of significant digits in the
relative record number is larger than the size of the relative key data item, when an optional file is not present, or
when a READ statement is attempted and the at end condition already exists. If the at end condition occurs during
the execution of a statement for which the AT END phrase has been specified, the statement identified by that AT
END phrase is executed.

C.6.11 ACCEPT FROM EXCEPTION STATUS

The exception status is a very specific error number that allows much better reporting of errors than I-O status (FILE
STATUS) values. An exception status is not specific to I-O. More on exception status can be found in the ACCEPT
FROM EXCEPTION STATUS statement discussion starting on page 296. ACCEPT FROM EXCEPTION
STATUS is an extension to ANSI COBOL.

C.7. Shared Record Area

This feature saves memory space in the object program, as it allows more than one file to share the same file area and
input-output areas.

When the RECORD option of the SAME clause is used, only the record area is shared and the input-output areas for
each file remain independent. In this case, any number of the files sharing the same record area may be active at one
time. This can increase the execution speed of the object program.

To illustrate this point, consider file maintenance. If the programmer assigns the same record area to both the old
and new files, he not only saves memory in the object program, but because this technique eliminates a move of each
record from the input to the output area, significant time savings result. An additional benefit of this technique is
that the programmer need not define the record in detail as a part of both the old and new files. Rather, he defines
the record completely in one case and simply includes the level 01 entry in the other. Because these record areas are
in fact the same area, one set of names suffices for all processing requirements without requiring qualification.

C.8. INFOS File I-O Common Phrases (VXCOBOL)

Many of the INFOS input-output statements share a set of common phrases that direct the operation of the statement.
In particular, they direct positioning of the record pointer, motion through the index structure, and the manner in
which keys are used.

C.8.1 The POSITION Phrase (VXCOBOL)

The POSITION phrase allows for control of positioning within an INFOS file. The current position is a marker in an
INFOS file which establishes a reference point for relative motion within the file.

The format of the position phrase is:

FIX
[{RETAIN } POSITION

If FIX POSITION is specified, the file's current position is set to the key accessed by the statement if the operation
was successful. The file's current position remains unchanged if RETAIN POSITION is specified.

Each input-output statement has a default positioning behavior. This behavior can be overridden with the
POSITION phrase.

280

PROCEDURE DIVISION - File Concepts (Relative Motion Phrase)

RETAIN POSITION is the default for the DEFINE SUB-INDEX, EXPUNGE SUB-INDEX, LINK SUB-INDEX,
RETRIEVE SUB-INDEX, RETRIEVE STATUS, REWRITE, UNDELETE, and WRITE statements. The current
position remains unchanged from its last position.

FIX POSITION is the default for READ, RETRIEVE HIGH KEY, and RETRIEVE KEY. The current position is
set to the key it last accessed.

The default positioning for the START and DELETE statements cannot be overridden. START sets the current
position to the key it last accessed. DELETE sets the current position to the key prior to the one just deleted,

possibly in front of a subindex if it was the first key.

OPEN sets the current position in front of the main index for files in SEQUENTIAL or DYNAMIC access modes.

C.8.2 The Relative Motion Phrase (VXCOBOL)

The relative motion phrase is used to control motion within an INFOS file. With relative motion, the key being
sought in the INFOS file is in a position relative to the current position.

The format of the relative motion phrase is:

NEXT and FORWARD are equivalent. They imply movement to the next higher key in the index relative to the
current position. If there is no next higher key, an "end of subindex" error (I-O status 10, INFOS STATUS 7011)
occurs.

BACKWARD implies movement to the next lower key in the index relative to the current position. If there is no
next lower key, an "end of subindex" error (I-O status 10, INFOS STATUS 7011) occurs.

UP implies movement to the key entry in the immediately higher index level relative to the current position. If the
current position is in the top level index (main index), a "positioned above main index" error (I-O status 99, INFOS
STATUS 7006) will occur with upward motion.

DOWN implies movement to a position prior to the first key in the subindex defined for the current key. If the
current key does not have an associated subindex, a "subindex not defined" error (I-O status 99, INFOS STATUS
7010) occurs.

UP FORWARD, UP BACKWARD, and DOWN FORWARD combine processing between index levels with
movement to keys in the index. UP FORWARD and UP BACKWARD imply movement to the next higher level and
movement to the next higher or lower key respectively. DOWN FORWARD implies movement to the first key in
the subindex defined for the current key.

STATIC means no movement relative to the current position.

281

Interactive COBOL Language Reference & Developer’s Guide - Part One

C.8.3 The KEY Series Phrase (VXCOBOL)

The key series phrase is used to specify a specific key in an INFOS file. The format of the key series phrase is:

KEYS ARE

[{ s A GENERIC

e |

where identifier is a RECORD KEY named in the SELECT statement for the INFOS file.

For a single level file, at most one key may be specified. If the key series phrase is present then no relative motion
phrase (NEXT, FORWARD, BACKWARD, or STATIC) may be specified on the input-output statement.

For a multilevel file, the maximum number of keys that may be specified in the key series phrase on an input-output
statement is equal to the number of levels in the file. If no relative motion phrase is specified on the statement, each
key identifies an index entry at increasingly lower levels, i.e. the first key identifies the entry at the top level, the
second key indicates an entry in the subindex defined for the top key, etc. If a relative motion phrase is specified on
the input-output statement, the relative motion is performed first and the key series phrase identifies a path beginning
at the key determined by the relative motion.

Each key specified in the key series phrase may be modified with the GENERIC or APPROXIMATE clauses.
ICOBOL scarches for keys in the following manner:

(1) Without either clause, the key value sought is the value contained in the identifier up to the length of the
identifier or an optionally specified KEY LENGTH. The match must be exact in both content and length.

(2) If the GENERIC clause is specified, the first key in the current index or subindex that matches the key up to
the length specified will be a match. The key located may be longer than the key that was specified. This allows for

matching based only on the first few characters of a value.

(3) If the APPROXIMATE clause is specified, the first key in the current index or subindex that is greater than
or equal to the value specified, within the length specified, will be a match.
C.8.4 The SUPPRESS Phrase (VXCOBOL)

ICOBOL allows for suppressing the input or output of a data record or partial record. The SUPPRESS phrase has
the following format:

[SUPPRESS [PARTIAL RECORD] [DATA RECORD]]

If PARTIAL RECORD is specified, the contents of the partial record for the key is neither read nor written. For
example, a WRITE statement with a SUPPRESS PARTIAL RECORD will write only the data record.

If DATA RECORD is specified, the contents of the data record for the key is neither read nor written. For example,
a READ statement with a SUPPRESS DATA RECORD will retrieve only the data in the partial record.

Both clauses may be specified together. If both clauses are specified on a READ, the result is to change the current
position without retrieving any data. If both clauses are specified on a WRITE, only a key is written.

SUPPRESS alone is equivalent to specifying both phrases.

282

PROCEDURE DIVISION - File Concepts (LOCK/UNLOCK Phrase)
C.8.5 The LOCK/UNLOCK Phrase (VXCOBOL)

Many input-output statements for INFOS files support the LOCK/UNLOCK phrase. The format of the phrase is:

| untoce

Record locks are a binary condition. A record is either locked or it is not locked. Data records and partial records
can be locked and unlocked independently.

If the LOCK phrase is specified on an operation, the record is locked and no other user can access the record until it
is unlocked. If the UNLOCK phrase is specified, the record is unlocked and becomes accessible to any user. (Locks

typically occur at the beginning of an operation and unlocks at the end.)

Data record locks are not regarded if SUPPRESS DATA RECORD is specified on the input-output statement.
Partial record locks are not regarded if SUPPRESS PARTIAL RECORD is specified.

All records in a file that have been locked can be unlocked at once with the UNLOCK statement or by closing the
file.

283

Interactive COBOL Language Reference & Developer’s Guide - Part One

D. Header
The Procedure Division is identified by, and must begin with, the following header:

PROCEDURE DIVISION [USING { data-name-1}...].

The USING phrase is necessary only if the object program is to be invoked by a CALL statement or a CALL
PROGRAM statement, and that statement includes a USING phrase.

The USING phrase of the Procedure Division header identifies the names used by the program for any parameters
passed to it by a calling program. The parameters passed to a called program are identified in the USING phrase of
the calling program's CALL statement. The correspondence between the two lists of names is established on a
positional basis.

Data-name-1 must be defined as a level 01 entry or a level 77 entry in the Linkage Section. A particular
user-defined word may not appear more than once as data-name-1. The data description entry for data-name-1 must
not contain a REDEFINES clause. Data-name-1 may, however, be the object of a REDEFINES clause elsewhere in
the Linkage Section.

The following additional rules apply:

(1) If the reference to the corresponding data item in the CALL statement declares the parameter to be passed
by content, the value of the item is moved when the CALL statement is executed and placed into a system-defined
storage item possessing the attributes declared in the Linkage Section for data-name-1. The data description of each
parameter in the BY CONTENT phrase of the CALL statement must be the same, meaning no conversion or
extension or truncation, as the data description of the corresponding parameter in the USINAG phrase of the
Procedure Division header.

(2) If the reference to the corresponding data item in the CALL statement declares the parameter to be passed
by reference, the object program operates as if the data item in the called program occupies the same storage area as
the data item in the calling program. The description of the data item in the called program must describe the same
number of character positions as described by the description of the corresponding data item in the calling program.

(3) Atall times in the called program, references to data-name-1 are resolved in accordance with the
description of the item given in the Linkage Section of the called program.

(4) Data items defined in the Linkage Section of the called program may be referenced within the Procedure
Division of that program if, and only if, they satisfy one of the following conditions:

a. They are operands of the USING phrase of the Procedure Division header.
b. They are subordinate to operands of the USING phrase of the Procedure Division header.

c. They are defined with a REDEFINES or RENAMES clause, the object of which satisfies the above
conditions.

d. They are items subordinate to any item which satisfies the condition in rule 4c.

e. They are condition-names or index-names associated with data items that satisfy any of the above four
conditions.

284

PROCEDURE DIVISION (ACCEPT (keyboard))

E. Statements
E.1. ACCEPT (keyboard)
E.1.1 Function

The ACCEPT statement causes data from the keyboard to be made available to data items in the File,
Working-Storage, or Linkage sections.

Screens are an extension to ANSI COBOL. The TIME-OUT clause is an extension to ANSI COBOL.

E.1.2 General Format (ANSI 74 and ANSI 85)
Format 1:

ACCEPT identifier-1 [FROM mnemonic-name] [TIME-OUT AFTER {’d,‘,?t';’,’gﬁg“ }]
[ON ESCAPE imperative-statement-1]
[NOT ON ESCAPE imperative-statement-2]
[END-ACCEPT |

Format 2:
L Ng | identifier-2 COLUMN | [jdentifier-3
ACCEPT AT - literal-1 COL literal-2
ACCEPT screen-name [COLUMN | (identifier-3 | [| |\ ¢ | identifier-2]
CoL literal-2 literal-1

identifier-4
[TIME-OUT AFTER { literal-3 }]
[ON ESCAPE imperative-statement-1]
[NOT ON ESCAPE imperative-statement-2]
[END-ACCEPT]

Format 3:

identifier-5

ACCEPT { identifier-1 [UNIT { literal-4

} 1[{ accept-clause } 1... }...

ESCAPE o imperative-statement-1
ON { EXCEPTION } [identifier-14]{ NEXT SENTENCE }

ESCAPE
EXCEPTION

{ NOT ON { } imperative-sentence-2

[END-ACCEPT |

where accept-clause is one of the following:

BACKGROUND-COLOR identifier-6
{ D } IS

BACKGROUN literal-5
color-name-1

285

Interactive COBOL Language Reference & Developer’s Guide - Part One

FOREGR ND literal-9

{ FOREGROUND-COLOR } identifier-10
IS
color-name-2

BELL
. {BEEP }
BLINK

COLUMN

identifier-7
coL {' . }
POSITION literal-6

identifier-8
CONTROL { literal-7 }

CONVERT

CONVERTING {DU_P }

WN

CURSOR { identifier-9 }

literal-8
ECHO

m
=

ERASE ——
IN

SCREEN

m
[92]

I—
m

HIGH
HIGHLIGHT
LOW
4 LOWLIGHT
BOLD
BRIGHT
DIM

LINE { identifier-11 }

~

literal-10
PROMPT [literal-11]

REVERSE
REVERSED
REVERSE-VIDEO

SECURE[{yﬂﬂuECHo}]

NO ECHO
OFF

identifier-12
SIZE { literal-12 }

286

PROCEDURE DIVISION (ACCEPT (keyboard))

TAB

BEFORE TIME {identiﬁer—13 }

literal-13

TIME-OUT AFTER {’de”t’ﬁer 4 }

literal-3

UNDERLINED
UPDATE

{ UNDERLINE }

E.1.3 General Format (VXCOBOL)

Format 1:
. - . identifier-4
ACCEPT identifier-1 | FROM mnemonic-name] [TIME-OUT AFTER { literal-3 } SECONDS]
[ON ESCAPE imperative-statement-1]
[NOT ON ESCAPE imperative-statement-2 |
[END-ACCEPT]

Format 2:
L Ng | identifier-2 COLUMN | [jdentifier-3
ACCEPT AT - literal-1 COL literal-2
ACCEPT screen-name | COLUMN | (identifier-3 | [| |\ ¢ | identifier-2]
CoL literal-2 literal-1

identifier-4
[TIME-OUT AFTER { literal-3 } SECONDS]
[ON ESCAPE imperative-statement-1]
[NOT ON ESCAPE imperative-statement-2]
[END-ACCEPT]

E.1.4 Syntax Rules
(1) Screen-name may not be subscripted.

(2) If screen-name is a group format item, it must have at least one input, input-output, or update screen-data
item; otherwise, it must specify an input, input-output, or update screen-data item.

(3) In Format 1 and 3, identifier-1 cannot be larger than the 132 characters for ANSI 74 and ANSI 85 and 2048
for VXCOBOL.

(4) In Format 2, identifier-2, identifier-3, literal-1, and literal-2 must be elementary integer items.

(5) In Format 3, identifier-5, identifier-6, identifier-7, identifier-9, identifier-10, identifier-11, identifier-12,
identifier-13, identifier-14, literal-4, literal-5, literal-6, literal-8, literal-9, literal-10, literal-12, literal-13
must be unsigned elementary integer items. Identifier-§ must be a nonnumeric data-item and /iteral-7 must be a
nonnumeric literal. Literal-6 must be a nonnumeric literal exactly one character in length.

(6) Identifier-4 and literal-3 may represent any numeric literal or elementary numeric data-item.

(7) Color-name-1 and color-name-2 represent one of the predefined color names: BLACK, BLUE, GREEN,
CYAN, RED, MAGENTA, BROWN, or WHITE.

287

Interactive COBOL Language Reference & Developer’s Guide - Part One

(8) The word COL is an abbreviation for the word COLUMN.

(9) In Format 1, Mnemonic-name must be specified in the SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVISION and must be associated with a hardware device.

(10) In Format 1, the FROM clause is for documentation purposes only.

(11) In Format 3, the word EXCEPTION is a synonym for ESCAPE, the word POSITION is a synonym for
COLUMN, and the word BEEP is a synonym for BELL.

E.1.5 General Rules
Format 1:

(1) The ACCEPT statement causes the transfer of data from the keyboard. This data replaces the contents of
the data item referenced by identifier-1 according to the rules for the MOVE statement.

(2) Data input for identifier-1 must be valid for the identifier. For ANSI 74 and ANSI 85, if the characters that
are input do not agree with the item's PICTURE, then an error message is displayed on the last line of the display
screen, and the input must be corrected. For example, alphabetic characters entered into a numeric item will be
rejected. For complete details of PICTURE definitions and acceptable input, see the PICTURE Clause discussion in
the WORKING-STORAGE section. For FXCOBOL, the data will be converted and assigned to identifier-1 as
closely as is possible if it is not valid for the identifier.

(3) If afield terminator key (i.e., any key configured in the terminal description to generate a value of 00) is
pressed at any time during an ACCEPT statement, the data is validated and transferred to the data item referenced by
identifier-1. The ON ESCAPE clause, if present, is bypassed and the NOT ON ESCAPE phrase, if specified, is
executed; otherwise, control is transferred to the end of the ACCEPT statement.

(4) Ifthe ESC function key (i.e., any key configured in the terminal description to generate a value of 01) is
pressed at any time during an ACCEPT statement, the data from the keyboard is discarded, and the data item
referenced by identifier-1 is not changed. The ACCEPT terminates, and the ON ESCAPE clause, if present, is
executed.

(5) If a normal function key (i.e., any key configured in the terminal description to generate a value that is not
00 or 01) is pressed at any time during an ACCEPT statement, the data is validated and transferred to the data item
referenced by identifier-1. The ACCEPT terminates, and the ON ESCAPE clause, if present, is executed.

(6) Each keyboard sequence is interpreted as defined by the current ICTERM entry. If you wish to read binary
data from the terminal, you should open a file whose SELECT clause contains an ASSIGN TO DISK “@CON” and
perform a READ to get non-interpreted binary data with no positioning codes sent to the terminal.

(7) An ACCEPT statement should not be executed while in Print Pass Through mode on a terminal, as the
ACCEPT will generate some output that will then be printed.

(8) For ANSI 74 and ANSI 85, A non-screen ACCEPT is limited to a single line and is truncated at the column
width of the terminal. After entering the data, a <nl><nl><up-arrow> sequence is generated to position to the first
column on the next line. For VXCOBOL, up to 2048 characters are read with echoing and backspace processing
starting at the current cursor position. An ESC or function key will exit with an ON ESCAPE processing, but no
echoing of the ESC or function key. A NL or CR will echo as a newline with no ON ESCAPE processing.

288

PROCEDURE DIVISION (ACCEPT (keyboard))

Format 2:

(9) A screen ACCEPT that extends past a terminal’s width is supported by allowing the ACCEPT to wrap to the
next line since the screen does not have to scroll; i.e., the wrap would otherwise move to the line after the last line on
the screen.

(10) ACCEPT screen-name transfers information entered on the screen via the keyboard to the data items
associated with screen-name. The program should have executed a DISPLAY screen-name before the ACCEPT to
display any associated prompts.

(11) ACCEPT screen-name without the LINE or COLUMN phrases is equivalent to ACCEPT screen-name AT
LINE 0 COLUMN 0.

(12) If screen-name refers to a screen-group item, the ACCEPT statement processes all input, input-output, and
update screen-data items subordinate to screen-name. The fields are processed in the order in which they appear in
the source program.

(13) The LINE phrase and COLUMN phrase in DISPLAY and ACCEPT statements allow the entire screen
description referenced by screen-name to be moved to a different starting position on the user's display device. This
capability is called variable origin. All screen descriptions assume that the origin is at line 1 and column 1 on the
user's display device. The value specified in the DISPLAY or ACCEPT’s LINE phrase, if present, is treated as a
relative offset to be added to all line positions in the screen. Similarly, the value of the COLUMN phrase, if
specified, is treated as a relative offset to be added to all column positions in the screen. If any line or column
position becomes larger than what is supported by the current screen, the screen will wrap at its limits, and the new
(wrapped) values will in turn be offset again by the variable origin.

For example, consider the code fragments:

01 ANY-CHANGE-SCREEN.
05 LINE 23 COL 60 “ANY CHANGE?”.
05 LINE 23 COL 75 PIC X TO ANY-CHANGE-ANSWER.

ANY-CHANGE-1.
DISPLAY ANY-CHANGE-SCREEN.
ACCEPT ANY-CHANGE-SCREEN.

ANY-CHANGE-2.
DISPLAY ANY-CHANGE-SCREEN AT LINE 5 COLUMN 30.
ACCEPT ANY-CHANGE-SCREEN AT LINE 5 COLUMN 30.

The following discussion describes how to determine the origin point for each of the two DISPLAY and ACCEPT
pairs in the code fragments above. Assume the display device has 24 lines and 80 columns.

a. Remember, all screen descriptions assume an origin point of line 1, column 1. This screen has a
positioning definition of line 23, column 60, and the first screen DISPLAY statement contains no positioning (line or
column) clauses. Therefore, the origin point for the first DISPLAY is line 23, column 60.

b. For the second screen DISPLAY statement, which contains the positioning clauses AT LINE 5
COLUMN 30, the offset position will be line 28, column 90. (We added the line and column variable-positioning
values in the DISPLAY statement to the origin point established in the previous step.)

c. Then, because the line and column numbers are larger than the size of the display device, we subtract the
line and column size of the display device, to find the wrap values: line 4, column 10. This becomes the new origin
point.

d. Finally, add the line and column positioning values which in turn will be offset to line 9, column 40.
Therefore, the second screen DISPLAY will begin at line 9, column 40.

289

Interactive COBOL Language Reference & Developer’s Guide - Part One

e. Determining the origin point for the ACCEPT field is similar. The table below illustrates how the
origin points are calculated for the second ACCEPT and DISPLAY.

literal field input field Description
LINE COLUMN LINE COLUMN
23 60 23 75 | Origin point in screen definition
5 30 5 30 | ADD offset from DISPLAY/ACCEPT
28 90 28 105 | Giving offset position
24 80 24 80 SUBTRACT display device size
4 10 4 25 Giving new origin point
5 30 5 30 | ADD offset from DISPLAY/ACCEPT
9 40 9 55 | Giving origin point for 2"
DISPLAY/ACCEPT

TABLE 18. Variable Origin for DISPLAY and ACCEPT

(14) If variable origin is used for an ACCEPT operation on a screen-name, the same variable origin
specification should be used for the corresponding DISPLAY statement of the screen-name in order to have the
correct visual association between prompts and data-entry items..

(15) The basic operation of the ACCEPT statement is described by the following steps. The discussion
assumes that screen-name represents a group item in the screen description that has several subordinate input,
input-output, and/or update fields. The case where screen-name specifies a single screen-data item is simply a subset
of the description below.

a. The screen management system positions to the first (in terms of its position in the source definition of
screen-name) input, input-output, or update field that is subordinate to screen-name.

b. The content of the screen field (which has either been set by a previous execution of a DISPLAY
statement for the field, or which remains from a previous execution of an ACCEPT statement for the field) is
redisplayed on the screen with the specified attributes. If the field is a numeric-edited picture, the field is first de-
edited by removing all the editing characters (i.e., all but the plus or minus sign, the decimal point, and the numeric
digits).

For ANSI 74 and ANSI 85, if the field has the SECURE ECHO attribute, the field is redisplayed as all
asterisk (*) characters; if the field has the SECURE NO ECHO attribute, nothing is displayed.

For VXCOBOL, if the field has the SECURE attribute, nothing is displayed.

c. The cursor is positioned to the first character of the field, and the screen control system waits for the user
to enter data into the field. The user may enter new data characters, field editing keys, or field termination keys. The
screen management system echoes input characters and positions the cursor appropriately in response to the user's
input. The field is terminated by entering an appropriate field termination key (see the ESCAPE KEY table above)
or, if the field has the AUTO attribute, by entering a character into the last data position in the field.

For ANSI 74 and ANSI 85, if the field has the SECURE ECHO attribute, the field is redisplayed as all
asterisk (*) characters; if the field has the SECURE NO ECHO attribute, nothing is displayed and the cursor does
not move.

For VXCOBOL, if the field has the SECURE attribute, nothing is displayed and the cursor does not move.

290

PROCEDURE DIVISION (ACCEPT (keyboard))

d. If the field is terminated by an ESC function key (any key with an ESCAPE KEY value of 01), the data
entered by the user is discarded, no field validation is performed, the screen field is not changed, the entire accept
operation is ended, and the ESCAPE KEY value is set to 01.

e. If the field is terminated by a field terminator key (any key with an ESCAPE KEY value of 00), the
screen control system checks that the data entered by the user is valid for its PICTURE. It also checks to make sure
the data entry requirements implied by REQUIRED and FULL have been met. If there is an error, the screen control
system sounds the tone, puts an error message on the last line of the display, and positions the cursor at the location
of the error. The user must enter correct data before the field can be terminated. When the field passes the system
checks, any error message that was displayed is erased, and the system processes the terminator. If the terminator
indicates motion to a previous field, and the field is not the first field, the cursor is positioned to the previous field
and the accept operation begins for that field; otherwise, the tone is sounded and the cursor remains at the first field.
If the terminator indicates motion to the next field, and the field is not the last field, the cursor is moved to the next
field and the accept operation begins for that field; otherwise, the action depends on additional attributes of the
terminator. If it is a field terminator key, the entire accept operation is completed, and ESCAPE KEY is set to 00.

f. If the field is terminated by a normal function key (any key with an ESCAPE KEY value greater than
01), the field validation takes place as for a field terminator key. Once the field validation has been successfully
completed, the entire accept operation is also terminated, and ESCAPE KEY is set to the value for the terminator.

g. When the entire accept operation is terminated, the screen fields are moved to their corresponding data
items. Those fields that were processed during the execution of the ACCEPT will have the new data. Those fields
that were not processed (whether due to entering an ESC function key or a normal function key) will have the old
data (for input fields, this will usually be underscores). When the screen field is a numeric-edited item and the data
item is a numeric item, the screen field is first de-edited before moving the data, thus only the numeric value is
moved. In all other cases, the moves take place according to the rules for the MOVE statement.

(16) If the accept operation was terminated by a field terminator key (a key with an ESCAPE KEY value of 00),
the ON ESCAPE clause, if specified, is bypassed and control passes to the NOT ON ESCAPE clause, if present, or
to the end of the ACCEPT statement.

(17) If the accept operation was terminated by an ESC function key or a normal function key (any key with an
ESCAPE KEY value that is not 00), control passes to the ON ESCAPE clause, if specified. If no ON ESCAPE
clause was specified, control passes to the end of the ACCEPT statement.

(18) The value of the ESCAPE KEY is available through the Format 2 ACCEPT FROM ESCAPE KEY
statement.

(19) Entries that start past column 128 are undefined. When hard coded, the ICOBOL compiler will give an
error for entries past column 128. In all other cases, the runtime will behave in an undefined fashion for a particular
terminal type.

Format 3:

(20) The ACCEPT statement causes the transfer of data from the keyboard. This data replaces the contents of
the data item referenced by identifier-1 according to the rules for the MOVE statement.

(21) Data input for identifier-1 must be valid for the identifier. If the characters that are input do not agree with
the item's PICTURE, then an error message is displayed on the last line of the display screen, and the input must be
corrected. For example, alphabetic characters entered into a numeric item will be rejected. For complete details of
PICTURE definitions and acceptable input, see the PICTURE Clause discussion in the WORKING-STORAGE
section.

(22) If a field terminator key (i.e., any key configured in the terminal description to generate a value of 00) is
pressed at any time during an ACCEPT statement, the data is validated and transferred to the data item referenced by
identifier-1. When a field terminator key is pressed for the last identifier-1, the ON ESCAPE clause, if present, is
bypassed and the NOT ON ESCAPE phrase, if specified, is executed; otherwise, control is transferred to the end of

291

Interactive COBOL Language Reference & Developer’s Guide - Part One

the ACCEPT statement. When a field terminator key is pressed for any other identifier-1, the ACCEPT statement
continues processing with the next identifier-1.

(23) If the ESC function key (i.e., any key configured in the terminal description to generate a value of 01) is
pressed at any time during an ACCEPT statement, the data from the keyboard is discarded, and the data item
referenced by identifier-1 is not changed. If the ESC function key is pressed for the last identifier-1, the ACCEPT
terminates, and the ON ESCAPE clause, if present, is executed. Otherwise, processing continues with the next
identifier-1.

(24) If a normal function key (i.e., any key configured in the terminal description to generate a value that is not
00 or 01) is pressed at any time during an ACCEPT statement, the data is validated and transferred to the data item
referenced by identifier-1. When a normal function key is pressed for the last identifier-1, the ON ESCAPE clause,
if present, is executed; otherwise, control is transferred to the end of the ACCEPT statement. When a normal
function key is pressed for any other identifier-1, the ACCEPT statement continues processing with the next
identifier-1.

(25) If the ON ESCAPE clause is executed and identifier-14 has been specified, the two-digit code generated
by the key that terminated the last identifier-1 is stored into identifier-14. This is equivalent to executing an
ACCEPT identifier-14 FROM ESCAPE KEY statement as the first statement of the ON ESCAPE clause.

(26) Format 3 ACCEPTs that extend past a terminal’s width are supported by allowing the ACCEPT to wrap to
the next line since the screen does not have to scroll; i.e., the wrap would otherwise move to the line after the last
line on the screen.

(27) The BACKGROUND-COLOR and FOREGROUND-COLOR phrases determine the background and
foreground colors used during the processing of identifier-1. The color is identified by an integer value from 0 to 7
specified for literal-5 or literal-9 or as the contents of identifier-6 or identifier-10. It may also be specified by use of
color-name-1 or color-name-2. The color names with their integer values are BLACK=0, BLUE=1, GREEN=2,
CYAN=3, RED=4, MAGENTA=5, BROWN=6, WHITE=7. BACKGROUND is a synonym for BACKGROUND-
COLOR and FOREGROUND is a synonym for FOREGROUND-COLOR.

(28) The NO BELL phrase causes suppression of the bell (or beep) signal which normally sounds as each
identifier-1 is processed.

(29) BLINK causes the PROMPT character and any data displayed for the field to be displayed in a blinking
mode.

(30) The COLUMN and LINE phrases are used to position identifier-1 on the screen based on the line and
leftmost character position. The top line is line 1 and each succeeding line has a value one larger than the previous
line. The leftmost character of a line is column 1 and the column value increases by one for each succeeding
character on the line. The line number is specified by literal-11 or the contents of identifier-11 and should be
between 1 and 128. The column number is specified by literal-6 or the contents of identifier-7.

The line and column positions are determined as follows:

a. If the COLUMN phrase is omitted, column 1 is assumed for the first identifier-1 or if a UNIT phrase has
been specified for the same identifier-1. Otherwise the column position is set to zero.

b. If the LINE phrase is omitted or the line position is zero the line position is set as follows: If an ERASE
or ERASE SCREEN phrase is specified for the same identifier-1, then line 1 is assumed. If the column position is
not zero, the line position is the current line plus one. If the column position is zero, the line position is set to the
current line.

c. If the column position is equal to zero, it is set to the current line.

At runtime, values outside the allowable ranges are wrapped.

292

PROCEDURE DIVISION (ACCEPT (keyboard))

(31) The CONTROL phrase is used to dynamically specify options to be used or overridden. Identifier-8 or
literal-7 are used to hold an options list. This list consists of a series of keywords separated by commas. The
keywords may be specified in any order, but are processed from left to right as they appear in the string. While
processing the list, lowercase characters are considered equivalent to the corresponding uppercase character and
blanks or unprintable characters are ignored.

The following keywords impact execution of the ACCEPT statement: BEEP, BLINK, CONVERT, ECHO, ERASE,
ERASE EOL, ERASE EOS, ERASE LINE, ERASE SCREEN, HIGH, LOW, LOWER, NO BEEP, NO BLINK,
NO CONVERT, NO ECHO, NO ERASE, NO LOWER, NO OFF, NO PROMPT, NO REVERSE, NO SECURE,
NO TAB, NO UNDERLINE, NO UPDATE, NO UPPER, OFF, PROMPT, SECURE, SECURE ECHO, SECURE
NO ECHO, TAB, UNDERLINE, UPDATE, and UPPER.

Each of the keywords has the same meaning as when statically coded plus the negative versions (NO xxx) to allow
suppression of the of the option. The keywords UPPER, LOWER, NO UPPER, and NO LOWER are used to enable
or suppress the CONVERTING UP or CONVERTING DOWN options.

(32) The CONVERT phrase is used to control input conversion. If identifier-1 is numeric and the CONVERT
phrase is specified, the data input from the screen is converted to a signed numeric value and stored in identifier-1
according to the rules for a numeric MOVE. (CONVERT is implied for numeric values unless the
“NO CONVERT” is specified as a value for the CONTROL option.) CONVERT is implied by the UPDATE option
when identifier-1 is numeric. If identifier-1 is numeric and input conversion is not specified either implicitly or
explicitly, identifier-1 is treated as an elementary alphanumeric item of the same size and the unconverted input data
is moved to that item according to the rules for an alphanumeric MOVE.

If identifier-1 is numeric edited and the CONVERT phrase is specified, the data input from the screen is converted to
a signed numeric value and stored in identifier-1 according to the PICTURE of identifier-1.

If identifier-1 is alphanumeric edited and the CONVERT phrase is specified, the data input from the screen is stored
in identifier-1 according to the rules for a alphanumeric to alphanumeric edited MOVE. (CONVERT is implied
when identifier-1 is alphanumeric edited.)

In all other cases or if CONVERT is not specified, data is moved from the screen to identifier-1 according to the
rules for an alphanumeric MOVE.

NOTE: Interactive validation is performed on numeric or numeric edited values whenever the CONVERT option is
supplied or implied.

(33) The CONVERTING phrase is used to control the case of the data accepted. If CONVERTING UP is
specified character data entered during an ACCEPT is echoed to the screen and stored in uppercase. In particular,
characters between ‘a’ and ‘z’ inclusive are converted to the corresponding character between ‘A’ and ‘Z’. If
CONVERTING DOWN is specified character data entered during an ACCEPT is echoed to the screen and stored in
lowercase. In particular, characters between ‘A’ and ‘Z’ inclusive are converted to the corresponding character
between ‘a’ and ‘z.

(34) The CURSOR option is used to specify the initial cursor position within the screen field. The initial
position is specified by literal-8 or the contents of identifier-9. The leftmost position is 1. A value of 0 is treated as
one and a value greater than the size of the screen field is treated as the size of the screen field. If identifier-9 is
specified, the cursor position at field termination is returned in it.

(35) The ECHO phrase causes the contents of identifier-1 to be displayed in the screen field following
completion of data input for the field. The display is performed as if a DISPLAY with similar options was
performed. Note that CONVERT in an ACCEPT statement controls only input conversion. Output conversion is
controlled by the UPDATE phrase. If identifier-1 is numeric and input conversion was specified or implied, output
conversion will be used on the display. If the ECHO phrase is not specified, the original input data remains in the
screen field.

293

Interactive COBOL Language Reference & Developer’s Guide - Part One

(36) The ERASE clause is used to control erasure of portions of the screen prior to accepting data. ERASE
SCREEN and ERASE with no additional modifiers erases the entire screen and positions the cursor to line 1 column
1. ERASE LINE erases the current line from column 1 to the end of the line without changing the cursor position.
ERASE EOL erase the screen starting at the cursor position to the end of the line. The cursor is not affected.
ERASE EOS erase the screen starting at the cursor position and continuing to the end of the screen. The cursor
position is not changed.

(37) The HIGH, HIGHLIGHT, BOLD, and BRIGHT options cause the accepted and displayed data to be
displayed at high intensity. The LOW, LOWLIGHT, and DIM options cause the accepted and displayed data to be
displayed at low intensity.

(38) The PROMPT clause causes fill characters to be displayed on the screen in the positions in which data is to
be accepted. If literal-11 is not specified, the fill character used is an underscore. If literal-11 is specified, it must
be of length one and represents the fill character. When PROMPT is not specified, no prompting occurs an the
original contents of the screen field are not modified unless UPDATE is specified. If both PROMPT and UPDATE
are specified, all positions in the screen field not occupied by characters in identifier-1 are filled with the fill
character.

(39) The REVERSE, REVERSED, and REVERSE-VIDEO options cause the accepted and displayed data to be
displayed in reverse video mode. If not specified, data is displayed in normal mode.

(40) The SECURE clause controls echoing of input data as it is entered. If either SECURE with no additional
options or SECURE WITH ECHO is specified, an asterisk is echoed and the cursor moved right one position as each
character is entered. If SECURE NO ECHO is specified, no echoing or cursor movement takes place. If OFF is
specified, a space is echoed and the cursor moved right one position as each character is entered.

(41) The SIZE clause controls the size of the screen input field. If the SIZE clause is present and /iteral-12 or
the contents of identifier-12 is not zero, the size of the screen field is determined by the value of literal-12 or
identifier-12. Otherwise, the size of the screen field is determined by description of identifier-1.

When identifier-1 is numeric and input conversion is specified or implied, the size is the number of digits in
identifier-1's PICTURE plus 1 if its is signed plus 1 if it is not an integer. When identifier-1 is numeric and input
conversion is not specified, the size value is determined by the number of bytes of stored required for identifier-1.

(42) The TAB clause causes the ACCEPT statement to wait for a field termination key to be pressed before
completing the accept of the screen field. If the TAB clause is not present, the field will terminate when the end of
the screen input field is reached or when a field termination key is pressed. (When TAB is absent, the field behaves
much like an AUTO field in a screen description.)

(43) The BEFORE TIME clause is used to specify an interval of time to wait before automatically terminating
the field when no data has been entered. Literal-13 or the contents of identifier-13 are integer values which specify
this time interval in hundredths of seconds. If the user enters any data in the field prior to the expiration of the time
interval, then the timer is cancelled and the ACCEPT of the field behaves as if no BEFORE TIME clause was
specified. Valid values and their behavior are:

Time-out value Meaning

>= 4,294,967,295 No time-out (Wait forever)
0 Time-out immediately

> 630000 Set to 6300 seconds
1-630000 Set to n seconds

If the specified time interval completes before any data is entered, the field is terminated as if a Newline or Enter key
was pressed. The escape key code returned will be 99.

NOTE: The TIME-OUT clause described below is similar, but is expressed in seconds and does not have to be an
integer. It represents a time to wait between keystrokes before terminating a field. If the time-out occurs it
behaves as if the ESC key were pressed. Both TIME-OUT and BEFORE TIME may not be specified for
the same identifier-1.

294

PROCEDURE DIVISION (ACCEPT (keyboard))

(44) The UNDERLINE and UNDERLINED options cause the accepted and displayed data to be displayed in
underlined mode.

(45) The UNIT clause is for documentation only and is ignored except for its impact on the COLUMN clause
as previously described.

(46) The UPDATE clause control output conversion of the current value of identifier-1. This option changes
the contents from its internal form into a form appropriate for display. The user may then modify the screen field
and upon field termination the data in the screen field is stored with input conversion back into identifier-1.

With output conversion, numeric data is converted such that a leading separate sign is provided for negative values,
an explicit decimal point is added for non-integers, leading zeros are removed and the remaining digits are left-
justified.

If both UPDATE and CONVERT are specified for a numeric edited item, a numeric value for identifier-1 is
determined by the rules for a MOVE from a numeric edited item to numeric item. The numeric values is then
converted as described above. If identifier-1 is numeric edited, but only the UPDATE clause is present, then it is not
converted before display.

Output conversion does not itself change the value of identifier-1, but only the appearance of data in the screen field.
The UPDATE clause signals output conversion, and implies input conversion. Unlike with the DISPLAY statement,
CONVERT does not signal output conversion, but rather signals input conversion.

All formats:

(47) The TIME-OUT phrase enables a local time-out for the particular ACCEPT statement. If provided, it
overrides any other specified time-out value. The time-out specifies the amount of time, in seconds, that the runtime
will wait between keystrokes. If the time expires, the ACCEPT terminates as if an ESCAPE had been struck and sets
the ESCAPE KEY value to 99. Valid values are:

Time-out value Meaning

<= 0 or >= 65535 No time-out (Wait forever)
65534 Time-out immediately

> 6300 Set to 6300 seconds
1-6300 Set to n seconds

(48) If the time-out value specified by identifier-4 or literal-3 is not an integer, its value is rounded to the
nearest tenth of a second..

(49) When using timeouts, ICOBOL handles them in the following order for both the ACCEPT statement and
the STOP literal statement:

a. If alocal timeout was specified by the TIME-OUT or BEFORE TIME clause of the ACCEPT statement,
then it is used; otherwise,

b. If a timeout had been set with the IC_SET TIMEOUT builtin, then it is used; otherwise,

c. The global timeout as set with ICTIMEOUT will be used. The default case for global timeout is to wait
forever.

NOTE :
Using an extended open option to set timeout on your console does NOT
affect an ACCEPT or STOP statement. Extended open options are discussed
later Developer’s Guide Section.

IC_ SET TIMEOUT is discussed in this document beginning on page 590, 591.

295

Interactive COBOL Language Reference & Developer’s Guide - Part One

(50) Any system generated messages are erased whenever an ACCEPT is terminated.

296

PROCEDURE DIVISION (ACCEPT (system))

E.2. ACCEPT (system)
E.2.1 Function

The ACCEPT (system) statements cause data from the system to be made available to data items in the File,
Working-Storage, or Linkage sections.

ENVIRONMENT, ESCAPE KEY, EXCEPTION STATUS, LINE NUMBER, and USER NAME are extensions to
ANSI COBOL.

E.2.2 General Format (ANSI 74 and ANSI 85)

Format 1:
DATE [YYYYMMDD]
DAY [YYYYDDD]
ACCEPT identifier FROM 1 DAY-OF-WEEK
TIME
TIMESTAMP

Format 2:

ENVIRONMENT

ESCAPE KEY
ACCEPT identifier FEROM { EXCEPTION STATUS [WITH ERROR IN identifier-5]
- - LINE NUMBER

USER NAME

E.2.3 General Format (VXCOBOL)

Format 1:
DATE [YYYYMMDD]
. . DAY [YYYYDDD]
ACCEPT identifier FROM TIME

TIMESTAMP

Format 2:
ENVIRONMENT
S ESCAPE KEY
ACCEPT identifier FROM | EXCEPTION STATUS [WITH ERROR IN identifier-5 |
USER NAME

ACCEPT identifier FROM LINE NUMBER

[ON VIRTUAL TERMINAL imperative-statement [END-ACCEPT 1]

E.2.4 Syntax Rules
(1) (ISQL) In Format 1, the TIMESTAMP phrase may only be specified if the ISQL feature-set is enabled.

(2) (ISQL) If identifier specifies an item of class date-time and category date, the DATE phrase must be
specified. The YYYYMMDD phrase is implied if it is omitted.

(3) (ISQL) If identifier specifies an item of class date-time and category time, the TIME phrase must be
specified.

297

Interactive COBOL Language Reference & Developer’s Guide - Part One

(4) (ISQL) If identifier specifies an item of class date-time and category timestamp, the TIMESTAMP phrase
must be specified.

E.2.5 General Rules

(1) The ACCEPT statement causes the information requested to be transferred to the data item specified by
identifier according to the rules for the MOVE statement. DATE, DAY, DAY-OF-WEEK TIME, and
TIMESTAMP reference the current date and time provided by the system on which the ACCEPT statement is
executed. DATE, DAY, DAY-OF-WEEK and TIME are standard COBOL conceptual data items and, therefore, are
not described in the COBOL program. TIMESTAMP, ENVIRONMENT, ESCAPE KEY, EXCEPTION STATUS,
LINE NUMBER, and USER NAME are conceptual data items and, therefore, are not described in the COBOL
program.

(2) DATE, without the phrase YYYYMMDD, is composed of the data elements: year of century, month of
year, and day of month (yymmdd). Therefore, December 25, 1986, would be expressed as 861225. DATE without
the phrase YYYYMMDD, when accessed by a COBOL program, behaves as if it had been described in a COBOL
program as an unsigned elementary numeric integer data item six digits in length (PIC 9(6)).

(3) DATE, with the phrase YYYYMMDD behaves as it had been described as an unsigned elementary integar
data item of usage display eight digits in length, the character positions of which, numbered from left to right, are:

Character Positions Contents
1-4 Four numeric characters of the year in the Gregorian calendar.
5-6 Two numeric characters of the day of the year in the range 01
through 12.
7-8 Two numeric characters of the day of the month in the range 01
through 31.

(4) DAY, without the phrase YYYYDDD, is composed of the data elements: year of century and day of year
(yyddd). Therefore, December 25, 1986, would be expressed as 86359. DAY, when accessed by a COBOL
program, behaves as if it had been described in a COBOL program as an unsigned elementary numeric integer data
item five digits in length (PIC 9(5)).

(5) DAY with the phrase YYYYDDD behaves as if it had been described as an unsigned elementary integer
data item of usage display seven digits in length, the character positions of which, numbered from left to right are:

Character Positions Contents
1-4 Four numeric characters of the year in the Gregorian calendar.
5-7 Three numeric characters of the day of the year in the range 001

through 366.

(6) TIME is composed of the data elements hours, minutes, seconds, and hundredths of a second (hhmmsshh).
TIME is based on elapsed time after midnight on a 24-hour clock basis; thus, 2:41 p. m. would be expressed as
14410000. TIME, when accessed by a COBOL program, behaves as if it had been described in a COBOL program
as an unsigned elementary numeric integer data item eight digits in length (PIC 9(8)). The minimum value of TIME
is 00000000; the maximum value of TIME is 23595999. If the system does not have the facility to provide
fractional parts of a second, the value zero is returned for those parts which cannot be determined (e.g., 386UNIX
returns 00 as the hundredths of a second in the seventh and eight character positions).

NOTE: If the ISQL feature-set is enabled, one can use the TIMESTAMP features to retrieve a
date and time as one operation. Otherwise, the recommended method is to use either the
IC FULL DATE builtin call or the CURRENT-DATE function. Each of the three
methods return a four-digit year and assure that the both date and time were retrieved
without the system crossing midnight, which can occur if one uses separate ACCEPT
FROM DATE and ACCEPT FROM TIME statements. IC FULL DATE is discussed
in this document beginning on page 544, and the CURRENT-DATE function is
discussed on page 628.

298

PROCEDURE DIVISION (ACCEPT (system))

(7) DAY-OF-WEEK is composed of a single data element whose content represents the day of the week.
DAY-OF-WEEK, when accessed by a COBOL program, behaves as if it had been described in a COBOL program
as an unsigned elementary numeric integer data item one digit in length. In DAY-OF-WEEK, the value 1 represents
Monday, 2 represents Tuesday, ... , 7 represents Sunday.

(8) (ISQL) TIMESTAMP is composed of a 4-digit year field, a 2-digit month field, a 2-digit day field, a 2-digit
hour field, a 2-digit minute field, a 2-digit second field, and a 2-digit hundredths of second field. It is equivalent to
SQL TIMESTAMP(2). Conceptually it is equivalent to PIC 9(16). If <identifier> is a timestamp, then the internal
timestamp will have all 6 fractional digits for seconds.

299

Interactive COBOL Language Reference & Developer’s Guide - Part One

(9) ENVIRONMENT is composed of a structure containing specific information for a particular operating
system environment. The amount of data transferred depends on the environment and the revision of the runtime
system. For revision 3.30 of ICOBOL, the structure is defined as follows:

01 ENV-STRUCTURE.
02 SYSTEM-CODE PIC 99.
88 IC-AOSVS VALUE IS O1.
88 IC-AOSVSII VALUE IS 04.
88 IC-MSDOS VALUE IS 30.
88 IC-386UNIX VALUE IS 31.
88 IC-DGUX-88K VALUE IS 34.
88 IC-AIX-RS VALUE IS 39.
88 IC-SUN-SPARC VALUE IS 40.
88 IC-HPUX-PA-RISC VALUE IS 41.
88 IC-MOTOROLA-88K VALUE IS 43.
88 IC-STRATUS-860 VALUE IS 44.
88 IC-LINUX-INTEL32 VALUE IS 45. (Renamed)
88 IC-DGUX-INTEL VALUE IS 47.
88 IC-SCO-UNIX-INTEL VALUE IS 48.
88 IC-UNIXWARE-INTEL VALUE IS 49.
88 IC-MACOSX VALUE IS 51.
88 IC-LINUX-INTEL64 VALUE IS 52. (New)
88 IC-WINDOWS-9X VALUE IS 60.
88 IC-WINDOWS-32 VALUE IS 61. (Renamed)
88 IC-WINDOWS-64 VALUE IS 62. (New)
02 REVISION-CODE PIC 99.
02 PROGRAM-NAME PIC X(28).
02 PID PIC 9(5).
02 CONSOLE-TYPE PIC X.
88 CON-BATCH VALUE IS "B".
88 CON-NORMAL VALUE IS "C".
88 CON-MASTER VALUE IS "M". (end rev 00)
02 SCREEN-LINES PIC 9(3).
02 SCREEN-COLUMNS PIC 9(3).
02 PRIVILEGES PIC X(16).
02 PRIV-REDEF REDEFINES PRIVILEGES.
03 ABORT-PROGRAM PIC X
03 INTERNAL-INFORMATION PIC X
03 MESSAGE-SENDING PIC X
03 TERMINAL-STATUS PIC X
03 PRINTER-CONTROL PIC X
03 PRINTER-CONTROL-MGMT PIC X
03 SHUTDOWN-RUNTIME PIC X.
03 BG-CONSOLE-OR-HOST-EXEC PIC X.
03 CONSOLE-INTERRUPT PIC X
03 DEBUG-PROGRAM PIC X
03 WATCH-FACILITY PIC X
03 XWATCH-FACILITY PIC X. (new rev 05)
03 FILLER PIC X (4)
02 FILENAME-CASE PIC X.
88 CONVERT-TO-LOWER VALUE "L".
88 CONVERT-TO-UPPER VALUE "U".
88 CONVERT-NONE VALUE "N". (end rev 01)
02 ICREV-INFO PIC X(8). (end rev 02)
02 PROGRAM-TYPE PIC X.
88 NORMAL-PROGRAM VALUE IS "N".
88 HOTKEY-PROGRAM VALUE IS "H".
88 NORMAL-PROGRAM-CHILD VALUE IS "C".
02 MAX-LEVELS PIC 99.
02 CURRENT-LEVEL PIC 99. (end rev 03)
02 LARGE-PID PIC 9(10). (end rev 04)
02 SCREEN-COLUMNS-MIN PIC 9(3)
02 SCREEN-COLUMNS-MAX PIC 9(3).
02 SYS-NODENAME PIC X(16). (end rev 05)

300

PROCEDURE DIVISION (ACCEPT (system))

Where

SYSTEM-CODE indicates that this COBOL program is currently running under ICOBOL on the operating
system corresponding to the 2-digit code that is returned. New codes are added as additional systems are
supported. Please see the ICOBOL product’s README file for the latest values. The current system-code
can be overridden when starting the runtime with the Set System code switch (-S).

REVISION-CODE indicates the current revision of this structure under ICOBOL for this system and is set to 05
for this revision.

PROGRAM-NAME is the current program that is running (i.e., the same as would be seen by a
IC_TERM_STAT on another console).

PID is the current process id.

CONSOLE-TYPE is "B' if this process is a batch job or detached program or otherwise has the standard input
set to the null device; "C' if it is attached to an interactive console, or ‘M’ if this is console 0 in the
configuration file (.cfi), even if the Master Console has been reset to a console number other than 0 by use
of the Lowest Console number switch to ICEXEC.

SCREEN-LINES and SCREEN-COLUMNS is the number of lines and columns that ICOBOL is currently
using for this terminal. When in Batch mode these numbers are undefined.

PRIVILEGES contains characters defining the privileges that the current program has. If the privilege is
granted the indicated column will contain the letter specified, otherwise the column will contain a space.

Position Contents Meaning

A User can run Abort Terminals

I User can run System Information
M User can run Message Sending

T User can run Terminal Status

P User can run Printer Control

C User has printer control management
S User can run Shutdown

0 User can Detach jobs or call host
B

D

W

X

s

Program Interrupts are allowed

User can debug

User can use the Watch Facility

This user can NOT be watched
pace Undefined (reserved)

FILENAME-CASE contains the case that ICOBOL on Linux is using for filenames, i.e., the -C value from the
command line as U=upper, L=lower, and N=none.

ICREV-INFO contains the 8-byte string set with the ICREVSET utility or with the compiler OEM Version
Switch (-0]-O ver).. If not set, it will contain nulls (LOW-VALUES).

PROGRAM-TYPE is ‘H’ if the current program was called via a hotkey, ‘C’ if the current program was called
from within a hotkey program, or ‘N’ if the current program is a normal program.

FILLER will always contain zeros (00). (Formerly MAX-LEVELS, the maximum configured number of CALL
levels allowed. This item is obsolete.)

CURRENT-LEVEL shows the current number of active and inactive programs in this run-unit. If greater than
99, then only 99 is shown.

LARGE-PID shows a 10 character pid number on those systems that support larger pid ranges, otherwise
LARGE-PID matches PID

SCREEN-COLUMNS-MIN, SCREEN-COLUMNS-MAX is the minimum and maximum values for a terminal
that supports compressed mode.

SYS-NODENAME is a 16 character name of the current computer.

ICOBOL sets batch job ('B' in CONSOLE-TYPE) when it detects that the standard input is set to the null device.
An ACCEPT will generate an immediate end-of-file. All programs started with the IC_DETACH will be considered
as batch jobs. CGICOBOL programs are considered as batch jobs.

The runtime system uses the rules for a MOVE statement to transfer data into the environment structure. If the
identifier is smaller than the data, data is truncated on the right. If the identifier is larger, the data is left-justified and
the identifier is padded with spaces.

(10) ESCAPE KEY contains a two-digit (PIC 99) code generated by the key that terminated the last Format 3

(ACCEPT identifier-1) or Format 4 (ACCEPT screen-name) ACCEPT statement in the program. It should be
queried immediately after the ACCEPT you wish to test.

301

Interactive COBOL Language Reference & Developer’s Guide - Part One

The ESCAPE KEY will return a zero if a valid ACCEPT has not been done since the program was started via
either a CALL PROGRAM or CALL.

The following table shows the default ESCAPE KEY codes for a Data General D2xx compatible terminal.

Key Key Key + Key + Key +
alone SHIFT CTRL SHIFT+CTRL
CR 00 00 00 00
NEWLINE 00 00 00 00
ESC 01 01 01 01
F1l 02 10 18 26
F2 03 11 19 27
F3 04 12 20 28
F4 05 13 21 29
F5 06 14 22 30
Fo6 07 15 23 31
F7 08 16 24 32
F8 09 17 25 33
F9 34 41 48 55
F10 35 42 49 56
F11 36 43 50 57
Fl2 37 44 51 58
F13 38 45 52 59
F1l4 39 46 53 60
F15 40 47 54 61
Cc1l 62 66 62 66
c2 63 67 63 67
c3 64 68 64 68
C4 65 69 65 69
Down-arrow 00 77 00 00
Up-arrow n/a 70 n/a 70
Right-arrow n/a 71 n/a 71
Left-arrow n/a 72 n/a 72
CMD-Print 73 74 73 74
HOME n/a 75 n/a 75

TABLE 19. Function Key Escape Codes

Escape key codes are configurable in the terminal description files (.tdi) on a terminal type basis. See the
Installing and Configuring manuals for complete details.

(11) EXCEPTION STATUS, without the WITH ERROR IN phrase, contains a five-digit (PIC 9(5)) code, for
the most recent I/O operation. This includes all I/O operations: file I/O (which also set File Status), plus ACCEPT,
DISPLAY, CALL and CALL PROGRAM. The returned Exception Status value can be used with the
IC_MSG_TEXT builtin to get the error message text for the particular error.

Remember: to retrieve the correct status, the ACCEPT FROM EXCEPTION STATUS must be issued
prior to any further I/0 or CALL operation, including screen I/O operations.

APPENDICES F (ANSI) and G (VXCOBOL), starting on pages 867 and ? respectively, show all possible
Exception Status values with their meaning, along with any Linux or Windows error that will generate that Exception

Status.

If a fatal I/O error is encountered and the program terminates, the current Exception Status is displayed right
after the COBOL PC as E=nnn.

(12) EXCEPTION STATUS with the WITH ERROR IN phrase returns the operating system error that caused
the exception, if such was the case. The program’s definition of identifier-5 should be PIC 9(5).

302

PROCEDURE DIVISION (ACCEPT (system))

(13) LINE NUMBER contains a five-digit number of the console number (n of @CONn) on which this
program is running. Its PICTURE is 9(5). The ON VIRTUAL TERMINAL clause, available for VXCOBOL, is for
documentation purposes only and is therefore ignored.

(14) USER NAME contains the current system user name (if available) of the user currently running this
program. Up to 15 characters are returned; i.e., its PICTURE is X(15). By default, the user name is returned in
lower-case. A runtime switch (-U) may be specified to convert the case of the user name that is returned by
ACCEPT FROM USER NAME. The name may be changed by the IC SET USERNAME builtin, which is
discussed in this document beginning on page 592.

303

Interactive COBOL Language Reference & Developer’s Guide - Part One

304

PROCEDURE DIVISION (ADD)

E.3. ADD
E.3.1 Function

The ADD statement causes two or more numeric operands to be summed and the result to be stored.

E.3.2 General Format
Format 1:

ADD {'d;,?;;’;g;?f } TO { identifier-2 | ROUNDED] }...

[ON SIZE ERROR imperative-statement-1]
[NOT ON SIZE ERROR imperative-statement-2]

[END-ADD]
Format 2:
ADD {’C’;’t’;fr’gfq* } TO {'d,ftgf;gfgz } GIVING { identifier-3 [ROUNDED 1] }...

[ON SIZE ERROR imperative-statement-1]
[NOT ON SIZE ERROR imperative-statement-2 |
[END-ADD]

Format 3:

CORRESPONDING | = S
ADD CORR identifier-1 TO identifier-2 [ROUNDED]

[ON SIZE ERROR imperative-statement-1]
[NOT ON SIZE ERROR imperative-statement-2 |
[END-ADD]

E.3.3 Syntax Rules

(1) In Formats 1 and 2, each identifier must refer to an elementary numeric item, except that in Format 2 each
identifier following the word GIVING must refer to either an elementary numeric item or an elementary numeric
edited item. In Format 3, each identifier must refer to a group item.

(2) Each literal must be a numeric literal.

(3) The composite of operands must not contain more than 18 digits.

a. In Format 1, the composite of operands is determined by using all of the operands in a given statement.

b. In Format 2, the composite of operands is determined by using all of the operands in a given statement,
excluding the data items that follow the word GIVING.

c. In Format 3, the composite of operands is determined separately for each pair of corresponding data
items.

(4) CORR is an abbreviation for CORRESPONDING.

305

Interactive COBOL Language Reference & Developer’s Guide - Part One
E.3.4 General Rules

(1) If Format 1 is used, the values of the operands preceding the word TO are added together and the sum is
stored in a temporary data item. The value in this temporary data item is added to the value of the data item
referenced by identifier-2, with the result stored into the data item referenced by identifier-2. This process is
repeated for each successive occurrence of identifier-2, in the left-to-right order in which identifier-2 is specified.

(2) If Format 2 is used, the values of the operands preceding the word GIVING are added together, then the
sum is stored as the new content of each data item referenced by identifier-3.

(3) If Format 3 is used, data items in identifier-1 are added to and stored in corresponding data items in
identifier-2.

(4) The compiler insures that enough places are carried, so as not to lose any significant digits during execution.
(5) Additional rules and explanations relative to this statement are given under the appropriate paragraphs. (See
Scope of Statements, page 260; The ROUNDED Phrase, page 253; The ON SIZE ERROR Phrase, page 254; The

Arithmetic Statements, page 256; Overlapping Operands, page 256; Multiple Results in Arithmetic Statements, page
256; and The CORRESPONDING Phrase, page 254.)

306

PROCEDURE DIVISION (CALL)

E4. CALL
E.4.1 Function

The CALL statement causes control to be transferred from one object program to another, within the run unit or to an
external executable program as defined by a particular ICOBOL operating system version.

To see how ICOBOL processes the program name see the External Filename description in the Developer’s Guide
section on page 791.

E.4.2 General Format

Format 1:
identifier-1 [BY REEERENCE] identifier-2...
CALL { literal } [USING { BY CONTENT identifier2... |1

[ON EXCEPTION imperative-statement-1]
[NOT ON EXCEPTION imperative-statement-2]

[END-CALL]
Format 2:
identifier-1 [BY REEERENCE] identifier-2...
CALL { literal } [USING { BY CONTENT identifier-2.. } -]

[ON OVERFLOW imperative-statement-1]
[END-CALL]

E.4.3 Syntax Rules
(1) Literal must be a nonnumeric literal.
(2) Identifier-1 must be defined as an alphanumeric data item such that its value can be a program-name.

(3) Each of the operands (identifier-2) in the USING phrase must have been defined as a data item in the File
Section, Working-Storage Section, or Linkage Section.

E.4.4 General Rules

(1) Literal or the content of the data item referenced by identifier-1 must contain the name of the called
program. The program in which the CALL statement appears is the calling program.

(2) If, when a CALL statement is executed, the program specified by the CALL statement is made available for
execution, control is transferred to the called program. After control is returned from the called program, the ON
OVERFLOW or ON EXCEPTION phrase, if specified is ignored and control is transferred to the end of the CALL
statement or, if the NOT ON EXCEPTION phrase is specified, to imperative-statement-2. 1f control is transferred to
imperative-statement-2, execution continues according to the rules for each statement specified in
imperative-statement-2. If a procedure branching or conditional statement which causes explicit transfer of control
is executed, control is transferred in accordance with the rules for that statement; otherwise, upon completion of the
execution of imperative-statement-2, control is transferred to the end of the CALL statement.

307

Interactive COBOL Language Reference & Developer’s Guide - Part One

(3) Ifitis determined, when a CALL statement is executed, that the program specified by the CALL statement
cannot be made available for execution at that time the appropriate Exception Status is set and one of the two actions
listed below will occur.

a. If the ON OVERFLOW or ON EXCEPTION phrase is specified in the CALL statement, control is
transferred to imperative-statement-1. Execution then continues according to the rules for each statement specified
in imperative-statement-1. If a procedure branching or conditional statement which causes explicit transfer of
control is executed, control is transferred in accordance with the rules for that statement; otherwise, upon completion
of the execution of imperative-statement-1, control is transferred to the end of the CALL statement and the NOT ON
EXCEPTION phrase, if specified, is ignored.

b. If the ON OVERFLOW or ON EXCEPTION phrase is not specified in the CALL statement, the NOT
ON EXCEPTION phrase, if specified, is ignored, and control is transferred to the end of the CALL statement.

(4) If the called program does not possess the initial attribute, the called program is in its initial state the first
time it is called within a run unit and the first time it is called after a CANCEL to the called program. On all other
entries into the called program, the state of the program remains unchanged from its state when last exited.

If the called program possesses the initial attribute it is placed into its initial state every time the called
program is called within a run unit.

(5) Files associated with a called program's internal file connectors are not in the open mode when the program
is in an initial state.

On all other entries into the called program, the states and positioning of all such files is the same as when
the called program was last exited.

External file connectors always maintain their state across a CALL.

(6) The USING phrase is included in the CALL statement only if there is a USING phrase in the Procedure
Division header of the called program, in which case the number of operands in each USING phrase must be
identical. If the program being called is other than a COBOL program, the use of the USING phrase is defined by
the program being called. For example, builtins define the expected operands.

(7) The sequence of appearance of the data-names in the USING phrase of the CALL statement and in the
corresponding USING phrase in the called program's Procedure Division header determines the correspondence
between the data-names used by the calling and called programs. This correspondence is positional and not by name
equivalence; the first data-name in one USING phrase corresponds to the first data-name in the other, the second to
the second, etc.

(8) The values of the parameters referenced in the USING phrase of the CALL statement are made available to
the called program at the time the CALL statement is executed.

(9) Both the BY CONTENT and BY REFERENCE phrases are transitive across the parameters which follow
them until another BY CONTENT or BY REFERENCE phrase is encountered. If neither the BY CONTENT nor
BY REFERENCE phrase is specified prior to the first parameter, the BY REFERENCE phrase is assumed.

(10) For a parameter that is described either explicitly or implicitly as BY REFERENCE, the object program
operates as if the corresponding data item in the called program occupies the same storage area as the data item in
the calling program. The description of the data item in the called program must describe the same number of
character positions as described by the description of the corresponding data item in the calling program.

(11) For a parameter that is described as BY CONTENT, the object program operates as if the storage area in
the calling program is copied to a storage area reserved in the LINKAGE Section of the called program, by the
USING phrase in the Procedure Division header, for the corresponding item in the USING phrase of the CALL. The
storage area of the calling program remains unchanged when the EXIT PROGRAM statement is executed in the
called program. The description of the data item in the called program must describe the same number of character

308

PROCEDURE DIVISION (CALL)

positions as described by the description of the corresponding data item in the calling program. See Values of
Parameters on page 60 for more information.

(12) Called programs may contain CALL statements. However, a called program must not execute a CALL
statement that directly or indirectly calls the calling program. If a CALL statement is executed within the range of a
declarative, that CALL statement cannot directly or indirectly reference any called program in which control has
been transferred and which has not completed execution.

(13) The maximum number of parameters that may be specified in a USING phrase is 32.

(14) The CALL statement cannot pass switches to a called program. Switches are the same for the entire run
unit.

(15) A few of the more-common error conditions and their exception status codes are:

Exception

Status Code Error Condition

83 The file does not have the correct revision
203 Program not found

207 Program is already active

209 Parameter count or parameter size mismatch
213 Program file cannot be loaded.

TABLE 20. Common Error Conditions for a CALL Statement
(16) The END-CALL phrase delimits the scope of the CALL statement.

(17) CALL can be used to execute user-written C subroutines that have been bound into the currently executing
runtime by using the ICOBOL Link Kit. These user-written are bound in dynamically using icbltn.so (Linux) or
icbltn.dll (Windows). See the readlink.txt file in the ICOBOL link kit subdirectory for details.

(18) CALL can be used to execute operating system executable programs.

E.4.5 Calling Operating System Executables

(1) The name of the executable file /iteral-1 or the contents of identifier-1 must begin with the special character
vertical bar (“’) which indicates that the name following is an executable file and should be passed to the operating
system to be executed with the given arguments identifier-2 and then return to ICOBOL when finished.

(2) If the program specified cannot be executed, the Exception Status is set and the ON EXCEPTION clause, if
specified, will be performed. Otherwise, the returned error code is placed into Exception Status, but the ON
EXCEPTION clause is not executed.

(3) By using the CALL to an operating system executable, other copies of ICOBOL or ICOBOL utilities can
be started from within a COBOL program. These other processes will get console numbers from the range of
consoles that have been enabled with no device name specified; thus, you will never have another ICOBOL runtime
running with the same console number.

(4) Multiple arguments can be passed but the contents of the data items are never modified by the operating
system executables.

309

Interactive COBOL Language Reference & Developer’s Guide - Part One

Linux examples

EXAMPLE: To call the Bourne shell you could use the following:

MOVE "-s" TO ARGUMENT.
CALL " |sh" USING ARGUMENT.

EXAMPLE 17. CALL the Bourne shell from a COBOL program (Linux)
The above example code starts the sh program with the initial argument "-s", which tells the shell to use stdin
and stdout for its input and output. When the shell is terminated, control returns to ICOBOL, with the exit code

being stored into Exception Status.

EXAMPLE: To call the shell and have it execute a single "ls" command and return, use the following:

MOVE "-c" TO ARGUMENTL.
MOVE "ls -1" TO ARGUMENT2.
CALL "|[sh" USING ARGUMENT1, ARGUMENT2.

EXAMPLE 18. CALL the shell, have it execute “Is” and return (Linux)

EXAMPLE: To call the Is command directly and return, use the following:

MOVE "-1" TO ARGUMENT.
CALL "|1ls" USING ARGUMENT.

EXAMPLE 19. CALL the “Is” command directly and return (Linux)

Windows examples

EXAMPLE: To call the Windows command processor.

CALL "|c:\winnt\system32\cmd.exe".

EXAMPLE 20. CALL the command processor (Windows)

EXAMPLE: To call the Windows command processor and have it executed the DIR command:.

MOVE “/C DIR” TO ARGUMENT.
CALL "|c:\winnt\system32\cmd.exe" USING ARGUMENT.

EXAMPLE 21. CALL the command processor and execute the DIR command (Windows)

310

PROCEDURE DIVISION (CALL)
EXAMPLE: To call the Acrobat Reader to print a particular .pdf file on the default printer:

MOVE “/p printfile.pdf” TO ARGUMENT.
CALL "|c:\program files\adobe\reader 8\acrod32.exe" USING ARGUMENT.

EXAMPLE 22. CALL Acrobat Reader and print a file (Windows)

311

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.5. CALL PROGRAM
E.5.1 Function

The CALL PROGRAM statement begins a new run unit with another COBOL program or it performs a system
function as defined by a particular ICOBOL operating system version. CALL PROGRAM is an extension to ANSI
COBOL. Also see the table, CALL and CALL PROGRAM Compared, at the end of this description.

To see how ICOBOL processes the program name see the External Filename description in the Developer’s Guide
section on page 791.

E.5.2 General Format

CALL PROGRAM { 7ot | [USING { identifer-2 ...]
[ON EXCEPTION imperative-statement-1]
[NOT ON EXCEPTION imperative-statement-2]
[END-CALL]

E.5.3 Syntax Rules
(1) Literal must be a nonnumeric literal.
(2) Identifier-1 must be defined as an alphanumeric data item such that its value can be a program-name.

(3) In addition to the program-name, /iteral or identifier-1 can include program switches, each a nonnumeric
literal. For example:

CALL PROGRAM "REPORT/M/WEEKLY/QUARTERLY".

(4) Each of the operands in the USING phrase must have been defined as a data item in the File Section,
Working-Storage Section, or Linkage Section.

E.5.4 General Rules

(1) Literal or the content of the data item referenced by identifier-1 is the name of the called program and
possibly program switches. The program in which the CALL PROGRAM statement appears is the calling program.
Literal or the content of the data item referenced by identifier-1 must contain the program-name of the program to be
called or the system call to be executed.

(2) If, when a CALL PROGRAM statement is executed, the program specified by the statement is a COBOL
program, it is made available for execution, all files in the current program are closed, and control is transferred to
the called program. The successful transfer of control to a called program is equivalent to the execution of a
STOP RUN statement within the calling program followed by the start of the called program. (You cannot return to
the original or calling program, except when doing system calls.)

(3) If, when a CALL PROGRAM statement is executed, the program specified by the CALL PROGRAM
statement is a system call, it is executed in accordance with the specifications for that system call. A system call is
defined to be any program name starting with the "#' symbol. Valid system calls for a particular operating system
and their function can be found in this manual in APPENDIX M beginning on page 907. If the specified system call
returns to the program, and the NOT ON EXCEPTION phrase is specified control is transferred to
imperative-statement-2; otherwise, control is transferred to the end of the CALL PROGRAM statement.

312

PROCEDURE DIVISION (CALL PROGRAM)

(4) Ifitis determined, when a CALL PROGRAM statement is executed, that the program specified by the
CALL PROGRAM statement cannot be made available for execution at that time, the exception status is set to the
appropriate value and one of the two actions listed below will occur.

a. If the ON EXCEPTION phrase is specified in the CALL PROGRAM statement, control is transferred to
imperative-statement-1. Execution then continues according to the rules for each statement specified in
imperative-statement-1. If a procedure branching or conditional statement which causes explicit transfer of control
is executed, control is transferred in accordance with the rules for that statement; otherwise, upon completion of the
execution of imperative-statement-1, control is transferred to the end of the CALL PROGRAM statement and the
NOT ON EXCEPTION phrase, if specified, is ignored.

b. If the ON EXCEPTION phrase is not specified in the CALL PROGRAM statement, control is
transferred to the end of the CALL PROGRAM statement and the NOT ON EXCEPTION phrase, if specified, is

ignored.

(5) A few of the more common error conditions and their exception status codes are:

Exception

Status Code Error Condition

83 The file does not have the correct revision

203 Program not found, or this is a system call and the system call
is not valid for the operating system

213 Program file could not be loaded. program

TABLE 21. Common Error Conditions for a CALL PROGRAM Statement
(6) The END-CALL phrase delimits the scope of the CALL PROGRAM statement.

(7) The USING phrase can be included in the CALL PROGRAM statement even if there is not a USING phrase
in the Procedure Division header of the called program, in which case no parameters are passed to the called
program. If the program being called is other than a COBOL program, the use of the USING phrase is defined by
the program being called.

(8) The sequence of appearance of the data-names in the USING phrase of the CALL PROGRAM statement
and in the corresponding USING phrase in the called program's Procedure Division header determines the
correspondence between the data-names used by the calling and called programs. This correspondence is positional
and not by name equivalence; the first data-name in one USING phrase corresponds to the first data-name in the
other, the second to the second, etc.

(9) The values of the parameters referenced in the USING phrase of the CALL PROGRAM statement are made
available to the called program at the time the CALL PROGRAM statement is executed.

(10) For a parameter, the object program operates as if the storage area in the calling program is copied to a
storage area reserved in the LINKAGE Section of the called program by the USING phrase in the Procedure
Division header for the corresponding item in the USING phrase of the CALL PROGRAM. The description of the
data item in the called program does not have to describe the same number of character positions as described by the
description of the corresponding data item in the calling program. If more bytes are passed than can be stored the
extra bytes are ignored. If not enough bytes are passed the resulting storage is undefined.

(11) (Switch processing) Without the ICOBOL runtime options ‘-G s’ (Strict switch processing) or ‘-N e’ (No
embedded spaces) the following default rules describe how the runtime extracts switches from the value of literal or

identifier-1:

a. The switch character is the forward slash '/'.

313

Interactive COBOL Language Reference & Developer’s Guide - Part One

b. Using "' or '\' as pathname separators or an initial '=' or "' removes all ambiguity; i.e., everything starting
with '/' is a switch.

¢. Switches may be multiple characters.
d. Single character switches follow this special rule: All /x pairs are removed (beginning at the right and
moving left) and treated as switches except for a pair occurring as the first 2 characters. This rule is in effect for

compatibility with existing applications where program switches are a single character.

e. The first " /" (that’s a space followed by a /) (from left to right) will always end a program name and
begin program switches.

f. All processing is discontinued at the first CR, NL, FF or NUL.
g. By default, embedded spaces are allowed in /iteral or identifier-1.

(12) With the °-G s’ (Strict switch processing) runtime option, a */* in the value in /iteral or identifier-1 always
signals the start of a program switch.

(13) With the °-N e’ (No embedded spaces) runtime option, embedded spaces are not allowed in program
names, and processing of /iteral or identifier-1 is discontinued at the first space not preceding either a ‘/> or spaces
preceding a /°.

(14) The following table shows example values for /iteral or identifier-1 and how they are evaluated and
processed by the ICOBOL runtime. It shows differences between a runtime that was brought up using the ‘-G s’
option and a runtime that was brought up without that option.

DEFAULT Behavior WITH ‘-G s’
(without ‘-G s’) runtime option
Program Switches Program | Switches
1. x/a/b/c X a, b, ¢ <error>
2. /x/a/b /c /%x/a/b c <error>
3. /x/a/b /c/d /e /x/a/b c, d, e <error>
4, x/a/b/c be a, b, c X a, b, c
5. xxx/a/b/c XXX a, b, ¢ XXX a, b, ¢
6. x/a/b/ccc x/a/b/ccc <none> X a, b, ccc
7. aaa/bbb/c aaa/bbb c aaa bbb, c
8. aaa/bbb/ccc aaa/bbb/ccc <none> aaa bbb, ccc
9. aaa\bbb/ccc aaa/bbb ccc aaa/bbb |ccc
10. |aaa:bbb/ccc aaa/bbb ccc aaa/bbb |ccc
11. |=aaa/bbb/ccc ./aaa bbb, ccc ./aaa bbb, ccc
12. |"aaa/bbb/ccc ../aaa bbb, ccc ../aaa |bbb, ccc
13. |aaa/bbb /ccc aaa/bbb ccc aaa bbb, ccc
14. |aaa/x<nl>/b /ccc aaa X aaa X
15. |my dir/my prg /sw 'lmy dir/my prg|sw my dir [my
! - The last example shows the default behavior as far as
allowing embedded spaces. With the ‘-N e’ runtime option (no
embedded spaces), an error is returned.

TABLE 22. How Program Switches are evaluated

314

PROCEDURE DIVISION - Concepts (CALL and CALL PROGRAM Compared)
E.5.5 CALL and CALL PROGRAM Compared

This table presents a high-level view of the major differences between the CALL statement and the CALL
PROGRAM statement. Details for the CALL and CALL PROGRAM statements begin on pages 305 and 309
respectively. Also see related sections in this document: PROCEDURE DIVISION USING phrase on page 60 and
EXIT PROGRAM statement on page 365.

CALL

CALL PROGRAM

A “PERFORM” equivalent.

A “chain” equivalent.

Returns to the calling program.

Does not return to the calling program
(except for # or ## system calls, which may
perform a task and return).

Called program runs in the same run
unit as the calling program.

Called program begins a new run unit or
performs a system call.

Cannot pass switches to the called
program.

Can pass switches to the called program.

The calling program is left in the
current state except that contents
of items in the USING phrase may
have been altered by the called
program.

All files in the calling program are closed
before control is passed to the called
program.

The state of the called program
remains unchanged from its state
when last exited unless it has the
INITIAL attribute in which case it
will have its initial state when
next called.

N/A - Called program is always in its initial
state.

CANCEL logically removes called
program from the run unit so it will
be in its initial state next time it
is called.

CANCEL is not applicable for a program called
with CALL PROGRAM.

EXIT PROGRAM marks the logical end
of a called program.

EXIT PROGRAM has no effect in a called
program.

TABLE 23. CALL and CALL PROGRAM Compared

315

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.6. CANCEL
E.6.1 Function

The CANCEL statement ensures that the next time the referenced program is called it will be in its initial state.

E.6.2 General Format

identifier }

CANCEL { i

E.6.3 Syntax Rules
(1) Literal must be a nonnumeric literal.

(2) Identifier must be defined as an alphanumeric data item such that its value can be a program name.

E.6.4 General Rules
(1) Literal or the content of the data item referenced by identifier identifies the program to be canceled.

(2) Subsequent to the execution of an explicit or implicit CANCEL statement, the program referred to therein
ceases to have any logical relationship to the run unit in which the CANCEL statement appears. If the program
referenced by a successfully executed explicit or implicit CANCEL statement in a run unit is subsequently called in
that run unit, that program is in its initial state.

(3) A program named in a CANCEL statement in another program must be callable by that other program.

(4) A program named in the CANCEL statement must not refer directly or indirectly to any program that has
been called and has not yet executed an EXIT PROGRAM statement.

(5) A logical relationship to a canceled program is established only by execution of a subsequent CALL
statement naming that program.

(6) A called program is canceled either by being referred to as the operand of a CANCEL statement, by the
termination of the run unit of which the program is a member (STOP RUN, CALL PROGRAM, interrupt), or by
execution of an EXIT PROGRAM statement in a called program that possesses the initial attribute.

(7) No action is taken when an explicit or implicit CANCEL statement is executed naming a program that has
not been called in this run unit or has been called and is at present canceled. Control is transferred to the next
executable statement following the explicit CANCEL statement.

(8) During execution of an explicit or implicit CANCEL statement, an implicit CLOSE statement without any
optional phrases is executed for each file in the open mode that is associated with an internal file connector in the
program named in the explicit CANCEL statement. Any USE procedures associated with any of these files are not
executed.

(9) The contents of data items in external data records described by a program are not changed when that
program is cancelled.

(10) The CANCEL statement does not close external files, even those open in the subprogram. You must
explicitly close external files.

316

PROCEDURE DIVISION (CLOSE)

E.7. CLOSE
E.7.1 Function

The CLOSE statement terminates the processing of files with optional lock.

E.7.2 General Format

For sequential files: (ANS/ 74 and ANSI 85)

REEL [FOR REMOVAL]
CLOSE ({ file-name i NO REWIND }...
LOCK

For sequential files: (VXCOBOL)

(30} [v |

UNIT || WITH NO REWIND
CLOSE { file-name NO REWIND ..
WITH LOCK
RELEASE

For relative, indexed, and INFOS files:

CLOSE { file-name [WITH LOCK] }...

E.7.3 Syntax Rules

(1) The files referenced in the CLOSE statement need not all have the same organization or access.

E.7.4 General Rules
(1) A CLOSE statement may only be executed for a file in an open mode.

(2) If the LOCK phrase is specified for a file, the file cannot be reopened by the program that performed the
CLOSE WITH LOCK.

(3) The execution of the CLOSE statement causes the value of the I-O status associated with file-name to be
updated.

(4) If an optional input file is not present, no end-of-file processing is performed for the file and the file position
indicator is unchanged.

(5) Following the successful execution of a CLOSE statement the record area associated with a file-name is no
longer available. The unsuccessful execution of such a CLOSE statement leaves the availability of the record area

undefined.

(6) Following the successful execution of a CLOSE statement the file is removed from the open mode, and the
file is no longer associated with the file connector.

317

Interactive COBOL Language Reference & Developer’s Guide - Part One

(7) If more than one file-name is specified in a CLOSE statement, the result of executing this CLOSE statement
is the same as if a separate CLOSE statement had been written for each file-name in the same order as specified in
the CLOSE statement.

(8) If the CLOSE is unsuccessful, a USE procedure, if specified, is executed.

(9) The NO REWIND, REEL/UNIT, RELEASE, and FOR REMOVAL clauses are for documentation purposes
only.

(10) When the CLOSE statement is executed for a file, any modified file buffers (including any that were
modified by other users) are flushed to disk or other device by the ICOBOL system. For indexed and relative files,
the ICISAM reliability flags in the file are cleared.

(11) On a CLOSE of a character device, if a timeout value was not specified on the OPEN, the CLOSE will try
forever. If a timeout had been specified, the CLOSE will complete in that time, the line will be closed, and the

buffer reset.

(12) An implicit CLOSE is executed for all open files within a program whenever it terminates.

318

PROCEDURE DIVISION (COMMIT)

E.8. COMMIT (ISQL)
E.8.1 Function

The COMMIT statement allows the program to commit an SQL database connection or connections..

E.8.2 General Format

COMMIT [ALL]
[ON SQLERROR imperative-statement-1]
[NOT ON SQLERROR imperative-statement-2]
[END-COMMIT]

E.8.3 Syntax Rules

E.8.4 General Rules

(1) The ALL phrase specifies that all connections in the run unit will be committed. (if there are any). If not
specified only the current connection is committed.

(2) Upon completion of the COMMIT statement, the following occurs in the order specified:
a. The value of the SQLSTATE data item is updated with the status of the operation.

b. If the value of the SQLSTATE class field is “00" or “01", the statement is successful. Control is
transferred to the end of the COMMIT statement or to imperative-statement-2, if specified. In the latter case,
execution continues according to the rules for each statement specified in imperative-statement-2. 1f a procedure
branching or conditional statement which causes explicit transfer of control is executed, control is transferred in
accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-2,
control is transferred to the end of the COMMIT statement.

c. If the value of the SQLSTATE class field is not “00" or “01", the statement is unsuccessful. The
statement container is deallocated and no statement container of the specified name will exist in the current program.
Control is transferred to the end of the COMMIT statement or to imperative-statement-1, if specified. In the latter
case, execution continues according to the rules for each statement specified in imperative-statement-1. 1f a
procedure branching or conditional statement which causes explicit transfer of control is executed, control is
transferred in accordance with the rules for the statement; otherwise, upon completion of the execution of
imperative-statement-1, control is transferred to the end of the COMMIT statement.

(3) The END-COMMIT phrase delimits the scope of the COMMIT statement.

(4) More on SQLSTATE can be found on page 139.

319

Interactive COBOL Language Reference & Developer’s Guide - Part One

320

PROCEDURE DIVISION (COMPUTE)

E.9. COMPUTE
E.9.1 Function

The COMPUTE statement assigns to one or more data items the value of an arithmetic expression.

E.9.2 General Format

COMPUTE ({ identifier-1 [ROUNDED] }... = arithmetic-expression
[ON SIZE ERROR imperative-statement-1]
[NOT ON SIZE ERROR imperative-statement-2 |
[END-COMPUTE]

E.9.3 Syntax Rules
(1) Identifier-1 must reference either an elementary numeric item or an elementary numeric edited item.

(2) (ISQL) Identifier-1 may also be a date-time or interval elementary data item subject to the general rules for
permissible combinations of operands.

E.9.4 General Rules

(1) An arithmetic-expression consisting of a single identifier or literal provides a method of setting the value of
the data item reference by identifier-1 equal to the literal or the value of the data item reference by the single
identifier.

(2) If more than one identifier is specified for the result of the operation, the value of the arithmetic expression
is developed, and then is stored as the new value of each of the data items referenced by identifier-1.

(3) The COMPUTE statement allows the user to combine arithmetic operations without the restrictions on
composite of operands and/or receiving data items imposed by the arithmetic statements ADD, SUBTRACT,
MULTIPLY, and DIVIDE.

(4) (ISQL) The COMPUTE statement can be used with date-time and interval operands. The category of the
data-item referenced by identifier-1 must match the result category of arithmetic-expression. The rules for an
arithmetic expression involving date-time and interval items are covered under Arithmetic Expressions, beginning on
page 238.

(5) Additional rules and explanations to this statement are given under the appropriate paragraphs. (See
Arithmetic Expressions, page 238; Scope of Statements, page 260; The ROUNDED phrase, page 253; The ON SIZE
ERROR Phrase, page 254; The Arithmetic Statements, page 256; Overlapping Operands, page 256; and Multiple
Results in Arithmetic Statements, page 256.)

321

Interactive COBOL Language Reference & Developer’s Guide - Part One

322

PROCEDURE DIVISION (CONNECT)

E.10. CONNECT (ISQL)
E.10.1 Function

The CONNECT statement allows the program to establish a connection to an SQL database. Other SQL statements
that occur in the program operate in the context of the currently active connection.

E.10.2 General Format
DEFAULT
NNECT TO 1 [identifier-1 identifier-2 identifier-3 \ | identifier-4
{ literal-1 }[ﬁ{ literal-2 }] [U—Sﬂ{ literal-3 } literal-4]
[ON SQLERROR imperative-statement-1]

[NOT ON SQLERROR imperative-statement-2]
[END-CONNECT]

E.10.3 Syntax Rules

(1) Literal-1, literal-2, literal-3, and literal-4 must specify a nonnumeric literal and may not specify a figurative
constant.

(2) Identifier-1, identifier-2, identifier-3, and identifier-4 must specify an alphanumeric data item.

(3) Literal-2 or the value represented by identifier-2 may not specify the value “default” (case-insensitive),
which is reserved as the name for the connection established by specifying the DEFAULT phrase.

E.10.4 General Rules

(1) The DEFAULT phrase specifies that a system default value is to be used for the connection string, user
name, and password. This default value is selected from the environment variables ICSQLDSN, ICSQLUSER, and
ICSQLPWD. If ICSQLDSN is not present, a data-set name of “default” is used. If ICSQLUSER is not present, the
current login name is used (the same value returned by ACCEPT FROM USER NAME). If ICSQLPWD is not
present, a null string is used. The connection will have the name “default”.

(2) Literal-1 or the content of the data item represented by identifier-1 specifies the connection string that
supplies the information necessary to connect to the database. Usually it specifies a data-set name (DSN).

(3) Literal-2 or the content of the data item represented by identifier-2 in the AS phrase specifies a name for the
connection. The name can be used to identify the connection in a DISCONNECT or SET CONNECTION
statement. The value is not case-sensitive. If the AS phrase is not supplied, the content of the connection string is
used as the connection name.

(4) Literal-3 or the content of the data item represented by identifier-3 in the USER phrase specifies a user
name for the connection. If the USER phrase is not specified, the system will use the current user login name.

(5) Literal-4 or the content of the data item represented by identifier-4 in the USER phrase specifies a password
for the connection. If this optional field is not specified, the system will use a null string.

(6) Itis an error if the run unit already has a connection with the same name, which includes the name “default”
for a connection made by using the DEFAULT phrase.

(7) Connections are kept on a run unit basis, i.e., the scope of the connection name is the entire run unit, not the
program containing the CONNECT statement.

323

Interactive COBOL Language Reference & Developer’s Guide - Part One

(8) All connections in a run unit are implicitly disconnected when the run unit terminates, in a manner
equivalent to the execution of a DISCONNECT ALL statement.

(9) Upon a successful connection, the currently active connection (if any) is made dormant, and the new
connection is made the currently active connection.

(10) Upon completion of the CONNECT statement, the following occurs in the order specified:
a. The value of the SQLSTATE data item is updated with the status of the operation.

b. If the value of the SQLSTATE class field is “00" or “01", the statement is successful. Control is
transferred to the end of the CONNECT statement or to imperative-statement-2, if specified. In the latter case,
execution continues according to the rules for each statement specified in imperative-statement-2. If a procedure
branching or conditional statement which causes explicit transfer of control is executed, control is transferred in
accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-2,
control is transferred to the end of the CONNECT statement.

c. If the value of the SQLSTATE class field is not “00" or “01", the statement is unsuccessful. The
statement container is deallocated and no statement container of the specified name will exist in the current program.
Control is transferred to the end of the CONNECT statement or to imperative-statement-1, if specified. In the latter
case, execution continues according to the rules for each statement specified in imperative-statement-1. 1f a
procedure branching or conditional statement which causes explicit transfer of control is executed, control is
transferred in accordance with the rules for the statement; otherwise, upon completion of the execution of
imperative-statement-1, control is transferred to the end of the CONNECT statement.

(11) The END-CONNECT phrase delimits the scope of the CONNECT statement.
(12) More on SQLSTATE can be found on page 139.
(13) CONNECT takes a DSN by default.
Under Windows, this DSN is defined in the ODBC Administrator in the User DSN or System DSN panels.

Under Linux, this DSN is defined in the .odbc.ini file in the user's home directory for User DSN and the
odbc.ini file for System DSN files. More on ODBC under Linux can be found in the unixODBC documentation.

At this time only a UserDSN or a SystemDSN can be specified. FileDSN's are not supported.
Starting in 4.50 a remote DSN can be specified.

A remote DSN is a connection string that begins with the @ character. The runtime will look for a remote
ISQL server prefix, which has the following format:

@[icnet:]//<host>[:<port>]/<connection string>

This prefix always uses forward slashes for both Windows and Linux. The host can either be a dotted IP
address or valid dns hostname. The optional port can be specified if icnetd on the host is using a non-standard port.

The <connection string> is the same string that would be used if the application where running on <host>
instead of remotely.

Normal icnetd login conventions apply to making the connection to <host>. Also, the
ICNETUSESHEARTBEAT environment variable is supported for icsqls.

324

PROCEDURE DIVISION (CONNECT)
(14) To help debug ODBC connections enable Tracing to the ODBC Driver.

Under Windows, this is done in the ODBC Administrator under the Tracing panel where the actual log file
and Starting and Stopping tracing is performed.

Under Linux, this is done in the odbcinst.ini file by adding:

[ODBC]
Trace = Yes
Trace File = filename

Generally tracing should not be enabled as it is VERY expensive in cpu and disk resources.

(15) A sample program that provides a Screen Interface to the ISQL statements is provided in the examples
subdirectory of icobol as isqltest.sr

(16) In addition, the ICODBC Driver can be used to test with ICISAM files if needed.

(17) Under Windows, odbc32.dll is loaded to allow the ISQL statements to communicate with ODBC. Under
Linux, libodbc.so is loaded to allow the ISQL statements to communicate with the unixODBC module.

325

Interactive COBOL Language Reference & Developer’s Guide - Part One

326

PROCEDURE DIVISION (CONTINUE)

E.11. CONTINUE
E.11.1 Function

The CONTINUE statement is a no operation (or “no op”) statement. It indicates that no executable statement is
present.

E.11.2 General Format
CONTINUE
E.11.3 Syntax Rules
(1) The CONTINUE statement may be used anywhere a conditional statement or an imperative-statement may

be used.

E.11.4 General Rules

(1) The CONTINUE statement has no effect on the execution of the program.

327

Interactive COBOL Language Reference & Developer’s Guide - Part One

328

PROCEDURE DIVISION (DEALLOCATE)

E.12. DEALLOCATE (ISQL)
E.12.1 Function

The DEALLOCATE statement allows the program to deallocate a statement container that was allocated by a
PREPARE statement once it is no longer needed.

E.12.2 General Format

identifier-1
DEALLOCATE PREPARE { literal-1 }
[ON SQLERROR imperative-statement-1]
[NOT ON SQLERROR imperative-statement-2]
[END-CONNECT]

E.12.3 Syntax Rules
(1) Literal-1 must specify a nonnumeric literal and may not specify a figurative constant.
(2) Identifier-1 must specify an alphanumeric data item.

(3) Literal-1 or the value represented by identifier-1 may not exceed 30 characters in length.

E.12.4 General Rules

(1) Literal-1 or the content of the data item represented by identifier-1 specifies the name of a statement
container to be deallocated in the current program. Container names can be at most 30 characters long.

(2) If a statement container with the specified name is not found in the current program, the SQLSTATE class
field is set to “01".

(3) If a statement container with the specified name is found in the current program, it is deallocated and a
statement container with the specified name will no longer exist in the current program, the SQLSTATE class field is
set to “00".

(4) Upon completion of the DEALLOCATE statement, the following occurs in the order specified:
a. The value of the SQLSTATE data item is updated with the status of the operation.

b. If the value of the SQLSTATE class field is “00" or “01", the statement is successful. Control is
transferred to the end of the DEALLOCATE statement or to imperative-statement-2, if specified. In the latter case,
execution continues according to the rules for each statement specified in imperative-statement-2. 1f a procedure
branching or conditional statement which causes explicit transfer of control is executed, control is transferred in
accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-2,
control is transferred to the end of the DEALLOCATE statement.

c¢. If the value of the SQLSTATE class field is not “00" or “01", the statement is unsuccessful. Control is
transferred to the end of the DEALLOCATE statement or to imperative-statement-1, if specified. In the latter case,
execution continues according to the rules for each statement specified in imperative-statement-1. If a procedure
branching or conditional statement which causes explicit transfer of control is executed, control is transferred in
accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-1,
control is transferred to the end of the DEALLOCATE statement.

(5) The END-DEALLOCATE phrase delimits the scope of the DEALLOCATE statement.

329

Interactive COBOL Language Reference & Developer’s Guide - Part One

330

PROCEDURE DIVISION (DEFINE SUB-INDEX)

E.13. DEFINE SUB-INDEX (VXCOBOL)
E.13.1 Function
The DEFINE SUB-INDEX statement creates a subindex in an INFOS file and associates with it a specified index

entry in that file.

E.13.2 General Format

NEXT
FORWARD
BACKWARD
EIX up
DEFINE SUB-INDEX file-name {REIALN } POSlTlON} DOWN
UP FORWARD
UP BACKWARD
DOWN FORWARD
STATIC
KEY IS o APPROXIMATE
[{KEY_S ARE } {/dent/f/er-1 GENERIC } }]
FROM identifier-2
[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-DEFINE]
NEXT
FORWARD
BACKWARD
FIX up
DEFINE SUB-INDEX file-name {REﬂIN } POS|T|ON} up ||:3 I\?NV\';IARD
UP BACKWARD
DOWN FORWARD
STATIC
KEY IS , - APPROXIMATE
{KEYS ARE } {’de”t’f’e"1 GENERIC } }]

[INDEX NODE SIZE IS integer-1]

[ALLOW DUPLICATES]

[ALLOW SUB-INDEX]

[KEY COMPRESSION]

[MAXIMUM KEY LENGTH IS integer-2]

[PARTIAL RECORD LENGTH IS integer-3]
[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]
[END-DEFINE]

331

Interactive COBOL Language Reference & Developer’s Guide - Part One
E.13.3 Syntax Rules

(1) File-name is a filename that specifies an INFOS file opened for OUTPUT or I/O and selected for ALLOW
SUB-INDEX.

(2) Identifier-1 is an alphanumeric data item that specifies a record key associated with file-name.

(3) Identifier-2 is an alphanumeric data item that contains data in the form of an AOS INFOS (16-bit) sub-index
definition packet and that is defined in Working-Storage.

(4) Integer-3 is an integer or integer literal data item that specifies the maximum partial record length for the
sub-index.

(5) Integer-2 is an integer or integer literal data item that specifies the maximum key length for a sub-index.

(6) Integer-1 is an integer or integer data item that specifies the size of a sub-index node.

E.13.4 General Rules

(1) When using the FROM option, the packet specified should be the AOS INFOS packet, not the 32-bit
INFOS II packet. This packet is 16 bytes long with the following format:

01 PACKET.

03 FILLER PIC XX.

03 NODE-SIZE PIC 9(4) COMP.
03 FILLER PIC X.

03 MAX-KEYLEN PIC 9(2) COMP.
03 FILLER PIC X.

03 PARTIAL-REC-LEN PIC 9(2) COMP.
03 FILLER PIC XX.

03 FLAGS PIC 9(4) COMP.
03 FILLER PIC X(4).

FLAGS values are: 2048 allow duplicates, 16384 Disallow sub-index.

(2) The location of the entry defined is determined according to that specified in the position phrase, the relative
option phrase, and/or the KEY series phrase. The specification can be implicit if the program uses the defaults or
explicit if the KEY or path is specified fully.

(3) FIX POSITION causes the record pointer to move from the current position to the position specified in this
statement. RETAIN position causes the record position to remain at the position it was on before the execution of
this statement. RETAIN is the default.

(4) The relative motion option without the KEY series phrase allows access to the index file relative to that
file's current record position.

(5) Using the KEY series phrase without the relative motion option causes the key path specified to begin with
the top index in the hierarchy and follow a downward motion.

(6) Ifthe KEY series phrase is specified, each key, identifier-1, must be declared in the SELECT statement for
file-name. If the relative motion option and KEY series phrase at both specified only UP, DOWN, and STATIC are
allowed. The relative motion option is processed first, and the key path is used. If both are omitted, STATIC is the
default.

(7) Transfer of control following the successful or unsuccessful execution of the DEFINE SUB-INDEX

operation depends on the presence or absence of the optional INVALID KEY and NOT INVALID KEY phrases in
the DEFINE SUB-INDEX statement.

332

PROCEDURE DIVISION (DEFINE SUB-INDEX)

(8) The PARTIAL RECORD clause must be specified to allow partial records to be stored in the sub-index.
For INFOS 1, the length of partial records in the sub-index is established. For U/FOS, any non-zero length says to
allow partial records, the specified length is disregarded.

(9) The ALLOW SUB-INDEX clause must be specified to allow subordinate sub-indexing for the specified
sub-index.

(10) The DUPLICATES clause must be specified to allow for the creation of duplicate keys for the sub-index
being created.

(11) If not specified, the KEY LENGTH defaults to 255.

(12) If not specified, the INDEX NODE SIZE defaults to the system default. (This value is ignored by U/FOS.)

333

Interactive COBOL Language Reference & Developer’s Guide - Part One

334

PROCEDURE DIVISION (DELETE)

E. 14. DELETE
E.14.1 Function

The DELETE statement logically removes a record from a mass storage file for relative, indexed, and INFOS files.

E.14.2 General Format (ANSI 74 and ANSI 85)

. LOGICAL
DELETE file-name RECORD PHYSICAI

[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2 |
[END-DELETE]

E.14.3 General Format (VXCOBOL)
Relative:
DELETE file-name RECORD

[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2 |

[END-DELETE |
Indexed:
PHYSICAL
,
DELETE file-name RECORD LOGICAL GLOBAL
LOCAL GLOBAL

KEY IS identifier-1]

[

[INVALID KEY imperative-statement-1]
[

[

NOT INVALID KEY imperative-statement-2 |
END-DELETE]

PHYSICAL

, LOCAL
DELETE file-nam DOWN RECORD
=== HenAme | ORWARD LOGICAL { GLOBAL
UP BACKWARD LOCAL GLOBAL
DOWN FORWARD
STATIC

KEY IS denifior | APPROXIMATE
KEYS ARE [|'®€MMeri GENERIC

[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2 |
[END-DELETE]

335

Interactive COBOL Language Reference & Developer’s Guide - Part One
E.14.4 Syntax Rules

(1) The INVALID KEY and the NOT INVALID KEY phrases must not be specified for a DELETE statement
which references a file which is in sequential access mode.

(2) The INVALID KEY phrase must be specified for a DELETE statement which references a file which is not
in sequential access mode and for which an applicable USE AFTER STANDARD EXCEPTION procedure is not
specified.

(3) The PHYSICAL designation applies to version 7 or greater ICISAM files.

For VXCOBOL.
(4) Identifier-1 must be the RECORD KEY as defined in the SELECT.

(5) The key series specifier may not be present for files in SEQUENTIAL ACCESS mode.

E.14.5 General Rules (ANSI 74 and ANSI 85)

(1) The file referenced by file-name must be an indexed or relative file and must be open in the I-O mode at the
time of the execution of this statement.

(2) For files in the sequential access mode, the last input-output statement executed for file-name prior to the
execution of the DELETE statement must have been a successfully executed READ statement. The file system
removes from the file the record that was accessed by that READ statement.

(3) For arelative file in random or dynamic access mode, the file system removes from the file that record
identified by the content of the relative key data item associated with file-name. If the file does not contain the
record specified by the key, the invalid key condition exists.

(4) For an indexed file in random or dynamic access mode, the file system removes from the file the record
identified by the content of the primary record key data item associated with file-name. If the file does not contain
the record specified by the key, the invalid key condition exists.

(5) After the successful execution of a DELETE statement, the identified record has been removed from the file
and can no longer be accessed, although the record may be restored by executing the UNDELETE statement if the
removal was a logical deletion.

(6) The execution of a DELETE statement does not affect the content of the record area.

(7) The file position indicator is not affected by the execution of a DELETE statement.

(8) The execution of the DELETE statement causes the value of the I-O status associated with file-name to be
updated.

(9) Transfer of control following the successful or unsuccessful execution of the DELETE operation depends on
the presence or absence of the optional INVALID KEY and NOT INVALID KEY phrases in the DELETE
statement.

(10) The END-DELETE phrase delimits the scope of the DELETE statement.

(11) If LOGICAL is specified, the record identified by the RECORD KEY or RELATIVE KEY is marked as
being deleted in the file. It is not physically removed, but will not be accessible unless it is subsequently undeleted.

336

PROCEDURE DIVISION (DELETE)

If PHYSICAL is specified, the space in the data file used by the record identified by the RECORD KEY or
RELATIVE KEY is made available for reuse. It is no longer accessible to the program. Its space will be reused
when needed to add another record to the file.

If neither LOGICAL nor PHYSICAL is specified, the delete will be either logical or physical based on the status
of the file's "delete-is-physical” attribute. This attribute bit is set at file creation time and is a permanent attribute of
the file. (It is specified in a COBOL program using the DELETE IS clause of the file description entry (SELECT)).

E.14.6 General Rules (VXCOBOL)

(1) The file referenced by file-name must be a relative, indexed, or INFOS file and must be open in the I-O
mode at the time of the execution of this statement.

(2) For files in the sequential access mode, the last input-output statement executed for file-name prior to the
execution of the DELETE statement must have been a successfully executed READ statement. The file system
removes from the file the record that was accessed by that READ statement.

(3) The execution of a DELETE statement does not affect the content of the record area.

(4) The file position indicator is not affected by the execution of a DELETE statement, for indexed and relative
files.

(5) The execution of the DELETE statement causes the value of the I-O status associated with file-name to be
updated.

(6) Transfer of control following the successful or unsuccessful execution of the DELETE operation depends on
the presence or absence of the optional INVALID KEY and NOT INVALID KEY phrases in the DELETE
statement.

(7) The END-DELETE phrase delimits the scope of the DELETE statement.
For relative files:

(8) For arelative file in random or dynamic access mode, the file system removes the record identified by the
content of the relative-key data-item associated with file-name. If the files does not contain the record specified by
the key, the invalid key condition exists.

(9) Records in relative files are removed on the basis of the “delete-is-physical” attribute set in the file's header.
Files created by VXCOBOL programs will normally have this bit set for purging records (physical deletes).

(10) After the successful execution of a DELETE statement, the identified record has been removed from the
file and can no longer be accessed or restored.

For indexed files:

(11) For an indexed file in random or dynamic access mode, the file system logically or physically removes
from the file the record identified by the content of the primary key data-item associated with file-name. If the files
does not contain the record specified by the key, the invalid key condition exists.

(12) If PHYSICAL is specified, the data record is purged from the file. After the successful execution of a
DELETE statement with the PHYSICAL clause, the identified record has been removed from the file and can no
longer be accessed or restored.

(13) If LOGICAL GLOBAL is specified, the data record is logically deleted from the file. After the successful

execution of a DELETE statement with the LOGICAL GLOBAL clause, the identified record may still be accessed.
The record may be restored by executing the UNDELETE statement.

337

Interactive COBOL Language Reference & Developer’s Guide - Part One

(14) If LOGICAL LOCAL is specified, it is ignored.

(15) If LOGICAL LOCAL GLOBAL is specified, it is equivalent to LOGICAL GLOBAL.

(16) If no type of deletion is specified, PHYSICAL is the default.
For INFOS files:

(17) The occurrence number is used.

(18) FEEDBACK is not used and is not updated.

(19) KEY LENGTH is unaffected.

(20) The record to DELETE is determined according to what is specified in the relative option phrase and/or
the KEY series phrase. The specification can be implicit if the program uses the defaults or explicit if the KEY or

path is fully specified.

(21) The relative motion option without the KEY series phrase allows access to the index file relative to that
file's current record position.

(22) Using the KEY series phrase without the relative motion option cause the key path specified to begin with
the top index in the hierarchy and follow a downward motion.

(23) Ifthe KEY series phrase is specified, each key, identifier-1, must be declared in the SELECT statement for
file-name. If the relative motion option and KEY series phrase at both specified only UP, DOWN, and STATIC are
allowed. The relative motion option is processed first and the key path is used.

(24) If both the relative option and the KEY series phrase are omitted the file is accessed sequentially if the file
access mode is sequential. If the access mode is not sequential the first key named in the SELECT clause is used.

(25) If LOGICAL LOCAL is specified, the key (and any partial record associated with that key) is logically
deleted. Whenever the record or key is accessed through this index a FILE STATUS 96 will be returned.

(26) If LOGICAL GLOBAL is specified, the data record is logically deleted. Whenever the record is accessed
through any index a FILE STATUS 96 will be returned. The index entry including the partial record and any
subindex can still be accessed without receiving a FILE STATUS 96.

(27) If LOGICAL LOCAL GLOBAL is specified, the key (and any partial data record associated with that key)
and the data record is logically deleted.

(28) If PHYSICAL is specified, the key (and any partial data record associated with that key) is deleted and the

data record's use count is decremented. If the data record's use count is decremented to zero, then the data record
itself is deleted such that it is no longer in the file and there is no inversion in the file pointing to it.

(29) If no type of deletion is specified, PHYSICAL is the default.
(30) If you want to know whether a record has been deleted, use the RETRIEVE statement.

(31) A FILE STATUS 02 is returned when a successful physical deletion of a record with a duplicate key is
performed.

(32) A DELETE statement does not change the current position of the record pointer unless it is a PHYSICAL

deletion and the pointer's current position is at the deleted record. If this is the case, the record pointer points to the
record immediately before the deleted record.

338

PROCEDURE DIVISION (DELETE)

(33) If DUPLICATES was specified in the SELECT clause then the occurrence number should be set to the
desired value for the key that should be deleted.

339

Interactive COBOL Language Reference & Developer’s Guide - Part One

340

PROCEDURE DIVISION (DELETE FILE)

E.15. DELETE FILE
E.15.1 Function

The DELETE FILE statement physically removes a file from the file system. DELETE FILE is an extension to
ANSI COBOL. For VXCOBOL, it is equivalent to EXPUNGE.

To see how ICOBOL processes the filename see the External Filename description in the Developer’s Guide section
on page 791.

E.15.2 General Format

DELETE FILE { file-name }...

E.15.3 General Rules

(1) The file referenced by file-name must be a disk file, you must have appropriate permissions, and the file
must not be open anywhere in the ICOBOL system at the time of the execution of this statement. If the file does not
exist, no error is given.

(2) For arelative, indexed, or INFOS file, all parts of that file are removed from the file system.

(3) For VXCOBOL.: for an INFOS II file, the indexed file and the database file specified in the SELECT
statement are deleted. If the name of the database file was not specified with an ASSIGN DATA clause, a .DB file
with the same name as that of the indexed file is deleted. For a U/FOS file, the database specified in the SELECT is
deleted, i.e., name.udb.

(4) After the successful execution of a DELETE FILE statement, the identified file has been physically removed
from the file system and can no longer be accessed.

(5) The execution of the DELETE FILE statement causes the value of the I-O status associated with file-name
to be updated.

(6) For systems supporting Linux symbolic links, DELETE FILE will delete the symbolic link, not the
resolution file.

(7) On Linux systems, files cannot be individually delete-protected. To make a file delete-protected on Linux,
you must remove write (w) permission to the directory in which the file resides. If a directory has no write access,
you cannot create, modify, or delete files in that directory. On Windows systems, the read-only attribute will protect
the file from deletion.

(8) For ANSI 74 and ANSI 85, If the specified file is a sequential file, ICOBOL will scan the Printer Control
file and if there is an entry there that points to the file being deleted, the entry in the Printer Control file will be
removed.

(9) For VXCOBOL, if file-name is a sort/merge file, it is ignored.

341

Interactive COBOL Language Reference & Developer’s Guide - Part One

342

PROCEDURE DIVISION (DISCONNECT)

E.16. DISCONNECT (ISQL)
E.16.1 Function

The DISCONNECT statement allows the program to disconnect from an SQL database connection.

E.16.2 General Format

DEFAULT
CURRENT
DI NNECT ALL
{identiﬁer—1 }
literal-1

[ON SQLERROR imperative-statement-1]
[NOT ON SQLERROR imperative-statement-2]
[END-DISCONNECT]

E.16.3 Syntax Rules
(1) Literal-1 must specify a nonnumeric literal and may not specify a figurative constant.

(2) Identifier-1 must specify an alphanumeric data item.

E.16.4 General Rules
(1) The DEFAULT phrase specifies that the default connection (which has the name “default”) is to be
disconnected. It is an error if there is no default connection either active or dormant. If the default connection is the

current connection, it is replaced as the current connection by the most recently used previous connection.

(2) The CURRENT phrase specifies that the currently active connection is to be disconnected. The most
recently used previous connect becomes the current connection. It is an error if there is no current connection.

(3) The ALL phrase specifies that all connections in the run unit will be disconnected (if there are any).

(4) The value of literal-1 or the content of the data item represented by identifier-1 specifies a specific, named
connection. If the value “default” is specified, it is the same as having specified the DEFAULT phrase. If the
specified connection is the current connection, it is replaced as the current connection by the most recently used
previous connection.

(5) Connections are kept on a run unit basis, i.e., the scope of the connection name is the entire run unit, not just
the program containing the DISCONNECT statement. If a specified connection does not exist, it is an error and

SQLSTATE will be set to “08003", which is “Connection does not exist”.

(6) All connections in a run unit are implicitly disconnected when the run unit terminates in a manner equivalent
to the execution of a DISCONNECT ALL statement.

(7) Any statement containers associated with a connection that is being disconnected are implicitly deallocated
before the connection is disconnected.

(8) Upon completion of the DISCONNECT statement, the following occurs in the order specified:

a. The value of the SQLSTATE data item is updated with the status of the operation.

343

Interactive COBOL Language Reference & Developer’s Guide - Part One

b. If the value of the SQLSTATE class field is “00" or “01", the statement is successful. Control is
transferred to the end of the DISCONNECT statement or to imperative-statement-2, if specified. In the latter case,
execution continues according to the rules for each statement specified in imperative-statement-2. If a procedure
branching or conditional statement which causes explicit transfer of control is executed, control is transferred in
accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-2,
control is transferred to the end of the DISCONNECT statement.

c. If the value of the SQLSTATE class field is not “00" or “01", the statement is unsuccessful. The
statement container is deallocated and no statement container of the specified name will exist in the current program.
Control is transferred to the end of the DISCONNECT statement or to imperative-statement-1, if specified. In the
latter case, execution continues according to the rules for each statement specified in imperative-statement-1. If a
procedure branching or conditional statement which causes explicit transfer of control is executed, control is
transferred in accordance with the rules for the statement; otherwise, upon completion of the execution of
imperative-statement-1, control is transferred to the end of the DISCONNECT statement.

(9) The END-DISCONNECT phrase delimits the scope of the DISCONNECT statement.

(10) More on SQLSTATE can be found on page 139.

344

PROCEDURE DIVISION (DISPLAY)

E.17. DISPLAY
E.17.1 Function
The DISPLAY statement causes low volume data to be transferred to the console. Screens are an extension to ANSI
COBOL.
E.17.2 General Format
Format 1:

identifier-1
DIsPLAY { “Faite:
[END-DISPLAY]

} [UPON mnemonic-name] [WITH NO ADVANCING]

Format 2:
LiNg | identifier-2 COLUMN Identlfler 3
DISPLAY AT . literal-2 COL literal-3
DISPLAY { screen-name [COLUMN identifier-3 LINE ldentlfler 2
coL literal-3 literal-2

[END-DISPLAY]
Format 3 (ANSI 74 and ANSI 85):

display-clause... }...

identifier-1 identifier-4
DISPLAY { { literai-1 }[M{ literal-4 }

[END-DISPLAY]

where display-clause is one of the following:

BACKGROUND literal-5

{ BACKGROUND-COLOR }IS identifier-5
color-name-1

FOREGROUND-COLOR S idleftntiﬁ;eg-B
FOREGROUND ierai-

color-name-2
BELL
BEEP

BLINK

COLUMN | =
coL { ldgnt/fler-G}
POSITION literal-6

CONTROL { identiﬁer—?}

literal-7
CONVERT

345

Interactive COBOL Language Reference & Developer’s Guide - Part One

m
=

ERASE A
- IN

SCREEN

m
[92]

I—
m

HIGH
HIGHLIGHT
LOW
i LOWLIGHT
BOLD
BRIGHT
DIM

identifier-9
LINE { literal-9 }

~v

REVERSE
REVERSED
REVERSE-VIDEO

SIZE { identiﬁer—10}

literal-10

UNDERLINE
UNDERLINED

E.17.3 Syntax Rules

(1) In Format 1, you cannot use the figurative constant ALL with a DISPLAY statement.

(2) In Format 2, identifier-2, identifier-3, literal-2, and literal-3 must be unsigned integers.

(3) Screen-name may not be subscripted.

(4) The word COL is an abbreviation for the word COLUMN.

(5) END-DISPLAY is supported only for ANSI 74 and ANSI 85. 1t is an extension to standard COBOL.

(6) Mnemonic-name is associated with a hardware device in the SPECIAL-NAMES paragraph.

(7) In Format 3, identifier-4, identifier-5, identifier-6, identifier-8, identifier-9, identifier-10, literal-4, literal-5,
literal-6, literal-8, literal-9, and literal-10 must be unsigned elementary integer items. Identifier-7 must be a

nonnumeric data-item and /iteral-7 must be a nonnumeric literal.

(8) Color-name-1 and color-name-2 represent one of the predefined color names: BLACK, BLUE, GREEN,
CYAN, RED, MAGENTA, BROWN, or WHITE.

(9) In Format 3, the word POSITION is a synonym for COLUMN and the word BEEP is a synonym for BELL.

346

PROCEDURE DIVISION (DISPLAY)

E.17.4 General Rules
Format 1: (non-screen display)

(1) The DISPLAY statement causes the content of each operand to be transferred to the console device in the
order listed.

(2) If a figurative constant is specified as one of the operands, only a single occurrence of the figurative
constant is displayed.

(3) Ifthe device is capable of receiving data of the same size as the data item being transferred, then the data
item is transferred.

(4) If a device is not capable of receiving data of the same size as the data item being transferred, then one of
the following applies:

a. If the size of the data item being transferred exceeds the size of the data that the device is capable of
receiving in a single transfer, the data beginning with the left-most character is stored aligned to the left in the
receiving device, and the remaining data is then transferred according to General Rules 4 and 5 until all the data has
been transferred.

b. If the size of the data item that the device is capable of receiving exceeds the size of the data being
transferred, the transferred data is stored aligned to the left in the receiving device.

(5) When a DISPLAY statement contains more than one operand, the size of the sending item is the sum of the
sizes associated with the operands, and the values of the operands are transferred in the sequence in which the
operands are encountered without modifying the positioning of the hardware device between the successive
operands.

(6) If the WITH NO ADVANCING phrase is specified, then the positioning of the device will not be reset to
the next line or changed in any other manner following the display of the last operand. If the device is capable of
positioning to a specific character position, it will remain positioned at the character position immediately following
the last character of the last operand displayed. If the device is not capable of positioning to a specific character
position, only the vertical position, if applicable, is affected. This may cause overprinting if the device supports
overprinting.

(7) If the WITH NO ADVANCING phrase is NOT specified, then after the last operand has been transferred to
the device, the positioning of the device will be reset to the left-most position of the next line of the device.

(8) If vertical positioning is not applicable on the device, the operating system will ignore the vertical
positioning specified or implied.

(9) For VXCOBOL.: If the data to be transferred has USAGE COMPUTATIONAL or USAGE
COMPUTATIONAL-3, ICOBOL moves the data to a temporary data-item defined as USAGE DISPLAY, SIGN
LEADING SEPARATE with the same PICTURE. The temporary item is then transferred.

(10) For ANSI 74 and ANSI 85, integer or numeric functions are displayed as if they were defined with
USAGE DISPLAY, SIGN LEADING SEPARATE.

(11) The UPON clause is for documentation only except in the one case where mnemonic-name refers to
“@AUDIT”. If it refers to “@AUDIT” and auditing is enabled, then the DISPLAY will be sent to the audit log. If
auditing is not enabled, nothing is done. Thus, in the procedure division a:

DISPLAY fool foo2 UPON mnemonic-1.

Will send the data in fool and foo2 to the audit log.

347

Interactive COBOL Language Reference & Developer’s Guide - Part One

This facility is especially useful when debugging ThinClients.

(If this statement is executed with a pre-3.13 runtime the DISPLAY will come to the screen.)

Format 2: (screen display)
(12) Format 2 assumes that the device is capable of random positioning.
(13) DISPLAY screen-name is equivalent to DISPLAY screen-name AT LINE 0 COLUMN 0.

(14) If the LINE or COLUMN variable in the SCREEN SECTION has a value of zero (0), ICOBOL treats the
value as one (1).

(15) Variable Origin: The LINE phrase and COLUMN phrase in DISPLAY and ACCEPT statements allow
the entire screen description referenced by screen-name to be moved to a different starting position on the user's
display device. This capability is called variable origin. All screen descriptions assume that the origin is at line 1
and column 1 on the user's display device. The value specified in the DISPLAY or ACCEPT’s LINE phrase, if
present, is treated as a relative offset to be added to all line positions in the screen. Similarly, the value of the
COLUMN phrase, if specified, is treated as a relative offset to be added to all column positions in the screen. If any
line or column position becomes larger than that supported by the current screen, the screen will wrap at its limits,
and the new (wrapped) values will in turn be offset again by the variable origin.

For example, consider the code fragments:

01 ANY-CHANGE-SCREEN.
05 LINE 23 COL 60 ™“ANY CHANGE?”.
05 LINE 23 COL 75 PIC X TO ANY-CHANGE-ANSWER.

ANY-CHANGE-1.
DISPLAY ANY-CHANGE-SCREEN.
ACCEPT ANY-CHANGE-SCREEN.

ANY-CHANGE-2.
DISPLAY ANY-CHANGE-SCREEN AT LINE 5 COLUMN 30.
ACCEPT ANY-CHANGE-SCREEN AT LINE 5 COLUMN 30.

The following discussion describes how to determine the origin point for each of the two DISPLAY and ACCEPT
pairs in the code fragments above. Assume the display device has 24 lines and 80 columns.

a. Remember, all screen descriptions assume an origin point of line 1, column 1. This screen has a
positioning definition of line 23, column 60, and the first screen DISPLAY statement contains no positioning (line or
column) clauses. Therefore, the origin point for the first DISPLAY is line 23, column 60.

b. For the second screen DISPLAY statement, which contains the positioning clauses AT LINE 5
COLUMN 30, the offset position will be line 28, column 90. (We added the line and column variable-positioning
values in the DISPLAY statement to the origin point established in the previous step.)

c. Then, we subtract the line and column size of the display device, to find the wrap values: line 4, column
10. This becomes the new origin point.

d. Finally, add the line and column positioning values which in turn will be offset to line 9, column 40.
Therefore, the second screen DISPLAY will begin at line 9, column 40.

e. Determining the origin point for the input field is similar. See the table, Variable Origin for DISPLAY
and ACCEPT, on page 290 in the discussion of the ACCEPT statement.

348

PROCEDURE DIVISION (DISPLAY)

(16) If variable origin is used for a DISPLAY operation on a screen-name, the same variable origin
specification should be used for the corresponding ACCEPT statement of the screen-name in order to have the
operation to be correct.

(17) If screen-name specifies a group item, the group item and all subordinate group, literal, input-output,
output, and update fields are processed in the order in which they appear in the source definition of the screen
description.

(18) The basic operation of the DISPLAY statement is described by the following steps. The discussion
assumes that screen-name represents a group item in the screen description that has several subordinate literal,
output, input-output, and/or update fields. The case where screen-name specifies a single screen-data item is just a
simple subset of the description below.

a. The system moves the data items corresponding to all output, input-output, and update fields (either
specified by or subordinate to screen-name) to the screen-data item. The moves take place according to the rules for
the MOVE statement.

b. The system moves underscores to all input fields (either specified by or subordinate to screen-name).
c. The screen management system processes each field in the order in which it was defined in the source.
d. The various clauses of the screen field are processed in the following order:

BACKGROUND-COLOR & FOREGROUND-COLOR
BLANK SCREEN

COLUMN and LINE positioning

BLANK LINE/ERASE EOL, ERASE EOS, ERASE LINE
BELL

display screen-literal or screen-data with appropriate attributes

e. The screen-data or screen-literal value is displayed with the display attributes set by implied attributes or
the explicit use of attribute control keywords in the screen description entry.

f. The cursor is left positioned at the character position following the last character of the last field or literal
displayed according to the preceding steps.

Format 3: (data-item display with screen control)

(19) The DISPLAY statement causes the content of each operand to be transferred to the console device in the
order listed.

(20) Format 3 assumes that the device is capable of random positioning.

(21) The BACKGROUND-COLOR and FOREGROUND-COLOR phrases determine the background and
foreground colors used during the processing of identifier-1 or literal-1. The color is identified by an integer value
from 0 to 7 specified for literal-5 or literal-8 or as the contents of identifier-5 or identifier-8. It may also be
specified by use of color-name-1 or color-name-2. The color names with their integer values are BLACK=0,
BLUE=1, GREEN=2, CYAN=3, RED=4, MAGENTA=5, BROWN=6, WHITE=7. BACKGROUND is a synonym
for BACKGROUND-COLOR and FOREGROUND is a synonym for FOREGROUND-COLOR.

(22) The BELL phrase causes the bell (or beep) signal to sound as each identifier-1 or literal-1 is processed.
(23) BLINK causes the data displayed for the field to be displayed in a blinking mode.

(24) The COLUMN and LINE phrases are used to position identifier-1 or literal-1 on the screen based on the
line and leftmost character position. The top line is line 1 and each succeeding line has a value one larger than the

349

Interactive COBOL Language Reference & Developer’s Guide - Part One

previous line. The leftmost character of a line is column 1 and the column value increases by one for each
succeeding character on the line. The line number is specified by literal-9 or the contents of identifier-9 and should
be between 1 and 128. The column number is specified by literal-6 or the contents of identifier-9.

The line and column positions are determined as follows:

(a) If the COLUMN phrase is omitted, column 1 is assumed for the first identifier-1 or literal-1 if a UNIT
phrase has been specified for the same identifier-1 or literal-1. Otherwise the column position is set to zero.

(b) If the LINE phrase is omitted or the line position is zero the line position is set as follows: If an ERASE or
ERASE SCREEN phrase is specified for the same identifier-1 or literal-1, then line 1 is assumed. If the column
position is not zero, the line position is the current line plus one. If the column position is zero, the line position
is set to the current line.

(c) If the column position is equal to zero, it is set to the current line.
At runtime, values outside the allowable ranges are wrapped.

(25) The CONTROL phrase is used to dynamically specify options to be used or overridden. Identifier-7 or
literal-7 are used to hold an options list. This list consists of a series of keywords separated by commas. The
keywords may be specified in any order, but are processed from left to right as they appear in the string. While
processing the list, lowercase characters are considered equivalent to the corresponding uppercase character and
blanks or unprintable characters are ignored.

The following keywords impact execution of the DISPLAY statement:

BEEP, BLINK, CONVERT, ERASE, ERASE EOL, ERASE EOS, ERASE LINE, ERASE SCREEN, REVERSE,
HIGH, LOW, NO BEEP, NO BLINK, NO CONVERT, NO ERASE, NO REVERSE, NO UNDERLINE, and
UNDERLINE.

Each of the keywords has the same meaning as when statically coded plus the negative versions (NO xxx) to allow
suppression of the of the option.

(26) The CONVERT phrase is used to control output conversion. If identifier-1 or literal-1 is numeric or
numeric edited and the CONVERT phrase is specified, its value is converted from its internal form a displayable
form such that a leading separate sign is provided for negative values, an explicit decimal point is added for non-
integers, leading zeros are removed and the remaining digits are left-justified. If the SIZE clause adjusts the width of
the field, spaces will fill any unused character positions to the right of the value or the converted values will be
truncated if the field size is too small.

If the CONVERT phrase is not specified or if identifier-1 or literal-1 is not numeric, then identifier-1 or literal-1
will be treated as an alphanumeric item of its internal size and moved to the display field according to the rules for a
alphanumeric to alphanumeric edited MOVE.

(27) The ERASE clause is used to control erasure of portions of the screen prior to displaying identifier-1 or
literal-1. ERASE SCREEN and ERASE with no additional modifiers erases the entire screen and positions the
cursor to line 1 column 1. ERASE LINE erases the current line from column 1 to the end of the line without
changing the cursor position. ERASE EOL erase the screen starting at the cursor position to the end of the line. The
cursor is not affected. ERASE EOS erase the screen starting at the cursor position and continuing to the end of the
screen. The cursor position is not changed.

(28) The HIGH, HIGHLIGHT, BOLD, and BRIGHT options cause identifier-1 or literal-1 to be displayed at
high intensity. The LOW, LOWLIGHT, and DIM options cause identifier-1 or literal-1 to be displayed at low
intensity.

(29) The REVERSE, REVERSED, and REVERSE-VIDEO options cause identifier-1 or literal-1 to be
displayed in reverse video mode. If not specified, data is displayed in normal mode.

350

PROCEDURE DIVISION (DISPLAY)

(30) The SIZE clause controls the size of the screen input field. If the SIZE clause is present and literal-10 or
the contents of identifier-10 is not zero, the size of the screen field is determined by the value of literal-10 or
identifier-10. Otherwise, the size of the screen field is determined by description of identifier-1 or literal-1.

When identifier-1 is numeric and output conversion(CONVERT) is specified or implied, the size is the number of
digits in identifier-1's PICTURE plus 1 if its is signed plus 1 if it is not an integer.

If literal-1 is a figurative constant, the constant will be repeated up to the size specified by identifier-10 or literal-10.

(31) The UNDERLINE and UNDERLINED options cause identifier-1 or literal-1 to be displayed in underlined
mode.

(32) The UNIT clause is for documentation only and is ignored except for its impact on the COLUMN clause
as previously described.

NOTES:

(1) ICOBOL treats all DISPLAY statements as if they are going to a DG terminal. (ICOBOL also treats all
WRITE statements for ASSIGN TO PRINTER or ASSIGN TO DISPLAY files that are opened on the current
console as if they are going to a DG terminal.) It does this to optimize characters sent to the terminal and to keep
track of the state of the screen. To send binary data transparently to the terminal, an ASSIGN TO DISK "@CON"
should be used in conjunction with a WRITE statement. This will insure that ICOBOL will not interpret the
characters as screen display.

(2) The special characters the ICOBOL display module understands are the Print Pass Through ON and OFF
codes, Read Model-ID, Compress mode ON and OFF, and display attributes like dim, blink, roll, reverse, etc. All
tab characters will display as a space when not in binary mode. Other non-printable characters are sent to the screen
as is, but the cursor is not moved.

(3) Neither a non-screen DISPLAY without the NO ADVANCING clause nor a screen DISPLAY statement
should be executed while the terminal has Print Pass Through ON.

351

Interactive COBOL Language Reference & Developer’s Guide - Part One

352

PROCEDURE DIVISION (DIVIDE)

E.18. DIVIDE

E.18.1 Function

The DIVIDE statement divides one numeric data item into others and sets the values of data items equal to the
quotient and remainder.

E.18.2 General Format
Format 1:

identifier-1 , -

DIVIDE \ iteral-1 INTO {identifier-2 [ROUNDED] }...

[ON SIZE ERROR imperative-statement-1]
[NOT ON SIZE ERROR imperative-statement-2 |

[END-DIVIDE |
Format 2:
DIVIDE {’d,‘,?t’;tr’gff1 }m {'d;;gf;g,egz } GIVING { identifier-3 | ROUNDED 1 }...

[ON SIZE ERROR imperative-statement-1]
[NOT ON SIZE ERROR imperative-statement-2 |

[END-DIVIDE]
Format 3:
DIVIDE {’%‘;’Z}Zﬁf } _{"’,‘,*;;’,'g,egz } GIVING { identifier-3 [ROUNDED] }...

[ON SIZE ERROR imperative-statement-1]
[NOT ON SIZE ERROR imperative-statement-2 |

[END-DIVIDE]
Format 4:
DIVIDE {’%‘;’Z}Zﬁf }m {"’,‘;’;’,’2,6;2 } GIVING identifier-3 [ROUNDED |

REMAINDER identifier-4
[ON SIZE ERROR imperative-statement-1]
[NOT ON SIZE ERROR imperative-statement-2 |

[END-DIVIDE |
Format 5:
DIVIDE {’d,‘,?t’;tr’gff1 }& {'d;,?,gf;g;fgz } GIVING identifier-3[ROUNDED]

REMAINDER identifier-4

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2
[END-DIVIDE]

353

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.18.3 Syntax Rules

(1) Each identifier must refer to an elementary numeric item, except that any identifier associated with the
GIVING or REMAINDER phrase must refer to either an elementary numeric item or an elementary numeric edited
item.

(2) Each literal must be a numeric literal.

(3) The composite of operands, which is the hypothetical data item resulting from the superimposition of all
receiving data items (except the REMAINDER data item) of a given statement aligned on their decimal points, must
not contain more than 18 digits.

E.18.4 General Rules

(1) When Format 1 is used, /iteral-1 or the value of the data item referenced by identifier-1 is divided into the
value of the data item referenced by identifier-2. The value of the dividend (the value of the data item referenced by
identifier-2) is replaced by this quotient.

(2) When Format 2 is used, /iteral-1 or the value of the data item referenced by identifier-1 is divided into
literal-2 or the value of the data item referenced by identifier-2 and the result is stored in each data item referenced
by identifier-3.

(3) When Format 3 is used, /iteral-1 or the value of the data item referenced by identifier-1 is divided by
literal-2 or the value of the data item referenced by identifier-2 and the result is stored in each data item referenced
by identifier-3.

(4) When Format 4 is used, /iteral-1 or the value of the data item referenced by identifier-1 is divided into
literal-2 or the value of the data item referenced by identifier-2 and the result is stored in the data item referenced by
identifier-3. The remainder is then calculated and the result is stored in the data item referenced by identifier-4. 1If
identifier-4 is subscripted, the subscript is evaluated immediately before the remainder is stored in the data item
referenced by identifier-4.

(5) When Format 5 is used, /iteral-1 or the value of the data item referenced by identifier-1 is divided by
literal-2 or the value of the data item referenced by identifier-2 and the division continues as specified for Format 4
above.

(6) Formats 4 and 5 are used when a remainder from the division operation is desired, namely identifier-4. The
remainder in COBOL is defined as the result of subtracting the product of the quotient (identifier-3) and the divisor
from the dividend. If identifier-3 is defined as a numeric edited item, the quotient used to calculate the remainder is
an intermediate field which contains the unedited quotient. If ROUNDED is specified, the quotient used to calculate
the remainder is an intermediate field which contains the quotient of the DIVIDE statement, truncated rather than
rounded. This intermediate field is defined as a numeric field which contains the same number of digits, the same
decimal point location, and the same presence or absence of a sign as the quotient (identifier-3).

(7) In Formats 4 and 5, the accuracy of the REMAINDER data item (identifier-4) is defined by the calculation
described above. Appropriate decimal alignment and truncation (not rounding) will be performed for the value of
the data item referenced by identifier-4, as needed.

(8) When the ON SIZE ERROR phrase is used in Formats 4 and 5, the following rules pertain:

a. If the size error occurs on the quotient, no remainder calculation is meaningful. Thus, the contents of the
data items referenced by both identifier-3 and identifier-4 will remain unchanged.

b. If the size error occurs in the remainder, the content of the data item referenced by identifier-4 remains

unchanged. However, as with other instances of multiple results of arithmetic statements, the user will have to do his
own analysis to recognize which situation has actually occurred.

354

PROCEDURE DIVISION (DIVIDE)

(9) Additional rules and explanations relative to this statement are given under the appropriate paragraphs. (See
Scope of Statements, page 260; The ROUNDED Phrase, page 253; The ON SIZE ERROR Phrase, page 254; The
Arithmetic Statements, page 256; Overlapping Operands, page 256; and Multiple Results in Arithmetic Statements,
page 256.

355

Interactive COBOL Language Reference & Developer’s Guide - Part One

356

PROCEDURE DIVISION (EVALUATE)

E.19. EVALUATE (ANSI 74 and ANSI 85)
E.19.1 Function
The EVALUATE statement describes a multi-branch, multi-join structure. It may cause multiple conditions to be
evaluated. The subsequent action of the runtime element depends on the results of these evaluations.
E.19.2 General format
EVALUATE selection-subject [ALSO selection-subject]...
{ { WHEN selection-object [ALSO selection-object ... }... imperative-statement-1}...

[WHEN OTHER imperative-statement-2 |
[END-EVALUATE]

where
identifier-1
literal-1
arithmetic-expression-1
selection-subject is: condition-1

TRUE
FALSE

[NOT] identifier-2
[NOT] literal-2
[NOT] arnithmetic-expression-2
[NOT] range-expression
selection-object is: { [NOT] indicator-value b
condition-2
IRUE
EALSE
ANY

range-expression is: literal-3 THRU literal-4

identifier-3 { THR H} identifier-4
arithmetic-expression-3 arithmetic-expression-4

NULL

indicator-value is: VALID
OVERFLOW

E.19.3 Syntax rules
(1) The words THROUGH and THRU are equivalent.

(2) The number of selection objects within each set of selection objects shall be equal to the number of
selection subjects.

(3) The two operands in a range-expression shall be of the same class and shall not be of class pointer.

(4) Each selection object within a set of selection objects shall correspond to the selection subject having the
same ordinal position within the set of selection subjects according to the following rules:

a. Identifiers, literals, or expressions appearing within a selection object shall be valid operands for
comparison to the corresponding operand in the set of selection subjects in accordance with the rules for Relation

conditions, on page 241.

357

Interactive COBOL Language Reference & Developer’s Guide - Part One

b. Condition-2 or the words TRUE or FALSE appearing as a selection object shall correspond to
condition-1 or the words TRUE or FALSE in the set of selection subjects.

¢. The word ANY may correspond to a selection subject of any type.

d. (ISQL) Date-time and interval operands are permitted subject to the rules for Relation Conditions, page
241, and Arithmetic Expressions, page 238.

e. (ISQL) Indicator-value appearing as a selection object shall correspond to identifier-1 as a selection
subject, where identifier-1 has usage INDICATOR.

(5) The permissible combinations of selection subject and selection object operands are indicated in the
following table, Combination of operands in the EVALUATE statement.

Selection subject
Selection object
Identifier Literal Arithmetic Condition TRUE or
expression FALSE

[NOT] identifier Y Y Y
[NOT] literal Y Y
[NOT] arithmetic-expression Y Y Y
[NOT] range-expression Y Y Y
[NOT] Indicator-value Y*
Condition Y Y
TRUE or FALSE Y Y
ANY Y Y Y Y Y
The letter 'Y' indicates a permissible combination.
A space indicates an invalid combination.
* indicates restrictions apply

TABLE 24. Combination of operands in the EVALUATE statement

E.19.4 General rules

(1) At the beginning of the execution of the EVALUATE statement, each selection subject is evaluated and
assigned a value, a range of values, or a truth value as follows:

a. Any selection subject specified by identifier-1 is assigned the value and class of the data item referenced
by the identifier.

b. Any selection subject specified by /iteral-1 is assigned the value and class of the specified literal.

c. Any selection subject specified by arithmetic-expression-1 is assigned a numeric value according to the
rules for evaluating an arithmetic expression.

d. Any selection subject specified by condition-1 is assigned a truth value according to the rules for
evaluating conditional expressions.

358

PROCEDURE DIVISION (EVALUATE)

e. Any selection subject specified by the words TRUE or FALSE is assigned a truth value. The truth value
'true’ is assigned to those items specified with the word TRUE, and the truth value 'false' is assigned to those items
specified with the word FALSE.

(2) The execution of the EVALUATE statement proceeds by processing each WHEN phrase from left to right
in the following manner:

a. Each selection object within the set of selection objects for each WHEN phrase is paired with the
selection subject having the same ordinal position within the set of selection subjects. The result of the analysis of
this set of selection subjects and objects is either true or false as follows:

1. Ifthe selection object is the word ANY, the result is true.

2. Ifthe selection object is condition-2, the selection subject is either TRUE or FALSE. If the
truth value of the selection subject and selection object match, the result of the analysis is true.
If they do not match, the result is false.

3. If the selection object is either TRUE or FALSE, the selection subject is condition-1. If the
truth value of the selection subject and selection object match, the result of the analysis is true.

If they do not match, the result is false.

4. If the selection object is a range-expression, the pair is considered to be a conditional
expression of one of the following forms:

when "NOT" is not specified in the selection object;
selection-subject >= left-part AND selection-subject <= right-part
when "NOT" is specified in the selection object
selection-subject < left-part OR selection-subject > right-part
where left-part is identifier-3, literal-3, or arithmetic-expression-3 and right-part is identifier-4,
literal-4, or arithmetic-expression-4. The result of the analysis is the truth value of the resulting

conditional expression.

5. If the selection object is identifier-2, literal-2, or arithmetic-expression-2, the pair is considered to
be a conditional expression of the following form:

selection-subject [NOT] = selection-object

where "NOT" is present if it is present in the selection object. The result of the analysis is the truth
value of the resulting conditional expression.

6. (ISQL) If the selection object is indicator-value, the pair is considered to be an indicator condition
of the following form:

Identifier-1 1S [NOT] indicator-value

b. If the result of the analysis is true for every pair in a WHEN phrase, that WHEN phrase satisfies the set
of selection subjects and no more WHEN phrases are analyzed.

c. If the result of the analysis is false for any pair in a WHEN phrase, no more pairs in that WHEN phrase
are evaluated and the WHEN phrase does not match the set of selection subjects.

359

Interactive COBOL Language Reference & Developer’s Guide - Part One

d. This procedure is repeated for subsequent WHEN phrases, in the order of their appearance in the source
element, until either a WHEN phrase satisfying the set of selection subjects is selected or until all sets of selection
objects are exhausted.

(3) The execution of the EVALUATE statement then proceeds as follows:

a. If a WHEN phrase is selected, execution continues with the first imperative-statement-1 following the
selected WHEN phrase.

b. If no WHEN phrase is selected and a WHEN OTHER phrase is specified, execution continues with
imperative-statement-2.

c. The execution of the EVALUATE statement is terminated when execution reaches the end of
imperative-statement-1 of the selected WHEN phrase or the end of imperative-statement-2, or when no WHEN
phrase is selected and no WHEN OTHER phrase is specified.

E.19.5 Example

The following code demonstrates the EVALUATE statement:

EVALUATE YEAR-CODE ALSO LETTER-GRADE
WHEN 1 THRU 2 ALSO “A” THRU “C”
PERFORM PROC-1
WHEN 3 ALSO “A” THRU “B”
PERFORM PROC-2
WHEN 4 ALSO ANY
PERFORM PROC-3
WHEN OTHER
PERFORM PROC-4
END-EVALUATE.

EXAMPLE 23. EVALUATE

In this example, if YEAR-CODE is 1 or 2 and LETTER-GRADE is A, B or C, PROC-1 is performed. If
YEAR-CODE is 3 and LETTER-GRADE is A or B, PROC-2 is performed. If YEAR-CODE is 4, PROC-3 is
performed regardless of LETTER-GRADE. Any other combination of YEAR-CODE and LETTER-GRADE will
cause the execution of PROC-4.

360

PROCEDURE DIVISION (EXECUTE)

E.20. EXECUTE (ISQL)
E.20.1 Function

The EXECUTE statement provides the ability to execute an SQL statement using a statement that has been prepared
using the PREPARE statement.

E.20.2 General Format

EXECUTE {'d,‘;';tr'gfﬂ } [INTO { identifier-2 [INDICATOR identifier-31} ...]

[USING {{ identifior 4 } [INDICATOR identifier-51} ...]
[ON SQLERROR imperative-statement-1]
[NOT ON SQLERROR imperative-statement-2]
[END-EXECUTE]

E.20.3 Syntax Rules
(1) Literal-1 must specify a nonnumeric literal and must not specify a figurative constant.
(2) Identifier-1 must specify an alphanumeric data item.
(3) Literal-1 or the content of the data item referenced by identifier-1 must not exceed 30 characters in length.

(4) Identifier-3 and identifier-5 must identify data items with usage INDICATOR.

E.20.4 General Rules

(1) Used to execute an SQL statement that was previously prepared by means of a PREPARE statement. See
the PREPARE statement, page 424.

(2) Literal-1 or the content of the data item represented by identifier-1 specifies the name of a statement
container at runtime. The statement container must hold the result of a previously executed PREPARE statement for
the currently active connection. Container names can be at most 30 characters long.

(3) If there is no currently active connection, it is an error and SQLSTATE will be set to “HY 010", which is
“Function sequence error”.

(4) If the name of the statement container cannot be found in the context of the currently active connection, it is
an error and SQLSTATE will be set to “26501", which is “The statement identifier does not exist”.

(5) If the INTO clause is specified, the data items specified by identifier-2 will receive the first row of the result
set of the executed statement. If any identifier-2 has an associated INDICATOR variable, identifier-3, it will be set
in conjunction with the setting of the value of identifier-2. The first identifier-2 will be set to the first column in the
row, the second identifier-2 will be set to the second column in the row, etc. If there are more columns in the row
than specified identifier-2's then SQLSTATE will be set to “01503". If there are no rows in the result set,
SQLSTATE will be set to “02000", which is “No data was affected by the operation”. If there are additional rows in
the result set, they can be fetched with the FETCH statement.

(6) If the INTO clause is not specified, and the EXECUTE statement is successful, the results can be fetched
with the FETCH statement.

361

Interactive COBOL Language Reference & Developer’s Guide - Part One

(7) If there is no associated indicator variable for a null-able column that is null, SQLSTATE will be set to
“22002", which is “Indicator variable required but not supplied”.

(8) When the prepared statement uses dynamic parameter specifiers, the USING clause must be specified, and
the values of /iteral-2 or the data items specified by identifier-4 are used in the order specified to satisfy the binding
of values to dynamic parameter specifiers. The literals or data items should be of an appropriate class and category
for their usage in the SQL statement and any associated INDICATOR variable, specified by identifier-5, should be
set before the EXECUTE statement is executed.

(9) If there is no currently active connection at the time the EXECUTE statement is executed, it is an error and
SQLSTATE will be set to “HY 010", which is “Function sequence error”.

(10) Upon completion of the EXECUTE statement, the following occurs in the order specified:
a. The value of the SQLSTATE data item updated with the status of the operation.

b. If the value of the SQLSTATE class field is “00" or “01", the statement is successful. Control is
transferred to the end of the EXECUTE statement or to imperative-statement-2, if specified. In the latter case,
execution continues according to the rules for each statement specified in imperative-statement-2. If a procedure
branching or conditional statement which causes explicit transfer of control is executed, control is transferred in
accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-2,
control is transferred to the end of the EXECUTE statement.

c. If the value of the SQLSTATE class field is not “00" or “01", the statement is unsuccessful. Control is
transferred to the end of the EXECUTE statement or to imperative-statement-1, if specified. In the latter case,
execution continues according to the rules for each statement specified in imperative-statement-1. If a procedure
branching or conditional statement which causes explicit transfer of control is executed, control is transferred in
accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-1,
control is transferred to the end of the EXECUTE statement.

(11) The END-EXECUTE phrase delimits the scope of the EXECUTE statement.

(12) More on SQLSTATE can be found on page 139.

362

PROCEDURE DIVISION (EXECUTE IMMEDIATE)

E.21. EXECUTE IMMEDIATE (ISQL)
E.21.1 Function

The EXECUTE IMMEDIATE statement provides the ability to execute an SQL statement by directly preparing and
executing the statement as a single operation. No result set is allowed. No parameter markers are allowed.

E.21.2 General Format

identifier-1
EXECUTE IMMEDIATE { literal-1 }
[ON SQLERROR imperative-statement-1]
[NOT ON SQLERROR imperative-statement-2]
[END-EXECUTE]

E.21.3 Syntax Rules
(1) Literal-1 must specify a nonnumeric literal and must not specify a figurative constant.

(2) Identifier-1 must specify an alphanumeric data item.

E.21.4 General Rules

(1) Used to both prepare and execute a basic dynamic SQL statement. It cannot be used with parameter
markers. Use the PREPARE and EXECUTE statements for that.

(2) Literal-1 or the content of the data item represented by identifier-1 specifies the text of the SQL statement
that is to be prepared for execution. The text of the SQL statement may not contain references to COBOL data

items, nor may it contain any use of the dynamic parameter specifier.

(3) The set of SQL statements that may be specified for preparation and execution is limited to the following:

» DELETE
» INSERT
« UPDATE

(4) If there is no currently active connection at the time the EXECUTE IMMEDIATE statement is executed, it
is an error and SQLSTATE will be set to “HY 010", which is “Function sequence error”.

(5) Upon completion of the EXECUTE IMMEDIATE statement, the following occurs in the order specified:
a. The value of the SQLSTATE data item updated with the status of the operation.

b. If the value of the SQLSTATE class field is “00" or “01", the statement is successful. Control is
transferred to the end of the EXECUTE IMMEDIATE statement or to imperative-statement-2, if specified. In the
latter case, execution continues according to the rules for each statement specified in imperative-statement-2. 1f a
procedure branching or conditional statement which causes explicit transfer of control is executed, control is
transferred in accordance with the rules for the statement; otherwise, upon completion of the execution of
imperative-statement-2, control is transferred to the end of the EXECUTE IMMEDIATE statement.

c¢. If the value of the SQLSTATE class field is not “00" or “01", the statement is unsuccessful. Control is
transferred to the end of the EXECUTE IMMEDIATE statement or to imperative-statement-1, if specified. In the
latter case, execution continues according to the rules for each statement specified in imperative-statement-1. 1f a
procedure branching or conditional statement which causes explicit transfer of control is executed, control is

363

Interactive COBOL Language Reference & Developer’s Guide - Part One

transferred in accordance with the rules for the statement; otherwise, upon completion of the execution of
imperative-statement-1, control is transferred to the end of the EXECUTE IMMEDIATE statement.

(6) The END-EXECUTE phrase delimits the scope of the EXECUTE IMMEDIATE statement.
(7) More on SQLSTATE can be found on page 139.

NOTE: If the same SQL statement is to be executed more than once, it is more efficient to use the PREPARE and
EXECUTE statements rather than the EXECUTE IMMEDIATE statement.

364

PROCEDURE DIVISION (EXIT)

E.22. EXIT
E.22.1 Function

The EXIT statement provides a common end point for a series of procedures.

E.22.2 General Format

EXIT

E.22.3 Syntax Rules

(1) The EXIT statement must appear only in a sentence by itself and comprise the only sentence in the
paragraph.

E.22.4 General Rules

(1) An EXIT statement serves only to enable the user to assign a procedure-name to a given point in a program.
Such an EXIT statement has no other effect on the compilation or execution of the program.

365

Interactive COBOL Language Reference & Developer’s Guide - Part One

366

PROCEDURE DIVISION (EXIT PROGRAM)

E.23. EXIT PROGRAM
E.23.1 Function

The EXIT PROGRAM statement marks the logical end of a called program.

E.23.2 General Format

EXIT PROGRAM

E.23.3 Syntax Rules

(1) If an EXIT PROGRAM statement appears in a consecutive sequence of imperative statements within a
sentence, it must appear as the last statement in that sequence.

E.23.4 General Rules

(1) Ifthe EXIT PROGRAM statement is executed in a program which is not under the control of a calling
program, the EXIT PROGRAM statement causes execution of the program to continue with the next executable
statement.

(2) The execution of an EXIT PROGRAM statement in a called program which does not possess the initial
attribute causes execution to continue with the next executable statement following the CALL statement in the
calling program. The program state of the calling program is not altered and is identical to that which existed at the
time it executed the CALL statement except that the contents of data items and the contents of data files shared
between the calling and called program may have been changed. The program state of the called program is not
altered except that the ends of the ranges of all PERFORM statements executed by that called program are
considered to have been reached.

(3) The storage areas associated with all items in the USING phrase of the Procedure Division header of the
called program are copied to the associated storage areas, in the USING phrase, of the calling program.

(4) Besides the actions specified in general rule 2, the execution of an EXIT PROGRAM statement in a called

program which possesses the initial attribute is equivalent to also executing a CANCEL statement referencing that
program.

367

Interactive COBOL Language Reference & Developer’s Guide - Part One

368

PROCEDURE DIVISION (EXPUNGE)

E.24. EXPUNGE (VXCOBOL)
E.24.1 Function

The EXPUNGE statement physically removes a file from the file system. EXPUNGE is an extension to ANSI
COBOL. Itis equivalent to DELETE FILE.

E.24.2 General Format

EXPUNGE ({ file-name }...

E.24.3 General Rules

(1) The file referenced by file-name must be a disk file, you must have appropriate permissions, and the file
must not be open at the time of the execution of this statement. If the files does not exist, no error is given.

(2) For arelative, indexed, or INFOS file all parts of that file are removed from the file system.

(3) For an INFOS II file the indexed file and the database file specified in the SELECT statement are deleted.
If the name of the database file was not specified with an ASSIGN DATA clause, a .DB file with the same name as
that of the indexed file is deleted. For a U/FOS file, the database specified in the SELECT is deleted, i.e. name.udb.

(4) After the successful execution of an EXPUNGE statement, the identified file has been physically removed
from the file system and can no longer be accessed.

(5) The execution of the EXPUNGE statement causes the value of the I-O status associated with file-name to be
updated.

(6) For systems supporting Linux symbolic links, DELETE FILE will delete the symbolic link, not the
resolution file.

(7) On Linux, files cannot be individually delete-protected. To make a file delete-protected on Linux, you must
remove write (w) permission to the directory in which the file resides. If a directory has no write access, you cannot
create, modify or delete files in that directory. On Windows, the read-only attribute will protect the file from
deletion.

(8) For ANSI 74 and ANSI 85, If the specified file is a sequential file, ICOBOL will scan the Printer Control
file and if there is an entry there that points to the file being deleted, the entry in the Printer Control file will be
removed.

(9) If file-name is a sort/merge file, it is ignored.

369

Interactive COBOL Language Reference & Developer’s Guide - Part One

370

PROCEDURE DIVISION (EXPUNGE SUB-INDEX)

E.25. EXPUNGE SUB-INDEX (VXCOBOL)
E.25.1 Function

The EXPUNGE SUB-INDEX statement deletes or unlinks a subindex from a specified key.

E.25.2 General Format

EXPUNGE SUB-INDEX file-name

EIX
{REIAJ.N } POSITION} DOWN

(s sepsoxuee || |

[INVALID KEY imperative-statement-1]
[NOT NOT INV INVALID KEY imperative-statement-2]
[END-EXPUNGE]]

} { identifier-1

E.25.3 Syntax Rules

(1) File-name is a filename that specifies an INFOS file opened for OUTPUT or I/O and selected for ALLOW
SUB-INDEX.

(2) Identifier-1 is an alphanumeric data item that specifies a record key associated with file-name.

E.25.4 General Rules

(1) ICOBOL decrements the use count of the subindex associated with the specified key. If the use count of
the subindex goes to zero, the subindex is unlinked from the key and physically deleted. If the use count of the
subindex remains one or more, the subindex is simply unlinked.

(2) If the position phrase is omitted, RETAIN POSITION is the default.

(3) If the relative option and the KEY series phrase are omitted, the default is the first key in the SELECT
clause.

(4) The occurrence number is not updated.
(5) FEEDBACK is not used and is not updated.
(6) KEY LENGTH is unaffected.

(7) The subindex to remove is determined according to what is specified in the relative option phrase and/or the
KEY series phrase.

(8) FIX POSITION causes the record pointer to move from the current position to the position specified in this

statement. RETAIN POSITION causes the record position to remain at the position it was on before the execution
of this statement. RETAIN is the default.

371

Interactive COBOL Language Reference & Developer’s Guide - Part One

(9) The relative motion option without the KEY series phrase allows access to the index file relative to that
file's current record position.

(10) Using the KEY series phrase without the relative motion option causes the key path specified to begin with
the top index in the hierarchy and follow a downward motion.

(11) Ifthe KEY series phrase is specified, each key, identifier-1, must be declared in the SELECT statement for
file-name. 1f the relative motion option and KEY series phrase at both specified only UP, DOWN, and STATIC are
allowed. The relative motion option is processed first and the key path is used. If both are omitted, STATIC is the
default.

(12) Transfer of control following the successful or unsuccessful execution of the EXPUNGE SUB-INDEX
operation depends on the presence or absence of the optional INVALID KEY and NOT INVALID KEY phrases in
the EXPUNGE SUB-INDEX statement.

(13) INVALID KEY clauses on I/O statements are ONLY invoked when an Invalid Key error, as determined by
a File Status of 2x where x can be any character 0 - 9 or A - Z, is generated. All other error conditions will cause the
associated USE procedure, if present, as defined in the DECLARATIVES section to be executed. (See The Invalid
Key Condition, page 278, for more a more comprehensive discussion.)

372

PROCEDURE DIVISION (FETCH)

E.26. FETCH (ISQL)
E.26.1 Function

The FETCH statement provides the ability to fetch the next row from a result set. FETCH works using a
forward-only-cursor.

E.26.2 General Format

FETCH NEXT FOR { identiior1 } INTO { identifier-2 | INDICATOR identifier-31} ...
[ON SQLERROR imperative-statement-1]
[NOT ON SQLERROR imperative-statement-2]
[END-FETCH |

E.26.3 Syntax Rules
(1) Literal-1 must specify a nonnumeric literal and must not specify a figurative constant.
(2) Identifier-1 must specify an alphanumeric data item.

(3) Identifier-3 must identify a data item with usage INDICATOR.

E.26.4 General Rules

(1) Literal-1 or the content of the data item represented by identifier-1 specifies the name of a statement
container at runtime. The statement container must hold the result of a previously executed EXECUTE,
GET COLUMNS, or GET TABLES statement for the currently active connection. Container names can be at most
30 characters long.

(2) If there is no currently active connection or the previously executed EXECUTE, GET COLUMNS, or
GET TABLES statement was not successful, it is an error and SQLSTATE will be set to “HY 010", which is
“Function sequence error”.

(3) If the name of the statement container cannot be found in the context of the currently active connection, it is
an error and SQLSTATE will be set to “26501", which is “The statement identifier does not exist”.

(4) If there is no next row, the SQLSTATE will be set to “02000", which is “No data was affected by the
operation”. If there were no rows at all in the result set, SQLSTATE will be set to “24000", which is “Invalid cursor
state”.

(5) The data items specified by identifier-2 will receive the results of the fetched row. If any identifier-2 has an
associated INDICATOR variable, identifier-3, it will be set in conjunction with the setting of the value of
identifier-2. The first identifier-2 will be set to the first column in the row, the second identifier-2 will be set to the
second column in the row, etc. If there are more columns in the row than specified identifier-2's then SQLSTATE
will be set to “01503".

(6) If there is no associated indicator variable for a null-able column that is null, SQLSTATE will be set to
“22002", which is “Indicator variable required but not supplied”.

(7) Upon completion of the FETCH statement, the following occurs in the order specified:

a. The value of the SQLSTATE data item updated with the status of the operation.

373

Interactive COBOL Language Reference & Developer’s Guide - Part One

b. If the value of the SQLSTATE class field is “00" or “01", the statement is successful. Control is
transferred to the end of the FETCH statement or to imperative-statement-2, if specified. In the latter case,
execution continues according to the rules for each statement specified in imperative-statement-2. If a procedure
branching or conditional statement which causes explicit transfer of control is executed, control is transferred in
accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-2,
control is transferred to the end of the FETCH statement.

c. If the value of the SQLSTATE class field is not “00" or “01", the statement is unsuccessful. Control is
transferred to the end of the FETCH statement or to imperative-statement-1, if specified. In the latter case,
execution continues according to the rules for each statement specified in imperative-statement-1. If a procedure
branching or conditional statement which causes explicit transfer of control is executed, control is transferred in
accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-1,
control is transferred to the end of the FETCH statement.

(8) The END-FETCH phrase delimits the scope of the FETCH statement.

(9) More on SQLSTATE can be found on page 139.

374

PROCEDURE DIVISION (GET COLUMNS)
E.27. GET COLUMNS (ISQL) (Added in 4.50)

E.27.1 Function

The GET COLUMNS statement allows the program to query the current database connection for column information
and associate those results with a SQL statement container. The GET COLUMNS statement allows for four
qualifying phrases that can be used to limit the result set that is returned, although for many databases the

CATALOG and SCHEMA phrases are effectively not used.

The result set is returned with a specific set of columns in a specific order with specific data types as shown in the
table at the end of this section.

E.27.2 General Format

} WITH [CATALOG {identifier-z }]

COLS identifier-1
literal-2

GET {QQLUMNS literal-1

identifier-3
[S-QHEMA{ literal-3 }]

identifier-4
[IABLE { literal-4 }]
[COoL identifier-5]
COLUMN literal-5

[ON SQLERROR imperative-statement-1]
[NOT ON SQLERROR imperative-statement-2]
[END-GET]

E.27.3 Syntax Rules
(1) Literal-1 through Literal-5 must specify a non-numeric literal and must not specify a figurative constant.
(2) Identifier-1 must specify an alphanumeric data item .

(3) Identifier-2 through Identifier-5 must specify an alphanumeric data item or an alphanumeric-valued function.

E.27.4 General Rules

(1) The CATALOG, SCHEMA, TABLE, and COLUMN phrases may be specified in any order, but each phrase
must be specified at most once. For clarity, the order specified in the syntax is the preferred order since it reflects
the hierarchical relationship of the qualifiers.

(2) Literal-1 or the content of the data item represented by identifier-1 specifies the name of a statement
container at runtime. Container names can be at most 30 characters long.

(3) If there is no currently active connection it is an error and SQLSTATE will be set to “HY010”, which is
“Function sequence error”.

(4) Literal-2 or the content of the data item represented by identifier-2 specifies a search string used to limit the
result set to only those entries with a catalog name that matches the specified string. If this phrase is omitted, the

runtime will supply a null.

(5) Literal-3 or the content of the data item represented by identifier-3 specifies a search string used to limit the
result set to only those entries with a schema name that matches the specified string. If this phrase is omitted, the

375

Interactive COBOL Language Reference & Developer’s Guide - Part One

runtime will supply the a null.

(6) Literal-4 or the content of the data item represented by identifier-4 specifies a search string used to limit the
result set to only those entries with a table name that matches the specified string. If this phrase is omitted, the
runtime will supply a null.

(7) Literal-5 or the content of the data item represented by identifier-5 specifies a search string used to limit the
result set to only those entries with a column name that matches the specified string. If this phrase is omitted, the
runtime will supply the a null.

(8) The SQL search characters are ‘%’ (which acts like the ‘*’ character in filename wildcards) and ©_* (which
acts like the °?° character in filename wildcards). Note that this can come into play when trying to use the results of
GET TABLES to filter GET COLUMNS using the TABLE phrase. Since table names may contain underscores, the
table name will need to have escapes added (using the Intrinsic SQL-ADD-ESCAPES).

(9) Upon completion of the GET COLUMNS statement, the following occurs in the order specified:

a. If the GET COLUMNS was successful, control is transferred to the end of the GET COLUMNS
statement or to imperative-statement-2, if specified. In the latter case, execution continues according to the rules for
each statement specified in imperative-statement-2. 1If a procedure branching or conditional statement which causes
explicit transfer of control is executed, control is transferred in accordance with the rules for the statement;
otherwise, upon completion of the execution of imperative-statement-2, control is transferred to the end of the GET
COLUMNS statement.

b. If the GET COLUMNS is unsuccessful, control is transferred to the end of the GET COLUMNS
statement or to imperative-statement-1, if specified. In the latter case, execution continues according to the rules for
each statement specified in imperative-statement-1. 1If a procedure branching or conditional statement which causes
explicit transfer of control is executed, control is transferred in accordance with the rules for the statement;
otherwise, upon completion of the execution of imperative-statement-1, control is transferred to the end of the GET
COLUMNS statement.

(16) The END-GET phrase delimits the scope of the GET COLUMNS statement.
(17) More on SQLSTATE can be found on page 139.

(18) The result set is described in the table below.

Column
Column name Data type Comments
number
Catalog name; NULL if not applicable to the data source. If a driver supports
catalogs for some tables but not for others, such as when the driver retrieves data
TABLE_CAT ! Varchar from different DBMSs, it returns an empty string ("") for those tables that do not
have catalogs.
Schema name; NULL if not applicable to the data source. If a driver supports
schemas for some tables but not for others, such as when the driver retrieves
TABLE_SCHEM 2 Varchar data from different DBMSs, it returns an empty string ("") for those tables that
do not have schemas.
Varchar
TABLE_NAME 3 not NULL Table name.
COLUMN NAME 4 Varchar Column name. The driver returns an empty string for a column that does not
- not NULL [have a name.
DATA TYPE 5 Smallint | SQL data type. This can be an ODBC SQL data type or a driver-specific SQL
- not NULL [data type. For datetime and interval data types, this column returns the concise
data type (such as SQL TYPE DATE or

376

PROCEDURE DIVISION (GET COLUMNS)

SQL _INTERVAL YEAR TO_ MONTH, instead of the nonconcise data type
such as SQL_DATETIME or SQL_INTERVAL).

Varchar Data source—dependent data type name; for example, "CHAR", "VARCHAR",

TYPE_NAME 6 not NULL | "MONEY", "LONG VARBINAR", or "CHAR () FOR BIT DATA".

If DATA_TYPE is SQL_CHAR or SQL_VARCHAR, this column contains the
maximum length in characters of the column. For datetime data types, this is the
total number of characters required to display the value when it is converted to
characters. For numeric data types, this is either the total number of digits or the
total number of bits allowed in the column, according to the
NUM_PREC_RADIX column. For interval data types, this is the number of
characters in the character representation of the interval literal (as defined by the
interval leading precision).

COLUMN_SIZE 7 Integer

The length in bytes of data transferred DURING A Fetch operation. Relevant

BUFFER_LENGTH 8 | mmeger | o the ODBC layers

The total number of significant digits to the right of the decimal point. For
TIME and TIMESTAMP data, this column contains the number of digits in the
fractional seconds component. For the other data types, this is the decimal digits
of the column on the data source. For interval data types that contain a time
component, this column contains the number of digits to the right of the decimal
point (fractional seconds). For interval data types that do not contain a time
component, this column is 0. NULL is returned for data types where

DECIMAL _DIGITS is not applicable.

DECIMAL DIGITS 9 Smallint

For numeric data types, either 10 or 2. If it is 10, the values in COLUMN_SIZE
and DECIMAL _DIGITS give the number of decimal digits allowed for the
column. For example, a DECIMAL(12,5) column would return a
NUM_PREC_RADIX of 10, a COLUMN_SIZE of 12, and a

DECIMAL DIGITS of 5; a FLOAT column could return a
NUM_PREC_RADIX of 10, a COLUMN_SIZE of 15, and a
NUM_PREC_RADIX 10 Smallint | DECIMAL DIGITS of NULL.

If it is 2, the values in COLUMN_SIZE and DECIMAL DIGITS give the
number of bits allowed in the column. For example, a FLOAT column could
return a RADIX of 2, a COLUMN_SIZE of 53, and a DECIMAL _DIGITS of
NULL.

NULL is returned for data types where NUM_PREC_RADIX is not applicable.

SQL NO NULLS (0) if the column could not include NULL values.
SQL NULLABLE (1) if the column accepts NULL values.

SQL NULLABLE UNKNOWN (2) if it is not known whether the column

accepts NULL values.
Smallint
not NULL || The value returned for this column differs from the value returned for the

IS NULLABLE column. The NULLABLE column indicates with certainty that
a column can accept NULLSs, but cannot indicate with certainty that a column
does not accept NULLs. The IS NULLABLE column indicates with certainty
that a column cannot accept NULLs, but cannot indicate with certainty that a
column accepts NULLs.

NULLABLE 11

REMARKS 12 Varchar A description of the column.

The default value of the column. The value in this column should be interpreted
as a string if it is enclosed in quotation marks.

If NULL was specified as the default value, this column is the word NULL, not
enclosed in quotation marks. If the default value cannot be represented without
truncation, this column contains TRUNCATED, without enclosing single
quotation marks. If no default value was specified, this column is NULL.

COLUMN_DEF 13 Varchar

The value of COLUMN_DEF can be used in generating a new column
definition, except when it contains the value TRUNCATED.

SQL DATA TYPE 14 Smallint SQL data type, as it appears in the SQL DESC TYPE record field in the IRD.

377

Interactive COBOL Language Reference & Developer’s Guide - Part One

This can be an ODBC SQL data type or a driver-specific SQL data type. This
column is the same as the DATA_TYPE column, except for datetime and
interval data types. This column returns the nonconcise data type (such as
SQL DATETIME or SQL_INTERVAL), instead of the concise data type (such

not NULL as SQL_TYPE DATE or SQL_INTERVAL YEAR TO MONTH) for datetime
and interval data types. If this column returns SQL.__DATETIME or
SQL_INTERVAL, the specific data type can be determined from the
SQL DATETIME_SUB column. Only relevant to the ODBC layer.
SQL_DATETIME SUB 15 Smallint The subtype code for datetime and interval data types. For other data types, this

column returns a NULL. Relevant only to the ODBC layer.

The maximum length in bytes of a character or binary data type column. For all

CHAR_OCTET_LENGTH 16 Integer other data types, this column returns a NULL.

ORDINAL POSITION 17 Integer The ordinal position of the column in the table. The first column in the table is
- not NULL [number 1.
"NO" if the column does not include NULLs.
"YES" if the column could include NULLs.
This column returns a zero-length string if nullability is unknown.
IS_NULLABLE 18 Varchar

ISO rules are followed to determine nullability. An ISO SQL—compliant DBMS
cannot return an empty string.

The value returned for this column differs from the value returned for the
NULLABLE column. (See the description of the NULLABLE column.)

Additional columns beyond column 18 (IS NULLABLE) can be defined by the driver. An application should gain
access to driver-specific columns by counting down from the end of the result set instead of specifying an explicit
ordinal position.

378

PROCEDURE DIVISION (GET DIAGNOSTICS)

E.28. GET DIAGNOSTICS (ISQL)

E.28.1 Function

The GET DIAGNOSTICS statement allows the program to retrieve information from the diagnostics area of the
SQL database connection. There are two formats to this statement. The first retrieves information relating to the

overall execution of the immediately preceding SQL statement (not counting GET DIAGNOSTICS statements
themselves). The second format is used to gain more specific information regarding some particular exception.

E.28.2 General Format

Format 1:
coL COUNT
COLUMN
. . _ ROW COUNT
GET DIAGNOSTICS | identifier-1 = NUMBER

COMMAND EFUNCTION
DYNAMIC FUNCTION

[ON EXCEPTION imperative-statement-1]
[NOT ON EXCEPTION imperative-statement-2]

[END-GET]
Format 2:
SQLSTATE
identifier-2| | . - NATIVE ERROR
DIAGNOSTICS 0 .3 =
GET EXCEPTION { literalA } identifier-3 MESSAGE TEXT
MESSAGE LENGTH

[ON EXCEPTION imperative-statement-1]
[NOT ON EXCEPTION imperative-statement-2]
[END-GET]

E.28.3 Syntax Rules
Format 1:

(1) Identifier-1 must specify an integer data item without any p-scaling with the COLUMN COUNT,
ROW COUNT or NUMBER phrase.

(2) Identifier-1 must specify an alphanumeric data item with the COMMAND FUNCTION or
DYNAMIC FUNCTION phrase.
Format 2:

(3) Identifier-2/Literal-1 must specify an integer value.

(4) Identifier-3 must specify an integer data item without any p-scaling with the NATIVE ERROR or
MESSAGE LENGTH phrase.

(5) Identifier-3 must specify an alphanumeric data item with the SQLSTATE or MESSAGE TEXT phrase.

379

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.28.4 General Rules
(1) All assignment operations are carried out in the order specified in the source text.
(2) It is permissable to specify a given assignment phrase more than once.
(3) The GET DIAGNOSTICS statement itself does not effect the diagnostics information stored in the system.
(4) The diagnostics information is valid until the next ISQL statement is executed.

(5) Other than the requirement that the first diagnostic record corresponds to the SQLSTATE returned by an
ISQOL statement, the diagnostic records are not in any particular order. However, since they are added as they are
encountered, they will generally follow the pattern that diagnostics pertaining to statement preparation (such as
binding parameters) will occur before the diagnostics for the main operation, which will precede diagnostics from
returning results.

Format 1:

(6) COLUMN COUNT returns the number of columns in the result set of an EXECUTE, GET TABLES, or
GET COLUMNS (ISQL) statement. It does not necessarily return a meaningful value for any other statement.

(7) ROW COUNT returns the number of rows affected by an INSERT, UPDATE, or DELETE (ISQL)
statement. It does not necessarily return a meaningful value for any other statement.

(8) NUMBER returns the number of diagnostic messages that are available in the diagnostics area. Format 2
can be used to retrieve each individual message.

(9) COMMAND FUNCTION returns a string that specifies the ISQL statement that was executed.

(10) DYNAMIC FUNCTION returns a string for EXECUTE or EXECUTE IMMEDIATE that specifies the
dynamic SQL statement that was executed (e.g., SELECT). For all other statements, it will return an empty string.

Format 2:

(11) The exception number specifier in identifier-2|literal-1 must be greater than zero and less than or equal to
the number of exceptions as would be returned into identifier by a “GET DIAGNOSTICS identifier = NUMBER”
statement.

(12) A non-success SQLSTATE returned by an ISQL statement corresponds to the value returned by
GET DIAGNOSTICS EXCEPTION 1 id = SQLSTATE. LE., SQLSTATE returns the SQLSTATE corresponding
to the diagnostic record.

(13) NATIVE ERROR returns the numeric error code that may have orginiated in the driver, the driver
manager, or the runtime system. It is usually not useful to the logic of the application but may provide additional

diagnostic information.

(14) MESSAGE TEXT returns a diagnostic message that gives information about the error. It provides useful
information as to the specific problem encountered.

(15) MESSAGE LENGTH returns the length of the text message returned in MESSAGE TEXT. This is
usually not needed.

380

PROCEDURE DIVISION (GET DIAGNOSTICS)

All Formats:
(16) Upon completion of the GET DIAGNOSTICS statement, the following occurs in the order specified:

a. If the GET DIAGNOSTICS was successful, control is transferred to the end of the GET DIAGNOSTICS
statement or to imperative-statement-2, if specified. In the latter case, execution continues according to the rules for
each statement specified in imperative-statement-2. 1f a procedure branching or conditional statement which causes
explicit transfer of control is executed, control is transferred in accordance with the rules for the statement;
otherwise, upon completion of the execution of imperative-statement-2, control is transferred to the end of the GET
DIAGNOSTICS statement.

b. If the GET DIAGNOSTICS is unsuccessful, control is transferred to the end of the GET
DIAGNOSTICS statement or to imperative-statement-1, if specified. In the latter case, execution continues
according to the rules for each statement specified in imperative-statement-1. If a procedure branching or
conditional statement which causes explicit transfer of control is executed, control is transferred in accordance with
the rules for the statement; otherwise, upon completion of the execution of imperative-statement-1, control is
transferred to the end of the GET DIAGNOSTICS statement.

(17) The END-GET phrase delimits the scope of the GET DIAGNOSTICS statement.

(18) More on SQLSTATE can be found on page 139.

381

Interactive COBOL Language Reference & Developer’s Guide - Part One
E.29. GET TABLES (/SQL) (Added in 4.50)

E.29.1 Function

The GET TABLES statement allows the program to query the current database connection for table information and
associate those results with a SQL statement container. The GET TABLES statement allows for four qualifying
phrases that can be used to limit the result set that is returned, although for many databases the CATALOG and
SCHEMA phrases are effectively not used.

The result set is returned with a specific set of columns in a specific order with specific data types as shown in the
table at the end of this section.

E.29.2 General Format

identifier-1 identifier-2
G_EIIAB_LES{ i }WITH [QAIALQ_Q{ itoral2 }]

[SCHEMA {identiﬂer—3 }]

literal-3

identifier-4
[IABLE { literal-4 }]

[TYPE { identifier-5 }]

literal-5

[ON SQLERROR imperative-statement-1]
[NOT ON SQLERROR imperative-statement-2]
[END-GET]

E.29.3 Syntax Rules
(1) Literal-1 through Literal-5 must specify a non-numeric literal and must not specify a figurative constant.
(2) Identifier-1 must specify an alphanumeric data item .

(3) Identifier-2 through Identifier-5 must specify an alphanumeric data item or an alphanumeric-valued function.

E.29.4 General Rules

(1) The CATALOG, SCHEMA, TABLE, and TYPE phrases may be specified in any order, but each phrase
must be specified at most once. For clarity, the order specified in the syntax is the preferred order since it reflects
the hierarchical relationship of the qualifiers.

(2) Literal-1 or the content of the data item represented by identifier-1 specifies the name of a statement
container at runtime. Container names can be at most 30 characters long.

(3) If there is no currently active connection it is an error and SQLSTATE will be set to “HY010”, which is
“Function sequence error”.

(4) Literal-2 or the content of the data item represented by identifier-2 specifies a search string used to limit the
result set to only those entries with a catalog name that matches the specified string. If this phrase is omitted, the
runtime will supply a null.

(5) Literal-3 or the content of the data item represented by identifier-3 specifies a search string used to limit the
result set to only those entries with a schema name that matches the specified string. If this phrase is omitted, the
runtime will supply a null.

382

PROCEDURE DIVISION (GET COLUMNS)

(6) Literal-4 or the content of the data item represented by identifier-4 specifies a search string used to limit the
result set to only those entries with a table name that matches the specified string. If this phrase is omitted, the
runtime will supply a null.

(7) Literal-5 or the content of the data item represented by identifier-5 specifies a search string used to limit the
result set to only those entries with a table type that matches the specified string. If this phrase is omitted, the
runtime will supply a null. If this phrase is supplied and a non-empty value is supplied, it must contain a list of
comma separated values for the types of interest. Each value in the list may be enclosed in single quotation marks.
The types should be specified using uppercase letters.

(8) The SQL search characters are ‘%’ (which acts like the ‘*’ character in filename wildcards) and ©_* (which
acts like the °?° character in filename wildcards). Note that this can come into play when trying to use the results of
GET TABLES to filter GET COLUMNS using the TABLE phrase. Since table names may contain underscores, the
table name will need to have escapes added (using the Intrinsic SQL-ADD-ESCAPES).

(9) Upon completion of the GET TABLES statement, the following occurs in the order specified:

a. If the GET TABLES was successful, control is transferred to the end of the GET TABLES statement or
to imperative-statement-2, if specified. In the latter case, execution continues according to the rules for each
statement specified in imperative-statement-2. If a procedure branching or conditional statement which causes
explicit transfer of control is executed, control is transferred in accordance with the rules for the statement;
otherwise, upon completion of the execution of imperative-statement-2, control is transferred to the end of the GET
TABLES statement.

b. If the GET TABLES is unsuccessful, control is transferred to the end of the GET TABLES statement or
to imperative-statement-1, if specified. In the latter case, execution continues according to the rules for each
statement specified in imperative-statement-1. If a procedure branching or conditional statement which causes
explicit transfer of control is executed, control is transferred in accordance with the rules for the statement;
otherwise, upon completion of the execution of imperative-statement-1, control is transferred to the end of the GET
TABLES statement.

(16) The END-GET phrase delimits the scope of the GET TABLES statement.
(17) More on SQLSTATE can be found on page 139.

(18) The result set is described in the table below.

Column Data
Column name Comments
number type
Catalog name; NULL if not applicable to the data source. If a driver supports catalogs
for some tables but not for others, such as when the driver retrieves data from
TABLE_CAT ! Varchar different DBMSs, it returns an empty string ("") for those tables that do not have
catalogs.
Schema name; NULL if not applicable to the data source. If a driver supports schemas
for some tables but not for others, such as when the driver retrieves data from
TABLE_SCHEM 2 Varchar different DBMSs, it returns an empty string ("") for those tables that do not have
schemas.
TABLE NAME 3 Varchar | Table name.
Table type name; one of the following: "TABLE", "VIEW", "SYSTEM TABLE",
"GLOBAL TEMPORARY", "LOCAL TEMPORARY", "ALIAS", "SYNONYM", or a
TABLE_TYPE 4 Varchar | data source—specific type name.
The meanings of "ALIAS" and "SYNONYM" are driver-specific.
REMARKS 5 Varchar | A description of the table.

383

Interactive COBOL Language Reference & Developer’s Guide - Part One

Additional columns beyond column 5 (REMARKS) can be defined by the driver. An application should gain access
to driver-specific columns by counting down from the end of the result set instead of specifying an explicit ordinal

position.

384

PROCEDURE DIVISION (GO TO)

E.30. GO TO
E.30.1 Function

The GO TO statement causes control to be transferred from one part of the Procedure Division to another.

E.30.2 General Format
Format 1:

GO TO procedure-name-1

Format 2:

GO TO { procedure-name-1}... DEPENDING ON identifier

E.30.3 Syntax Rules
(1) Identifier must reference a numeric elementary data item which is an integer.

(2) If a GO TO statement represented by Format 1 appears in a consecutive sequence of imperative statements
within a sentence, it must appear as the last statement in that sequence.

(3) A GO TO cannot transfer control between:
a. A procedure-name in a Declarative section from a nondeclarative section.
b. A procedure-name in a nondeclarative section from a Declaratives section.
c. A Declaratives section from another Declaratives section.

d. The above conditions are treated as errors for ANSI 74 and ANSI 85, but may be converted to warnings
with the -G g compiler switch. VXCOBOL treats these conditions as warnings.

(4) No more than 254 procedure-name-1 entries may be specified.

E.30.4 General Rules
(1) When a GO TO statement represented by Format 1 is executed, control is transferred to procedure-name-1.
(2) When a GO TO statement represented by Format 2 is executed, control is transferred to procedure-name-1,
etc., depending on the value of identifier being 1, 2, ... , n. If the value of identifier is anything other than the

positive or unsigned integers 1, 2, ..., n, (where n is the number of procedure-name-1's specified), then no transfer
occurs and control passes to the next statement in the normal sequence for execution.

385

Interactive COBOL Language Reference & Developer’s Guide - Part One

386

PROCEDURE DIVISION (GOBACK)

E.31. GOBACK
E.31.1 Function
The GOBACK statement marks the logical end of a called program.

The GOBACK statement is equivalent to the sequence:

EXIT PROGRAM.
STOP RUN.

E.31.2 General Format

GOBACK

E.31.3 Syntax Rules

(1) If a GOBACK statement appears in a consecutive sequence of imperative statements within a sentence, it
must appear as the last statement in that sequence.

E.31.4 General Rules

(1) If the GOBACK statement is executed in a program which is not under the control of a calling program, the
GOBACK statement causes execution of the program to act as if a STOP RUN statement had been performed.

(2) The execution of an GOBACK statement in a called program which does not possess the initial attribute
causes execution to continue with the next executable statement following the CALL statement in the calling
program. The program state of the calling program is not altered and is identical to that which existed at the time it
executed the CALL statement except that the contents of data items and the contents of data files shared between the
calling and called program may have been changed. The program state of the called program is not altered except
that the ends of the ranges of all PERFORM statements executed by that called program are considered to have been
reached.

(3) The storage areas associated with all items in the USING phrase of the Procedure Division header of the
called program are copied to the associated storage areas, in the USING phrase, of the calling program.

(4) Besides the actions specified in general rule 2, the execution of a GOBACK statement in a called program
which possesses the initial attribute is equivalent to also executing a CANCEL statement referencing that program.

387

Interactive COBOL Language Reference & Developer’s Guide - Part One

388

PROCEDURE DIVISION (IF)

E.32.1F
E.32.1 Function

The IF statement causes a condition to be evaluated. The subsequent action of the object program depends on
whether the value of the condition is true or false.

E.32.2 General Format

statement-1...

IF condition THEN {NEXT SENTENCE ELSE NEXT SENTENCE

} ELSE statement-2... [END-|F]
END-IF

E.32.3 Syntax Rules

(1) Statement-1 and statement-2 represent either an imperative statement or a conditional statement optionally
preceded by an imperative statement. A further description of the rules governing statement-1 and statement-2 is
given elsewhere.

(2) The ELSE NEXT SENTENCE phrase may be omitted if it immediately precedes to the terminal period of
the sentence.

(3) If the END-IF phrase is specified, the NEXT SENTENCE phrase must not be specified.

E.32.4 General Rules
(1) The scope of the IF statement may be terminated by any of the following:

a. An END-IF phrase at the same level of nesting.

b. A separator period.

c. Ifnested, by an ELSE phrase associated with an IF statement at a higher level of nesting.

(2) When an IF statement is executed, the following transfers of control occur:

a. If the condition is true and statement-1 is specified, control is transferred to the first statement of
statement-1 and execution continues according to the rules for each statement specified in statement-1. 1f a
procedure branching or conditional statement is executed which causes an explicit transfer of control, control is
explicitly transferred in accordance with the rules of that statement. Upon completion of the execution of

statement-1, the ELSE phrase, if specified, is ignored and control passes to the end of the IF statement.

b. If the condition is true and the NEXT SENTENCE phrase is specified instead of statement-1, the ELSE
phrase, if specified, is ignored and control passes to the next executable sentence.

c. If the condition is false and statement-2 is specified, statement-1 or its surrogate NEXT SENTENCE is
ignored, control is transferred to the first statement of statement-2, and execution continues according to the rules for
each statement specified in statement-2. 1f a procedure branching or conditional statement is executed which causes
an explicit transfer of control, control is explicitly transferred in accordance with the rules of that statement. Upon
completion of the execution of statement-2, control passes to the end of the IF statement.

d. If the condition is false and the ELSE phrase is not specified, statement-1 is ignored and control passes
to the end of the IF statement.

389

Interactive COBOL Language Reference & Developer’s Guide - Part One

e. If the condition is false and the ELSE NEXT SENTENCE phrase is specified, statement-1 is ignored and
control passes to the next executable sentence.

(3) Statement-1 and/or statement-2 may contain an IF statement. In this case, the IF statement is said to be
nested. More detailed rules on nesting are given in the appropriate paragraph. (See Scope of Statements, page 260.)

IF statements within IF statements may be considered as paired IF and ELSE combinations, proceeding

from left to right. Thus, any ELSE or END-IF encountered is considered to apply to the immediately preceding IF
that has not been already paired with an ELSE or END-IF.

390

PROCEDURE DIVISION (INITIALIZE)

E.33. INITIALIZE (ANSI 74 and ANSI 85)
E.33.1 Function

The INITIALIZE statement provides the ability to set selected data items to specified values.

E.33.2 General Format

ALL
category-name

identifier-2
literal-1 [11

INITIALIZE { identifier-1}... [WITH FILLER] [{ } TO VALUE]

[THEN REPLACING { category-name DATA BY {
[THEN TO DEFAULT]

where category-name is:

(ISQL) The following category-name selections are added:

DATE
TIME
TIMESTAMP
YEAR TO MONTH
w{ DAY TO TIME }

INDICATOR

E.33.3 Syntax rules

(1) Identifier-1 must be a valid receiving operand of a MOVE statement, or an item with usage POINTER or
INDICATOR.

(2) For each POINTER or INDICATOR phrase used as the category-name stated in the REPLACING phrase,
identifier-2 shall be specified, and a SET statement with identifier-2 as the sending operand and an item of the
specified category as the receiving item shall be valid..

(3) For each other category-name stated in the REPLACING phrase, a MOVE statement with identifier-2 or
literal-1 as sending operand and an item of the category specified by category-name as receiving operand must be
valid.

(4) An index data item may not appear as an operand of an INITIALIZE statement.

(5) The data description entry for the data item referenced by identifier-1 shall not contain a RENAMES clause.

(6) The same category shall not be repeated in a REPLACING phrase.

391

Interactive COBOL Language Reference & Developer’s Guide - Part One
E.33.4 General rules

(1) The data item referenced by identifier-1 represents the receiving item.

(2) If the REPLACING phrase is specified, literal-1 and the data item referenced by identifier-2 represent the
sending item.

(3) The keywords in category-names correspond to a category of data as specified in B.3 Concept of Classes of
Data on page 124. If ALL is specified in the VALUE phrase, it is as if all of the categories listed in category-names
were specified.

(4) Whether identifier-1 references an elementary item or a group item, the effect of the execution of the
INITIALIZE statement is as though a series of implicit MOVE or SET statements, each of which has an elementary
data item as its receiving operand.

If the receiving operand is usage POINTER or INDICATOR, the implicit statement is
SET receiving-operand TO sending-operand
Otherwise, the implicit statement is

MOVE sending-operand TO receiving-operand

were executed, where the sending-operand is as defined in General Rule 6 and the receiving-operand is as defined in
General Rule 5.

(5) The receiving-operand in each implicit MOVE or SET statement is determined by applying the following
steps in order:

a. First, the following data items are excluded as receiving-operands:

1. Any identifiers that are not valid receiving operands of a MOVE statement, except items of usage
POINTER or INDICATOR.

2. Ifthe FILLER phrase is not specified, elementary data items with an explicit or implicit FILLER
clause.

3. Any elementary data item subordinate to identifier-1 whose data description entry contains a
REDEFINES or RENAMES clause or is subordinate to a data item whose data description entry
contains a REDEFINES clause. However, identifier-1 may itself have a REDEFINES clause or be
subordinate to a data item with a REDEFINES clause.

4. Any elementary data item with USAGE INDEX.

b. Second, an elementary data item is a possible receiving item if:

1. Ttis explicitly referenced by identifier-1; or

2. It is contained within the group data item referenced by identifier-1. If the elementary data item is a
table element, each occurrence of the elementary data item is a possible receiving-operand.

c. Finally, each possible receiving-operand is a receiving-operand if at least one of the following is true:
1. The VALUE phrase is specified, a data-item format or table format VALUE clause is specified in

the data description entry of the elementary data item, and the category of the data item is one of
the categories specified or implied in the VALUE phrase; or

392

PROCEDURE DIVISION (INITIALIZE)

2. The REPLACING phrase is specified and the category of the elementary data item is one of the
categories specified in the REPLACING phrase; or

3. The DEFAULT phrase is specified; or
4. Neither the REPLACING phrase nor the VALUE phrase is specified.
(6) The sending-operand in each implicit MOVE or SET statement is determined as follows:

a. If the data item qualifies as a receiving-operand because of the VALUE phrase:
1. If the receiving-operand is usage POINTER, the sending-operand is the predefined address item
NULL

2. [If the receiving-operand is usage INDICATOR, the sending-operand is the predefined indicator
value NULL

3. Otherwise, the sending-operand is determined by the literal in the VALUE clause specified in the
data description entry of the data item. If the data item is a table element, the literal in the VALUE
clause that corresponds to the occurrence being initialized determines the sending-operand. The
actual sending-operand is a literal that, when moved to the receiving-operand with a MOVE
statement, produces the same result as the initial value of the data item as produced by the
application of the VALUE clause.

b. If the data item does not qualify as a receiving-operand because of the VALUE phrase, but does qualify
because of the REPLACING phrase, the sending-operand is the literal-1 or identifier-2 associated with the category
specified in the REPLACING phrase.

c. If the data item does not qualify in accordance with general rules 6a and 6b, the sending-operand is an
implied figurative constant or predefined item.

The figurative sending operand used depends on the category of the receiving operand as follows:

Receiving operand Figurative constant or predefined item
Alphabetic Alphanumeric SPACES
Alphanumeric Alphanumeric SPACES

(ISQL) Character Varying “” (the null string)
Alphanumeric-edited Alphanumeric SPACES

Numeric ZEROES

Numeric-edited ZEROES

(ISQL) Date DATE “0000-01-01"

(ISQL) Time TIME “00:00:00"

(ISQL) Timestamp TIMESTAMP “0000-01-01 00:00:00"
Year-to-month ZEROES

Day-to-time ZEROES

Pointer NULL

(ISQL) Indicator NULL

(7) The order of execution of these implicit MOVE or SET statements is the order, left to right, of the
appearance of each identifier-1 in the INITIALIZE statement. Within this sequence, whenever identifier-1 references
a group data item, affected elementary data items are initialized in the sequence of their definition within the group
data item. If a fixed-length table is being initialized, all occurrences are initialized. If variable-length table is being
initialized, the number of occurrences initialized is the number of occurrences specified by the value of the data item
referenced in the DEPENDING phrase.

(8) If identifier-1 occupies the same storage area as identifier-2, the result of the execution of this statement is
undefined, even if they are defined by the same data description entry. (See page 256, Overlapping Operands.)

393

Interactive COBOL Language Reference & Developer’s Guide - Part One

394

PROCEDURE DIVISION (INSPECT)

E.34. INSPECT
E.34.1 Function

The INSPECT statement provides the ability to tally or replace occurrences of single characters or groups of
characters in a data item.

E.34.2 General Format

Format 1:

INSPECT identifier-1 TALLYING

CHARACTERS

BEFORE identifier-4
{AHEB }'N'T'AL{ literal-2 }]

ALL identifier-3| | | BEFORE il identiiera 1] L[
LEADING literal-1 AFTER literal-2 | [

identifier-2 EOR:

Format 2:

INSPECT identifier-1 REPLACING

CHARACTERS BY {’de”t’ﬁe"5} [{B‘EF—QRE } INITIAL {"de””'ﬁef"‘ }]

literal-3 AFTER literal-2
LL
identifier-3 identifier-5) , |JBEEORE identifier-4
4QLEF'I“I_\'? 'ﬁ {{ literal-1 }Bi{ literal-3 }[{AHER } 'N'T'A"{ literal-2 }] }

Format 3:

INSPECT identifier-1 TALLYING

BEFORE identifier-4
HARACTER { AETER }INITIAL{ ltoral-2
identifier-2 EORy. . -~ 7Ty b
ALL identifier-3 BEFORE INITIAL] identifier-4
LEADING literal-1 AFTER literal-2 | ||

REPLACING

CHARACTERS BY {identiﬁer—5} [{B_EF_QRE } INITIAL {identiﬁer—4 }]

literal-3 AFTER literal-2
LL
identifier-3 identifier-5) , |JBEEORE identifier-4
LEFﬁ'E 'ﬁ {{ literal-1 }Bi{ literal-3 }[{AHER } 'N'T'A"{ literal-2 }] }

395

Interactive COBOL Language Reference & Developer’s Guide - Part One

Format 4: (ANS/ 74 and ANSI 85)

identifier-6 identifier-7
INSPECT identifier-1 CONVERTING{ \torala }TO {'C’,‘;’;’,’;ﬁg }

BEFORE identifier-4
[{ AFTER }'N'T'AL{ literal-2 | 1

E.34.3 Syntax Rules
All Formats:

(1) Identifier-1 must reference either a group item or any category of elementary item described, implicitly or
explicitly, as USAGE IS DISPLAY.

(2) Identifier-3, ..., identifier-n must reference an elementary item described, implicitly or explicitly, as
USAGE IS DISPLAY.

(3) Each literal must be a nonnumeric literal and must not be a figurative constant that begins with the word
ALL. If literal-1, literal-2, or literal-4 is a figurative constant, it refers to an implicit one character data item.

(4) No more than one BEFORE phrase and one AFTER phrase can be specified for any one ALL, LEADING,
CHARACTERS, FIRST, or CONVERTING phrase.

Format 1 and 3:

(5) Identifier-2 must reference an elementary numeric data item.
Format 2 and 3:

(6) The size of literal-3 or the data item referenced by identifier-5 must be equal to the size of literal-1 or the
data item referenced by identifier-3. When a figurative constant is used as /iteral-3, the size of the figurative

constant is equal to the size of literal-1 or the size of the data item referenced by identifier-3.

(7) When the CHARACTERS phrase is used, literal-2, literal-3, or the size of the data item referenced by
identifier-4, identifier-5 must be one character in length.

Format 4:

(8) The size of literal-5 or the data item referenced by identifier-7 must be equal to the size of literal-4 or the
data item referenced by identifier-6. When a figurative constant is used as literal-5, the size of the figurative constant
is equal to the size of literal-4 or the size of the data item referenced by identifier-6.

(9) The same character must not appear more than once either in /iteral-4 or in the data item referenced by
identifier-6.

E.34.4 General Rules
All Formats:

(1) Inspection (which includes the comparison cycle, the establishment of boundaries for the BEFORE or

AFTER phrase, and the mechanism for tallying and/or replacing) begins at the left-most character position of the

data item referenced by identifier-1, regardless of its class, and proceeds from left to right to the right-most character
position as described in General Rules 5 and 6.

396

PROCEDURE DIVISION (INSPECT)

(2) For use in the INSPECT statement, the content of the data item referenced by identifier-1, identifier-3,
identifier-4, identifier-5, identifier-6, or identifier-7 will be treated as follows:

a. If any of identifier-1, identifier-3, identifier-4, identifier-3, identifier-6 or identifier-7 reference an
alphabetic or alphanumeric data item, the INSPECT statement treats the contents of each such identifier as a
character-string.

b. If any of identifier-1, identifier-3, identifier-4, identifier-5, identifier-6 or identifier-7 reference
alphanumeric edited, numeric edited, or unsigned numeric data items, the data item is inspected as though it had been
redefined as alphanumeric (see General Rule 2a) and the INSPECT statement had been written to reference the
redefined data item.

c. If any of identifier-1, identifier-3, identifier-4, identifier-5, identifier-6 or identifier-7 reference a signed
numeric data item, the data item is inspected as though it had been moved to an unsigned numeric data item with
length equal to the length of the signed item excluding any separate sign position, and then the rules in General Rule
2b had been applied. (See The MOVE Statement, page 406.) If identifier-1 is a signed numeric item, the original
value of the sign is retained upon completion of the INSPECT statement.

d. (ISQL) If identifier-1 references a data item with usage CHARACTER VARYING, the length of the data
item is evaluated only once at the beginning of the execution of the INSPECT statement. If the length evaluates to
zero, there is no error and no inspection takes place. If any other identifier references a zero-length data item at the
execution of the INSPECT statement, it is an error and no inspection takes place.

(3) In General Rules 5 through 17, all references to literal-1, literal-2, literal-3, literal-4 or literal-5 apply
equally to the content of the data item referenced by identifier-3, identifier-4, identifier-5, identifier-6 or identifier-7
respectively.

(4) Subscripting associated with any identifier is evaluated only once as the first operation in the execution of
the INSPECT statement.

Format 1 and 2:

(5) During inspection of the content of the data item referenced by identifier-1, each properly matched
occurrence of /iteral-1 is tallied (Format 1) or replaced by /iteral-3 (Format 2).

(6) The comparison operation to determine the occurrence of /iteral-1 to be tallied or to be replaced, occurs as
follows:

a. The operands of the TALLYING or REPLACING phrase are considered in the order they are specified
in the INSPECT statement from left to right. The first literal-1 is compared to an equal number of contiguous
characters, starting with the left-most character position in the data item referenced by identifier-1. Literal-1
matches that portion of the content of the data item referenced by identifier-1 if they are equal, character for
character and:

1) If neither LEADING nor FIRST is specified; or

2) If the LEADING adjective applies to literal-1 and literal-1 is a leading occurrence as defined in
General Rules 10 and 13; or

3) If the FIRST adjective applies to literal-1 and literal-1 is the first occurrence as defined in General
Rule 13.

b. If no match occurs in the comparison of the first /iteral-1, the comparison is repeated with each
successive literal-1, if any, until either a match is found or there is no next successive /iteral-1. When there is no
next successive literal-1, the character position in the data item referenced by identifier-1 immediately to the right of
the left-most character position considered in the last comparison cycle is considered as the left-most character
position, and the comparison cycle begins again with the first literal-1.

397

Interactive COBOL Language Reference & Developer’s Guide - Part One

c. Whenever a match occurs, tallying or replacing takes place as described in General Rules 10 and 13.
The character position in the data item referenced by identifier-1 immediately to the right of the right-most character
position that participated in the match is now considered to be the left-most character position of the data item
referenced by identifier-1, and the comparison cycle starts again with the first literal-1.

d. The comparison operation continues until the right-most character position of the data item referenced
by identifier-1 has participated in a match or has been considered as the left-most character position. When this
occurs, inspection is terminated.

e. If the CHARACTERS phrase is specified, an implied one character operand participates in the cycle
described in paragraphs 6a through 6d above as if it had been specified by /iteral-1, except that no comparison to the
content of the data item referenced by identifier-1 takes place. This implied character is considered always to match
the left-most character of the content of the data item referenced by identifier-1 participating in the current
comparison cycle.

(7) The comparison operation defined in General Rule 6 is restricted by the BEFORE and AFTER phrase as
follows:

a. If neither the BEFORE nor AFTER phrase is specified, /iteral-1 or the implied operand of the
CHARACTERS phrase participates in the comparison operation as described in General Rule 6. Literal-1 or the
implied operand of the CHARACTERS phrase is first eligible to participate in matching at the left-most character
position of identifier-1.

b. If the BEFORE phrase is specified, the associated literal-1 or the implied operand of the
CHARACTERS phrase participates only in those comparison cycles which involve that portion of the content of the
data item referenced by identifier-1 from its left-most character position up to, but not including, the first occurrence
of literal-2 within the content of the data item referenced by identifier-1. The position of this first occurrence is
determined before the first cycle of the comparison operation described in General Rule 6 is begun. If, on any
comparison cycle, literal-1 or the implied operand of the CHARACTERS phrase is not eligible to participate, it is
considered not to match the content of the data item referenced by identifier-1. If there is no occurrence of literal-2
within the content of the data item referenced by identifier-1, its associated literal-1 or the implied operand of the
CHARACTERS phrase participates in the comparison operation as though the BEFORE phrase had not been
specified.

c. If the AFTER phrase is specified, the associated /literal-1 or the implied operand of the CHARACTERS
phrase participate only in those comparison cycles which involve that portion of the content of the data item
referenced by identifier-1 from the character position immediately to the right of the right-most character position of
the first occurrence of literal-2 within the content of the data item referenced by identifier-1 to the right-most
character position of the data item referenced by identifier-1. This is the character position at which literal-1 or the
implied operand of the CHARACTERS phrase is first eligible to participate in matching. The position of this first
occurrence is determined before the first cycle of the comparison operation described in General Rule 6 is begun. If,
on any comparison cycle, /iteral-1 or the implied operand of the CHARACTERS phrase is not eligible to participate,
it is considered not to match the content of the data item referenced by identifier-1. If there is no occurrence of
literal-2 within the content of the data item referenced by identifier-1, its associated literal-1 or the implied operand
of the CHARACTERS phrase is never eligible to participate in the comparison operation.

Format 1:

(8) The required words ALL and LEADING are adjectives that apply to each succeeding literal-1 until the next
adjective appears.

(9) For ANSI 85 and VXCOBOL, the content of the data item referenced by identifier-2 is not initialized to
zero at the beginning of the execution of the INSPECT statement. For ANSI 74, the tally counter (identifier-2) is set
to zero at the beginning of the INSPECT statement. This is non-standard behavior and we recommend that you
insert a “MOVE ZERO TO identifier-2" statement prior to the INSPECT TALLYING when using ANSI 74.

398

PROCEDURE DIVISION (INSPECT)

(10) The rules for tallying are as follows:

a. If the ALL phrase is specified, the content of the data item referenced by identifier-2 is incremented by
one for each occurrence of literal-1 matched within the content of the data item referenced by identifier-1.

b. If the LEADING phrase is specified, the content of the data item referenced by identifier-2 is
incremented by one for the first and each subsequent contiguous occurrence of literal-1 matched within the content
of the data item referenced by identifier-1, provided that the left-most such occurrence is at the point where
comparison began in the first comparison cycle in which /iteral-1 was eligible to participate.

c. If the CHARACTERS phrase is specified, the content of the data item referenced by identifier-2 is
incremented by one for each character matched, in the sense of General Rule 6e, within the content of the data item
referenced by identifier-1.

(11) If identifier-1, identifier-3, or identifier-4 occupies the same storage area as identifier-2, the result of the
execution of this statement is undefined, even if they are defined by the same data description entry.

Format 2:

(12) The required words ALL, LEADING, and FIRST are adjectives that apply to each succeeding BY phrase
until the next adjective appears.

(13) The rules for replacement are as follows:

a. When the CHARACTERS phrase is specified, each character matched, in the sense of General Rule 6e,
in the content of the data item referenced by identifier-1 is replaced by literal-3.

b. When the adjective ALL is specified, each occurrence of /iteral-1 matched in the content of the data item
referenced by identifier-1 is replaced by literal-3.

c. When the adjective LEADING is specified, the first and each successive contiguous occurrence of
literal-1 matched in the content of the data item referenced by identifier-1 is replaced by literal-3, provided that the
left-most occurrence is at the point where comparison began in the first comparison cycle in which literal-1 was
eligible to participate.

d. When the adjective FIRST is specified, the left-most occurrence of literal-1 matched within the content
of the data item referenced by identifier-1 is replaced by literal-3. This rule applies to each successive specification
of the FIRST phrase regardless of the value of /iteral-1.

(14) If identifier-3, identifier-4, or identifier-5 occupies the same storage area as identifier-1, the result of the
execution of this statement is undefined, even if they are defined by the same data description entry.

Format 3:

(15) A Format 3 INSPECT statement is interpreted and executed as though two successive INSPECT
statements specifying the same identifier-1 had been written with one statement being a Format 1 statement with
TALLYING phrases identical to those specified in the Format 3 statement, and the other statement being a Format 2
statement with REPLACING phrases identical to those specified in the Format 3 statement. The General Rules
given for matching and counting apply to the Format 1 statement and the general rules given for matching and
replacing apply to the Format 2 statement. Subscripting associated with any identifier in the Format 2 statement is
evaluated only once before executing the Format 1 statement.

Format 4:
(16) A Format 4 INSPECT statement is interpreted and executed as though a Format 2 INSPECT statement

specifying the same identifier-1 has been written with a series of ALL phrases, one for each character of literal-4.
The effect is as if each of these ALL phrases referenced, as liferal-1, a single character of /iteral-4 and referenced, as

399

Interactive COBOL Language Reference & Developer’s Guide - Part One

literal-3, the corresponding single character of /iteral-5. Correspondence between the characters of literal-4 and the
characters of literal-5 is by ordinal position within the data item.

(17) If identifier-4, identifier-6, or identifier-7 occupies the same storage area as identifier-1, the result of the
execution of this statement is undefined, even if they are defined by the same data description entry.

E.34.5 Examples

In each of the following examples of the INSPECT statement, CNTn is assumed to be zero immediately prior to
execution of the statement. The results shown for each example, except the last, are the result of executing the two

successive INSPECT statements shown above them.

EXAMPLE 24. INSPECT TALLYING, REPLACING

INSPECT ITEM TALLYING

CNTO FOR ALL "AB",
CNT1 FOR ALL "BC"
CNT2 FOR LEADING

CNT3
CNT4

FOR LEADING

INSPECT ITEM REPLACING
ALL "AB" BY "XY",
ALL "BC" BY "VW"
LEADING "EF" BY
LEADING "B" BY "3S"
FIRST "G" BY "R"
FIRST "G" BY "pP"
CHARACTERS BY "z".

nEpEn
ngn
FOR CHARACTERS;
npn

wpyn

ALL “D”

BY "X"

EXAMPLE 24. Source

Initial Value of [CNTO |CNT1 [CNT2 |CNT3 |CNT4 [Final Value of

ITEM ITEM
-

EFABDBCGABEFGG 3 1 1 0 5 TUXYXVWRXTZZPZ

BABABC 2 0 0 1 1 SXYXYZ

BBBC 0 1 0 2 0 SSVW

EXAMPLE 24. Results

EXAMPLE 25. INSPECT TALLYING, REPLACING

INSPECT ITEM TALLYING
CNTO FOR CHARACTERS
CNT1 FOR ALL "A";

INSPECT ITEM REPLACING
CHARACTERS BY "z"

ALL "A" BY "X".

EXAMPLE 25. source code

|Initial Value of ITEM !CNTO!CNTllFinal Value of ITEM |

BBB 3 0 227

ABA 3 0 227

EXAMPLE 25. results

400

PROCEDURE DIVISION (INSPECT)

EXAMPLE 26. INSPECT TALLYING, REPLACING

INSPECT ITEM TALLYING
CNTO FOR ALL "AB" BEFORE "BC"
CNT1 FOR LEADING "B" AFTER "D"
CNT2 FOR CHARACTERS AFTER "A" BEFORE “C”;

INSPECT ITEM REPLACING
ALL "AB" BY "XY" BEFORE "BC"
LEADING "B" BY "W" AFTER "D"
FIRST "E" BY "V" AFTER "D"
CHARACTERS BY "Zz" AFTER "A" BEFORE “C”.

EXAMPLE 26. source code

|Initial Value of ITEM !CNTO !CNTl !CNTZ !Final Value of ITEM

BBEABDABABBCABEE 3 0 2 BBEXYZXYXYZCABVE
ADDDDC 0 0 4 AZZ727C
ADDDDA 0 0 5 AZZ7277
CDDDDC 0 0 0 CDDDDC
BDBBBDB 0 3 0 BDWWWDB

EXAMPLE 26. results

EXAMPLE 27. INSPECT TALLYING, REPLACING

INSPECT ITEM TALLYING
CNTO FOR ALL "AB" AFTER "BA" BEFORE "BC";

INSPECT ITEM REPLACING
ALL "AB" BY "XY" AFTER "BA" BEFORE "BC".

EXAMPLE 27. source code

Initial Value of ITEM |CNTO |Final Value of ITEM

ABABABABC 1 ABABXYABC

EXAMPLE 27. results

EXAMPLE 28. INSPECT CONVERTING

INSPECT ITEM CONVERTING
“ABCD” TO “XYZX” AFTER QUOTE BEFORE “#”.

EXAMPLE 28. source code

Initial Value of ITEM |Final Value of ITEM

AC”AEBDFBCD#AB”D AC”XEYXFYZX#AB”D

EXAMPLE 28. results

401

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.35. LINK SUB-INDEX (VXCOBOL)
E.35.1 Function

The LINK SUB-INDEX statement links a subindex to another index entry so that the subindex can be shared.

E.35.2 General Format

LINK SUB-INDEX file-name

NEXT
FORWARD
BACKWARD
upe KEY IS APPROXIMATE
DOWN [EY . _
SOUREE UP FORWARD {ﬂSARE}{'dentmem GENERIC H]
UP BACKWARD
DOWN FORWARD
STATIC

NEXT
FORWARD
BACKWARD

EIX up

DESTINATION RETAIN POSITION DOWN
UP FORWARD
UP BACKWARD

DOWN FORWARD
_ STATIC
KEY IS conifior1 | APPROXIMATE
KEYS ARE [| [dentifier- GENERIC

[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2 |
[END-LINK]

E.35.3 Syntax Rules

(1) File-name is a filename that specifies an INFOS file opened for OUTPUT or I/O and selected for ALLOW
SUB-INDEX.

(2) Identifier-1 is an alphanumeric data item that specifies a record key associated with file-name.

E.35.4 General Rules

(1) If the relative option and the KEY series phrase are omitted, the default is the first key in the SELECT
clause.

(2) The occurrence number is not updated.
(3) FEEDBACK is not updated.
(4) KEY LENGTH is unaffected.

(5) The subindex to link is determined according to what is specified in the relative option phrase and/or the
KEY series phrase in the SOURCE phrase. The link information is then transferred to the index entry specified by

402

PROCEDURE DIVISION (LINK SUB-INDEX)

the position phrase, the relative options phrase, and the KEY series phrase in the DESTINATION phrase. The
DESTINATION key must not already have a subindex defined.

(6) The position phrase can only be specified in the DESTINATION phrase. FIX POSITION causes the record
pointer to move from the current position to the position specified in this statement. RETAIN position causes the
record position to remain at the position it was on before the execution of this statement. RETAIN is the default.

(7) The relative motion option without the KEY series phrase allows access to the index file relative to that
file's current record position.

(8) Using the KEY series phrase without the relative motion option causes the key path specified to begin with
the top index in the hierarchy and follow a downward motion.

(9) If the KEY series phrase is specified, each key, identifier-1, must be declared in the SELECT statement for
file-name. 1f the relative motion option and KEY series phrase at both specified only UP, DOWN, and STATIC are
allowed. The relative motion option is processed first and the key path is used.

(10) Transfer of control following the successful or unsuccessful execution of the LINK SUB-INDEX operation
depends on the presence or absence of the optional INVALID KEY and NOT INVALID KEY phrases in the LINK
SUB-INDEX statement.

(11) INVALID KEY clauses on I/O statements are ONLY invoked when an Invalid Key error, as determined by
a File Status of 2x where x can be any character 0 - 9 or A - Z, is generated. All other error conditions will cause the
associated USE procedure, if present, as defined in the DECLARATIVES section to be executed. (See The Invalid
Key Condition, page 278, for more a more comprehensive discussion.)

403

d

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.36. MERGE
E.36.1 Function

The MERGE statement combines two or more identically-sequenced files on a set of specified keys, and during the
process makes records available, in merged order, to an output procedure or to an output file.

E.36.2 General Format (ANSI 74 and ANSI 85)

, ASCENDING
MERGE file-name-1 { ON {DES_C_END_LNQ} KEY { data-name-1}... }...

[COLLATING SEQUENCE IS alphabet-name]
USING file-name-2 { file-name-3 }...

[OUTPUT PROCEDURE IS procedure-name-1 THRU
GIVING { file-name-4 }...

THROUGH
procedure-name-2

E.36.3 General Format (VXCOBOL)
ASCENDING
MERGE file-name-1 { ON {DES_C_END_INQ} KEY { data-name-1}... }...

ASCIl
NATIVE
[COLLATING SEQUENCE IS { STANDARD-1 (]
EBCDIC
alphabet-name

USING file-name-2 { file-name-3}...

OUTPUT PROCEDURE IS procedure-name-1 THRU
GIVING { file-name-4 }...

} procedure-name-2

E.36.4 Syntax Rules

(1) A MERGE statement may appear anywhere in the Procedure Division except in the declaratives portion.

(2) File-name-1 must be described in a sort-merge file description entry in the Data Division.

(3) Ifthe file referenced by file-name-1 contains variable length records, the size of the records contained in the
files referenced by file-name-2 and file-name-3 must not be less than the smallest record nor greater than the largest
record described for file-name-1. If the file referenced by file-name-1 contains fixed length records, the sizes of the
records contained in the file referenced by file-name-2 and file-name-3 must not be greater than the largest record
described for file-name-1.

(4) Data-name-1 is a key data-name. Key data-names are subject to the following rules:

a. The data items identified by key data-names must be described in records associated with file-name-1.
b. Key data-names may be qualified.

¢. Key data-names may not be described as USAGE POINTER.

d. The data items identified by key data-names must not be group items that contain variable occurrence
data items.

404

PROCEDURE DIVISION (MERGE)

e. If file-name-1 has more than one record description, the data items identified by key data-names need be
described in only one record description. The same character positions referenced by a key data-name in one record
description entry are taken as the key in all records of the file.

f. None of the data items identified by key data-names can be described by an entry that either contains an
OCCURS clause or is subordinate to an entry that contains an OCCURS clause.

g. If a file referenced by file-name-1 contains variable length records, all the data items identified by key
data-names must be contained within the first x characters positions of the record, where x equals the minimum
record size specified for the file referenced by file-name-1.

(5) File-name-2, file-name-3, and file-name-4 must be described in a file description entry, not a sort-merge
description entry, in the Data Division.

(6) File-names must not be repeated within the MERGE statement.

(7) No pair of file-names in a MERGE statement may be specified in the same SAME AREA, SAME SORT
AREA, or SAME SORT-MERGE AREA clause. The only file-names in a MERGE statement that can be specified
in the SAME RECORD AREA clause are those associated with the GIVING phrase.

(8) The words THRU and THROUGH are equivalent.
(9) File-name-4 is subject to the following rules:

a. If file-name-4 references an indexed file, the first specification of data-name-1 and the data item
referenced by that data-name-1 must occupy the same character positions in its record as the data item associated
with the prime record key for that file. For ANSI 74 and ANSI 85, the first specification of data-name-1 must be
associated with the ASCENDING phrase if file-name-4 has a primary record key described explicitly or implicitly as
VALUES ARE ASCENDING. If the key is described as VALUES ARE DESCENDING, data-name-1 must be
associated with the DESCENDING phrase. For VXCOBOL, the first specification of data-name-1 must be
associated with the ASCENDING phrase.

b. For VXCOBOL, if file-name-4 references an INFOS file, it must not allow subindexing and the first
specification of data-name-1 must be associated with an ASCENDING phrase. The data-item referenced by
data-name-1 must occupy the same character positions in its record as the data item associated with the first
RECORD KEY in the select for file-name-4, i.e., the RECORD KEY and sort key must be internal to the record.

(10) If the GIVING phrase is specified and the file referenced by file-name-4 contains variable length records,
the size of the records contained in the file referenced by file-name-1 must not be less that the smallest record nor
greater that the largest record described for file-name-4. If the file referenced by file-name-4 contains fixed length
records, the size of the records contained in the file referenced by file-name-1 must not be greater that the largest
record described for file-name-4.

(11) For VXCOBOL, if file-name-2 or file-name-3 references INFOS files, they must not allow subindexing.

(12) Alphabet-name shall reference an alphabet defined in the SPECIAL-NAMES paragraph which defines an
alphanumeric collating sequence.

(13) If file-name-2 or file-name-3 references an indexed, INFOS, or relative file, its access mode shall be
sequential or dynamic.

E.36.5 General Rules

(1) The MERGE statement merges all records contained on the file referenced by file-name-2 and file-name-3.

405

Interactive COBOL Language Reference & Developer’s Guide - Part One

(2) If the file referenced by file-name-1 contains only fixed length records, any record in the file referenced by
file-name-2 or file-name-3 containing fewer character positions that fixed length is space filled on the right
beginning with the first character position after the last character in the record when that record is released to the file
referenced by file-name-1.

(3) The data-names following the word KEY are listed from left to right in the MERGE statement in order of
decreasing significance without regard to how they are divided into KEY phrases. The leftmost data-name is the
major key, the next data-name is the next most significant key, etc.

a. When the ASCENDING phrase is specified, the merged sequence will be from the lowest value of the
contents of the data items identified by the key data-names to the highest value, according to the rules for comparison
of operands in a relation condition.

b. When the DESCENDING phrase is specified, the merged sequence will be from the highest value of the
contents of the data items identified by the key data-names to the lowest value, according to the rules for comparison
of operands in a relation condition (see Relation Condition, starting on page 305).

(4) When, according to the rules for the comparison of operands in a relation condition, the contents of all key
data items of one data record are equal to the corresponding key data items of one or more other data records, the
order of return of these records:

a. Follows the order of the associated input files as specified in the MERGE statement.

b. Is such that all records associated with one input file are returned prior to the return of records from
another input file.

(5) The collating sequence that applies to the comparison of the nonnumeric key data items specified is
determined at the beginning of the execution of the MERGE statement in the following order of precedence:

a. First, the collating sequence established by the COLLATING SEQUENCE phrase, if specified, in that
MERGE statement.

b. Second, the collating sequence established as the program collating sequence. In ICOBOL, this is
always ASCII since the program collating sequence is ignored.

(6) The results of the merge operation are undefined unless the records in the files referenced by file-name-2
and file-name-3 are ordered as described in the ASCENDING or DESCENDING KEY phrases associated with the
MERGE statement.

(7) All the records in the files referenced by file-name-2 and file-name-3 are transferred to the file referenced by
file-name-1. At the start of the execution of the MERGE statement, the files referenced by file-name-2 and
file-name-3 must not be in the open mode. For each of the files referenced by file-name-2 and file-name-3 the
execution of the MERGE statement causes the following actions to be taken:

a. The processing of the file is initiated. The initiation is performed as if an OPEN statement with the
INPUT phrase had been executed. If an output procedure is specified, this initiation is performed before control

passes to the output procedure.

b. The logical records are obtained and released to the merge operation. Each record is obtained as if a
READ statement with the NEXT and the AT END phrases had been executed.

c. The processing of the file is terminated. The termination is performed as if a CLOSE statement without
optional phrases had been executed. If an output procedure passes the last statement in the output procedure.

These implicit functions are performed such that any associated USE AFTER STANDARD EXCEPTION
procedures are executed.

406

PROCEDURE DIVISION (MERGE)

(8) The output procedure may consist of any procedure needed to select, modify, or copy records that are made
available one at a time by the RETURN statement in merged order from the file referenced by file-name-1. The
range includes all statements that are executed as the result of a transfer of control by CALL, EXIT, GO TO, and
PERFORM statements in the range of the output procedure, as well as all statements in declarative procedures that
are executed as a result of the execution of statements in the range of the output procedure. The range of the output
procedure must not cause the execution on any MERGE, RELEASE, or SORT statement. See page 260, 312,
Explicit and Implicit specifications.

(9) If an output procedure is specified, control passes to it during execution of the MERGE statement. The
compiler inserts a return mechanism at the end of the last statement in the output procedure. When control passes
the last statement in the output procedure, the return mechanism provides for termination of the merge, and then
passes control to the next executable statement after the MERGE statement. Before entering the output procedure,
the merge procedure reaches a point at which it can select the next record in merged order when requested. The
RETURN statements in the output procedure are the requests for the next record.

(10) During the execution of the output procedure, no statement may be executed manipulating the file
referenced by or accessing the record area associated with file-name-2 or file-name-3. During the execution of any
USE AFTER STANDARD EXCEPTION procedure implicitly invoked while executing the MERGE statement, no
statement may be executed manipulating the file referenced by, or accessing the record area associated with,
file-name-2, file-name-3, or file-name-4.

(11) If the GIVING phrase is specified, all the merged records are written on the file referenced by file-name-4
as the implied output procedure for the MERGE statement. At the start of execution of the MERGE statement, the
file referenced by file-name-4 must not be in the open mode. For each of the files referenced by file-name-4, the
execution of the MERGE statement causes the following actions to be taken:

a. The processing of the file is initiated. The initiation is performed as if an OPEN statement with the
OUTPUT phrase had been executed.

b. The merged logical records are returned and written onto the file. Each record is written as if a WRITE
statement without any optional phrases had been executed. If the file referenced by file-name-4 is described with
variable length records, the size of any record written to file-name-4 is the size of that record when it was read from
file-name-1 , regardless of the content of the data-item referenced by the DEPENDING ON phrase of either a
RECORD IS VARYING or an OCCURS clause specified in the file description entry for file-name-4.

For a relative file, the relative key date for the first record returned contains the value '1'; for the second
record returned, the value '2', etc. After execution of the MERGE statement, the content of the relative key data item
indicates the last record returned to the file.

c. The processing of the file is terminated. The termination is performed as if a CLOSE statement without
optional phrases had been executed.

These implicit functions are performed such that any associated USE AFTER STANDARD EXCEPTION
procedures are executed; however, the execution of such a USE procedure must not cause the execution of any
statement manipulating the file referenced by, or accessing the record area associated with, file-name-4. On the first
attempt to write beyond the externally defined boundaries of the file, any USE AFTER STANDARD EXCEPTION
procedure specified for that file is executed; if control is returned from that USE procedure or if no USE procedure is
specified, the processing of the file is terminated as in paragraph 11c above.

(12) If the file referenced by file-name-4 contains only fixed length records, any record in the file referenced by
file-name-1 containing fewer character positions that fixed length is space filled on the right beginning with the first
character position after the last character in the record when that record is returned to the file referenced by
file-name-4.

407

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.37. MOVE
E.37.1 Function

The MOVE statement transfers data, in accordance with the rules of editing, to one or more data areas.

E.37.2 General Format

identifier-1

literal } TO { identifier-2 }...

MOVE {

CORRESPONDING | o
MOVE CORR identifier-1 TO identifier-2

E.37.3 Syntax Rules

(1) Literal or the data item referenced by identifier-1 represents the sending area. The data item referenced by
identifier-2 represents the receiving area.

(2) CORR is an abbreviation for CORRESPONDING.

(3) When the CORRESPONDING phrase is used, all identifiers must be group items and may not be referenced
modified.

(4) Neither an index data item nor Pointer data item may appear as an operand of a MOVE statement.

E.37.4 General Rules

(1) If the CORRESPONDING phrase is used, selected items within identifier-1 are moved to selected items
within identifier-2, according to the rules specified under the appropriate paragraph. The results are the same as if
the user had referred to each pair of corresponding identifiers in separate MOVE statements.

(2) Literal or the content of the data item referenced by identifier-1 is moved to the data item referenced by
each identifier-2 in the order in which it is specified. The rules referring to identifier-2 also apply to the other
receiving areas. Any length evaluation or subscripting associated with identifier-2 is evaluated immediately before
the data is moved to the respective data item.

If identifier-1 has varying length (ISQL), is reference modified, subscripted, or is a function-identifier, the
current length, reference modifier, subscript, or function-identifier is evaluated only once, immediately before data is
moved to the first of the receiving operands.

The evaluation of the length of identifier-1 or identifier-2 may be affected by the DEPENDING ON phrase
of the OCCURS clause.

(3) Any move in which the receiving operand is an elementary item and the sending operand is either a literal or
an elementary item is an elementary move. Every elementary item belongs to one of the following categories:
numeric, alphabetic, numeric edited, alphanumeric edited, (ISQL) date, time, timestamp, year-to-month, or day-to-
time. Numeric literals belong to the category numeric; nonnumeric literals belong to the category alphanumeric;
(ISQL) date-time and interval literals belong to their respective categories. The figurative constant ZERO (ZEROS,
ZEROES), when moved to a numeric or numeric edited item, belongs to the category numeric. In all other cases, it
belongs to the category alphanumeric. The figurative constant SPACE (SPACES) belongs to the category
alphabetic. All other figurative constants belong to the category alphanumeric.

The following rules apply to an elementary move between these categories:

408

PROCEDURE DIVISION (MOVE)

a. The figurative constant SPACE, a numeric edited, an alphanumeric edited, or alphabetic data item must
not be moved to a numeric, numeric edited, (ISQL) date-time, or interval data item.

b. A numeric literal, the figurative constant ZERO, a numeric data item, or a numeric edited data item must
not be moved to an alphabetic, (ISQL) date-time, or interval data item.

c. A non-integer numeric literal or a non-integer numeric data item must not be moved to an alphanumeric
or alphanumeric edited data item.

d. (ISQL) A date-time or interval literal or data item must not be moved to a data item with a category that
differs from the category of the literal or data item.

e. (ISQL) An alphanumeric item must not be moved to a date-time or interval data-item.
f. All other elementary moves are legal and are performed according to the rules given in General Rule 4.

(4) Any necessary conversion of data from one form of internal representation to another takes place during
legal elementary moves, along with any editing specified for the receiving data item:

a. When an alphanumeric edited or alphanumeric item is a receiving item, alignment and any necessary
space filling takes place as previously defined.
1) If the sending operand is described as being signed numeric, the operational sign is not moved; if the
operational sign occupies a separate character position, that character is not moved and the size of the sending
operand is considered to be one less than its actual size in terms of standard data format characters.

2) If the sending operand is numeric edited, no de-editing takes place.

3) If the usage of the sending operand is different from that of the receiving operand, conversion of the
sending operand to the internal representation of the receiving operand takes place.

4) If the sending operand is numeric and contains the PICTURE symbol "P', all digit positions specified
with this symbol are considered to have the value zero and are counted in the size of the sending operand.

b. When a numeric or numeric edited item is the receiving item, alignment by decimal point and any
necessary zero filling takes place as previously defined except where zeros are replaced because of editing
requirements.

1) When a signed numeric item is the receiving item, the sign of the sending operand is placed in the
receiving item. Conversion of the representation of the sign takes place as necessary. If the sending operand is
unsigned, a positive sign is generated for the receiving item.

2) When an unsigned numeric item is the receiving item, the absolute value of the sending operand is
moved and no operational sign is generated for the receiving item.

3) When the sending operand is described as being alphanumeric, data is moved as if the sending
operand were described as an unsigned numeric integer.

c. When a receiving field is described as alphabetic, justification and any necessary space filling takes
place as previously defined.

d. (ISQL) When the sending and receiving items are of category date, time or timestamp, each sub-field is
treated as a simple numeric to numeric move, with any applicable alignment, zero padding, or truncation of
fractional digits.

e. (ISQL) When the sending and receiving items are of category year-month or day-time, the value of the

sending operand is normalized and any alignment, padding with zero fields, or truncation takes place as previously
described.

409

Interactive COBOL Language Reference & Developer’s Guide - Part One

(5) Any move that is not an elementary move is treated exactly as if it were an alphanumeric to alphanumeric
elementary move, except that there is no conversion of data from one form of internal representation to another. In
such a move, the receiving area will be filled without consideration for the individual elementary or group items
contained within either the sending or receiving area, except as noted in the OCCURS clause.

(6) The following table summarizes the legality of the various types of MOVE statements. ‘Yes’ means the
move is legal; ‘No’ means it is not legal. The General Rule reference (after the slash) indicates the rule that prohibits
the move or that describes the behavior of a legal move.

CATEGORY OF CATEGORY OF RECEIVING DATA ITEM
SENDING
OPERAND ALPHABETIC ALPHANUMERIC NUMERIC INTEGER DATE TIME TIMESTAMP YEAR- DAY-TO-
EDITED NUMERIC TO- TIME
ALPHANUMERIC NONINTEGER MONTH
NUMERIC EDITED
ALPHABETIC Yes/4c Yes/4a No/3a No/3a No/3a No/3a No/3a No/3a
ALPHANUMERIC Yes/4c Yes/4a Yes/4b No/3e No/3e No/3e No/3e No/3e
ALPHANUMERIC Yes/4c Yes/4a No/3a No/3a No/3a No/3a No/3a No/3a
EDITED
NUMERIC No/3b Yes/4a Yes/4b No/3b No/3b No/3b No/3b No/3b
INTEGER
NUMERIC No/3b No/3c Yes/4b No/3b No/3b No/3b No/3b No/3b
NONINTEGER
NUMERIC EDITED No/3b Yes/4a No/3a No/3b No/3b No/3b No/3b No/3b
DATE No/3d No/3d No/3d Yes/4d No/3d No/3d No/3d No/3d
TIME No/3d No/3d No/3d No/3d Yes/4d No/3d No/3d No/3d
TIMESTAMP No/3d No/3d No/3d No/3d No/3d Yes/4d No/3d No/3d
YEAR-TO-MONTH No/3d No/3d No/3d No/3d No/3d No/3d Yes/4e No/3d
DAY-TO-TIME No/3d No/3d No/3d No/3d No/3d No/3d No/3d Yes/4e

TABLE 25. Legality of Types of MOVE Statements

410

PROCEDURE DIVISION (MULTIPLY)

E.38. MULTIPLY

E.38.1 Function

The MULTIPLY statement causes numeric data items to be multiplied and sets the values of data items equal to the
results.

E.38.2 General Format
Format 1:

identifier-1 , -

MULTIPLY \ “iteral1 BY { identifier-2 [ROUNDED]}...

[ON SIZE ERROR imperative-statement-1]
[NOT ON SIZE ERROR imperative-statement-2 |
[END-MULTIPLY]

Format 2:

identifier-1 identifier-2 . .

MULTIPLY { literal-1 } BY { literal-2 } GIVING { identifier-3[ROUNDED 1}...
[ON SIZE ERROR imperative-statement-1]
[NOT ON SIZE ERROR imperative-statement-2 |
[END-MULTIPLY]

E.38.3 Syntax Rules

(1) Each identifier must refer to a numeric elementary item, except that in Format 2 the identifier following the
word GIVING must refer to either an elementary numeric item or an elementary numeric edited item.

(2) Each literal must be a numeric literal.

(3) The composite of operands, which is the hypothetical data item resulting from the superimposition of all
receiving data items of a given statement aligned on their decimal points, must not contain more than 18 digits.

E.38.4 General Rules

(1) When Format 1 is used, /iteral-1 or the value of the data item referenced by identifier-1 is stored in a
temporary data item. The value in this temporary data item is multiplied by the value of the data item referenced by
identifier-2. The value of the multiplier (the value of the data item referenced by identifier-2) is replaced by this
product; similarly, the temporary data item is multiplied by each successive occurrence of identifier-2 in the left-to-
right order in which identifier-2 is specified.

(2) When Format 2 is used, /iteral-1 or the value of the data item referenced by identifier-1 is multiplied by
literal-2 or the value of the data item referenced by identifier-2 and the result is stored in the data items referenced
by identifier-3.

(3) Additional rules and explanations relative to this statement are given under the appropriate paragraphs, (See
Scope of Statements, page 260; The ROUNDED Phrase, page 253; The ON SIZE ERROR Phrase, page 254; The
Arithmetic Statements, page 256; Overlapping Operands, page 256; and Multiple Results in Arithmetic Statements,
page 256.)

411

Interactive COBOL Language Reference & Developer’s Guide - Part One

412

PROCEDURE DIVISION (OPEN)

E.39. OPEN
E.39.1 Function

The OPEN statement initiates the processing of files.

E.39.2 General Format (ANSI 74 and ANSI 85)

For sequential files:

{eut denamd , SEESSED 1}
OPEN [EXCLUSIVE] { { OUTPUT filename [WITH NO REWIND 1}...
1-0 filename...
EXTEND filename...

For relative and indexed files:

INPUT filename...

QUTPUT filename...
OPEN [EXCLUSIVE] 1=0 filename...

EXTEND filename...

E.39.3 General Format (VXCOBOL)

OPEN [EXCLUSIVE]

ONLY

INPUT [SEQUENTIAL] {ﬂlename [WITH NO REWIND] [EXCLUDE ientifier... }
. VERIFY ONLY

OUTPUT [INDEX] {fllename WITH {N_Q REWIND } } [EXCLUDE identifier... }

ONLY
EXCLUDE identifier...

ONLY
] EXCLUDE identifier...

i

(1) The files referenced in the OPEN statement need not all have the same organization or access.

1=0 | filename [WITH VERIFY] [

EXTEND 1 filename [WITH VERIFY

E.39.4 Syntax Rules

(2) For ANSI 74, the EXTEND phrase must only be used for sequential files.

(3) For ANSI 85, the EXTEND phrase must only be used for files in the sequential access mode.

(4) For VXCOBOL, the EXTEND phrase must only be used for sequential files, INFOS files, or files in
sequential access mode.

(5) The WITH NO REWIND, REVERSED, WITH VERIFY, ONLY, and EXCLUDE clauses are for
documentation purposes only.

(6) Filename may not be a sort/merge file.

413

Interactive COBOL Language Reference & Developer’s Guide - Part One
(7) The EXTEND phrase must only be used for files for which the LINAGE clause has not been specified.

E.39.5 General Rules

(1) The successful execution of an OPEN statement determines the availability of the file and results in the file
being in an open mode. The successful execution of an OPEN statement associates the file with the filename through
the file connector.

Once the filename is processed the OPEN statement checks to see if the given file is physically present and is
recognized by the input-output control system. and follows the rules as outlined in the following table.

The three tables below show the results of opening available and unavailable files for ANSI 74, ANSI 85, and
VXCOBOL.

File is Available File is Unavailable
INPUT Normal open Open is unsuccessful
I-0 Normal open For sequential, Open is
unsuccessful

For relative and indexed,
Open causes the file to be
created, NOT ANSI STANDARD

OUTPUT For sequential, Normal Open causes the file to be
open; the file con- created
tains no records
For relative and in-
dexed, Normal open,
NOT ANSI STANDARD

EXTEND Normal open Open causes the file to be
(sequential only) created

TABLE 26. Availability of a File (ANSI 74)

File is Available File is Unavailable
INPUT Normal open Open 1is unsuccessful
INPUT Normal open Normal open; the first READ
(optional) causes the at end or
invalid key condition
I-0 Normal open Open 1is unsuccessful
I-0 Normal open Open causes the file to be
(optional) created
OUTPUT Normal open; the file Open causes the file to be
contains no records created
EXTEND Normal open Open 1is unsuccessful
EXTEND Normal open Open causes the file to be
(optional) created

TABLE 27. Availability of a File (ANSI 85)

414

PROCEDURE DIVISION (OPEN)

File is Available File is Unavailable
INPUT Normal open Open is unsuccessful
INPUT Normal open Normal open; the first READ
(optional) causes the at end or

invalid key condition

INPUT SEQUENTIAL| Normal open Open is unsuccessful
(INFOS)
I-0 Normal open Open is unsuccessful
OUTPUT For ICISAM and INFOS, Open causes the file to be

files-Open 1is created

unsuccessful

For others-Open is
unsuccessful unless
compiled with the
ANSI switch (-G a)
in which case Open
is successful to an

empty file
OUTPUT INDEX Open 1is unsuccessful Open causes the file to be
(INFOS) created
EXTEND Normal open Open is unsuccessful

TABLE 28. Availability of a File (VXCOBOL)
(2) The successful execution of an OPEN statement makes the associated record area available to the program.

(3) When a file is not in an open mode, no statement may be executed which references the file, either explicitly
or implicitly, except for a MERGE statement with the USING or GIVING phrase, an OPEN statement, or a SORT
statement with the USING or GIVING phrase..

(4) An OPEN statement must be successfully executed prior to the execution of any of the permissible
input-output statements. In the Permissible Statements table below, 'X' at an intersection indicates that the specified
statement may be used with the open mode given at the top of the column.

File Access OPEN MODE
Mode Statement Input | Output | 1I-0 | Extend

Sequential READ X
WRITE X X
REWRITE X
START
DELETE
UNDELETE
Random READ X
WRITE X
REWRITE
START
DELETE
UNDELETE
Dynamic READ X
WRITE X
REWRITE
START X
DELETE
UNDELETE
All (VXCOBOL:)
DEFINE SUB-INDEX X
EXPUNGE SUB-INDEX
LINK SUB-INDEX X
RETRIEVE X

>

B

MO X X XX X

>
XXX X

TABLE 29. Permissible Statements
(5) A file may be opened with the INPUT, OUTPUT, EXTEND, and I-O phrases in the same run unit.
Following the initial execution of an OPEN statement for a file, each subsequent OPEN statement execution for that

same file must be preceded by the execution of a CLOSE statement, without the LOCK phrase, for that file.

(6) Execution of the OPEN statement does not obtain or release the first data record.

415

Interactive COBOL Language Reference & Developer’s Guide - Part One

(7) If during the execution of an OPEN statement a file attribute conflict condition occurs, the execution of the
OPEN statement is unsuccessful.

(8) If a file opened with the INPUT phrase is an optional file which is not present, the OPEN statement sets the
file position indicator to indicate that an optional input file is not present.

(9) When files are opened with the INPUT or I-O phrase, the file position indicator is set to the first record for
sequential files, 1 for relative files, and to the first record using the primary key for indexed files.

(10) When the EXTEND phrase is specified, the OPEN statement positions the file immediately after the last
logical record for that file. The last logical record for a sequential file is the last record written in the file. The last
logical record for a relative file is the currently existing record with the highest relative record number. The last
logical record for an indexed file is the currently existing record with the highest primary key.

(11) The OPEN statement with the I-O phrase must reference a file that supports the input and output
operations that are permitted for a file when opened in the I-O mode. The execution of the OPEN statement with the
I-O phrase places the referenced file in the open mode for both input and output operations.

(12) For ANSI 74, for a file that is unavailable, the successful execution of an OPEN statement with an
EXTEND or I-O phrase creates the file. This creation takes place as if the following statements were executed in the
order shown:

OPEN OUTPUT file-name.
CLOSE file-name.

These statements are followed by execution of the OPEN statement specified in the source program.

The successful execution of an OPEN statement with the OUTPUT phrase creates the file. After the
successful creation of a file, that file contains no data records.

(13) For ANSI 85, for an optional file that is unavailable, the successful execution of an OPEN statement with
an EXTEND or I-O phrase creates the file. This creation takes place as if the following statements were executed in
the order shown:

OPEN OUTPUT file-name.
CLOSE file-name.

These statements are followed by execution of the OPEN statement specified in the source program.

The successful execution of an OPEN statement with the OUTPUT phrase creates the file. After the
successful creation of a file, that file contains no data records.

OPTIONAL is specified in the File Control SELECT clause.

(14) For VXCOBOL, for a file that is unavailable, the execution of an OPEN statement with an EXTEND or
I-O phrase is unsuccessful.

(15) The execution of the OPEN statement causes the value of the I-O status (and, for VXCOBOL, the INFOS
status) associated with filename to be updated.

(16) If more than one filename is specified in an OPEN statement, the result of executing this OPEN statement
is the same as if a separate OPEN statement had been written for each file-name in the same order as specified in the

OPEN statement.

(17) The minimum and maximum record sizes for a file are established at the time the file is created and must
not subsequently be changed.

416

PROCEDURE DIVISION (OPEN)

(18) The EXCLUSIVE phrase is an extension to ANSI COBOL that specifies that for each file in the OPEN
statement, the current program is the only program that will be allowed to open the file, and the program can have
the file open on a single file connector. If any other ICOBOL program already has the file open, the OPEN
statement will fail. On some systems, the open will fail if any other program on the system (not just COBOL
programs) has the file open.

For VXCOBOL.:

(19) Opening an INFOS file will automatically perform a DOWN motion positioning the file position indicator
before the first key in the top level index (U/FOS positions the file position indicator above the top level index.) if
the access mode is sequential or dynamic. The downward motion is not done if the access mode is RANDOM.

(20) OPEN INPUT SEQUENTIAL could improve the performance of sequential reads thru INFOS II indexes,
however the SEQUENTIAL phrase is ignored when using U/FOS files.

(21) OPEN OUTPUT INDEX is used to create an additional index for an INFOS file. (The additional index is
frequently referred to as an inversion of the file.) The index named by the ASSIGN INDEX clause of the SELECT
must not exist and the database named by the ASSIGN DATA clause (or implied) must exist.

(22) INFOS files can be created with the OPEN OUTPUT phrase, but it is recommended that they be created
with an external utility. U/FOS files cab be created with the ufos_create utility. This utility provides more complete
access to the options available for the file.

NOTES:

(1) Files opened for OUTPUT, EXTEND, or I-O must not have the Read-Only attribute set, else the OPEN
fails with a File Status 92.

(2) On Linux, for OPEN OUTPUT to a sequential file that already exists, the file is opened with the Linux
truncate option, which sets the filesize to 0. This is equivalent to the COBOL behavior of deleting and recreating the
file. This method is used to properly maintain Linux hard links to the name.

(3) ICOBOL supports Indexed and Relative versions 7 and 8. An OPEN of a file that exists will automatically
adjust for the version of the file. An OPEN of a new file will create file version 8. A particular version can be
specified under programmer control by using the "v=7|8" option in an extended disk open.

(4) On Linux, for systems supporting symbolic links, OPEN will always open the resolution file.

(5) For ANSI 74 and ANSI 85, OPEN with ASSIGN TO PRINTER or PRINTER-1 including a filename with
the Printer Control utility enabled in the configuration file (.cfi) will place the file in the printer control file to be
printed if the given queue was enabled. If the given filename is a simple name (i.e., no path specifier), the file will
be created in the printer control directory. ASSIGN TO PRINTER will place the file in the queue directed to
@PCQO and ASSIGN TO PRINTER-1 will place the file in the queue directed to @PCQ]1. If the appropriate PCQ
has the AUTO option enabled, then when the file is closed by the COBOL program the file will automatically start
printing using the default options specified for that PCQ.

The printer control file has a limit of 48 to 1024 files before subsequent OPENs will fail with a File Status 99 if
a new file is to be added to the print queue.

(6) OPEN EXTEND does not imply EXCLUSIVE. If EXCLUSIVE access is desired, it should be explicitly
specified on the OPEN statement.

417

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.40. PERFORM

E.40.1 Function

The PERFORM statement is used to transfer control explicitly to one or more procedures and to return control
implicitly whenever execution of the specified procedure is complete. The PERFORM statement is also used to
control execution of one or more imperative statements which are within the scope of that PERFORM statement.

E.40.2 General Format (ANSI 74 and ANSI 85)

Format 1: Unconditional PERFORM
Out-of-line

THROUGH
PERFORM procedure-name-1 | THRU procedure-name-2 |

In-line

PERFORM imperative-statement-1 END-PERFORM

Format 2: Iterative PERFORM

Out-of-line
THROUGH identifier-
PERFORM procedure-name-1 [{ THRU } procedure-name-2] {Id;,?tztng } TIMES
In-line
identifier-1 , .
PERFORM \ iteral-1 TIMES imperative-statement-1

END-PERFORM

Format 3: Conditional PERFORM
Out-of-line

THROUGH
PERFORM procedure-name-1 | THRU procedure-name-2 |

AETER y
[WITH TEST{B_EF_QRE }] UNTIL condition-1

In-line

AFTER
PERFORM [WITH TEST{B_EF_O_RE }] UNTIL condition-1 imperative-statement-1 END-PERFORM

418

PROCEDURE DIVISION (PERFORM)

Format 4: Variable PERFORM
Out-of-line

THROUGH AFTER
PERFORM procedure-name-1 [{ THRU }procedure—name—2 1 [WITH TEST {BEF RE }]

. . identifier-3 , .
identifier-2 ! identifier-4
VARYING {,-,,,dex_name_1} EROM {’"d;l?t’;'r';‘;’_q"e'z} Bl{ literal-2 }

UNTIL condition-1

identifier-6

identifier-5 . identifier-7
[AFTER { index-name-3 } F‘BQM{ Ind;’?t);-rl;irgeA } B‘Y{ literal-4 }

UNTIL condition-2]...

In-line

AETER identifier-2 _dentifier-3 identifier-4
PERFORM [WITH @{BEEQRE } Juarvivg {, G0 | erow {'"d‘;ggije-Z {0}

UNTIL condition-1

imperative-statement-1 END-PERFORM

E.40.3.General Formats (VXCOBOL)

Format 1: Unconditional PERFORM

THROUGH
PERFORM procedure-name-1[) 4Ry procedure-name-2 |
[END-PERFORM]

Format 2: Iterative PERFORM

PERFORM procedure-name-1 [{ THRU } procedure-name-2] {'d“etr;trlgﬁq 1 } TIMES
[END-PERFORM]

Format 3: Conditional PERFORM

THROUGH ”
PERFORM procedure-name-1 | THRU procedure-name-2] UNTIL condition-1
[END-PERFORM]

419

Interactive COBOL Language Reference & Developer’s Guide - Part One

Format 4: Variable PERFORM

THROUGH
PERFORM procedure-name-1[\ tyr ! procedure-name-2 |

. . identifier-3 ’ -
identifier-2 ! identifier-4
VARYING {index—name-1} EROM {mdﬁggﬂe'z} By { literal-2 }

UNTIL condition-1

identifier-5

identifier-6 . -
identifier-7
[AFTER {index—name—S } B‘Y{ }

} EROM index-name-4 literal-4
literal-3

UNTIL condition-2]...

[END-PERFORM]

E.40.4 Syntax Rules

(1) Each identifier represents a numeric elementary item described in the Data Division. In Format 2,
identifier-1 must be described as a numeric integer.

(2) If neither the TEST BEFORE nor TEST AFTER phrase is specified, the TEST BEFORE is assumed. For
VXCOBOL, TEST BEFORE is always assumed.

(3) Each literal represents a numeric literal.

(4) The words THROUGH and THRU are equivalent.

(5) If an index-name is specified in the VARYING or AFTER phrase, then:
a. The identifier in the associated FROM and BY phrases must reference an integer data item.
b. The literal in the associated FROM phrase must be a positive integer.
c. The literal in the associated BY phrase must be a nonzero integer.

(6) If an index-name is specified in the FROM phrase, then:
a. The identifier in the associated VARYING or AFTER phrase must reference an integer data item.
b. The identifier in the associated BY phrase must reference an integer data item.
c. The literal in the associated BY phrase must be an integer.

(7) Literal in the BY phrase must not be zero.

(8) Condition-1, condition-2, ... , may be any conditional expression.

(9) Where procedure-name-1 and procedure-name-2 are both specified and either is the name of a procedure in
the declaratives portion of the Procedure Division, both must be procedure-names in the same declarative section.

(10) Six AFTER phrases are permitted in Format 4 of the out-of-line PERFORM statement.

(11) For ¥XCOBOL, the END-PERFORM is for documentation purposes only.

420

PROCEDURE DIVISION (PERFORM)

E.40.5 General Rules

(1) When procedure-name-1 is specified, the PERFORM statement is referred to as an out-of-line PERFORM
statement; when procedure-name-1 is omitted, the PERFORM statement is referred to as an in-line PERFORM
statement. In-line PERFORM statements are not supported for VXCOBOL.

(2) The data items referenced by identifier-4 and identifier-7 must not have a zero value.

(3) If an index-name is specified in the VARYING or AFTER phrase, and an identifier is specified in the
associated FROM phrase, the data item referenced by the identifier must have a positive value.

(4) The statements contained within the range of procedure-name-1 (through procedure-name-2 if specified)
for an out-of-line PERFORM statement or contained within the PERFORM statement itself for an in-line PERFORM
statement are referred to as the specified set of statements.

(5) The END-PERFORM phrase delimits the scope of the in-line PERFORM statement.

(6) An in-line PERFORM statement functions according to the following general rules for an otherwise
identical out-of-line PERFORM statement, with the exception that the statements contained within the in-line
PERFORM statement are executed in place of the statements contained within the range of procedure-name-1
(through procedure-name-2 if specified). Unless specially qualified by the word in-line or out-of-line, all the general
rules which apply to the out-of-line PERFORM statement also apply to the in-line PERFORM statement.

(7) When the PERFORM statement is executed, control is transferred to the first statement of the specified set
of statements (except as indicated in general rules 10b, 10c, and 10d). This transfer of control occurs only once for
each execution of a PERFORM statement. For those cases where a transfer of control to the specified set of
statements does take place, an implicit transfer of control to the end of the PERFORM statement is established as
follows:

a. If procedure-name-1 is a paragraph-name and procedure-name-2 is not specified, the return is after the
last statement of procedure-name-1.

b. If procedure-name-1 is a section-name and procedure-name-2 is not specified, the return is after the last
statement of the last paragraph in procedure-name-1.

c. If procedure-name-2 is specified and it is a paragraph-name, the return is after the last statement of the
paragraph.

d. If procedure-name-2 is specified and it is a section-name, the return is after the last statement of the last
paragraph in the section.

e. If an in-line PERFORM statement is specified, an execution of the PERFORM statement is completed
after the last statement contained within it has been executed.

(8) There is no necessary relationship between procedure-name-1 and procedure-name-2 except that a
consecutive sequence of operations is to be executed beginning at the procedure named procedure-name-1 and
ending with the execution of the procedure named procedure-name-2. In particular, GO TO and PERFORM
statements may occur between procedure-name-1 and the end of procedure-name-2. 1f there are two or more logical
paths to the return point, then procedure-name-2 may be the name of a paragraph consisting of the EXIT statement,
to which all of these paths must lead.

(9) If control passes to the specified set of statements by means other than a PERFORM statement, control will

pass through the last statement of the set to the next executable statement as if no PERFORM statement referenced
the set.

421

Interactive COBOL Language Reference & Developer’s Guide - Part One
(10) The PERFORM statements operate as follows:

a. Format 1 is the basic PERFORM statement. The specified set of statements referenced by this type of
PERFORM statement is executed once and then control passes to the end of the PERFORM statement.

b. Format 2 is the PERFORM ... TIMES. The specified set of statements is performed the number of times
specified by integer-1 or by the initial value of the data item referenced by identifier-1 for that execution. If at the
time of the execution of a PERFORM statement, the value of the data item referenced by identifier-1 is equal to zero
or is negative, control passes to the end of the PERFORM statement. Following the execution of the specified set of
statements the specified number of times, control is transferred to the end of the PERFORM statement.

During execution of the PERFORM statement, reference to identifier-1 cannot alter the number of
times the specified set of statements is to be executed from that which was indicated by the initial value of the data
item referenced by identifier-1.

See Appendix A, Implementation Limits on page 857, for the maximum number ICOBOL currently
supports for an interative PERFORM (i.e., PERFORM n TIMES) and for the maximum number of active
PERFORMSs.

c. Format 3 is the PERFORM ... UNTIL. The specified set of statements is performed until the condition
specified by the UNTIL phrase is true. When the condition is true, control is transferred to the end of the
PERFORM statement. If the condition is true when the PERFORM statement is entered, and test TEST BEFORE
phrase is specified or implied no transfer to procedure-name-1 takes place, and control is passed to the end of the
PERFORM statement. If the TEST AFTER phrase is specified, the PERFORM statement functions as if the TEST
BEFORE phrase was specified except that the condition is tested after the specified set of statements has been
executed. Any subscripting associated with the operands specified in condition-1 is evaluated each time the
condition is tested.

d. Format 4 is the PERFORM ... VARYING. This variation of the PERFORM statement is used to
augment the values referenced by one or more identifiers or index-names in an orderly fashion during the execution
of a PERFORM statement. In the following discussion, every reference to identifier as the object of the VARYING,
AFTER, and FROM (current value) phrases also refers to index-names. If index-name-1 or index-name-3 is
specified, the value of the associated index at the beginning of the PERFORM statement must be set to an occurrence
number of an element in the table. If index-name-2 or index-name-4 is specified, the value of the data item
referenced by identifier-2 or identifier-5 at the beginning of the PERFORM statement must be equal to an
occurrence number of an element in a table associated with index-name-2 or index-name-4. Subsequent augmenta-
tion, as described below, of index-name-1 or index-name-3 must not result in the associated index being set to a
value outside the range of the table associated with index-name-1 or index-name-3; except that, at the completion of
the PERFORM statement, the index associated with index-name-1 may contain a value that is outside the range of
the associated table by one increment or decrement value. If identifier-2 or identifier-5 is subscripted, the subscripts
are evaluated each time the content of the data item referenced by the identifier is set or augmented. If identifier-3,
identifier-4, identifier-6, or identifier-7 is subscripted, the subscripts are evaluated each time the content of the data
item referenced by the identifier is used in a setting or augmenting operation. Any subscripting associated with the
operands specified in condition-1 or condition-2 is evaluated each time the condition is tested.

Representation of the actions of several types of Format 4 PERFORM statements are given in figures 5 and
6 on the following pages.

1) If the TEST BEFORE phrase is specified or implied:

When the data item referenced by one identifier is varied, the content of the data item referenced by identifier-2
is set to literal-1 or the current value of the data item referenced by identifier-3 at the point of initial execution of the
PERFORM statement; then, if the condition of the UNTIL phrase is false, the specified set of statements is executed
once. The value of the data item referenced by identifier-2 is augmented by the specified increment or decrement
value (l/iteral-2 or the value of the data item referenced by identifier-4) and condition-1 is evaluated again. The
cycle continues until this condition is true, at which point control is transferred to the end of the PERFORM

422

PROCEDURE DIVISION (PERFORM)

statement. If condition-1 is true at the beginning of execution of the PERFORM statement, control is transferred to
the end of the PERFORM statement.

Entrance

!

Set identifier-2 equal
to current FROM value

A 4

| condition-1 True— Exit

False
A 4

Execute specific set
of statements

A 4

Augment identifier-2
with current BY value

FIGURE 5. PERFORM [TEST BEFORE] VARYING with one condition

When the data items referenced by two identifiers are varied, the content of the data item referenced by
identifier-2 is set to literal-1 or the current value of the data item referenced by identifier-3 and then the content of
the data item referenced by identifier-5 is set to literal-3 or the current value of the data item referenced by
identifier-6. After the contents of the data items referenced by the identifiers have been set, condition-1 is evaluated;
if true, control is transferred to the end of the PERFORM statement; if false, condition-2 is evaluated. If condition-2
is false, the specified set of statements is executed once, then the content of the data item referenced by identifier-5 is
augmented by literal-4 or the content of the data item referenced by identifier-7 and condition-2 is evaluated again.
This cycle of evaluation and augmentation continues until this condition is true. When condition-2 is true, the
content of the data item referenced by identifier-2 is augmented by literal-2 or the content of the data item referenced
by identifier-4, the content of the data item referenced by identifier-5 is set to literal-3 or the current value of the
data item referenced by identifier-6, and condition-1 is reevaluated. The PERFORM statement is completed if
condition-1 is true; if not, the cycle continues until condition-1 is true.

423

Interactive COBOL Language Reference & Developer’s Guide - Part One

Entrance

}

Set identifier-2 equal
to current FROM value

A 4
Set identifier-5 equal
to its current FROM
value
A 4
i | condition-1 Tru > Exit
False
A 4
condition-2 Tru >
A -
False
A 4 A 4
Execute specific set Augment identifier-2
of statements with current BY value
A 4 A 4
Augment identifier-5 Set identifier-5 to its
with current BY value current FROM value
< y

FIGURE 6. PERFORM [TEST BEFORE] VARYING with two conditions

At the termination of the PERFORM statement, the data item referenced by identifier-5 contains
literal-3 or the current value of the data item referenced by identifier-6. The data item referenced by identifier-2
contains a value that exceeds the last used setting by one increment or decrement value, unless condition-1 was true
when the PERFORM statement was entered, in which case, the data item referenced by identifier-2 contains literal-1
or the current value of the data item referenced by identifier-3.

2) For ANSI 74 and ANSI 85, if the TEST AFTER phrase is specified:

When the data item referenced by one identifier is varied, the content of the data item referenced by
identifier-2 is set to literal-1 or the current value of the data item referenced by identifier-3 at the point of execution
of the PERFORM statement; then the specified set of statements is executed and condition-1 of the UNTIL phrase is
tested. If the condition is false, the value of the data item referenced by identifier-2 is augmented by the specified
increment or decrement value (literal-2 or the value of the data item referenced by identifier-4) and the specified set
of statements is executed again. The cycle continues until condition-1 is tested and found to be true, at which point
control is transferred to the end of the PERFORM statement.

When the data item referenced by two identifiers are varied, the content of the data item referenced by
identifier-2 is set to literal-1 or the current value of the data item referenced by identifier-3, then the content of the
data item referenced by identifier-5 is set to literal-3 or the current value of the data item referenced by identifier-6
and the specified set of statements is executed. Condition-2 is then evaluated; if false, the content of the data item
referenced by identifier-5 is augmented by literal-4 or the content of the data item referenced by identifier-7 and the
specified set of statements is again executed. The cycle continues until condition-2 is again evaluated and found to
be true, at which time condition-1 is evaluated. If the condition is false, the value of the data item referenced by
identifier-2 is augmented by the specified increment or decrement value (literal-2 or the value of the data item
referenced by identifier-4), the content of the data item referenced by identifier-5 is set to literal-3 or the current
value of the data item referenced by identifier-6 and the specified set of statements is executed again. The cycle

424

PROCEDURE DIVISION (PERFORM)

continues until condition-1 is tested and found to be true, at which point control is transferred to the end of the
PERFORM statement.

After the completion of the PERFORM statement, each data item varied by an AFTER or VARYING
phrase contains the same value it contained at the end of the most recent execution of the specified set of statements.

During the execution of the specified set of statements associated with the PERFORM statement, any
change to the VARYING variable (the data item referenced by identifier-2 and index-name-1), the BY variable (the
data item referenced by identifier-4), the AFTER variable (the data item referenced by identifier-5 and
index-name-3), or the FROM variable (the data item referenced by identifier-3 and index-name-2) will be taken into
consideration and will affect the operation of the PERFORM statement.

When the data items referenced by two identifiers are varied, the data item referenced by identifier-5 goes
through a complete cycle (FROM, BY, UNTIL) each time the content of the data item referenced by identifier-2 is
varied. When the contents of three or more data items referenced by identifiers varied, the mechanism is the same as
for two identifiers except that the data item being varied by each AFTER phrase goes through a complete cycle each
time the data item being varied by the preceding AFTER phrase is augmented.

(11) The range of a PERFORM statement consists logically of all those statements that are executed as a result
of executing the PERFORM statement through execution of the implicit transfer of control to the end of the
PERFORM statement. The range includes all statements that are executed as the result of a transfer of control by
CALL, EXIT, GO TO, and PERFORM statements in the range of the PERFORM statement, as well as all statements
in declarative procedures that are executed as a result of the execution of statements in the range of the PERFORM
statement. The statements in the range of a PERFORM statement need not appear consecutively in the source
program.

(12) Statements executed as the result of a transfer of control caused by executing an EXIT PROGRAM
statement are not considered to be part of the range of the PERFORM statement when:

a. That EXIT PROGRAM statement is specified in the same program in which the PERFORM statement is
specified, and

b. The EXIT PROGRAM statement is within the range of the PERFORM statement.

(13) Statements in other programs in the run unit may only be obeyed as a result of executing a PERFORM
statement, if the range of that PERFORM statement includes CALL and EXIT PROGRAM statements.

(14) If the range of a PERFORM statement includes another PERFORM statement, the sequence of procedures
associated with the included PERFORM must itself either be totally included in, or totally excluded from, the logical
sequence referred to by the first PERFORM. Thus, an active PERFORM statement, whose execution point begins
within the range of another active PERFORM statement, must not allow control to pass to the exit of the other active
PERFORM statement; furthermore, two or more such active PERFORM statements may not have a common exit.
See the following illustrations for examples of legal PERFORM constructs:

x PERFORMa THRUm x PERFORM a THRUm x PERFORMa THRUm
a a a
d PERFORMf THRUj d PERFORM f THRUj i

£ :I h m
j m J —

d PERFORMf THRUj

m — | f

i

FIGURE 7. Valid PERFORM constructs

425

Interactive COBOL Language Reference & Developer’s Guide - Part One
E.41. PREPARE (ISQL)

E.41.1 Function

The PREPARE statement prepares an SQL statement for subsequent execution by the EXECUTE statement.

E.41.2 General Format

identifier-1 identifier-2
m{ literai-1 }F—RQM { literal-2 }

[ON SQLERROR imperative-statement-1]
[NOT ON SQLERROR imperative-statement-2]
[END-PREPARE]

E.41.3 Syntax Rules
(1) Literal-1 and literal-2 must specify a nonnumeric literal and may not specify a figurative constant.
(2) Identifier-1 and identifier-2 must specify an alphanumeric data item.

(3) Literal-1 or the value represented by identifier-1 may not exceed 30 characters in length.

E.41.4 General Rules

(1) Literal-1 or the content of the data item represented by identifier-1 specifies the name of a statement
container at runtime. The statement container holds the result of the statement preparation process that is performed
when the PREPARE statement is executed. The content of the statement container is subsequently used by an
EXECUTE statement to perform the SQL operation. Container names can be at most 30 characters long.

(2) Literal-2 or the content of the data item represented by identifier-2 specifies the text of the SQL statement
that is to be prepared for execution.

(3) Statement containers are considered to be local to the currently active connection, regardless of the program
containing the PREPARE statement that allocates them. Therefore a statement can be prepared in one program and
executed in a separate program.

(4) The following SQL statements may be specified as part of /iteral-2 or the content of the data item
represented by identifier-2:

* CREATE TABLE and CREATE INDEX
« DECLARE CURSOR

« DELETE

* DROP TABLE and DROP INDEX
« SELECT

» INSERT

« UPDATE

Additional information on the syntax for these supported statements can be found in the chapter on the ICODBC
Driver found on page 813.

(5) Ifthere is no currently active connection in the run unit, the execution of the PREPARE statement will result
in an error with a SQLSTATE of “HY 010", which is a “Function sequence error”.

426

PROCEDURE DIVISION (PREPARE)

(6) If a statement container by the specified name already exists in the currently active connection at the time
the PREPARE statement is executed, the existing content of the statement container is discarded and the container is
reused for the execution of this PREPARE statement.

(7) If a statement container by the specified name does not already exist in the currently active connection at the
time the PREPARE statement is executed, a new statement container with the given name is allocated for the
currently active connection.

(8) Upon completion of the PREPARE statement, the following occurs in the order specified:
a. The value of the SQLSTATE data item is updated with the status of the operation.

b. If the value of the SQLSTATE class field is “00" or “01", the statement is successful. Control is
transferred to the end of the PREPARE statement or to imperative-statement-2, if specified. In the latter case,
execution continues according to the rules for each statement specified in imperative-statement-2. If a procedure
branching or conditional statement which causes explicit transfer of control is executed, control is transferred in
accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-2,
control is transferred to the end of the PREPARE statement.

c. If the value of the SQLSTATE class field is not “00" or “01", the statement is unsuccessful. The
statement container is deallocated and no statement container of the specified name will exist in the current program.
Control is transferred to the end of the PREPARE statement or to imperative-statement-1, if specified. In the latter
case, execution continues according to the rules for each statement specified in imperative-statement-1. 1f a
procedure branching or conditional statement which causes explicit transfer of control is executed, control is
transferred in accordance with the rules for the statement; otherwise, upon completion of the execution of
imperative-statement-1, control is transferred to the end of the PREPARE statement.

(9) The END-PREPARE phrase delimits the scope of the PREPARE statement.

(10) More on SQLSTATE can be found on page 139.

427

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.42. READ (ANSI 74 and ANSI 85)

E.42.1 Function

For sequential access, the READ statement makes available the next logical record from a file. For random access,
the READ statement makes available a specified record from a mass storage file. LOCK and IGNORE LOCK are
extensions to ANSI COBOL. TIME-OUT is an extension to ANSI COBOL.

E.42.2 General Format

Format 1:

For sequential files:

identifier-2
literal-1 |]

READ file-name [NEXT] RECORD [INTO identifier-1][TIME-OUT AFTER {

[AT END imperative-statement-1]
[NOT AT END imperative-statement-2]
[END-READ]

For indexed and relative files:

NEXT
MO_LLS] RECORD [WITH {
[INTO identifier-1]
[AT END imperative-statement-1]
[NOT AT END imperative-statement-2]
[END-READ]

LOCK }]

READ file-name IGNORE LOCK

Format 2:
For relative files:

. LOCK
READ file-name RECORD [WITH {IGNORE LOCK } |

[INTO INTO identifier-1]

[INVALID INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-READ |

For indexed files:
, LOCK
READ file-name RECORD [WITH {JG_ND_RE LOCK }]
[INTO INTO identifier-1] [KEY IS key-name]
[INVALID INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-READ |

428

PROCEDURE DIVISION (ANSI 74 and ANSI 85 READ)

E.42.3 Syntax Rules

(1) The storage area associated with identifier-1 and the record area associated with file-name must not be the
same storage area.

(2) Format 1 must be used for all files in sequential access mode.
(3) Identifier-2 may represent any elementary numeric data item. Literal-1 may be any numeric literal.

(4) In Format 1, the NEXT or PREVIOUS phrase must be specified for files in dynamic access mode when
records are to be retrieved sequentially.

(5) Format 2 is used for indexed and relative files in random access mode or for files in dynamic access mode
when records are to be retrieved randomly.

(6) The INVALID KEY phrase or the AT END phrase must be specified, if no applicable USE AFTER
STANDARD EXCEPTION procedure is specified for file-name.

For indexed files:

(7) The KEY IS phrase of the READ statement must reference a key-name (id-1 in the formats of the RECORD
KEY or ALTERNATE RECORD KEY) associated with file-name.

(8) Key-name may be qualified if id-1 is a simple data item. Key-name may be qualified by the filename if it is
a composite data item.

E.42.4 General Rules

(1) The file referenced by file-name must be open in the input or I-O mode at the time this statement is
executed.

(2) In format 1, if neither the NEXT phrase nor the PREVIOUS phrase is specified, then NEXT is implied for
files in sequential access mode.

(3) The execution of the READ statement causes the value of the I-O status associated with file-name to be
updated.

(4) The setting of the file position indicator at the start of the execution of a Format 1 READ statement is used
in determining the record to be made available according to the following rules. Comparisons for records in
sequential files relate to the record number. Comparisons for records in relative files relate to the relative key
number. Comparisons for records in indexed files relate to the value of the current key of reference. For indexed
files, the comparisons are made according to the collating sequence of the file.

a. If the file position indicator indicates that no valid next record has been established, execution of the
READ statement is unsuccessful.

b. If the file position indicator was established by a previous OPEN or START statement, the first existing
record that is selected is either:

1. If NEXT is specified or implied, the first existing record in the file whose record number or key
value is greater than or equal to the file position indicator, or

2. If PREVIOUS is specified, the first existing record in the file whose record number or key value is
less than or equal to the file position indicator.

429

Interactive COBOL Language Reference & Developer’s Guide - Part One

NOTE: For OPEN, this means that you normally get the first record in the file for sequential or relative and
normally get an at end condition for indexed.

c. Ifthe file position indicator was established by a previous READ statement and the file is sequential or
relative, or an indexed file whose current key of reference does not allow duplicates, the first existing record in the
file whose record number (or relative record number) or key value is greater than the file position indicator if NEXT
is specified or implied or is less than the file position indicator if PREVIOUS is specified is selected.

d. For indexed files, if the file position indicator was established by a previous READ statement, and the
current key of reference does allow duplicates, the record that is selected is one of the following:

1. If NEXT is specified or implied, the first record in the file whose key value is either equal to the file
position indicator and whose logical position within the set of duplicates is immediately after the record that was
made available by that previous READ statement, or whose key value is greater that the file position indicator.

2. If PREVIOUS is specified, the first record in the file whose key value is either equal to the file
position indicator and whose logical position within the set of duplicates is immediately prior to the record that was
made available by that previous READ statement, or whose key value is less than the file position indicator.

If a record is found which satisfies the above rules, it is made available in the record area associated with
file-name, unless the RELATIVE KEY phrase is specified for file-name and the number of significant digits in the
relative record number of the selected record is larger than the size of the relative key data item, in which case, the
file position indicator is set to indicate this condition and execution proceeds as specified in General Rule 10.

If no record is found which satisfies the above rules, the file position indicator is set to indicate that no next
logical record exists and execution proceeds as specified in General Rule 9.

If a record is made available, the file position indicator is set to the record number of the record made
available.

(5) Regardless of the method used to overlap access time with processing time, the concept of the READ
statement is unchanged; a record is available to the object program prior to the execution of imperative-statement-2,
if specified, or prior to the execution of any statement following the READ statement, if imperative-statement-2 is
not specified.

(6) When the logical records of a file are described with more than one record description, these records
automatically share the same record area in storage; this is equivalent to an implicit redefinition of the area. The
contents of any data items which lie beyond the range of the current data record ate undefined at the completion of
the execution of the READ statement.

(7) The INTO phrase may be specified in a READ statement:
a. If only one record description is subordinate to the file description entry, or

b. If all record-names associated with file-name and the data item referenced by identifier-1 describe a
group item or an elementary alphanumeric item.

(8) The result of the execution of a READ statement with the INTO phrase is equivalent to the application of
the following rules in the order specified:

a. The execution of the same READ statement without the INTO phrase.

b. The current record is moved from the record area to the area specified by identifier-1 according to the
rules for the MOVE statement without the CORRESPONDING phrase. The size of the current record is specified in
the RECORD clause. If the file description entry contains a RECORD IS VARYING clause, the implied move is a
group move. The implied MOVE statement does not occur if the execution of the READ statement was
unsuccessful. Any subscripting associated with identifier-1 is evaluated after the record has been read and

430

PROCEDURE DIVISION (ANSI 74 and ANSI 85 READ)

immediately before it is moved to the data item. The record is available in both the record area and the data item
referenced by identifier-1.

(9) For ANSI 85, if at the time of execution of a format 2 READ statement, the file position indicator indicates
that an optional input file is not present, the invalid key condition exists and execution of the READ statement is
unsuccessful.

(10) For a Format 1 READ statement, if the file position indicator indicates that no next logical record exists, or
that the number of significant digits in the relative record number is larger that the size of the relative key data item,
the following occurs in the order specified:

a. A value, derived from the setting of the file position indicator, is placed into the I-O status associated
with file-name to indicate the at end condition.

b. If the AT END phrase is specified in the statement causing the condition, control is transferred to
imperative-statement-1 in the AT END phrase. Any USE AFTER STANDARD EXCEPTION procedure associated
with file-name is not executed.

c. Ifthe AT END phrase is not specified, a USE AFTER STANDARD EXCEPTION procedure must be
associated with this file-name, and that procedure is executed. Return from that procedure is to the next executable
statement following the end of the READ statement.

When the at end condition occurs, execution of the READ statement is unsuccessful.

(11) If neither an at end nor an invalid key condition occurs during the execution of a READ statement, the AT
END phrase or INVALID KEY phrase is ignored, if specified, and the following actions occur:
a. The file position indicator is set and the