
Interactive COBOL

Language Reference

 &

Developer’s Guide

ICOBOL Revision 5.50

No. 011-00100-32

February 2024

Much of the material in this manual is extracted from the ANSI X.3-1985 COBOL Standard, generally referred to as the ANSI COBOL 85
Standard. Accordingly, the following acknowledgment is made as required in that document.

COBOL is an industry language and is not the property of any company or group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL COBOL Committee as to the accuracy and functioning of
the programming system and language. Moreover, no responsibility is assumed by any contributor, or by the committee, in connection
therewith.

The authors and copyright holders of the copyrighted materials used herein are:

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for the UNIVAC (R) I and II, Data Automation System copyrighted
1958, 1959, by Sperry Rand Corporation; IBM Commercial Translator Form No. F 28-8013, copyrighted 1959 by IBM; FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell.

They have specifically authorized the use of this material in whole or in part, in the COBOL specifications. Such authorization extends to the
reproduction and use of COBOL specifications in programming manuals or similar publications.

Procedures have been established for the maintenance of COBOL. Inquiries concerning the procedures for proposing changes should be directed
to the Chairman of the CODASYL COBOL Committee, P.O. 1808, Washington, DC 20013.

LICENSE AGREEMENT

Carefully read the following terms and conditions. Use of this product constitutes your acceptance of these terms and
conditions and your agreement to abide by them.

You, the purchaser, are granted a non-exclusive license to use this software under the terms stated in this agreement. The
program and its documentation are copyrighted and may not be copied or reproduced in any part, in any form, for any purpose,
except according to the terms stated in this agreement.

You may:

1. use the software for up to the number of active users for which the software was purchased.

2. use the software provided a valid license is installed for the required number of active users to be supported at any one
time.

3. copy the software into any machine readable form for backup purposes.

4. transfer the software from one computer to another.

5. assign or transfer the software and license to another party if the other party agrees to all the terms and conditions of this
agreement. Once the transfer is complete you must destroy any copies of the software not transferred.

6. rent, sublicense, or lease the software and license if the user agrees to all the terms and conditions of this agreement.

7. not alter, modify, or adapt the software itself, including, but not limited to, translating, decompiling, or disassembling.

8. copy or reproduce the documentation for purposes of using a valid license.

This license and your right to use the software automatically terminate if you fail to comply with any provision of this License
Agreement. You agree upon such termination to destroy the software and license.

Restricted Rights Legend: Use, duplication, or disclosure by the U. S. Government is subject to restrictions as set forth in subparagraph
(c) (1) (ii) of the Rights in Technical Data and Computer Software clause at [DFARS] 252.227-7013 (October 1988).

Envyr Corporation
92 Cornerstone Dr., Ste 143

Cary, N.C. 27519
USA

www.icobol.com

LIMITED WARRANTY

Envyr Corporation warrants that (a) the software will perform substantially in accordance with the accompanying
written materials for a period of ninety (90) days from the date of receipt; and (b) any hardware accompanying the
software will be free from defects in materials and workmanship under normal use and service for a period of one (1)
year from the date of receipt. Any implied warranties on the software and hardware are limited to ninety (90) days
and one (1) year respectively. Some states do not allow limitations on duration of an implied warranty, so the above
limitation may not apply to you.

Envyr Corporation's entire liability and your exclusive remedy shall be, at Envyr Corporation’s option, either (a)
return the license fee or (b) repair or replacement of the software or hardware that does not meet the above Limited
Warranty and which is returned to the original vendor with a copy of the receipt. This Limited Warranty is void if
failure of the software or hardware has resulted from accident, abuse, or misapplication.

In no event shall Envyr Corporation or its suppliers be liable for any damages whatsoever, including, but without
limitation, damages for loss of business profits, business interruption, loss of business information, or other
pecuniary loss, arising out of the use of or inability to use this software or hardware, even if Envyr Corporation has
been advised of the possibility of such damages.

Interactive COBOL Language Reference & Developer’s Guide

NOTICE

This manual has been prepared for use only with the Interactive COBOL product by prospective customers or valid
licensees. The information in this manual is subject to change without prior notice.

In no event shall the seller be liable for any incidental, indirect, special or consequential damages whatsoever
(including but not limited to lost profits) arising out of or related to this document or the information contained in it,
even if the writers have been advised, knew or should have known of the possibility of such damage.

Program and Manual Copyright © 1994-96, 1998-2004, 2007-2012, 2014-2017, 2020, 2021, 2024 by Envyr
Corporation, Cary, N.C. All rights reserved.

 Major Revision History:
Release 2.00 - March 1994
Release 2.20 - September 1996
Release 2.40 - June 1998
Release 2.60 - October 1999

Release 3.00 - August 2000
Release 3.10 - April 2001
Release 3.20 - April 2002
Release 3.30 - February 2003
Release 3.40 - March 2004
Release 3.60 - January 2008

Release 4.00 - October 2008
Release 4.10 - August 2009
Release 4.20 - December 2009
Release 4.40 - June 2010
Release 4.50 - April 2011
Release 4.53 - July 2011
Release 4.70 - August 2012
Release 4.71 - October 2012
Release 4.72 - December 2012

Release 5.00 - December 2014
Release 5.02 - December 2014
Release 5.04 - March 2015
Release 5.10 - October 2015
Release 5.20 - June 2016
Release 5.24 - December 2016
Release 5.25 - January 2017
Release 5.40 - May 2020
Release 5.44 - July 2021
Release 5.50 - February 2024

Effective with:
Interactive COBOL Revision 5.50

6

TRADEMARKS

ICHOST, Interactive COBOL, and ICOBOL are trademarks of Envyr Corporation

DEC, VT100, and VT220 are trademarks of Digital Equipment Corporation.
DG/UX is a trademark of Data General Corporation.
IBM is a registered trademarks of International Business Machines Corporation.
Intel is a registered trademark of Intel Corporation.
Core and Quark are trademarks of Intel Corporation.
Atom, Celeron, Pentium, Xeon, and Itanium are registered trademarks of Intel Corporation.
AIX, PC, PC/XT, PC/AT, PS/2, RISC System 6000, 3101, 3151, and 3161 are trademarks of International

Business Machines Corporation.
Microsoft, MS-DOS, Windows, Windows NT, and XENIX are registered trademarks of Microsoft Corporation.
SentinelPRO and Software Sentinel-C are trademarks of RAINBOW Technologies, Inc. (Now owned by

Gemalto)
SunOS and Solaris are trademarks of Sun Microsystem, Inc.
UNIX is a trademark of UNIX Systems Laboratories, Inc. (USL)
WYSE is a registered trademark of Wyse Technology.
WY-60, WY-50, WY-50+ are trademarks of Wyse Technology.
Linux is a registered trademark owned by Linus Torvalds and managed by The Linux Foundation.

All other product names mentioned herein are trademarks of their respective owners.

7

Interactive COBOL Language Reference & Developer’s Guide

8

Table of Contents

TABLE OF CONTENTS

TABLE OF CONTENTS . 9

PREFACE . 27

ENHANCEMENTS. 31

PART ONE - LANGUAGE REFERENCE 37

I. CONVENTIONS USED IN THIS MANUAL . 39
A. Definition of a General Format . 39

1. Elements. 39
2. Words . 39
3. Level-Numbers . 39
4. Brackets and Braces . 39
5. Ellipsis . 39
6. Format Punctuation . 40
7. Use of Special Character Words in Formats . 40
8. Documentation Only . 40

B. Rules . 40
1. Syntax Rules . 40
2. General Rules. 40

C. ICOBOL Dialects and Feature-Sets . 41
1. Description of ICOBOL Dialects . 41
2. Notation of Dialect Differences . 41
3. Description of Feature-sets . 42
4. Notation of Feature-set Differences . 42

II. COBOL SOURCE PROGRAM . 43
A. General Description. 43
B. Concepts . 43

1. Character Set . 43
2. Language Structure . 43

2.1 Separators . 43
2.2 Character-Strings . 44

2.2.1 COBOL Words. 44
2.2.2 Literals . 47
2.2.2.1 Nonnumeric Literals . 48
2.2.2.2 Nonnumeric Hexadecimal Literals . 49
2.2.2.3 Numeric Literals . 49
2.2.2.4 Numeric Hexadecimal Literals . 50
2.2.2.5 Figurative Constant Values. 50
2.2.2.6 Date Literals (ISQL) . 52
2.2.2.7 Time Literals (ISQL) . 52
2.2.2.8 Timestamp Literals (ISQL) . 53
2.2.2.9 Interval Literals (ISQL) . 53
2.2.2.9.1 Year-Month Interval Literals (ISQL) . 54
2.2.2.9.2 Day-Time Interval Literals (ISQL) . 55
2.2.3 LINAGE-COUNTER . 56
2.2.4 PICTURE Character-Strings . 56
2.2.5 Comment-Entries. 56

3. Program and Run Unit Organization and Communication . 56
3.1 Program and Run Unit Organization . 57
3.2 Accessing Data and Files . 57

3.2.1 Names . 57

9

Interactive COBOL Language Reference & Developer’s Guide

3.2.2 Objects . 57
3.3 Inter-program Communication . 59

3.3.1 Transfer of Control. 59
3.3.2 Passing Parameters to Programs . 60

3.4 Intra-program Communication . 61
3.4.1 Transfer of Control. 61
3.4.2 Shared Data . 61

C. Organization . 61
D. Structure . 62
E. Divisions . 62
F. Reference Format (Source). 63

1. General Description . 63
2. ANSI Card Format . 63
3. Free-Form Format (CRT) . 64
4. Extended Card Format . 65
5. Sequence Numbers (ANSI Card Format). 65
6. Continuation of Lines . 65
7. Blank Lines . 66
8. Comments . 66
9. Debugging Lines. 66
10. Division, Section, and Paragraph Formats . 67

10.1 Division Header . 67
10.2 Section Header. 67
10.3 Paragraph Header, Paragraph-Name, and Paragraph. 67

11. DATA DIVISION Entries . 67
12. DECLARATIVES . 68

G. COPY Statement . 69

III. IDENTIFICATION DIVISION . 73
A. General Description. 73
B. Organization . 73
C. PROGRAM-ID Paragraph . 75
D. DATE-COMPILED Paragraph . 75

IV. ENVIRONMENT DIVISION . 77
A. General Description. 77
B. Concepts . 77
C. Organization . 77
D. CONFIGURATION SECTION . 79

1. SOURCE-COMPUTER Paragraph. 79
2. OBJECT-COMPUTER Paragraph . 80
3. SPECIAL-NAMES Paragraph. 80

E. INPUT-OUTPUT SECTION . 89
1. FILE-CONTROL Paragraph . 89
2. File Control Entry. 90
3. ACCESS MODE Clause . 96
4. ALLOW SUB-INDEX and LEVELS Clauses (VXCOBOL) . 98
5. ALTERNATE RECORD KEY Clause (ANSI 74 and ANSI 85) 99
6. ALTERNATE RECORD KEY Clause (VXCOBOL) . 102
7. ASSIGN Clause. 104
8. COMPRESSION Clauses (VXCOBOL) . 107
9. DELETE LOGICAL/PHYSICAL Clause (ANSI 74 and ANSI 85). 108
10. FILE STATUS Clause . 109
11. INDEX SIZE, DATA SIZE Clauses. 110
12. INFOS STATUS Clause (VXCOBOL) . 111
13. ORGANIZATION Clause . 112
14. QUEUE Clause . 113
15. RECORD DELIMITER Clause (ANSI 74 and ANSI 85) . 114

10

Table of Contents

16. RECORD KEY Clause. 116
17. RESERVE Clause (VXCOBOL) . 119
18. I-O-CONTROL Paragraph . 120
19. SAME Clause . 121

V. DATA DIVISION. 123
A. General Description. 123
B. Concepts . 123

1. Logical Record Concept . 123
1.1 Physical Aspects of a File. 123
1.2 Conceptual Characteristics of a File . 123
1.3 Record Concepts . 123

2. Concept of Levels. 123
3. Concept of Class and Category of Data . 124
4. Selection of Character Representation and Radix . 125
5. Algebraic Signs. 125
6. Standard Alignment Rules . 125
7. Item Alignment for Increased Object-Code Efficiency . 126
8. Table Handling . 126

8.1 Table Definition . 127
8.2 Initial Values of Tables . 128
8.3 References to Table Items . 128
8.4 Subscripting . 128

9. Uniqueness of Reference . 130
9.1 Qualification . 130
9.2 Subscripting . 131
9.3 Identifiers . 133

9.3.1 Identifier. 133
9.3.2 Function-identifier . 135
9.3.3 Reference-modifier . 136
9.3.4 Predefined-address . 137
9.3.5 Data-address-identifier . 137
9.3.6 Length-identifier. 138
9.3.7 LINAGE-COUNTER . 138
9.3.8 SQLSTATE (ISQL) . 139

9.4. Condition-Name. 142
C. Organization . 143
D. FILE SECTION . 144

1. File Description Entry/Sort-Merge Description Entry . 144
2. Record Description Structure . 149
3. Initial Values . 149
4. BLOCK CONTAINS Clause . 150
5. CODE-SET Clause . 151
6. DATA BLOCK and INDEX BLOCK Clauses (VXCOBOL) . 153
7. DATA RECORDS Clause . 154
8. EXTERNAL Clause . 155
9. FEEDBACK Clause (VXCOBOL) . 156
10. INDEX NODE Clause (VXCOBOL) . 157
11. LABEL RECORD Clause . 158
12. LINAGE Clause . 159
13. MERIT Clause (VXCOBOL) . 162
14. PARTIAL RECORD Clause (VXCOBOL) . 163
15. RECORD Clause (ANSI 74 and ANSI 85) . 164
16. RECORDING MODE Clause (ANSI 74 and ANSI 85) . 168
17. RECORDING MODE Clause (VXCOBOL). 169

E. WORKING-STORAGE SECTION . 171
1. Noncontiguous Working Storage . 171
2. Working Storage Records . 171

11

Interactive COBOL Language Reference & Developer’s Guide

3. Record Description Structure . 171
4. Initial Values . 171
5. Data Description Entry. 172
6. BLANK WHEN ZERO Clause . 175
7. Data-Name or FILLER Clause. 176
8. EXTERNAL Clause . 177
9. JUSTIFIED Clause . 178
10. Level-Number . 179
11. OCCURS Clause . 180
12. PICTURE Clause. 182
13. REDEFINES Clause . 189
14. RENAMES Clause. 191
15. SIGN Clause . 192
16. SYNCHRONIZED Clause . 194
17. USAGE Clause . 195
18. USAGE Clause (ISQL). 198
19. VALUE Clause . 202

F. VIRTUAL-STORAGE SECTION (VXCOBOL) . 205
G. LINKAGE SECTION . 206

1. Noncontiguous Linkage Storage . 206
2. Linkage Records. 206
3. Initial Values . 206

H. SCREEN SECTION. 207
1. Screen Description . 207
2. Screen Description Entry. 207
3. AUTO, FULL, REQUIRED Clauses . 217
4. BACKGROUND-COLOR, FOREGROUND-COLOR Clauses (ANSI 74 and ANSI 85)

. 218
5. BELL Clause . 219
6. BLANK Clause. 220
7. BLINK, BOLD/BRIGHT/HIGHLIGHT/DIM/LOWLIGHT,

REVERSE/REVERSED/REVERSED-VIDEO, UNDERLINE/UNDERLINED Clauses
. 221

8. CONVERTING Clause . 223
9. ERASE Clause . 224
10. FROM, TO, USING Clauses . 225
11. LINE and COLUMN Clauses . 226
12. OCCURS Clause. 229
13. PICTURE Clause. 230
14. SECURE Clause . 231
15. SIGN Clause . 232
16. USAGE Clause (ISQL). 233
17. VALUE Clause . 235

VI. PROCEDURE DIVISION . 237
A. General Description. 237

1. DECLARATIVES . 237
2. Procedures . 237
3. Execution . 237

B. Concepts . 238
1. Arithmetic Expressions . 238

1.1 Definition of an Arithmetic Expression . 238
1.2 Arithmetic Operators. 238
1.3 Formation and Evaluation Rules . 239

2. Conditional Expressions . 240
2.1 Simple Conditions. 241
2.2 Complex Conditions . 247
2.3 Abbreviated Combined Relation Conditions. 248

12

Table of Contents

2.4 Order of Evaluation of Conditions. 249
3. Common Options and Rules for Statements . 253

3.1 ROUNDED Phrase . 253
3.2 ON SIZE ERROR Phrase. 254
3.3 CORRESPONDING Phrase . 254
3.4 Arithmetic Statements. 256
3.5 Overlapping Operands . 256
3.6 Multiple Results in Arithmetic Statements . 256
3.7 Incompatible Data. 257

4. Statements and Sentences. 257
4.1 Conditional Statements and Sentences . 257
4.2 Compiler Directing Statements and Sentences . 259
4.3 Imperative Statements and Sentences. 259

5. Scope of Statements . 260
6. Explicit and Implicit Specifications . 260

6.1 Explicit and Implicit Procedure Division References . 260
6.2 Explicit and Implicit Transfers of Control . 261
6.3 Explicit and Implicit Attributes. 262
6.4 Scope Terminators . 262
6.5 Explicit Scope Terminators . 262
6.6 Implicit Scope Terminators . 262

C. File Concepts. 263
1. File Attributes . 263

1.1 Sequential Organization . 263
1.2 Relative Organization . 263
1.3 Indexed Organization . 264
1.4 INFOS Organization (VXCOBOL) . 264

2. Logical Records . 264
2.1 Fixed Length Records . 264
2.2 Variable Length Records (ANSI 74 and ANSI 85) . 265
2.3 Variable Length Records (VXCOBOL) . 265

3. File Processing . 265
4. Record Operations . 265

4.1 Sequential Access Mode . 265
4.2 Random Access Mode . 266
4.3 Dynamic Access Mode . 266
4.4 Open Mode. 266
4.5 Current Volume Pointer . 267
4.6 File Position Indicator . 267

5. File Operations . 267
6. Exception Handling. 267

6.1 I-O Status (FILE STATUS) . 267
6.2 I-O Status (ANSI 74). 268
6.3 I-O Status (ANSI 85). 271
6.4 I-O Status (VXCOBOL). 274
6.5 INFOS Status (VXCOBOL). 278
6.6 The At End Condition . 278
6.7 The Invalid Key Condition . 278
6.8 The File Attribute Conflict Condition . 279
6.9 Exception Declaratives . 279
6.10 Optional Phrases . 279
6.11 ACCEPT FROM EXCEPTION STATUS . 280

7. Shared Record Area. 280
8. INFOS File I-O Common Phrases (VXCOBOL) . 280

8.1 The POSITION Phrase. 280
8.2 The Relative Motion Phrase . 281
8.3 The KEY Series Phrase . 282
8.4 The SUPPRESS Phrase . 282

13

Interactive COBOL Language Reference & Developer’s Guide

8.5 The LOCK/UNLOCK Phrase . 283
D. Header. 284
E. Statements. 285

1. ACCEPT (keyboard) . 285
2. ACCEPT (system) . 296
3. ADD . 303
4. CALL . 305
5. CALL PROGRAM . 309
6. CANCEL . 313
7. CLOSE . 315
8. COMMIT (ISQL) . 317
9. COMPUTE. 319
10. CONNECT (ISQL) . 321
11. CONTINUE . 325
12. DEALLOCATE (ISQL) . 327
13. DEFINE SUB-INDEX (VXCOBOL) . 329
14. DELETE. 333
15. DELETE FILE . 339
16. DISCONNECT (ISQL) . 341
17. DISPLAY . 343
18. DIVIDE. 351
19. EVALUATE (ANSI 74 and ANSI 85) . 355
20. EXECUTE (ISQL) . 359
21. EXECUTE IMMEDIATE (ISQL) . 361
22. EXIT. 363
23. EXIT PROGRAM . 365
24. EXPUNGE (VXCOBOL) . 367
25. EXPUNGE SUB-INDEX (VXCOBOL) . 369
26. FETCH (ISQL) . 371
27. GET COLUMNS (ISQL) . 373
28. GET DIAGNOSTICS (ISQL) . 377
29. GET TABLES (ISQL) . 380
30. GO TO . 383
31. GOBACK . 385
32. IF . 387
33. INITIALIZE (ANSI 74 and ANSI 85) . 389
34. INSPECT . 393
35. LINK SUB-INDEX (VXCOBOL) . 400
36. MERGE . 402
37. MOVE . 406
38. MULTIPLY . 409
39. OPEN . 411
40. PERFORM. 416
41. PREPARE (ISQL) . 424
42. READ (ANSI 74 and ANSI 85) . 426
43. READ (VXCOBOL). 432
44. RELEASE . 439
45. RETRIEVE (VXCOBOL). 441
46. RETURN . 443
47. REWRITE . 445
48. ROLLBACK (ISQL) . 449
49. SEARCH . 451
50. SET (ANSI 74 and ANSI 85) . 455
51. SET (VXCOBOL) . 459
52. SET CONNECTION (ISQL . 461
53. SORT. 463
54. START . 469
55. STOP . 475

14

Table of Contents

56. STRING . 477
57. SUBTRACT . 479
58. UNDELETE (ANSI 74 and ANSI 85) . 481
59. UNDELETE (VXCOBOL) . 483
60. UNLOCK . 485
61. UNSTRING . 487
62. USE . 491
63. WRITE . 495

VII. BUILTINS . 505
A. Introduction . 505

1. Overview. 505
B. Builtins . 507

1. ?CBADDR . 507
2. ?CBBADDR . 508
3. ?CBSYS . 509
4. CLI . 510
5. IC_ABORT_TERM . 511
6. IC_CENTER . 512
7. IC_CHANGE_DIR . 513
8. IC_CHANGE_PRIV . 514
9. IC_CHECK_DATA . 516
10. IC_CLIENT_CALLPROCESS . 518
11. IC_CLIENT_DELETE_FILE . 519
12. IC_CLIENT_GET_ENV . 520
13. IC_CLIENT_GET_FILE . 521
14. IC_CLIENT_PUT_FILE . 522
15. IC_CLIENT_RESOLVE_FILE . 523
16. IC_CLIENT_SET_ENV . 524
17. IC_CLIENT_SHELLEXECUTE . 525
18. IC_COMPRESS_OFF . 527
19. IC_COMPRESS_ON . 528
20. IC_CREATE_DIR . 529
21. IC_CURRENT_DIR . 530
22. IC_DECODE_CSV . 531
23. IC_DECODE_URL . 532
24. IC_DELAY . 533
25. IC_DETACH_PROGRAM . 534
26. IC_DIR_LIST . 536
27. IC_DISABLE_HOTKEY . 537
28. IC_DISABLE_INTS . 538
29. IC_ENABLE_HOTKEY . 539
30. IC_ENABLE_INTS. 540
31. IC_ENCODE_CSV . 541
32. IC_ENCODE_URL . 542
33. IC_EXTRACT_STRING. 543
34. IC_FULL_DATE . 544
35. IC_GET_DISK_SPACE . 545
36. IC_GET_ENV . 546
37. IC_GET_FILE_IND . 547
38. IC_GET_KEY . 548
39. IC_HANGUP . 550
40. IC_HEX_TO_NUM . 551
41. IC_INFOS_STATUS_TEXT (VXCOBOL) . 552
42. IC_INSERT_STRING . 553
43. IC_KILL_TERM . 554
44. IC_LEFT . 555
45. IC_LOGON . 556
46. IC_LOWER . 557

15

Interactive COBOL Language Reference & Developer’s Guide

47. IC_MOVE_FILE_DATA . 558
48. IC_MOVE_STRING. 559
49. IC_MSG_TEXT . 560
50. IC_NUM_TO_HEX . 561
51. IC_PDF_PRINT . 562
52. IC_PID_EXISTS . 563
53. IC_PRINT_STAT . 564
54. IC_QUEUE_LIST. 568
55. IC_QUEUE_OPERATION . 572
56. IC_QUEUE_STATUS . 577
57. IC_REMOVE_DIR . 578
58. IC_RENAME . 579
59. IC_RESOLVE_FILE. 580
60. IC_RIGHT . 583
61. IC_SEND_KEY . 584
62. IC_SEND_MAIL. 585
63. IC_SEND_MSG. 588
64. IC_SERIAL_NUMBER. 589
65. IC_SET_ENV. 590
66. IC_SET_TIMEOUT . 591
67. IC_SET_USERNAME . 592
68. IC_SHUTDOWN . 593
69. IC_SYS_INFO . 594
70. IC_TERM_CTRL . 596
71. IC_TERM_STAT . 597
72. IC_TRIM . 599
73. IC_UPPER. 600
74. IC_VERSION. 601
75. IC_WHOHAS_LOCKS . 602
76. IC_WINDOW_TITLE . 603
77. IC_WINDOWS_MSG_BOX . 605
78. IC_WINDOWS_SETFONT . 608
79. IC_WINDOWS_SHELLEXECUTE . 609
80. IC_WINDOWS_SHOW_CONSOLE . 610

VIII. INTRINSIC FUNCTIONS. 613
A. General Description. 613

1. Types of Functions . 613
2. Arguments . 613
3. Returned values . 614
4. Date conversion functions . 614
5. Summary of functions. 615

B. Intrinsic Functions . 618
1. ABS . 618
2. ACOS . 619
3. ANNUITY. 620
4. ASIN . 622
5. ATAN . 623
6. BYTE-LENGTH . 624
7. CHAR . 626
8. COS. 627
9. CURRENT-DATE. 628
10. DATE-OF-INTEGER . 630
11. DATE-TO-YYYYMMDD . 631
12. DAY-OF-INTEGER . 633
13. DAY-TO-YYYYDDD . 634
14. E . 636
15. EXP . 637
16. EXP10 . 638

16

Table of Contents

17. FACTORIAL. 639
18. FRACTION-PART . 640
19. HIGHEST-ALGEBRAIC . 641
20. IC-CENTER . 642
21. IC-DECODE-URL . 643
22. IC-ENCODE-URL . 644
23. IC-GET-ENV . 645
24. IC-HEX-TO-NUM . 646
25. IC-MSG-TEXT . 647
26. IC-NUM-TO-HEX . 648
27. IC-PID-EXISTS . 649
28. IC-SERIAL-NUMBER . 650
29. IC-TRIM . 651
30. IC-VERSION . 652
31. INTEGER. 653
32. INTEGER-OF-DATE . 654
33. INTEGER-OF-DAY . 655
34. INTEGER-PART . 656
35. LENGTH . 657
36. LOG . 659
37. LOG10 . 660
38. LOWER-CASE . 661
39. LOWEST-ALGEBRAIC . 662
40. MAX. 663
41. MEAN . 665
42. MEDIAN. 666
43. MIDRANGE . 668
44. MIN . 669
45. MOD . 671
46. NUMVAL . 672
47. NUMVAL-C . 674
48. NUMVAL-F . 676
49. ORD. 677
50. ORD-MAX . 678
51. ORD-MIN. 679
52. PI . 680
53. PRESENT-VALUE . 681
54. RANDOM. 683
55. RANGE . 684
56. REM. 685
57. REVERSE . 686
58. SIGN . 687
59. SIN. 688
60. SQL-ADD-ESCAPES . 689
61. SQL-REMOVE-ESCAPES . 690
62. SQRT. 691
63. STANDARD-DEVIATION. 692
64. SUM. 693
65. TAN . 694
66. TEST-DATE-YYYYMMDD . 695
67. TEST-DAY-YYYYDDD . 697
68. TEST-NUMVAL . 699
69. TEST-NUMVAL-C . 700
70. TEST-NUMVAL-F . 702
71. UPPER-CASE . 704
72. VARIANCE . 705
73. WHEN-COMPILED . 707
74. YEAR-TO-YYYY . 709

17

Interactive COBOL Language Reference & Developer’s Guide

IX. SCREEN HANDLER. 711
A. General Description. 711

1. Enabling the SCREEN HANDLER . 711
2. Summary of Calls . 712
3. Error Handling . 713

B. Calls. 714
1. SD_DRAW_BOX . 714
2. SD_DRAW_HLINE and SD_DRAW_VLINE . 715
3. SD_GET_IMAGE. 716
4. SD_GET_POS. 717
5. SD_MESSAGE, SD_ERROR_MESSAGE, SD_MESSAGE_ONLY 718
6. SD_NEW_WINDOW . 719
7. SD_POP_UP_MENU . 720
8. SD_POP_UP_MENU2 . 721
9. SD_READ_CHAR . 722
10. SD_REDRAW . 724
11. SD_REMOVE_WINDOW . 725
12. SD_RETURN_INPUT . 726
13. SD_SET_ACCEPT_TIMEOUT . 727
14. SD_SYS_ERROR_MESSAGE . 728

PART TWO - DEVELOPER’S GUIDE 729

X. INTRODUCTION TO THE DEVELOPER’S GUIDE . 731
A. Overview . 731
B. Operating Environment . 731

1. General Concepts. 731
1.1 Communication with the Operating System . 731
1.2 I-O Redirection . 731
1.3 Environment Variables . 731

2. Directory Structure . 732
3. ICEXEC Control Program. 733
4. ICPERMIT License Program . 734

C. Command-line Conventions . 734
1. Switches . 734
2. Conventions for Defining Syntax . 734
3. Filename Case (upper or lower) . 734

D. Common Switches. 735
1. Overall . 735
2. Audit Switch . 735
3. Quiet Switch . 736
4. Help Switch. 736

E. Filename Extensions . 736
F. Exit Codes . 738
G. Common Environment Variables . 738

1. Overall . 738
2. ICROOT . 738
3. ICCONFIGDIR . 739
4. Executable-Name Environment Variable . 739
5. TZ (Windows only) . 739

XI. COMPILER (ICOBOL) . 741
A. Overview . 741
B. Syntax . 741

1. Rules . 743
2. Environment Variables. 744

C. Switches . 744

18

Table of Contents

1. Overview . 744
2. Byte Alignment Switch (-B 1|2|4) . 745
3. COPY Sourcedir Switch (-c) . 745
4. COPY Path Switch (-C copydir) . 745
5. Dialect Switch (-D ic|vx|85) . 745
6. Error File Switch (-e | -E erdir) . 745
7. Format Switch (-F c | f | x) . 746
8. General Switch (-G {a|b|d|e|g|h|i|k|n|p|q|s}...) . 746
9. Hard Error Limit Switch (-H cnt) . 747
10. Information Switch (-i) . 747
11. Include listing options Switch (-I {g|m|p|x}...) . 747
12. Listing File Switch (-l | -L lsdir) . 747
13. Make ICODBC Data Definition Files Switch (-M dddir) . 748
14. No Switch (-N {h|p|s|u}...) . 748
15. OEM Version Switch (-o | -O rev). 748
16. Program Output File Switch (-P cxdir) . 749
17. Revision Switch (-R 1|2|3|4|5|6|7) . 749
18. Statistics Switch (-s) . 749
19. Source lines Switch (-S) . 749
20. Warnings Switch (-w). 750
21. ICODBC Options Switch (-X “string”) . 750
22. Debug Switch (-Z sydir) . 750

D. Messages . 751
1. Overview. 751

1.1 Format . 751
1.2 Examples . 752

2. Error Messages . 753
3. Warning Messages . 753
4. Information Messages . 754

E. Example Output. 756
F. Cross Reference Output . 757
G. ICODBC Support . 758

XII. DEBUGGING . 761
A. Introduction . 761
B. Invocation . 761
C. Usage. 762
D. Commands . 766

1. Overview . 766
2. AUDIT . 766
3. BREAK . 767
4. COMMAND . 770
5. DUMP . 770
6. ERROR RESET. 771
7. EXECUTE . 771
8. FIND . 771
9. GO . 772
10. HELP . 772
11. INFO . 773
12. LIST . 774
13. MOVE . 774
14. QUIT . 775
15. RERUN . 775
16. RUN. 775
17. STEP . 776
18. TYPE . 776
19. VIEW . 777
20. ZOOM . 777

19

Interactive COBOL Language Reference & Developer’s Guide

E. Performance Considerations . 778
F. Quick Reference . 778

XIII. ICREVSET . 781
A. Introduction . 781
B. Syntax . 781
C. General Rules . 781

XIV. ICDUMP. 783
A. Introduction . 783
B. Syntax . 783
C. Rules . 783
D. Example. 783

XV. RUNTIME (ICRUN) . 787
A. Introduction . 787
B. Printer Control Utility . 787
C. Program Termination . 788

1. Overview. 788
2. Logon mode Termination . 788

2.1 Return to LOGON as Inactive . 788
2.2 Return to Parent Process . 788

3. Program mode Termination . 788
D. Device Support . 789

1. Overview. 789
2. General Rules. 789
3. Parallel Printer Ports . 790
4. Serial Ports . 791

E. Filenaming Conventions . 791
1. Internal Filenames . 791
2. External Filenames. 791

2.1 Rules . 793
2.2 Program names . 793
2.3 Sequential and ICISAM Filenames. 795

F. Extended OPEN options . 796
1. Overview. 796
2. Extended Sequential Open. 797

2.1 (Sequential) Extended Device Open . 797
2.2 (Sequential) Extended PDF Open . 798
2.3 (Sequential) Extended PCQ Open . 799
2.4 (Sequential) Extended Disk Open . 800

3. Extended Relative Open (ANSI 74 and ANSI 85) . 800
4. Extended Indexed Open. 801

G. ICISAM Information . 802
1. Overview. 802
2. ICISAM Versions . 802
3. ICISAM Reliability . 803
4. ICISAM Key Ordering . 803

H. Notes and Warnings . 804
I. Pipe Opens . 805
J. PDF GENERATION . 806

1. Introduction. 806
2. PDF Format . 807
3. PDF Sample . 809

K. HOT KEYS . 810
1. Introduction. 810
2. Construction . 810
3. Restrictions. 810

20

Table of Contents

4. Example . 811

XVI. ICODBC Driver . 813
A. Introduction . 813
B. General Information. 813
C. Using the Driver. 813
D. Creating .XDB and XDT Files . 814
E. Managing Data Sources (On Windows) . 821
F. Managing Data Sources (On Linux) . 823
G. Data Types Supported . 826
H. Driver Limitations. 828
I. SQL Grammar Supported . 829
J. Usage Notes . 831
K. Debugging . 833
L. SYWARE . 833

XVII. ICIDE . 835
A. Introduction . 835
B. Use . 835

XVIII. GLOSSARY . 837
A. Introduction . 837
B. Definitions . 837

APPENDICES . 855
A. IMPLEMENTATION LIMITS . 857
B. ESCAPE KEY TABLE . 859
C. ANSI 74 FILE STATUS CODES . 861
D. ANSI 85 FILE STATUS CODES . 863
E. VXCOBOL FILE STATUS CODES . 865
F. EXCEPTION STATUS AND FILE STATUS CODES . 867
G. Linux Errno . 875
H. RUNTIME ERRORS . 877
I. ASCII CODES . 899
J. EBCDIC CODES . 901
K. COBOL RESERVED WORDS . 903
L. SYSTEM CALLS . 907

INDEX . 921

21

Interactive COBOL Language Reference & Developer’s Guide

LIST OF EXAMPLES

EXAMPLE 1. Identifying parameters passed by a calling program . 60
EXAMPLE 2. Using a Program Switch . 86
EXAMPLE 3. Modifying the collating sequence for a program . 86
EXAMPLE 4. Changing 1 character in the collating sequence . 86
EXAMPLE 5. Making multiple characters the same in the collating sequence . 87
EXAMPLE 6. Reversing collating sequence for digits, uppercase alphabet . 87
EXAMPLE 7. Definition for a one-dimensional table . 127
EXAMPLE 8. Another one-dimensional table . 127
EXAMPLE 9. Three one-dimensional tables without group names . 127
EXAMPLE 10. Definition for a two-dimensional table . 127
EXAMPLE 11. Referencing single- and multi-dimensional table elements . 128
EXAMPLE 12. Referencing elements in 1-, 2-, and 3-dimensional tables . 129
EXAMPLE 13. Referencing an intrinsic function with and without arguments . 135
EXAMPLE 14. Abbreviated combined and negated combined relation conditions . 249
EXAMPLE 15. MOVE CORRESPONDING and ADD CORRESPONDING. 255
EXAMPLE 16. MOVE CORRESPONDING . 256
EXAMPLE 17. CALL the Bourne shell from a COBOL program (Linux). 308
EXAMPLE 18. CALL the shell, have it execute “ls” and return (Linux) . 308
EXAMPLE 19. CALL the “ls” command directly and return (Linux) . 308
EXAMPLE 20. CALL the command processor (Windows) . 308
EXAMPLE 21. CALL the command processor and execute the DIR command (Windows) 308
EXAMPLE 22. CALL Acrobat Reader and print a file (Windows) . 308
EXAMPLE 23. EVALUATE. 358
EXAMPLE 24. INSPECT TALLYING, REPLACING. 398
EXAMPLE 25. INSPECT TALLYING, REPLACING. 398
EXAMPLE 26. INSPECT TALLYING, REPLACING. 399
EXAMPLE 27. INSPECT TALLYING, REPLACING. 399
EXAMPLE 28. INSPECT CONVERTING . 399
EXAMPLE 29. Using Declaratives. 493
EXAMPLE 30. ABS function . 618
EXAMPLE 31. ACOS function . 619
EXAMPLE 32. ANNUITY function. 621
EXAMPLE 33. ASIN function . 622
EXAMPLE 34. ATAN function. 623
EXAMPLE 35. BYTE-LENGTH function . 625
EXAMPLE 36. CHAR function . 626
EXAMPLE 37. COS function . 627
EXAMPLE 38. CURRENT-DATE function . 629
EXAMPLE 39. DATE-OF-INTEGER function . 630
EXAMPLE 40. DATE-TO-YYYYMMDD function. 632
EXAMPLE 41. DAY-OF-INTEGER function . 633
EXAMPLE 42. DAY-TO-YYYYDDD function . 635
EXAMPLE 43. E function . 636
EXAMPLE 44. EXP function . 637
EXAMPLE 45. EXP10 function . 638
EXAMPLE 46. FACTORIAL function . 639
EXAMPLE 47. FRACTION-PART function . 640
EXAMPLE 48. HIGHEST-ALGEBRAIC function . 641
EXAMPLE 49. IC-CENTER function . 642
EXAMPLE 50. IC-DECODE-URL function . 643
EXAMPLE 51. IC-ENCODE-URL function . 644
EXAMPLE 52. IC-GET-ENV function. 645
EXAMPLE 53. IC-HEX-TO-NUM function . 646
EXAMPLE 54. IC-MSG-TEXT function . 647
EXAMPLE 55. IC-NUM-TO-HEX function . 648

22

Table of Contents

EXAMPLE 56. IC-PID-EXISTS function . 649
EXAMPLE 57. IC-SERIAL-NUMBER function . 650
EXAMPLE 58. IC-TRIM function . 651
EXAMPLE 59. IC-VERSION function . 652
EXAMPLE 60. INTEGER function . 653
EXAMPLE 61. INTEGER-OF-DATE function . 654
EXAMPLE 62. INTEGER-OF-DAY function . 655
EXAMPLE 63. INTEGER-PART function. 656
EXAMPLE 64. LENGTH function. 658
EXAMPLE 65. LOG function. 659
EXAMPLE 66. LOG10 function. 660
EXAMPLE 67. LOWER-CASE function . 661
EXAMPLE 68. LOWEST-ALGEBRAIC function . 662
EXAMPLE 69. MAX function . 664
EXAMPLE 70. MEAN function . 665
EXAMPLE 71. MEDIAN function. 667
EXAMPLE 72. MIDRANGE function . 668
EXAMPLE 73. MIN function . 670
EXAMPLE 74. MOD function . 671
EXAMPLE 75. NUMVAL function . 673
EXAMPLE 76. NUMVAL-C function . 675
EXAMPLE 77. NUMVAL-F function. 676
EXAMPLE 78. ORD function . 677
EXAMPLE 79. ORD-MAX function . 678
EXAMPLE 80. ORD-MIN function . 679
EXAMPLE 81. PI function . 680
EXAMPLE 82. PRESENT-VALUE function . 682
EXAMPLE 83. RANDOM function . 683
EXAMPLE 84. RANGE function . 684
EXAMPLE 85. REM function . 685
EXAMPLE 86. REVERSE function . 686
EXAMPLE 87. SIGN function . 687
EXAMPLE 88. SIN function . 688
EXAMPLE 89. SQRT function. 691
EXAMPLE 90. STANDARD-DEVIATION function. 692
EXAMPLE 91. SUM function . 693
EXAMPLE 92. TAN function. 694
EXAMPLE 93. TEST-DATE-YYYYMMDD function. 696
EXAMPLE 94. TEST-DAY-YYYYDDD function . 698
EXAMPLE 95. TEST-NUMVAL function . 699
EXAMPLE 96. TEST-NUMVAL-C function . 701
EXAMPLE 97. TEST-NUMVAL-F function . 703
EXAMPLE 98. UPPER-CASE function . 704
EXAMPLE 99. VARIANCE function . 706
EXAMPLE 100. WHEN-COMPILED function . 708
EXAMPLE 101. YEAR-TO-YYYY function. 710
EXAMPLE 102. ICDUMP of the Header (default) . 784
EXAMPLE 103. ICDUMP of the Program Code (using the -c switch) . 784
EXAMPLE 104. ICDUMP of the Reference Table (using the -r switch) . 785
EXAMPLE 105. ICDUMP of the Data (using the -d switch) . 785

LIST OF FIGURES

FIGURE 1. Evaluation of condition-1 AND condition-2 AND ... condition-n . 250
FIGURE 2. Evaluation of condition-1 OR condition-2 OR ... condition-n. 251
FIGURE 3. Evaluation of condition-1 OR condition-2 AND condition-3 . 252

23

Interactive COBOL Language Reference & Developer’s Guide

FIGURE 4. Evaluation of (condition-1 OR NOT condition-2) AND condition-3 AND condition-4 253
FIGURE 5. PERFORM [TEST BEFORE] VARYING with one condition . 421
FIGURE 6. PERFORM [TEST BEFORE] VARYING with two conditions. 422
FIGURE 7. Valid PERFORM constructs . 423
FIGURE 8. Format 1 SEARCH statement having two WHEN phrases . 454
FIGURE 9. ICOBOL Directory Structure (Linux). 732
FIGURE 10. ICOBOL Directory Structure (Windows) . 733

LIST OF SCREENS

SCREEN 1. Default Debugging SCREEN . 762
SCREEN 2. Debugging SCREEN (all views enabled) . 762
SCREEN 3. Debugging SCREEN (no symbol file) . 762
SCREEN 4. Debugging SCREEN (symbols but no source) . 763
SCREEN 5. ICCONFIG PDF FORMATS CONFIGURATION . 808

LIST OF TABLES

TABLE 1. Default External Filenames for Sequential Files . 106
TABLE 2. Relationship of the Class and Categories of Data Items . 124
TABLE 3. File Description Clauses by ICOBOL dialect and file type . 149
TABLE 4. PICTURE Editing . 185
TABLE 5. Sign Control in Fixed PICTURE Editing. 186
TABLE 6. Sign Control in Floating PICTURE Editing . 187
TABLE 7. PICTURE Precedence Rules . 188
TABLE 8. SIGN Overpunch Characters . 193
TABLE 9. BINARY & COMPUTATIONAL Storage Allocation . 196
TABLE 10. COMPUTATIONAL-5 Storage Allocation . 197
TABLE 11. INTERVAL Field Maximum Precision (ISQL) . 200
TABLE 12. BACKGROUND-COLOR and FOREGROUND-COLOR . 218
TABLE 13. LINE and COLUMN relationship . 228
TABLE 14. INTERVAL Field Maximum Precision (ISQL) . 234
TABLE 15. Combination of Symbols in Arithmetic Expressions . 239
TABLE 16. Relational Operators . 242
TABLE 17. Combinations of Conditions, Logical Operators, and Parentheses . 248
TABLE 18. Variable Origin for DISPLAY and ACCEPT. 290
TABLE 19. Function Key Escape Codes . 300
TABLE 20. Common Error Conditions for a CALL Statement. 307
TABLE 21. Common Error Conditions for a CALL PROGRAM Statement . 310
TABLE 22. How Program Switches are evaluated . 311
TABLE 23. CALL and CALL PROGRAM Compared . 312
TABLE 24. Combination of operands in the EVALUATE statement . 356
TABLE 25. Legality of Types of MOVE Statements . 408
TABLE 26. Availability of a File (ANSI 74). 412
TABLE 27. Availability of a File (ANSI 85). 412
TABLE 28. Availability of a File (VXCOBOL) . 413
TABLE 29. Permissible Statements . 413
TABLE 30. Validity of Operand Combinations in Format 1 SET Statements. 457
TABLE 31. ANSI 74 and ANSI 85 ADVANCING Definitions. 499
TABLE 32. VXCOBOL ADVANCING Definitions. 500
TABLE 33. VXCOBOL CHANNEL ADVANCING Definitions.. 500
TABLE 34. List of BUILTINS . 506
TABLE 35. IC_GET_KEY values returned . 548
TABLE 36. IC_SEND_KEY values . 584
TABLE 37. Summary of Intrinsic Functions . 617

24

Table of Contents

TABLE 38. Summary of Screen Handler Calls . 712
TABLE 39. Common Command-line Syntax Conventions . 734
TABLE 40. Common Filename Extensions used by ICOBOL. 737
TABLE 41. Cross Reference Symbol Types . 758
TABLE 42. ICOBOL Data Types to ODBC Data Types . 760
TABLE 43. Device Mappings . 789
TABLE 44. Legal characters in a filename . 792
TABLE 45. Illegal Characters in a Filename. 792
TABLE 46. Characters Allowed in a Filename, in Certain Contexts. 792
TABLE 47. Four Categories of Extended Open for Sequential Files . 797
TABLE 48. ICODBC Data Types to ODBC SQL Data Types . 827

25

Interactive COBOL Language Reference & Developer’s Guide

26

Table of Contents

PREFACE

This manual defines the COBOL language supported by Interactive COBOL. This COBOL language is based on the
ANSI COBOL standard X3.23-1985. The manual is intended for programmers already familiar with the COBOL
language in general.

The complete documentation for Interactive COBOL includes the following manuals:

Installing and Configuring Interactive COBOL on Linux (011-00402)
Installing and Configuring Interactive COBOL on Windows (011-00403)

Each manual provides the appropriate sections necessary to properly install and configure Interactive
COBOL in the given environment.

Interactive COBOL Utilities Manual (011-00300)
Provides a simple guide to all the user visible utilities.

Interactive COBOL Language Reference & Developer’s Guide (011-00100)
Contains two parts:

A) Interactive COBOL Language Reference: The complete COBOL syntax supported by all dialects of
ICOBOL. Included are ICOBOL builtins, intrinsic functions, and screen calls.

B) Interactive COBOL Developer’s Guide: Explains how to use the development tools including the
compiler, debugger, ICREVSET, and ICDUMP. It also explains how the ICOBOL runtime works
including how to program across the multiple environments supported by ICOBOL.

COBOL sp2 User Interface Development Manual
How to use the ICSP2 Panel Editor to define GUI screens.

COBOL FormPrint
How to use the ICQPRW FormPrint Editor to setup printers.

27

Interactive COBOL Language Reference & Developer’s Guide

TERMS

This document uses several terms as generic names to describe the following products.

ANSI 74, ANSI 85, and VXCOBOL are the three dialects supported by Interactive COBOL and are used to
describe differences.

AOS/VS refers to both AOS/VS II and AOS/VS (Classic) unless specifically stated..

ICOBOL refers to all dialects of the Interactive COBOL product unless otherwise stated.

INFOS refers to either AOS/VS INFOS II or U/FOS. INFOS II or U/FOS are explicitly used when needed.

VXCOBOL refers to all models of the VXCOBOL products unless otherwise stated.

Linux refers to all supported flavors of Linux unless specifically stated.

Windows will be used to refer collectively to various versions of the Windows operating system. As of
ICOBOL 5.50 and this manual, the supported versions are Windows Server 2008 R2 through Windows
Server 2022 and Windows 7 through Windows 11. How-to steps for Windows are based on Windows 10
and may be different for older versions of Windows.

PC refers to any style of personal computer based on the Intel x86 microcomputer architecture that runs
Windows or a Linux-compatible operating system.

RDOS refers to the Data General operating system RDOS.

DG refers to Data General Corporation.

28

Table of Contents

29

Interactive COBOL Language Reference & Developer’s Guide

30

Enhancements

ENHANCEMENTS (Language area)

Interactive COBOL 5 Language Changes

Interactive COBOL 5.40 added support for the following:
• Added a new source format called xcard (extended card) that has the sequence area and indicator column

like standard card format, but no right margin or comment area like free-form format.
• An new runtime environment variable, ICPROMPTCHAR, for the runtime system that modifies the default

prompt pad to something other than underscore.

Interactive COBOL 5.40 removed support for the following:
• The AOS compatibility builtins: ?CBSYS, ?CBADDR, ?CBBADDR, and CLI. A program that calls one of

these functions at runtime will received a “Program not found” error.

Interactive COBOL 5.30 added support for the following:
• The SQL BIGINT type. It is equivalent to 8-byte COMP-5.

Interactive COBOL 5.30 removed support for the following:
• The U/FOS data manager that was used by the VX/COBOL dialect to provide compatibility with DG’s

INFOS and INFOS II products. Items that are no longer supported at runtime are flagged by the compiler
unless -R 6 or before is selected. A program that uses these features will get an exception 230 “The
requested feature is not available”.

Interactive COBOL 5.20 added support for the following:

- New Builtins: IC_SEND_KEY, IC_WHOHAS_LOCKS

- Added extended open option for additional case conversion on filenames (c=l|n|u)

Interactive COBOL 5.09 added support for the following:

- New Builtins: IC_LEFT, IC_RIGHT

Interactive COBOL 5.00 added support for the following:

- Native 64-bit support, continued 32-bit support

- ICISAM version 8 files with support for 4 billion records and 16TB index file.

- sequential file support > 4GB

- enhanced PDF creation

- enhanced IC_SEND_MAIL with SSL support

- 64-bit pointers

31

Interactive COBOL Language Reference & Developer’s Guide

Interactive COBOL 4 Language Enhancements

Interactive COBOL 4.70 added support for the following:

- New environment variable ICCONFIGDIR to allow for customized system files

Interactive COBOL 4.50 added support for the following:

- New Intrinsic Functions: SQL-ADD-ESCAPES, SQL-REMOVE-ESCAPES

- New Statements: GET COLUMNS, GET TABLES

- New COLUMN COUNT option to GET DIAGNOSTICS

- Remote ISQL support for CONNECT

Interactive COBOL 4.40 added support for the following:

- New Builtin: IC_CENTER

- New Intrinsic Functions: IC-CENTER, IC-DECODE-URL, IC-ENCODE-URL, IC-GET-ENV,
IC-HEX-TO-NUM, IC-NUM-TO-HEX, IC-PID-EXISTS,
IC-SERIAL-NUMBER, IC-TRIM, IC-VERSION

Interactive COBOL 4.20 added support for the following:

- New Builtins: IC_CLIENT_CALLPROCESS, IC_CLIENT_DELETE_FILE, IC_CLIENT_GET_ENV,
IC_CLIENT_GET_FILE, IC_CLIENT_PUT_FILE, IC_CLIENT_RESOLVE_FILE,
IC_CLIENT_SET_ENV, IC_CLIENT_SHELLEXECUTE
to work with ThinClient

- Enhanced Builtin: IC_CHECK_DATA (to support 32-bit crc’s)

Interactive COBOL 4.11 added support for the following:

- The compiler can handle a maximum of 200,000 lines per program

- The debugger supports compressed mode

Interactive COBOL 4.10 added support for the following:

- UNIX pipe opens can be bidirectional, i.e. OPEN I-O

- Extended sequential open options to allow generating .PDF files

- New Builtin: IC_PDF_PRINT

- Windows support for pipe opens just as UNIX

Interactive COBOL 4.00 added support for the following:

- New builtins: IC_DECODE_CSV, IC_ENCODE_CSV

32

Enhancements

Interactive COBOL 3 Language Enhancements

Interactive COBOL 3.60 added support for the following:

- Enhanced builtins: IC_WINDOWS_MSG_BOX, IC_WINDOWS_SHOW_CONSOLE,
IC_WINDOW_TITLE

Interactive COBOL 3.57 added support for the following:

- Enhanced builtin: IC_SEND_MAIL

Interactive COBOL 3.56 added support for the following:

- Enhanced builtin: IC_WINDOWS_SETFONT

- Filenames can contain “(“ and “)”

Interactive COBOL 3.50 added support for the following:

- New builtin: IC_SEND_MAIL

Interactive COBOL 3.40 added support for the following:

- Integrated SQL (ISQL) added that provides a simple way of using popular relational databases directly from
within your COBOL programs. ISQL provides many of the embedded SQL features but in an integrated
fashion without the added complexity of pre-processors or call-level interface. Most of the SQL data types
have been added to the base language set. At runtime, ISQL makes use of standard ODBC calls to access
any data manager available to ODBC.

New literal types include: DATE, TIME, TIMESTAMP, and INTERVALS.

New data types include: CHARACTER, CHARACTER VARYING, DATE, INDICATOR, INTEGER,
INTERVAL, NUMERIC, SMALLINT, TIME, and TIMESTAMP.

New statements include: COMMIT, CONNECT, DEALLOCATE, DISCONNECT, EXECUTE,
EXECUTE IMMEDIATE, FETCH, GET DIAGNOSTICS, PREPARE, ROLLBACK, and
SET CONNECTION. (These statements require an additional ICSQL runtime license).

New identifier: SQLSTATE

Enhancements to other statements to support the new literal and data types.

These features are made available with the new General switch (-G q) on the compiler.

Debugger support for the above.

- Special Register LENGTH OF

- VXCOBOL dialect allows CONTINUE, GOBACK, reference modification, and intrinsic functions

- Use of reference modification in the SCREEN SECTION

Interactive COBOL 3.35 added support for the following:

- Enhanced builtin: IC_SYS_INFO

33

Interactive COBOL Language Reference & Developer’s Guide

Interactive COBOL 3.34 added support for the following:

- Enhanced builtin: IC_WINDOWS_SETFONT

- New builtin: IC_TRIM.

Interactive COBOL 3.30 added support for the following:

- ACCEPT FROM ENVIRONMENT updated to give the minimum and maximum screen column sizes and the
computer name.

- New builtins: IC_COMPRESS_ON. IC_COMPRESS_OFF

- New Statement: GOBACK

- Inline comment (*>) added

Interactive COBOL 3.22 added support for the following:

- Enhanced builtin: IC_SYS_INFO

- New builtin: IC_GET_FILE_IND

Interactive COBOL 3.20 added support for the following:

- Enhancements to the Screen Section, including OCCURS, LINE PLUS/MINUS variable, relative positioning
after absolute positioning, identifier for FOREGROUND-COLOR and BACKGROUND-COLOR,
CONVERTING UP/DOWN, and compatibility enhancements for the ERASE, BLANK, attribute control
clauses.

- Introduction of screen control clauses such as line and column positioning and attribute control, etc. for
non-screen ACCEPT and DISPLAY statements

Interactive COBOL 3.13 added support for the following:

- New builtins: IC_SET_ENV, IC_WINDOWS_SETFONT.

- New compiler switch (-c).

- ICIDE enhancements.

- Runtime support to write to the audit file. (DISPLAY UPON)

Interactive COBOL 3.12 added support for the following:

- Enhanced builtin: IC_SEND_MSG.

Interactive COBOL 3.11 added support for the following:

- New builtin: IC_WINDOWS_SHELLEXECUTE.

- On Windows, ICRUNW can set its font and size at startup.

34

Enhancements

Interactive COBOL 3.10 added support for the following:

- New reserved words for the ANSI 74 and ANSI 85 dialects: CONVERT, CURSOR, HIGH, LOW, PROMPT,
and TAB.

- Removed the debugger (ICDEB) as a separate executable and made an integral part of the runtime.

- On Windows, added an integrated development environment (ICIDE) allowing projects to be defined, edited,
and compiled in one place.

Interactive COBOL 3.03 added support for the following:

- New reserved words for the ANSI 74 and ANSI 85 dialects: BACKGROUND, BEEP, FOREGROUND, and
MINUS.

Interactive COBOL 3.01 added support for the following:

- New builtins: IC_QUEUE_LIST, IC_QUEUE_OPERATION.

Interactive COBOL 3.00 added support for the following:

- Code and data space increased to 16MB each
- Multicharacter switches
- Nested COPY files
- Expressions in subscripts
- Reference modification (ANSI 74/85 only)
- ACCEPT FROM DATE YYYYMMDD
- ACCEPT FROM DAY YYYYDDD
- ACCEPT FROM EXCEPTION STATUS WITH ERROR IN xx
- CALL by CONTENT
- CODE-SET
- COPY REPLACING
- OCCURS DEPENDING ON
- EVALUATE statement (ANSI 74/85 only)
- EXTERNAL data and files
- INITIALIZE statement (ANSI 74/85 only)
- Enhanced INSPECT (multiple TALLYING, CONVERTING clause)
- LINAGE support
- SECURE NO ECHO
- QUEUE IS added to SELECT
- RECORD DELIMITER added to SELECT
- START is available for sequential files
- STOP RUN literal
- Varying length records for all file types
- IS INITIAL PROGRAM
- 61 INTRINSIC FUNCTIONS added (ABS, ACOS, ANNUITY, ...) (ANSI 74/85 only)
- New Builtins: IC_HANGUP, IC_LOGON, IC_QUEUE_STATUS, IC_SHUTDOWN,

IC_INFOS_STATUS_TEXT, IC_PID_EXISTS, IC_HEX_TO_NUM, IC_NUM_TO_HEX,
CLI, ?CBSYS, ?CBADDR, and ?CBBADDR

- Support for a VXCOBOL dialect (Data General AOS/VS COBOL compatible)

35

Interactive COBOL Language Reference & Developer’s Guide

36

PART ONE - LANGUAGE REFERENCE

37

Interactive COBOL Language Reference & Developer’s Guide - Part One

38

Conventions (General Format)

I. CONVENTIONS USED IN THIS MANUAL

A. Definition of a General Format

A general format is the specific arrangement of the elements of a clause or a statement.

A clause or a statement consists of elements as defined below. Throughout this document a format is shown
adjacent to information defining the clause or statement. When more than one specific arrangement is permitted, the
general format is separated into numbered or named formats. Clauses must be written in the sequence given in the
general formats. (If they are used, optional clauses must appear in the sequence shown.) In certain cases, stated
explicitly in the rules associated with a given format, clauses may appear in sequences other than that shown.
Applications, requirements, or restrictions concerning a format, are shown as rules.

A.1. Elements

Elements that make up a clause or a statement consist of uppercase words, lowercase words, level-numbers, brackets,
braces, connectives, and special characters.

A.2. Words

UNDERLINED UPPERCASE WORDS represent keywords and are required whenever the functions of which they
are a part are used. An error will be reported by the compiler if a keyword is absent or incorrectly spelled.

UPPERCASE WORDS that are not underlined are optional; they are used only for readability.

Lowercase words, in a general format, are generic terms used to represent COBOL words, literals, PICTURE
character-strings, comment-entries, or a complete syntactical entry that must be supplied by the user. Where generic
terms are repeated in a general format, a number or letter appended to the term serves to identify that term for
explanation or discussion.

A.3. Level-Numbers

When specific level-numbers appear in data description entry formats, those specific level-numbers are required
when such entries are used in a COBOL program. In this document, the form 01, 02, ... , 09 is used to indicate
level-numbers 1 through 9.

A.4. Brackets and Braces

Brackets, [], enclose optional items.

Braces, { }, enclose a set of alternatives, one of which is required; it must be selected explicitly or implicitly. If one
of the options contains only reserved words which are not keywords, that option is the default if no option is
explicitly specified.

Options are indicated in a general format or a portion of a general format by vertically stacking the set of
alternatives, by a series of brackets or braces or by a combination of both. An option is selected by specifying one of
the alternatives or by specifying a unique combination of possibilities from a series of brackets or braces.

A.5. Ellipsis (...)

In text, other than general formats, the ellipsis shows omission of a word or words when such omission does not
impair comprehension. This is the conventional meaning of the ellipsis, and the use becomes apparent in context.

39

Interactive COBOL Language Reference & Developer’s Guide - Part One

In the general format, the ellipsis represents indefinite repetition of the last item. The portion of the format that may
be repeated is determined as follows:

Given ... (the ellipsis) in a format, scanning right to left, determine the] (right bracket) or } (right brace)
delimiter immediately to the left of the ... (ellipsis); continue scanning right to left and determine the
logically matching [(left bracket) or { (left brace) delimiter; the ... (ellipsis) applies to the portion of the
format between the determined pair of delimiters. Thus a []... indicates there can be zero or more
occurrences of this item while a { }... indicates there can be one or more occurrences of this item.

A.6. Format Punctuation

The separators comma and semicolon may be used anywhere the separator space is used in the formats. In the
source program, these separators are interchangeable.

The separator period, when used in the formats, has the status of a required word. It must be followed by a space.

A.7. Use of Special Character Words in Formats

The special character words `+', `-', `>', `<', `=', `>=', `<=', and ‘<>’ when appearing in formats, although not
underlined, are required when such portions of the formats are used.

A.8. Documentation Only

d Lines with the symbol “d” in the left margin indicate that this phrase is used for documentation only; it does not in
any way affect how the ICOBOL compiler syntaxes the source or generates executable code..d

B. Rules

B.1. Syntax Rules

Syntax rules define or clarify the order in which words or elements must be arranged to form larger elements such as
phrases, clauses, or statements. Syntax rules may also either impose restrictions on individual words or elements or
relax restrictions implied by words or elements.

B.2. General Rules

General rules define or clarify the meaning or relationship of meanings of an element or set of elements. They are
used to define or clarify the semantics of the statement and the effect that it has on either compilation or execution.

40

Conventions (ICOBOL Dialects)

C. ICOBOL Dialects and Feature-Sets

The ICOBOL product described by this document is a COBOL language product that can be customized at compile-
time to mimic one of several popular COBOL implementations, or dialects. The selection of a given dialect
automatically affects a number of different language attributes, such as the set of reserved words, the syntax for
particular statements, the storage format for data, and even run-time behavior.

In addition, the product implements a number of language enhancements that are selectable independently of the
dialect selected. These enhancements are bundled in various combinations to form a feature-set.

C.1. Description of ICOBOL Dialects

Each dialect is selectable via a compiler switch. (See the Compiler Chapter of the Developer’s Guide Section starting
on page 741, for a description of compiler options.) Each dialect is named and described individually below. Note
that whenever the term ICOBOL is used in this manual, it refers collectively to all of the supported dialects.
Whenever the individual dialect name is used, it refers specifically to that dialect. The supported dialects are:

• ANSI 74

This is the fundamental dialect. It is consistent with traditional Interactive COBOL. It uses ANSI-74 file
status codes and file handling semantics.

• ANSI 85

This is the stricter ANSI-85 dialect. It is consistent with ICOBOL 2 code compiled with the -M 85 option.
It uses ANSI-85 file status codes and file handling semantics.

• VXCOBOL

This dialect is consistent with the syntax and semantics used by Data General’s AOS/VS COBOL and by
Envyr Corporation’s VXCOBOL product.

C.2. Notation of Dialect Differences

(1) Many language features and runtime behavior are common to all dialects. In that case, no dialect notation is
necessary, and support with all dialects is assumed. The term “ICOBOL” refers to the product as a whole and
includes all dialects, except where explicitly noted.

(2) Where there are differences, they are noted in the documentation with flags to note those exceptions. Most
differences are between the following sets of dialects, and these are the most common flags you will see in the
documentation. For example,

• (ANSI 74 and ANSI 85)
• (VXCOBOL)

Less frequently, differences will be noted with the following flags:

• (ANSI 74)
• (ANSI 85)

(3) Some features and behavior are found only in one dialect and are so marked. For example in the DATA
DIVISION:

41

Interactive COBOL Language Reference & Developer’s Guide - Part One

FEEDBACK Clause (VXCOBOL)
and

RECORD Clause (ANSI 74 and ANSI 85)

ANSI 74 and ANSI 85:
(4) During the execution of an ACCEPT statement for a screen item that contains

SECURE NO ECHO, any characters entered by the user will not be echoed, and the cursor will
not move as the characters are entered.

VXCOBOL:
(5) During the execution of an ACCEPT statement, any characters entered by the user

will not be echoed. Additionally, the cursor will not move as the characters are entered.

(4) Differences are flagged at the highest level appropriate. A COBOL statement may be supported in one
dialect but not another; in that case, the notation will appear at the highest level for the statement, indicating which
dialect(s) support the statement. Most COBOL statements are common to all dialects but have minor differences
among dialects, as, for example in the following documentation excerpt from ACCEPT statement in the
PROCEDURE DIVISION:

C.3. Description of Feature-sets

A feature-set is an enhancement or a set of enhancements that can be enabled independently of the specific dialect
that is selected. In a manner similar to the dialect, however, a feature-set may affect the set of reserved words, that
syntax for existing language features, additional syntax that is specific to the feature-set, and even run-time behavior.
Each feature-set is denoted by a feature-set name and an optional level indicator. The naming reflects this scheme.

The feature-sets are as follows:

• ISQL

This is Integrated SQL. This level includes integrated support for a number of the SQL data types and
operators, as well as basic support for dynamic queries using PREPARE and EXECUTE.

C.4. Notation of Feature-set Differences

Where there are differences created by the presence of a feature-set, they are noted in the documentation with flags
to note those exceptions. When the differences are the same for all levels of a feature-set, they are denoted by using
just the base feature-set name. For example,

• (ISQL) Applies to all levels of the ISQL feature-set

42

COBOL Source Program (Concepts)

II. COBOL SOURCE PROGRAM

A. General Description

A COBOL source program is a syntactically correct set of COBOL statements.

B. Concepts

B.1. Character Set

The most basic and indivisible unit of the language is the character. The set of characters used to form COBOL
character-strings and separators includes the letters of the alphabet, digits, and special characters. This character set
consists of the characters as defined under COBOL Character Set in the glossary. In the case of nonnumeric literals,
comment-entries, and comment lines, the character set is expanded to include the computer's entire character set.
The characters allowable in each type of character-string and as separators are defined in the section below.

B.2. Language Structure

The individual characters of the language are concatenated to form character-strings and separators. A separator
may be concatenated with another separator or with a character-string. A character-string may only be concatenated
with a separator. The concatenation of character-strings and separators forms the text of a source program.

B.2.1 Separators

A separator is a character or two contiguous characters formed according to the following rules:

(1) Space. The punctuation character space is a separator. Anywhere a space is used as a separator or as part of
a separator, more than one space may be used. All spaces immediately following the separators comma, semicolon,
or period are considered part of that separator and are not considered to be the separator space.

(2) Comma and semicolon. Except when the comma is used in a PICTURE character-string, the punctuation
characters comma and semicolon, immediately followed by a space, are separators that may be used anywhere the
separator space is used. They may be used to improve program readability.

(3) Period. The punctuation character period, when followed by a space is a separator. It must be used only to
indicate the end of a sentence, or as shown in formats.

(4) Parentheses. The punctuation characters right and left parentheses are separators. Parentheses may appear
only in balanced pairs of left and right parentheses delimiting subscripts, reference modifiers, arithmetic expressions,
or conditions.

(5) Quotation mark. The punctuation character quotation mark is a separator. An opening quotation mark must
be immediately preceded by a space or left parenthesis; a closing quotation mark, when paired with an opening
quotation mark, must be immediately followed by one of the separators space, comma, semicolon, period, or right
parenthesis.

(6) Colon. The punctuation character colon is a separator and is required when shown in the general formats.

43

Interactive COBOL Language Reference & Developer’s Guide - Part One

(7) The separator space may optionally immediately precede all separators except:

a. As specified by reference format rules.

b. The separator closing quotation mark. In this case, a preceding space is considered as part of the
nonnumeric literal and not as a separator.

(8) The separator space may optionally immediately follow any separator except the opening quotation mark.
In this case, a following space is considered as part of the nonnumeric literal and not as a separator.

(9) Pseudo-text delimiters. Pseudo-text delimiters are separators. An opening pseudo-text delimiter must be
immediately preceded by a space. A closing pseudo-text delimiter must be immediately followed by one of the
separators space, comma, semi-colon, or period. Pseudo-text delimiters may appear only in balanced pairs
delimiting pseudo-text.

Any punctuation character which appears as part of the specification of a PICTURE character-string or numeric
literal is not considered as a punctuation character, but rather as a symbol used in the specification of that PICTURE
character-string or numeric literal. PICTURE character-strings are delimited only by the separators space, comma,
semicolon, or period.

The rules established for the formation of separators do not apply to the characters which comprise the contents of
nonnumeric literals, comment-entries, or comment lines.

B.2.2 Character-Strings

A character-string is a character or a sequence of contiguous characters which forms a COBOL word, a literal, a
PICTURE character-string, or a comment-entry. A character-string is delimited by separators.

B.2.2.1 COBOL Words

A COBOL word is a character-string of not more than 30 characters which forms a user-defined word, a
system-name, or a reserved word. Each character of a COBOL word is selected from the set of letters, digits, and the
hyphen. The hyphen may not appear as the first or last character. Each lowercase letter is considered to be
equivalent to its corresponding uppercase letter. Within a source program, reserved words and user-defined words
form disjoint sets; reserved words and system-names form disjoint sets; system-names and defined words form
intersecting sets. The same COBOL word may be used as a system-name and as a user-defined word within a source
program; and the class of a specific occurrence of this COBOL word is determined by the context of the clause or
phrase in which it occurs.

NOTE: ANSI standard COBOL required that COBOL words be no more than 30 characters. The
VXCOBOL dialect will issue an info message at compile time if a word exceeds 30 characters, but
otherwise will allow up to 50 characters in a word.

B.2.2.1.1 User-Defined Words

A user-defined word is a COBOL word that must be supplied by the user to satisfy the format of a clause or
statement. Each character of a user-defined word is selected from the set of characters `A', `B', `C', ... , `Z', `a', `b',
`c', ... , `z', `0', ... , `9', and `-' except that the `-' may not appear as the first or last character.

44

COBOL Source Program (Concepts)

The types of user-defined words are:

1. alphabet-name
2. class-name *
3. condition-name
4. data-name
5. file-name
6. index-name

7. level-number
8. mnemonic-name
9. paragraph-name
10. program-name
11. record-name
12. screen-name

13. section-name
15. symbolic-character *
16. text-name

* this type is not used in VXCOBOL

Within a given source program, the defined words are grouped into the following disjoint sets:

1. alphabet-names
2. class-name *
3. condition-names, data-names,

record-names, and screen-name
4. file-names

5. index-names
6. mnemonic-names
7. paragraph-names
8. program-names

9. section-names
10. symbolic-characters *
11. text-names

* this type is not used in VXCOBOL

All user-defined words, except level-numbers, can belong to one and only one of these disjoint sets. Further, all
user-defined words within a given disjoint set must be unique, except as specified in the rules for uniqueness of
reference.

With the exception of section-names, paragraph-names, and level-numbers, all user-defined words must contain at
least one alphabetic character. Level-numbers need not be unique; a given specification of a level-number may be
identical to any other level-number.

B.2.2.1.1.1 Condition-Name

A condition-name is a name which is assigned to a specific value, set of values, or range of values, within a complete
set of values that a data item may assume. The data item itself is called a conditional variable.

Condition-names may be defined in the Data Division or in the SPECIAL-NAMES paragraph within the
Environment Division where a condition-name must be assigned to the on status or off status, or both, of
user-defined switches.

A condition-name is used in conditions as an abbreviation for the relation condition; this relation condition posits
that the associated conditional variable is equal to one of the set of values to which that condition-name is assigned.
A condition-name is also used in a SET statement, indicating that the associated value is to be moved to the
conditional variable.

B.2.2.1.1.2 Mnemonic-Name

A mnemonic-name assigns a user-defined word to a user-defined-switch. These associations are established in the
SPECIAL-NAMES paragraph of the Environment Division (see The SPECIAL-NAMES Paragraph, page 80).

B.2.2.1.1.3 Paragraph-Name

A paragraph-name is a word which names a paragraph in the Procedure Division. Paragraph-names are equivalent if,
and only if, they are composed of the same sequence of the same number of digits and/or characters.

45

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.2.2.1.1.4 Section-Name

A section-name is a word which names a section in the Procedure Division. Section-names are equivalent if, and
only if, they are composed of the same sequence of the same number of digits and/or characters.

B.2.2.1.1.5 Other User-Defined Names

All other types of user-defined words are defined in the glossary.

B.2.2.1.2 System-Names

A system-name is a COBOL word which is used to communicate with the operating environment. Each character
used in the formation of a system-name must be selected from the set of characters `A', `B', `C', ... , `Z', `0', ... , `9',
and `-' except that the `-' may not appear as the first or last character.

B.2.2.1.3 Reserved Words

A reserved word is a COBOL word that is one of a specified list of words which may be used in COBOL source
programs, but which must not appear in the program as user-defined words or system-names. Reserved words can
only be used as specified in the general formats. The reserved word table can be found in APPENDIX L on page
903.

Reserved words satisfy the following conditions:

(1) Reserved words do not begin with the characters `0', ... , `9', `X', `Y', or `Z' except for the reserved words
YYYYMMDD, YYYYDDD, ZERO, ZEROES, ZEROS, and ZONE (ISQL).

(2) Reserved words do not contain only one alphabetic character.

(3) Reserved words do not start with 1 or 2 characters followed by `-' except for the reserved words I-O,
I-O-CONTROL, and reserved words which begin with `B-' or `DB-'.

(4) Reserved words do not contain two or more contiguous hyphens.

(5) Reserved words are always shown as uppercase, although they may be written in mixed or lowercase with
each lowercase letter being equivalent to the corresponding uppercase letter.

There are three types of reserved words:

1. required words 2. optional words 3. special purpose words

B.2.2.1.3.1 Required Words

A required word is a word whose presence is required when the format in which the word appears is used in a source
program.

Required words are of two types:

(1) Keywords. Within each format, such words are uppercase and underlined.

(2) Special character words. These are the arithmetic operators and relation characters.

46

COBOL Source Program (Concepts)

B.2.2.1.3.2 Optional Words

Within each format, uppercase words that are not underlined are called optional words and may be specified at the
user's option with no effect on the semantics of the format.

B.2.2.1.3.3 Special Purpose Words

There are two types of special purpose words:

1. figurative constants
2. special registers

B.2.2.1.3.3.1 Figurative Constants

Certain reserved words are used to name and reference specific constant values. These reserved words are specified
under Figurative Constant Values on page 50.

B.2.2.1.3.3.2 Special Registers

Certain reserved words are used to name and reference special registers. Special registers are certain compiler-
generated storage areas whose primary use is to store information produced in conjunction with the use of specific
COBOL features. Unless specified otherwise in these specifications, one special register of each type is allocated for
each program. In the general formats of this specification, a special register may be used, unless otherwise restricted,
wherever data-name or identifier is specified provided that the special register is the same category as the data-name
or identifier. If qualification is allowed, special registers may be qualified as necessary to provide uniqueness. See
page 130 Qualification.

Special registers include: ADDRESS OF, LENGTH OF, LINAGE-COUNTER, and SQLSTATE (ISQL).

B.2.2.2 Literals

A literal is a character-string whose value is implied by an ordered set of characters of which the literal is composed,
by specification of a reserved word which references a figurative constant, or (ISQL) by specification of a reserved
word (or words) in combination with a non-numeric literal value. Every literal belongs to one of the following types:

(1) nonnumeric
(2) numeric
(3) date-time (ISQL)
(4) interval (ISQL)

NOTE: For simplicity in the formats that follow, the literals that make use of quotation marks or apostrophes as
delimiters are only shown using quotation marks. Simply remember that the closing delimiter must match
the opening delimiter.

47

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.2.2.2.1 Nonnumeric Literals

A nonnumeric literal is a character-string enclosed in either quotation marks or apostrophes. The length of a
nonnumeric literal applies to its representation in the object program.

B.2.2.2.1.1 General Format

"{character-1}... "

B.2.2.2.1.2 Syntax Rules

(1) Character-1 may be any character in the computer's character set.

(2) If character-1 is to represent the quotation mark, two contiguous quotation mark characters must be used to
represent a single occurrence of that character, or the delimiting characters must be apostrophes.

(3) If character-1 is to represent the apostrophe, two contiguous apostrophes characters must be used to
represent a single occurrence of that character, or the delimiting characters must be quotations.

(4) (ISQL) There may be zero occurrences of character-1.

B.2.2.2.1.3 General Rules

(1) The value of a nonnumeric literal in the object program is the value represented by character-1.

(2) The separator quotation mark or apostrophe that delimits the nonnumeric literal is not part of the value of
the nonnumeric literal.

(3) All nonnumeric literals are of category alphanumeric.

(4) With the -G n compiler switch, a single character may be represented by enclosing a value in angle brackets.
For example, "<014>" represents the formfeed character, since octal 14 is the ASCII code for formfeed. See page
746 for complete details on the General switch to the compiler.

(5) (ISQL) When there are zero occurrences of character-1 in the literal, it is known as the null string and it is
a literal of zero length. When the value is moved to a an item of usage Character Varying, it results in the data item
also having zero length. When used with items without the Varying attribute, normal padding rules apply.

48

COBOL Source Program (Concepts)

B.2.2.2.2 Nonnumeric Hexadecimal Literals

A nonnumeric hexadecimal literal is a special type of nonnumeric literal. It is a character string of one or more
hexadecimal digits which is delimited at the beginning by the uppercase character 'X' followed immediately by a
quotation mark or apostrophe and delimited at the end by a matching quotation mark or apostrophe. The length of a
nonnumeric hexadecimal literal applies to its representation in the object program. Odd digit counts assume a
leading zero to ensure an even number of bytes.

B.2.2.2.2.1 General Format

X"{character-1}... " or X ‘{character-1}...‘

B.2.2.2.2.2 Syntax Rules

(1) Character-1 may be the digits '0' through '9', the characters 'A' through 'F' or the characters 'a' through 'f'.
The uppercase and lowercase characters are considered equivalent.

(2) Character-1 may occur from one to 160 times. If character-1 occurs an odd number of times, a '0' is
assumed to immediately follow the opening quotation mark or apostrophe so that there are an even number of
occurrences.

B.2.2.2.2.3 General Rules

(1) The value of a nonnumeric hexadecimal literal in the object program is the ASCII character represented by
each pair of occurrences of character-1. (Each ASCII character is represented as a pair of hexadecimal digits.)

(2) The leading 'X' and quotation marks or apostrophes that delimit the nonnumeric hexadecimal literal are not
part of the value of the literal.

(3) Nonnumeric hexadecimal literals are category alphanumeric.

(4) Nonnumeric hexadecimal literals may be used anywhere that a nonnumeric literal may be used.

B.2.2.2.3 Numeric Literals

A numeric literal is a character-string whose characters are selected from the digits `0' through `9', the plus sign, the
minus sign, and the decimal point. Numeric literals can be from 1 through 18 digits in length. The rules for the
formation of numeric literals are as follows:

(1) A literal must contain at least one digit.

(2) A literal must not contain more than one sign character. If a sign is used, it must appear as the left-most
character of the literal. If the literal is unsigned, the literal is nonnegative.

(3) A literal must not contain more than one decimal point. The decimal point is treated as an assumed decimal
point, and may appear anywhere within the literal except as the right-most character. If the literal contains no
decimal point, the literal is an integer.

(4) If a literal conforms to the rules for the formation of numeric literals but is enclosed in quotation marks, it is
a nonnumeric literal and is treated as such by the compiler.

49

Interactive COBOL Language Reference & Developer’s Guide - Part One

(5) The value of a numeric literal is the algebraic quantity represented by the characters in the numeric literal.
Every numeric literal is category numeric. The size of a numeric literal in standard data format characters is equal to
the number of digits in the string of characters as specified by the user.

B.2.2.2.4 Numeric Hexadecimal Literals

A numeric hexadecimal literal is a special type of numeric literal. It is a character string of one or more hexadecimal
digits which is delimited at the beginning by the uppercase character 'H' followed immediately by a quotation mark
or apostrophe and delimited at the end by a matching quotation mark or apostrophe. The length of a numeric
hexadecimal literal applies to its representation in the object program.

B.2.2.2.4.1 General Format

H"{character-1}... "

B.2.2.2.4.2 Syntax Rules

(1) Character-1 may be the digits '0' through '9', the characters 'A' through 'F' or the characters 'a' through 'f'.
The uppercase and lowercase characters are considered equivalent.

(2) Character-1 may occur from one to 8 times.

B.2.2.2.4.3 General Rules

(1) The value of a numeric hexadecimal literal is the algebraic quantity represented by the characters within the
quotes interpreted as a non-negative hexadecimal integer.

(2) The leading 'H' and quotation marks that delimit the numeric hexadecimal literal are not part of the value of
the literal.

(3) The size of a numeric hexadecimal literal is the size of an equivalent decimal representation of the same
algebraic quantity.

(4) Numeric hexadecimal literals are category numeric.

(5) Numeric hexadecimal literals may be used anywhere in the source program that a numeric literal may be
used.

B.2.2.2.5 Figurative Constant Values

Figurative constant values are generated by the compiler and referenced through the use of the reserved words given
below. These words must not be bounded by quotation marks when used as figurative constants. The singular and
plural forms of figurative constants are equivalent and may be used interchangeably.

The figurative constant values and the reserved words used to reference them are as follows:

(1) [ALL] ZERO, [ALL] ZEROS, [ALL] ZEROES - Represents the numeric value `0', or one or more of the
character `0' from the computer's character set.

(2) [ALL] SPACE, [ALL] SPACES - Represents one or more of the character space from the computer's
character set.

50

COBOL Source Program (Concepts)

(3) [ALL] HIGH-VALUE, [ALL] HIGH-VALUES - Except in the SPECIAL-NAMES paragraph, represents
one or more of the character that has the highest ordinal position in the program collating sequence.

(4) [ALL] LOW-VALUE, [ALL] LOW-VALUES - Except in the SPECIAL-NAMES paragraph, represents one
or more of the character that has the lowest ordinal position in the program collating sequence.

(5) [ALL] QUOTE, [ALL] QUOTES - Represents one or more of the character ` " '. The word QUOTE or
QUOTES cannot be used in place of a quotation mark in a source program to bound a nonnumeric literal. Thus
QUOTE ABD QUOTE is incorrect as a way of stating the nonnumeric literal "ABD".

(6) ALL literal - Represents all or part of the string generated by successive concatenations of the characters
comprising the literal. The literal must be a nonnumeric literal. The literal must not be a figurative constant.

NOTE: The following is supported in the ANSI 74 and ANSI 85 dialects and not the VXCOBOL dialect.

(7) [ALL] symbolic-character - Represents one or more of the character specified as the value of this
symbolic-character in the SYMBOLIC CHARACTERS clause of the SPECIAL-NAMES paragraph.

NOTE: The following is supported in the VXCOBOL dialect and not the ANSI 74 and ANSI 85 dialects.

(8) [ALL] CR - Represents one or more NEW LINE characters.

When a figurative constant represents a string of one or more characters, the length of the string is determined by the
compiler from context according to the following rules:

(1) When a figurative constant is specified in a VALUE clause, or when a figurative constant is associated with
another data item (e.g., when the figurative constant is moved to or compared with another data item), the string of
characters specified by the figurative constant is repeated character by character on the right until the size of the
resultant string is greater than or equal to the number of character positions in the associated data item, This resultant
string is then truncated from the right until it is equal to the number of character positions in the associated data item.
This is done prior to and independent of the application of any JUSTIFIED clause that may be associated with the
data item.

(2) When a figurative constant, other than ALL literal, is not associated with another data item as when the
figurative constant appears in a DISPLAY, STOP, STRING, or UNSTRING statement, the length of the string is one
character.

(3) When the figurative constant ALL literal is not associated with another data item, the length of the string is
the length of the literal.

A figurative constant may be used whenever `literal' appears in a format with the following exceptions:

(1) If the literal is restricted to a numeric literal, the only figurative constant permitted is ZERO (ZEROS,
ZEROES). ICOBOL also allows HIGH-VALUES and LOW-VALUES, although the compiler generates a warning.

(2) Associating the figurative constant ALL literal, where the length of the literal is greater than one, with a data
item that is numeric or numeric edited is an obsolete feature in Standard COBOL. This obsolete feature is to be
deleted from the next revision of Standard COBOL.

(3) When a figurative constant other than ALL literal is used, the word ALL is redundant and is used for
readability only.

In all ICOBOL dialects, HIGH-VALUES is hex FF, and LOW-VALUES is hex 00.

Each reserved word that is used to reference a figurative constant value is a distinct character-string with the
exception of the constructs using the word ALL, such as ALL literal, ALL SPACES, etc., which are composed of
two distinct character-strings.

51

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.2.2.2.6 Date Literals (ISQL)

A date literal specifies an SQL date value.

B.2.2.2.6.1 General Format

DATE "YYYY-MM-DD"

B.2.2.2.6.2 Syntax Rules

(1) YYYY specifies a numeric year field of exactly four digits.

(2) MM specifies a numeric month field of exactly two digits.

(3) DD specifies a numeric day field of exactly two digits.

B.2.2.2.6.3 General Rules

(1) The date literal is class date-time and category date.

(2) The value of year field may range from 0001 to 9999.

(3) The values of month and day fields must fulfill the rules for valid values within the Gregorian calendar.

(4) A date literal may appear anywhere the general formats allow an item of category date to appear and where
the item is a sending (value) operand.

B.2.2.2.7 Time Literals (ISQL)

A time literal specifies an SQL time value.

B.2.2.2.7.1 General Format

TIME "hh:mm:ss[.ffffff]”

B.2.2.2.7.2 Syntax Rules

(1) The brackets that appear in the format above are not part of the literal, but have their usual meaning of
showing optional parts.

(2) hh specifies a numeric hours field of exactly two digits.

(3) mm specifies a numeric minutes field of exactly two digits.

(4) ss specifies a numeric seconds field of exactly two digits.

(5) .ffffff specifies a numeric fraction field of one to six digits, which is optional.

52

COBOL Source Program (Concepts)

B.2.2.2.7.3 General Rules

(1) The time literal is of class date-time and category time.

(2) The value of hour field may range from 00 to 23.

(3) The values of minutes and seconds fields may range from 00 to 59.

(4) The value of the fraction field may range from .000000 to .999999.

(5) A time literal may appear anywhere the general formats allow an item of category time to appear and where
the item is a sending (value) operand.

B.2.2.2.8 Timestamp Literals (ISQL)

A timestamp literal specifies an SQL timestamp value, which is the combination of an SQL date value and an SQL
time value separated by a single space.

B.2.2.2.8.1 General Format

TIMESTAMP "YYYY-MM-DD hh:mm:ss[.ffffff]”

B.2.2.2.8.2 Syntax Rules

(1) The brackets that appear in the format above are not part of the literal, but have their usual meaning of
showing optional parts.

(2) The rules for the various fields are found in the preceding sections entitled Date Literals and Time Literals.

(3) The date part of the literal is separated from the time part of the literal by exactly one space.

B.2.2.2.8.3 General Rules

(1) The timestamp literal is of class date-time and category timestamp.

(2) The rules for the values of the various fields are found in the preceding sections that describe the general
rules for date literals and time literals.

(3) A timestamp literal may appear anywhere the general formats allow an item of category timestamp to appear
and where the item is a sending (value) operand.

B.2.2.2.9 Interval Literals (ISQL)

An interval literal specifies an SQL interval value. Each interval has a start specification and an optional end
specification. The start and end specifications may be used in various combinations to create different interval
ranges. An SQL interval is one of two disjoint kinds: the year-month interval and the day-time interval. In order to
help simplify the formats, we have divided the rules according to these two kinds. For the year-month interval, the
start and end specifications are from the set YEAR and MONTH. For the day-time interval, the start and end
specifications are from the set DAY, HOUR, MINUTE, and SECOND.

53

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.2.2.2.9.1 Year-Month Interval Literals (ISQL)

Within the year-month literals, there are three combinations of the start and end specifications.

B.2.2.2.9.1.1 General Format

INTERVAL "[+/-][Y...]Y-[M]M" YEAR TO MONTH
INTERVAL "[+/-][Y...]Y” YEAR
INTERVAL "[+/-][M...]M" MONTH

B.2.2.2.9.1.2 Syntax Rules

(1) The brackets and ellipses in the format above are not part of the literal, but have their usual meaning of
showing optional items and repeated items.

(2) [+/-] specifies an optional sign.

(3) [Y...]Y specifies a numeric number-of-years field of one to four digits.

(4) [M]M specifies a numeric number-of-months field of one or two digits.

(5) [M...]M specifies a numeric number-of-months field of one to six digits.

(6) There are no intervening spaces between the sign and the year or month field.

(7) The year and month fields are separated by a single intervening hyphen with no spaces.

B.2.2.2.9.1.3 General Rules

(1) The year-month literal is of class interval and category year-to-month.

(2) The value of number-of-years field may range from 0 to 9999.

(3) The value of number-of-months field may range from 0 to 11 when participating in a year-to-month interval,
and from 0 to 999999 when participating in a month interval.

(4) The month field in a YEAR TO MONTH interval literal is always considered to have 2 digits of precision,
even if it is specified with only a single digit in the source text.

(5) Leading zeros are allowed in the leftmost field and participate in determining the precision of that field, just
as they do numeric literals. When used in comparisons, the algebraic value of the field is used. Thus, both
INTERVAL “0023-01" YEAR TO MONTH and INTERVAL “23-1" YEAR TO MONTH represent the interval of
23 years and 1 month, but one has a precision of 4 and the other a precision of 2 for the year field.

(6) A year-month interval literal may appear anywhere the general formats allow an item of class interval and
category year-month and the item is a sending (value) operand. In some cases, the general formats will allow an
interval item and the general rules will define any restrictions on the category of the item.

54

COBOL Source Program (Concepts)

B.2.2.2.9.2 Day-Time Interval Literals (ISQL)

Within the day-time literals, there are multiple combinations of the start and end specifications.

B.2.2.2.9.2.1 General Format

INTERVAL "[+/-][D...]D" DAY
INTERVAL "[+/-][D...]D [h]h" DAY TO HOUR
INTERVAL "[+/-][D...]D [h]h:mm" DAY TO MINUTE
INTERVAL "[+/-][D...]D [h]h:mm:ss[.ff...]" DAY TO SECOND

INTERVAL "[+/-][h...]h" HOUR
INTERVAL "[+/-][h...]h:mm" HOUR TO MINUTE
INTERVAL "[+/-][h...]h:mm:ss[.ff...]" HOUR TO SECOND

INTERVAL "[+/-][m...]m" MINUTE
INTERVAL "[+/-][m...]m:ss[.ff...]" MINUTE TO SECOND

INTERVAL "[+/-][s...]s[.ff...]" SECOND

B.2.2.2.9.2.2 Syntax Rules

(1) The brackets and ellipses in the format above are not part of the literal, but have their usual meaning of
showing optional items and repeated items.

(2) [+/-] specifies an optional sign.

(3) [D...]D specifies a numeric number-of-days field of one to seven digits.

(4) [h]h specifies a numeric number-of-hours field of one or two digits.

(5) [m...]m specifies a numeric number-of-minutes field of one to ten digits.

(6) mm specifies a numeric number-of-minutes field of exactly two digits.

(7) [s...]s specifies a numeric number-of-seconds field of one to twelve digits.

(8) ss specifies a numeric number-of-seconds field of exactly two digits.

(9) [.ff...]s specifies a numeric fractional seconds field of one to six digits.

(10) The day and hour fields are separated by a single intervening space.

(11) The hour, minute and second fields are separated by a single colon.

B.2.2.2.9.2.3 General Rules

(1) The day-time literal is of class interval and category day-to-time.

(2) When the field corresponds to the start specification for the interval (the leftmost, or most significant field),
the value is bounded by the number of available digits as specified in the syntax rules of the field.

(3) Leading zeros are allowed in the leftmost field and participate in determining the precision of that field, just
as they do in numeric literals. When used in comparisons, the algebraic value of the field is used.

55

Interactive COBOL Language Reference & Developer’s Guide - Part One

(4) When the hours field is not the most significant field, it must range in value from 0 to 23.

(5) When the hours field is not the most significant field, it is assumed to have a precision of two digits, even if
it is written with only a single digit.

(6) When the minutes field is not the most significant field, it must range in value from 0 to 59.

(7) When the seconds field is not the most significant field, it must range in value from 0 to 59.

(8) The fractional seconds field is limited to six digits, yielding a range from 0 to .999999. If the decimal point
is specified, at least one fractional digit must be specified.

(9) A day-time interval literal may appear anywhere the general formats allow an item of class interval to
appear and where the interval variable is a sending (value) operand. In some cases, the general formats will allow an
interval item and the general rules will define any restrictions on the category of the item.

B.2.2.3 LINAGE-COUNTER

The reserved word LINAGE-COUNTER is a name for a line counter generated by the presence of a LINAGE clause
in a file description entry. The implicit description is that of an unsigned integer whose size is equal to integer-1 or
the data item referenced by data-name-1 in the LINAGE clause. LINAGE-COUNTER may be referenced only in
Procedure Division statements; however only the input-output control system may change the value of
LINAGE-COUNTER.

If you have more than one print-file, you can qualify LINAGE-COUNTER with the filename in the Procedure
Division so that the compiler knows the output record you are using with LINAGE-COUNTER.

B.2.2.4 PICTURE Character-Strings

A PICTURE character-string consists of certain symbols which are composed of the currency symbol and certain
combinations of characters in the COBOL character set. An explanation of the PICTURE character-string and the
rules that govern its use are given under the PICTURE clause section, which begins on page 182.

Any punctuation character which appears as part of the specification of a PICTURE character-string is not
considered as a punctuation character, but rather as a symbol used in the specification of that PICTURE
character-string.

B.2.2.5 Comment-Entries

A comment-entry is an entry in the Identification Division that may be any combination of characters from the
computer's character set. Comment-entry is an obsolete element in Standard COBOL because it is to be deleted from
the next revision of Standard COBOL. A comment-entry is delimited by the next character-string that begins in
Area A.

B.3. Program and Run Unit Organization and Communication

Complete data processing problems are frequently solved by developing a set of separately compilable but logically
coordinated programs which at some time prior to execution may be compiled and assembled into a complete
problem solution. The organization of COBOL programs and run units supports this approach of dividing large
problem solutions into small, more manageable, portions which may be programmed and validated independently.

56

COBOL Source Program (Concepts)

B.3.1 Program and Run Unit Organization

There are two levels of computer programs in a COBOL environment. These are the source level and the object
level.

At the source level, the most inclusive unit of a computer program is a source program. A source program is a
syntactically correct set of COBOL statements as specified in this document and consists of an Identification
Division followed optionally by an Environment Division and/or a Data Division and/or a Procedure Division. A
source program can be converted by the COBOL compiler into an object program that either alone, or together with
other object programs, is capable of being executed.

The Procedure Division of a source program is organized into a sequence of procedures of two types. Declarative
procedures, normally termed declaratives, are procedures which will be executed only when special conditions occur
during the execution of a program. Nondeclarative procedures are procedures which will be executed according to
the normal flow of control within a program. Declaratives may contain nondeclarative procedures but these will be
executed only during the execution of the declarative which contains them. Nondeclarative procedures may contain
other nondeclarative procedures but must not contain a declarative. Neither declaratives nor nondeclarative
procedures can contain programs. In other words, in COBOL the terms `procedure' and `program' are not synonyms.

At the object level the most inclusive unit of organization of computer programs is the run unit. A run unit is a
complete problem solution consisting of an object program or of several inter-communicating object programs. A
run unit is an independent entity that can be executed without communicating with, or being coordinated with, any
other run unit except that it may process data files or set and test switches that were written or will be read by other
run units.

When a program is called, parameters upon which it is to operate may be passed to it by the program which calls it.
As any separately compiled program may be the first program executed in a run unit, the first executed program of a
run unit may receive parameters.

B.3.2 Accessing Data and Files

Some data items have associated with them a storage concept determining where data item values and other
attributes of data items are represented with respect to the programs of a run unit. Likewise, file connectors have
associated with them a storage concept determining where information concerning the positioning and status of a file
and other attributes of file processing are represented with respect to the programs of a run unit.

B.3.2.1 Names

A data-name names a data item. A file-name names a file connector.

A name may be used only to refer to the object with which it is associated from within the program in which the
name is declared.

B.3.2.2 Objects

Accessible data items usually require that certain representations of data be stored. File connectors usually require
that certain information concerning files be stored.

57

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.3.2.2.1 Object Types

B.3.2.2.1.1 Working Storage Records

Working storage records are allocations of sufficient storage to satisfy the record description entries in that section.
Each record description entry in a program declares a different object. Renaming and redefining do not declare new
objects; they provide alternate groupings or descriptions for objects which have already been declared.

B.3.2.2.1.2 File Connectors

File connectors are storage areas which contain information about a file and are used as the linkage between a
file-name and a physical file and between a file-name and its associated record area.

B.3.2.2.1.3 Record Areas for Files

No particular record description entry in the File Section is considered to declare the storage area for the record.
Rather, the Storage area is the maximum required to satisfy associated record description entries. These entries may
describe fixed or variable length records. In this discussion, record description entries are said to be associated in
two cases. First, when record description entries are subordinate to the same file description entry, they are always
associated. Second, when record description entries are subordinate to different file description entries and these file
description entries are referenced in the same SAME RECORD AREA clause, they are associated. All associated
record description entries are redefinitions of the same storage area.

B.3.2.2.1.4 Other Objects

Examples of other information declared in COBOL programs are the description entries and control information
used by programs in a run unit as they communicate with each other.

B.3.2.2.2 The EXTERNAL Attribute of an Object

A data item or file connector is external if the storage associated with that object is associated with the run unit rather
than with any particular program within the run unit. An external object may be referenced by any program which
describes the object. References to an external object from different programs using separate descriptions of the
object are always to the same object.

An object is internal if the storage associated with that object is associated only with the program which describes the
object.

B.3.2.2.2.1 Working Storage Records

A data record described in the Working-Storage Section is given the external attribute by the presence of the
EXTERNAL clause in its data description entry. Any data item described by a data description entry subordinate to
an entry describing an external record also attains the external attribute. If a record or data item does not have the
external attribute, it is part of the internal data of the program in which it is described.

B.3.2.2.2.2 File Connectors

A file connector is given the external attribute by the presence of the EXTERNAL clause in the associated file
description entry. If the file connector does not have the external attribute, it is internal to the program in which the
associated file-name is described.

58

COBOL Source Program (Concepts)

B.3.2.2.2.3 Record Areas for Files

The data records described subordinate to a file description entry which does not contain the EXTERNAL clause or
a sort-merge file description entry, as well as any data items described subordinate to the data description entries for
such records, are always internal to the program describing the file-name. If the EXTERNAL clause is included in
the file description entry, the data records and the data items attain the external attribute.

B.3.2.2.2.4 Other Objects

Data records, subordinate data items, and various associated control information described in the Linkage section of
a program are always considered internal to the program describing that data.

B.3.2.2.2.5 Program Classes

All programs which form part of a run unit may optionally possess the initial attribute.

An initial program is one whose program state is initializes when the program is called. Thus, whenever an initial
program is called, its program state is the same as when the program was first called in that run unit. During the
process of initializing an initial program, that program’s internal data is initialized; thus an item of the program’s
internal data whose description contains a VALUE clause is initialized to that defined value, but an item whose
description does not contain a VALUE clause is initialized to an undefined value. Files with internal file connectors
associated with the program are not in the open mode. The control mechanisms for all PERFORM statements
contained in the program are set to their initial states. The initial attribute is attained by specifying the INITIAL
phrase in the programs Identification Division.

B.3.3 Inter-program Communication

When the complete solution to a data processing problem is subdivided into more than one program, the programs
that make up the run unit must be able to communicate with each other. This communication has two pieces: the
transfer of control and the passing of parameters. The need for inter-program communication arises when the
programs in a run unit are separately compiled.

B.3.3.1 Transfer of Control

The CALL statement provides the means whereby control may be transferred from one program to another program
within a run unit. A called program may itself contain CALL statements.

When control is transferred to a called program, execution proceeds from statement to statement beginning with the
first nondeclarative statement. If control reaches a STOP RUN statement, this signals the logical end of the run unit.
If control reaches an EXIT PROGRAM statement, this signals the logical end of the called program only, and
control then reverts to the next executable statement following the CALL statement in the calling program. Thus the
EXIT PROGRAM statement terminates only the execution of the program in which it occurs, while the STOP RUN
statement terminates the execution of a run unit.

In order to call a program, a CALL statement specifies the program's name. The names assigned to each of the
separately compiled programs which constitute a run unit must be unique.

Any calling program may call any separately compiled program in the run unit.

A CALL statement may be used to call programs not written in COBOL, such as builtins or user-defined subroutines
added via the ICOBOL Link Kit.

59

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.3.3.2 Passing Parameters to Programs

A program calls another program in order to have the called program perform, on behalf of the calling program,
some defined part of the solution of a data processing problem. In many cases it is necessary for the calling program
to define to the called program the precise part of the problem solution to be executed by making certain data values,
which the called program requires, available to the called program. One method for ensuring the availability of these
data values is by passing parameters to a program, as is described in this paragraph. Another method is to share the
data. The data values passed as parameters also may identify some data to be shared; hence, the two methods are not
mutually independent.

B.3.3.2.1 Identifying Parameters

Data passed as parameters by a program calling another program must be accessible to the calling program, and the
data items receiving the data must be declared in the Data Division’s Linkage Section in the called program. In the
called program, the parameters are identified by listing the names in the Procedure Division header, in the USING
phrase, as well as declaring them in linkage Section entries. In the calling program, the parameters to be passed by
the calling program are identified by listing them in the USING phrase of the CALL statement.

Position in the list of parameters in the USING phrase, not name, is what establishes the correspondence between the
parameters, as they are known to the calling and called programs. That is, the first parameter on one list corresponds
to the first parameter on the other, the second to the second, etc.

Thus, a program which may be called by another program may include:

PROGRAM-ID. EXAMPLE.
PROCEDURE DIVISION USING NUM, PCODE, COST.

and may be called by executing:

CALL "EXAMPLE" USING NBR, PTYPE, PRICE.

thereby establishing the following correspondence:

Called program Calling
 (EXAMPLE) program
 NUM NBR
 PCODE PTYPE
 COST PRICE

EXAMPLE 1. Identifying parameters passed by a calling program

In addition, parameter count mismatch and parameter size mismatch are flagged only at runtime, with an
EXCEPTION STATUS code. That is, the number of parameters and the size of each parameter must be identical in
the calling and called programs.

B.3.3.2.2 Values of parameters

The individual parameters in the CALL statement's USING phrase are passed in one of two ways:

(1) BY REFERENCE. A called program is allowed to access and modify the value of the data referenced in the
calling program’s CALL statement. Both programs operate on the same data.

(2) BY CONTENT. This means that the values of the parameters are copied from the calling program to the
called program. Values in the calling program remain unchanged, even if modified in the called program. Storage is
not shared between calling and called programs.

60

COBOL Source Program (Structure)

The parameters referenced in a called program’s Procedure Division header must be described in the Linkage
Section of that program’s Data Division.

B.3.4 Intra-program Communication

The procedures which constitute the Procedure Division of a program communicate with one another by transferring
control or by referring to common data.

B.3.4.1 Transfer of Control

There are four methods of transferring control within a program:

(1) A GO TO statement.

(2) A PERFORM statement.

(3) A declarative procedure which is activated whenever certain conditions, including errors and exceptions,
occur.

(4) An input procedure associated with a SORT statement, or an output procedure associated with either a
SORT or MERGE statement.

An input-output procedure can be considered as an implicit PERFORM statement which is executed in conjunction
with a SORT or MERGE statement; and for this reason, the restrictions on the PERFORM statement apply equally to
input-output procedures.

Stricter restrictions than those for the PERFORM statement apply to declarative procedures.

B.3.4.2 Shared Data

All the data declared in a program's Data Division may be referenced by statements in the procedures and
declaratives which constitute that program.

C. Organization

With the exception of the COPY statement, the statements, entries, paragraphs, and sections of a COBOL source
program are grouped into four divisions, in the following order:

1. The Identification Division
2. The Environment Division

3. The Data Division
4. The Procedure Division

The end of a COBOL source program is indicated by the absence of additional source program lines.

61

Interactive COBOL Language Reference & Developer’s Guide - Part One

D. Structure

The following gives the general format and order of presentation of the entries and statements which constitute a
COBOL source program.

D.1. General Format

identification-division

[environment-division]

[data-division]

 procedure-division

D.2 Syntax Rules

(1) The generic terms identification-division, environment-division, data-division, and procedure-division
represent a COBOL Identification Division, a COBOL Environment Division, a COBOL Data Division, and a
COBOL Procedure Division, respectively.

D.3 General Rules

(1) The beginning of a division in a program is indicated by the appropriate division header. The end of a
division is indicated by one of the following:

a. The division header of a succeeding division in that program.

b. That physical position after which no more source program lines occur.

E. Divisions

The Identification Division identifies the program. In addition, the user may include the date the program is written,
the date the compilation of the source program is accomplished and such other information as desired under the
paragraphs in the general format shown below.

The Environment Division specifies a standard method of expressing those aspects of a data processing problem that
are dependent upon the physical characteristics of a specific computer. This division allows specification of the
configuration of the compiling computer and the object computer. In addition, information relative to input-output
control, special hardware characteristics, and control techniques can be given.

The Data Division describes the data that the object program is to accept as input, to manipulate, to create, or to
produce as output.

The Procedure Division may contain declarative and nondeclarative procedures.

Execution begins with the first statement of the Procedure Division, excluding declaratives. Statements are then
executed in the order in which they are presented for compilation, except where the rules indicate some other order.

62

COBOL Source Program (COPY Statement)

F. Reference Format (Source)

F.1. General Description

The reference (source) format, which provides a standard method of describing COBOL source programs and
COBOL library text, is described in terms of character positions in a line on an input-output medium. Within these
definitions, each compiler accepts source programs written in reference format and produces an output listing of the
source program in reference format.

The rules for spacing given in the discussion of the reference format take precedence over all other rules for spacing.

The divisions of a COBOL source program must be ordered as follows: the Identification Division, then the
Environment Division, then the Data Division, then the Procedure Division. Each division must be written according
to the rules for the reference format.

The ICOBOL compiler supports three types of reference or source formats. These are ANSI Card Format,
Free-Form Format also known as CRT format, and Extended-Card Format, also known as xCard format. The
compiler will default to a format based on the extension of the source file and the dialect. Format switch (-F c|f|x) is
used to select a specific format. The ICOBOL compiler supports source lines up to 255 characters in length in all
formats.

F.2. ANSI Card Format

In ANSI Card Format, the reference format for a line is represented as follows:

Margin Margin Margin Margin Margin
L C A B R
| 1 | ... | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ... | 72 | 73 | ... | 255|
 Sequence ** 8 **Area A***** ****Area B**** ***Comment***
 Number Area * Area
 Indicator Area

Margin L is immediately to the left of the left-most character position of a line.

Margin C is between the 6th and 7th character positions of a line.

Margin A is between the 7th and 8th character positions of a line.

Margin B is between the 11th and 12th character positions of a line.

Margin R is immediately to the right of the 72nd character position of a line.

The sequence number occupies six character positions (1-6), and is between margin L and margin C. Characters in
this area are placed in the listing, but are not further processed by the compiler.

The indicator area is the 7th character position of a line.

Area A occupies character positions 8, 9, 10, and 11, and is between margin A and B.

Area B occupies character positions 12 through 72. It begins immediately to the right of margin B and terminates
immediately to the left of margin R.

The comment area occupies character positions 73 through 255. Characters in this area are placed in the listing but
are not further processed by the compiler.

If a line is shorter than 73 characters, there is no comment area and Margin R is to the right of the last character.

63

Interactive COBOL Language Reference & Developer’s Guide - Part One

If tabs are used, the following rules apply:
(ANSI 74 and ANSI 85) A tab character in the sequence area indicates that the remainder of the line is to be

treated like a Free-Form line (see Free-Form Format below).
(VXCOBOL) A tab character in the sequence area indicates that the next character begins Area A and Area B

begins 4 characters to the right.
A tab in the indicator area is flagged with a warning and treated as a space.
A tab in Area A is treated as a space, and it indicates that Area B is to begin with the next character.
A tab in Area B is treated as a space.

F.3. Free-Form Format (CRT)

In Free-Form format (CRT), there are no sequence number or comment areas. The only restrictions imposed are the
contents of areas A and B and the use of indicator characters. The compiler reads characters until it finds a line
terminator or until it has read 255 characters, whichever comes first. A line longer than 255 characters will produce
an error.

In Free-Form Format the reference format for a line is represented as one of the following:

Margin Margin Margin
C A B R
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | ... | 255 |
 8 ****Area A***** ****Area B********** ...
Indicator Area

Margin Margin Margin
A B R
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | ... | 255 |
 ****Area A***** ****Area B********** ...

If the first character is a "-", "*", "/", "d", or "D", position 1 is the indicator area, Area A is positions 2 through 5,
and Area B is in positions 6 to the end of the line. Otherwise, there is no indicator area and Area A is in
positions 1 through 4 and Area B is in positions 5 to the end of the line.

Margin C is immediately to the left of the left-most character position of a line.

Margin A is between the 1st and 2nd character positions of a line with an Indicator area or immediately to the left of
the left-most character of a line.

Margin B is between the 5th and 6th character positions of a line with an indicator area and between the 4th or 5th
character positions otherwise.

Margin R is immediately to the right of the right-most character position of a line.

The indicator area is the 1st character position of a line.

Area A occupies character positions 2 through 5 with an indicator area and positions 1 through 4 otherwise. It is
between margin A and margin B.

Area B begins immediately to the right of margin B and terminates immediately to the left of margin R.

If tabs are used in the source, the following rules apply:
A tab in Area A is treated as a space, and it indicates that Area B is to begin with the next character.
A tab in Area B is treated as a space.

64

COBOL Source Program (COPY Statement)

F.4. Extended Card Format (xcard)

In Extended Card Format, the reference format for a line is represented as follows:

Margin Margin Margin Margin Margin
L C A B R
| 1 | ... | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | 255|
 Sequence ** 8 **Area A***** ***Area B****
 Number Area *
 Indicator Area

Margin L is immediately to the left of the left-most character position of a line.

Margin C is between the 6th and 7th character positions of a line.

Margin A is between the 7th and 8th character positions of a line.

Margin B is between the 11th and 12th character positions of a line.

Margin R is immediately to the right of the right-most character position of a line.

The sequence number occupies six character positions (1-6), and is between margin L and margin C. Characters in
this area are placed in the listing, but are not further processed by the compiler.

The indicator area is the 7th character position of a line.

Area A occupies character positions 8, 9, 10, and 11, and is between margin A and B.

Area B occupies character positions 12 through the right-most character of the line. It begins immediately to the
right of margin B and terminates immediately to the left of margin R.

There is no comment area.

If tabs are used, the following rules apply:
(ANSI 74 and ANSI 85) A tab character in the sequence area indicates that the remainder of the line is to be

treated like a Free-Form line (see Free-Form Format below).
(VXCOBOL) A tab character in the sequence area indicates that the next character begins Area A and Area B

begins 4 characters to the right.
A tab in the indicator area is flagged with a warning and treated as a space.
A tab in Area A is treated as a space, and it indicates that Area B is to begin with the next character.
A tab in Area B is treated as a space.

F.5. Sequence Numbers (ANSI Card Format)

The sequence number area may be used to label a source program line. The content of the sequence number area is
defined by the user and may consist of any character in the computer's character set. There is no requirement that the
content of the sequence number area appears in any particular sequence or be unique.

F.6. Continuation of Lines

Any sentence, entry, phrase, or clause may be continued by starting subsequent line(s) in area B. These subsequent
lines are called the continuation line(s). The line being continued is called the continued line. Any word, literal, or
PICTURE character-string may be broken in such a way that part of it appears on a continuation line.

65

Interactive COBOL Language Reference & Developer’s Guide - Part One

A hyphen in the indicator area of a line indicates that the first nonspace character in area B of the current line is the
successor of the last nonspace character of the preceding line, excluding intervening comment lines or blank lines,
without any intervening space. However, if the continued line contains a nonnumeric literal without closing
quotation mark, the first nonblank character in area B of the continuation line must be a quotation mark, and the
continuation starts with the character immediately after that quotation mark. All spaces at the end of the continued
line are considered part of the literal. Area A of a continuation line must be blank.

If there is no hyphen in the indicator area of a line, it is assumed that the first nonspace character in the line is
preceded by a space.

For the purposes of line continuation, numeric and nonnumeric hexadecimal literals are handled in the same manner
as nonnumeric literals.

F.7. Blank Lines

A blank line is one that is blank from margin C to margin R, inclusive. A blank line can appear anywhere in the
source program.

F.8. Comments

A comment consists of a comment indicator followed by comment-text. Any combination of characters from the
compile-time computer's coded character set may be included in comment-text.

Comments serve only as documentation and have no effect on the meaning of the compilation group. A comment
may be a comment line or an inline comment.

F.8.1 Comment lines

A comment line is identified by either a fixed comment indicator (an asterisk or slant) or a floating comment
indicator(*>). All characters following the comment indicator up to margin R are comment-text. A comment line
may be written as any line of a compilation group.

If a source listing is being produced, a comment line identified by the fixed comment indicator slant (/) causes page
ejection followed by printing of the comment line; comments identified by the fixed comment indicator asterisk (*)
are printed at the next available line position of the listing.

F.8.2 Inline comments

A floating comment indicator (*>) preceded by one or more character-strings in the program-text area identifies an
inline comment. All characters following the floating comment indicator up to margin R are comment-text. An
inline comment may be written on any line of a compilation group except on a line that contains a floating literal
continuation indicator.

F.9. Debugging Lines

A debugging line is any line with a `d' or `D' in the indicator area of the line. When in Free-Form format the `d' or
`D' must be followed by a space or tab. Any debugging line that consists solely of spaces from margin A to margin R
is considered the same as a blank line.

The content of a debugging line must be such that a syntactically correct program is formed with or without the
debugging lines being considered as comment lines.

66

COBOL Source Program (COPY Statement)

After all COPY statements have been processed, a debugging line will be considered to have all the characteristics of
a comment line, if the -G d compiler switch is not specified, and is treated as a regular source line if the -G d (with
Debug) compiler switch is specified.

Successive debug lines are allowed.

A debugging line is only permitted in the separately-compiled program after the OBJECT-COMPUTER paragraph.

F.10. Division, Section, and Paragraph Formats

F.10.1 Division Header

The division header must start in area A.

F.10.2 Section Header

The section header must start in area A.

A section consists of zero, one, or more paragraphs in the Environment Division or Procedure Division or zero, one,
or more entries in the Data Division.

F.10.3 Paragraph Header, Paragraph-Name, and Paragraph

A paragraph consists of a paragraph-name followed by the separator period and by zero, one, or more sentences, or a
paragraph header followed by one or more entries.

The paragraph header or paragraph-name starts in area A of any line following the first line of a division or a section.

The first sentence or entry in a paragraph begins either on the same line as the paragraph header or paragraph-name
or in area B of the next nonblank line that is not a comment line. Successive sentences or entries either begin in area
B of the same line as the preceding sentence or entry or in area B of the next nonblank line that is not a comment
line.

When the sentences or entries of a paragraph require more than one line, they may be continued on a subsequent line
or lines.

F.11. DATA DIVISION Entries

Each Data Division entry begins with a level indicator or a level-number, followed by a space, followed by the name
of the subject of entry, if specified, followed by a sequence of independent clauses describing the item. The last
clause is always terminated by a separator period.

There are two types of such entries: those which begin with a level indicator and those which begin with a
level-number.

In the Data Division, a level indicator is an FD or SD.

In those entries that begin with a level indicator, the level indicator begins in area A, followed by at least one space,
and then followed with the name of the subject of entry and appropriate descriptive information.

Those entries that begin with level-numbers are called data description entries.

67

Interactive COBOL Language Reference & Developer’s Guide - Part One

A level-number has a value taken from the set of values 01, 02, ... , 49, 66, 77, 88. Level-numbers in the range 01,
02, ... , 09 may be written either as a single digit or as a zero followed by a significant digit. At least one space must
separate a level-number from the word following the level-number.

In those data description entries that begin with a level-number 01 or 77, the level-number begins in area A, followed
by at least one space, and then followed with its associated record-name or item-name, if specified, and appropriate
descriptive information.

Data description entries may be indented. Any indentation is with respect to margin A. Each new data description
entry may begin any number of positions to the right of margin A, except data description entries that begin with
level-number 01 or 77 must begin in area A. The extent of indentation is determined only by the width of the
physical medium. The entries on the output listing need be indented only if the input is indented. Indentation does
not affect the magnitude of a level-number.

F.12. DECLARATIVES

The DECLARATIVES and the pair of keywords END DECLARATIVES that precede and follow, respectively, the
declaratives portion of the Procedure Division must each appear on a line by itself. Each must begin in area A and
be followed by the separator period.

68

COBOL Source Program (COPY Statement)

G. COPY Statement

G.1. Function

The COPY statement incorporates text into a COBOL source program.

G.2. General Format

COPY

G.3. Syntax Rules

 (1) If more than one COBOL library is available during compilation, text-name-1 must be qualified by
text-name-2 identifying the COBOL library in which the text associated with text-name-1 resides. Within one
COBOL library, text-name-1 must be unique.

(2) The COPY statement must be preceded by a space and terminated by the separator period.

(3) Pseudo-text-1 must contain one or more text words.

(4) Pseudo-text-2 must contain zero, one or more text words.

(5) Character-strings within pseudo-text-1 and pseudo-text-2 may be continued.

(6) Word-1 or word-2 may be any single COBOL word except 'COPY'.

(7) A COPY statement may be specified in the source program anywhere a character-string or a separator, other
than the closing quotation mark, may occur except that a COPY statement must not occur within a COPY statement.

(8) Pseudo-text-1 must not consist entirely of a separator comma or a separator semicolon.

(9) If the word COPY appears in a comment-entry or in the place where a comment-entry may appear, it is
considered part of the comment entry.

G.4 General Rules

(1) The compilation of a source program containing COPY statements is logically equivalent to processing all
COPY statements prior to the processing of the resulting source program.

(2) The effect of processing a COPY statement is that the library text associated with text-name-1 or literal-1 is
copied into the source program, logically replacing the entire COPY statement, beginning with the reserved word
COPY and ending with the punctuation character period, inclusive. If the IN/OF clause is specified, text-name-2 or
literal-2 represents the name of the directory containing text-name-1 or literal-1.

(3) If the REPLACING phrase is not specified, the library text is copied unchanged. If the REPLACING
phrase is specified. the library text is copied and each properly matched occurrence of pseudo-text-1, identifier-1,

69

Interactive COBOL Language Reference & Developer’s Guide - Part One

word-1, and literal-3 in the library text is replaced by the corresponding pseudo-text-2, identifier-2, word-2, or
literal-4.

(4) For purposes of matching, identifier-1, word-1, and literal-3 are treated as pseudo-text containing only
identifier-1, word-1, or literal-3, respectively.

(5) The comparison operation to determine text replacement occurs in the following manner:

a. The leftmost library text word which is not a separator comma or a separator semicolon is the first text
word used for comparison. Any text word or space preceding this text word is copied into the source program.
starting with the first text word for comparison and first pseudo-text-1, identifier-1, word-1, or literal-3 that was
specified in the REPLACING phrase, the entire REPLACING phrase operand that precedes the reserved word BY is
compared to an equivalent number of contiguous library text words.

b. Pseudo-text-1, identifier-1, word-1, or literal-3 match the library text if, and only if, the ordered
sequence of text words that forms pseudo-text-1, identifier-1, word-1, or literal-3 is equal, character for character, to
the ordered sequence of library text words. For purposes of matching, each occurrence of a separator comma,
semicolon, or space in pseudo-text-1 or in the library text is considered to be a single space.

c. If no match occurs, the comparison is repeated with each next successive pseudo-text-1, identifier-1,
word-1, or literal-3, if any, in the REPLACING phrase until either a match is found or there is no next successive
REPLACING operand.

d. When all the REPLACING phrase operands have been compared and no match has occurred, the
leftmost library text word is copied into the source program. The next successive library text word is then
considered as the leftmost library text word, and the comparison cycle starts again with the first pseudo-text-1,
identifier-1, word-1, or literal-3.

e. Whenever a match occurs between pseudo-text-1, identifier-1, word-1, or literal-3 and the library text,
the corresponding pseudo-text-2, identifier-2, word-2, or literal-4 is placed into the source program. The library text
word immediately following the rightmost text word that participated in the match is then considered as the leftmost
text word. The comparison cycle starts again with the first pseudo-text-1, literal-1, word-1, or literal-3 specified in
the REPLACING phrase.

f. The comparison operation continues until the rightmost text word in the library text has either
participated in a match or has been considered as a leftmost library text word and participated in a complete
comparison cycle.

(6) Comment lines or blank lines occurring in the library text and in pseudo-text-1 are ignored for purposes of
matching; and the sequence of text words in the library text, if any, and in pseudo-text-1 is determined by the rules
for the reference format. (Reference Format is described on page 63.) Comment lines or blank lines appearing in
pseudo-text-2 are copied into the resultant program unchanged whenever pseudo-text-2 is placed into the source
program as a result of text replacement. Comment lines or blank lines appearing in library text are copied into the
resultant source program unchanged with the following exception: a comment line or blank line in library text is not
copied if that comment line or blank line appears within the sequence of text words that match pseudo-text-1.

(7) Debugging lines are permitted within library text and pseudo-text. Text words within a debugging line
participate in the matching rules as if the 'D' or 'd' did not appear in the indicator area. A debugging line is specified
within pseudo-text if the debugging line begins in the source program after the opening pseudo-text-delimiter, but
before the matching closing pseudo-text-delimiter.

(8) The syntactic correctness of the library text cannot be independently determined. Except for COPY
statements, the syntactic correctness of the entire COBOL program cannot be determined until all COPY statements
have been completely processed.

(9) Each text word copied from the library but not replaced is copied so as to start in the same area of the line in
the resultant program as it begins in the line within the library. However, if a text word copied from the library

70

COBOL Source Program (COPY Statement)

begins in Area A but follows another text word which also begins in Area A of the same line, and if replacement of a
preceding text word in the line by replacement text of greater length occurs, the following text word begins in Area B
if it cannot begin in Area A. Each text word in pseudo-text-2 that is to be placed into the resultant program begins in
the same area of the resultant program as it appears in pseudo-text-2. Each identifier-2, literal-4, and word-2 that is
to be placed in the resultant program begins in the same area of the resultant program as the leftmost library text
word that participated in the match would appear if it had not been replaced.

Library text must conform to the rules of the COBOL reference format and be in the same format as the
source program.

If additional lines are introduced into the source program as a result of a COPY statement, each text word
introduced appears on a debugging line if the COPY statement begins on a debugging line or if the text word being
introduced appears on a debugging line in library text. When a text word in the preceding cases, only those text
words that are specified on debugging lines where the debugging line is within pseudo-text-2 appear on debugging
lines in the resultant program. If any literal specified as literal-4 or within pseudo-text-2 or library text is of too
great length to be accommodated on a single line without continuation to another line in the resultant program and
the literal is not being placed on a debugging line, additional continuation lines are introduced with contain the
remainder of the literal. If replacement requires that the continued literal be continued on a debugging line, the
program is in error.

(10) For purposes of compilation, text words after replacement are placed in the source program according to
the rules for reference format. When copying text words of pseudo-text-2 into the source program, additional spaces
may be introduced only between text words where there already exists a space (including assumed space between
source lines).

(11) If any additional lines are introduced into the source program as a result of the processing of COPY
statements, the indicator area of the introduced line contains the same character as the line on which the text being
replaced begins, unless the line contains a hyphen, in which case the introduced line contains a space. In the case
where a literal is continued onto an introduced line which is not a debugging line, a hyphen is placed into the
indicator area.

(12) If the REPLACING phrase is specified, the library text shall not contain a COPY statement and the source
text that results from processing the REPLACING phrase shall not contain a COPY statement.

(13) If the REPLACING phrase is not specified, the library text may contain a COPY statement that does not
include a REPLACING phrase. ICOBOL supports 10 levels of nesting, including the first COPY statement in the
sequence. Recursive copying of library text is not permitted; that is, the library text being copied shall not cause the
processing of a COPY statement that directly or indirectly copies itself.

71

Interactive COBOL Language Reference & Developer’s Guide - Part One

72

IDENTIFICATION DIVISION (PROGRAM-ID)

III. IDENTIFICATION DIVISION

A. General Description

The Identification Division identifies the program. The Identification Division is required in a COBOL source
program. In addition, the user may include the date the program is written and such other information as desired
under the paragraphs in the general format shown below.

B. Organization

Paragraph headers identify the type of information contained in the paragraph. The name of the program must be
given in the first paragraph, which is the PROGRAM-ID paragraph. The other paragraphs are optional and may be
included in this division at the user's choice, in order of presentation shown by the general format below.

The AUTHOR, INSTALLATION, DATE-WRITTEN, DATE-COMPILED and SECURITY paragraphs are
obsolete elements in Standard COBOL because they are to be deleted from the next revision of Standard COBOL.
We suggest that you convert them to comment lines.

B.1. Structure

The following is the general format of the paragraphs in the Identification Division, and it defines the order of
presentation in the source program. Sections C and D on the following pages define the PROGRAM-ID and the
DATE-COMPILED paragraphs. While the other paragraphs are not defined, each general format is formed in the
same manner.

B.1.1 General Format

IDENTIFICATION DIVISION.
PROGRAM-ID. program-name [IS INITIAL PROGRAM] .
[AUTHOR. [comment-entry]...]d

d [INSTALLATION. [comment-entry]...]
d [DATE-WRITTEN. [comment-entry]...]
d [DATE-COMPILED. [comment-entry]...]
d [SECURITY. [comment-entry]...]

B.1.2 Syntax Rules

(1) The comment-entry may be any combination of characters from the computer's character set. The
continuation of the comment-entry by the use of the hyphen in the indicator area is not permitted; however, the
comment-entry may be contained on one or more lines.

(2) A comment-entry is terminated by the next word in Area A.

(3) The optional phrases can be specified in any order.

73

Interactive COBOL Language Reference & Developer’s Guide - Part One

74

IDENTIFICATION DIVISION (PROGRAM-ID)

C. PROGRAM-ID Paragraph

C.1. Function

The PROGRAM-ID paragraph specifies the name by which a program is identified and optionally assigns the
INITIAL attribute to that program..

C.2. General Format

PROGRAM-ID. program-name [IS INITIAL PROGRAM] .

C.3. Syntax Rules

(1) The program-name must conform to the rules for formation of a user-defined word.

C.4. General Rules

(1) The program-name is currently used for documentation purposes only. The name identifying the object
program and all listings is determined from the source file name and/or specific compile-time options.

(2) Although the ANSI COBOL 85 Standard requires that all CALL's use the program-name as specified in the
PROGRAM-ID when performing CALL's, this is not enforced by ICOBOL.

(3) The INITIAL clause specifies that the program is initial. When an initial program is activated, the data items
and file connectors contained in it are set to their initial states: VALUE clauses are applied, PERFORM controls are
reset, files are put in the closed mode. See page 59 Program Classes for more information.

(4) External data is always in the last-used state except when the run unit is activated and it is in the initial state.

D. DATE-COMPILED Paragraph

D.1. Function

The DATE-COMPILED paragraph provides the compilation date in the Identification Division source program
listing. The DATE-COMPILED paragraph is an obsolete element in Standard COBOL because it is to be deleted
from the next revision of Standard COBOL.

D.2. General Format

DATE-COMPILED. [comment-entry]...

D.3. Syntax Rules

(1) The comment-entry may be any combination of the characters from the computer's character set. The
continuation of the comment-entry by the use of the hyphen in the indicator area is not permitted; however, the
comment-entry may be contained on one or more lines.

(2) A comment-entry is terminated by the next word in Area A.

75

Interactive COBOL Language Reference & Developer’s Guide - Part One

D.4. General Rules

(1) The paragraph-name DATE-COMPILED causes the current date to be inserted in the program listing during
program compilation. If a DATE-COMPILED paragraph is present, it is replaced during compilation with a
paragraph of the form:

DATE-COMPILED. current date.

76

ENVIRONMENT DIVISION (Concepts)

IV. ENVIRONMENT DIVISION

A. General Description

The Environment Division specifies a standard method of expressing those aspects of a data processing problem that
are dependent upon the physical characteristics of a specific computer. The Environment Division is optional in a
COBOL source program.

B. Concepts

B.1. External Switch

An external switch is a software device, which is used to indicate that one of two alternate states exists. These
alternate states are referred to as the on status and the off status of the associated external switch.

The status of an external switch may be interrogated by testing condition-names associated with that switch. The
association of a condition-name with an external switch and the association of a user-specified mnemonic-name with
the literal that names an external switch is established in the SPECIAL-NAMES paragraph of the Environment
Division.

The scope of an external switch is the run unit and each literal that names such an external switch refers to one and
only one such switch, the status of which is available to each object program functioning within that run unit.

An external switch may be altered by the SET statement, except in the VXCOBOL dialect.

C. Organization

Two sections make up the Environment Division: the Configuration Section and the Input-Output Section.

The Configuration Section deals with the characteristics of the source computer and the object computer. This
section is divided into three paragraphs: the SOURCE-COMPUTER paragraph, which describes the computer
configuration on which the source program is compiled; the OBJECT-COMPUTER paragraph, which describes the
computer configuration on which the object program produced by the compiler is to be run; and the
SPECIAL-NAMES paragraph, which provides a means for specifying the currency sign, choosing the decimal point,
specifying symbolic-characters, relating switch literals to user-specified mnemonic-names, relating alphabet-names
to character sets or collating sequences, and relating class-names to sets of characters.

The Input-Output Section deals with the information needed to control transmission and handling of data between
external media and the object program. This section is divided into two paragraphs: the FILE-CONTROL paragraph
which names and associates the files with external media; and the I-O-CONTROL paragraph which defines special
control techniques to be used in the object program.

The following is the general format of the sections and paragraphs in the Environment Division, and defines the
order of presentation in the source program.

77

Interactive COBOL Language Reference & Developer’s Guide - Part One

ENVIRONMENT DIVISION.
[CONFIGURATION SECTION.
[SOURCE-COMPUTER. [source-computer-entry]]
[OBJECT-COMPUTER. [object-computer-entry]]
[SPECIAL-NAMES. [special-names-entry]]]

[INPUT-OUTPUT SECTION.
FILE-CONTROL.

{ file-control-entry }...

[I-O-CONTROL.

[RERUN [ON file-name] EVERY]... (Not in VXCOBOL)d

[SAME AREA FOR file-name { file-name }...]...

d [MULTIPLE FILE TAPE CONTAINS { file-name [POSITION integer] }...]...
.]]

78

ENVIRONMENT DIVISION (CONFIGURATION SECTION)

D. CONFIGURATION SECTION

The Configuration Section is located in the Environment Division of a source program. The Configuration Section
deals with the characteristics of the source computer and the object computer. This section also provides a means for
specifying the currency sign; choosing the decimal point; specifying symbolic-characters; relating switch-names to
user-specified mnemonic-names; relating alphabet-names to character sets or collating sequences; and relating
class-names to sets of characters. The Configuration Section is optional in the Environment Division of a COBOL
source program.

The general format of the Configuration Section is shown below.

CONFIGURATION SECTION.
d [SOURCE-COMPUTER. [source-computer-entry]]

[OBJECT-COMPUTER. [object-computer-entry]]
[SPECIAL-NAMES. [special-names-entry]]

D.1. SOURCE-COMPUTER Paragraph

D.1.1 Function

The SOURCE-COMPUTER paragraph provides a means of describing the computer upon which the program is to
be compiled.

D.1.2 General Format

SOURCE-COMPUTER. [computer-name [WITH DEBUGGING MODE] .] d

D.1.3 Syntax Rules

(1) Computer-name is a user-defined word.

D.1.4 General Rules

(1) The WITH DEBUGGING MODE clause is ignored. All debugging lines are compiled as if they were
comment lines. This behavior may be changed by using the -G d compiler switch.

(2) The SOURCE-COMPUTER computer-name is used for documentation purposes only.

79

Interactive COBOL Language Reference & Developer’s Guide - Part One

D.2. OBJECT-COMPUTER Paragraph

D.2.1 Function

The OBJECT-COMPUTER paragraph provides a means of describing the computer on which the program is to be
executed. The MEMORY SIZE clause is an obsolete element in Standard COBOL because it is to be deleted from
the next revision of Standard COBOL.

D.2.2 General Format (ANSI 74 and ANSI 85)

d OBJECT-COMPUTER. [computer-name [MEMORY SIZE integer]

[PROGRAM COLLATING SEQUENCE IS alphabet-name] .]d

D.2.3 General Format (VXCOBOL)

OBJECT-COMPUTER.

d [computer-name [MEMORY SIZE integer]

d [PROGRAM COLLATING SEQUENCE IS]

d [SEGMENT-LIMIT IS integer]] .

D.2.4 Syntax Rules

(1) Computer-name is a user-defined word.

D.2.5 General Rules

(1) The OBJECT-COMPUTER paragraph is used for documentation purposes only.

D.3. SPECIAL-NAMES Paragraph

D.3.1 Function

The SPECIAL-NAMES paragraph provides a means for specifying the currency sign, choosing the decimal point,
relating switches to user-specified mnemonic-names and relating alphabet-names to character sets or collating
sequences. ANSI 74 and ANSI 85 provide a way to specify symbolic characters and to relate class-names to sets of
characters.

80

ENVIRONMENT DIVISION (CONFIGURATION SECTION)

D.3.2 General Format (ANSI 74 and ANSI 85)

SPECIAL-NAMES.
d [literal-1 IS mnemonic-1]...

["@AUDIT" IS mnemonic-1]

[SWITCH literal-2 [IS mnemonic-name] [STATUS IS condition-name]...]...

d [alphabet-name-1 IS]...

d [ALPHABET alphabet-name-1 IS]...

[SYMBOLIC CHARACTERS { { { symbolic-character-1 }... { integer-1 }... }...

[IN alphabet-name-2] }]...

[CLASS class-name-1 IS { literal-4 [literal-5] }...]...

[CURRENCY SIGN IS literal-6] [DECIMAL-POINT IS COMMA] .]

D.3.3 General Format (VXCOBOL)

SPECIAL-NAMES.
d [literal-1 IS mnemonic-name-1]...

[CHANNEL integer-1 IS identifier]...

[SWITCH literal-2 [IS mnemonic-name-2] [STATUS IS condition-name]...]...

[alphabet-name-1 IS]...

[CURRENCY SIGN IS literal-6]
[DECIMAL-POINT IS COMMA] .]

D.3.4 Syntax Rules (ANSI 74 and ANSI 85)

(0) Literal-1 is an alphanumeric literal that specifies the name of a system I/O device or file.

(1) Literal-2 must be a nonnumeric literal that is either a single or multiple character alphanumeric literal.
Mnemonic-name may be specified only in the SET statement.

(2) If the literal phrase of the ALPHABET clause is specified, a given character must not be specified more
than once in that clause.

(3) The literals specified in the literal phrase of the ALPHABET clause:

81

Interactive COBOL Language Reference & Developer’s Guide - Part One

a. If numeric, must be unsigned integers and have a value within the range of one through the maximum
 number of characters in the native character set (256).

b. If nonnumeric and associated with a THROUGH or ALSO phrase, must each be one character in length.

(4) Literal-1, literal-2, literal-3, literal-4, and literal-5 must not specify a symbolic-character figurative
constant.

(5) The words THRU and THROUGH are equivalent.

(6) The same symbolic-character-1 must appear only once in a SYMBOLIC CHARACTERS clause.

(7) The relationship between each symbolic-character-1 and the corresponding integer-1 is by position in the
SYMBOLIC CHARACTERS clause. The first symbolic-character-1 is paired with the first integer-1; the second
symbolic-character-1 is paired with the second integer-1; and so on.

(8) There must be a one-to-one correspondence between occurrences of symbolic-character-1 and integer-1.

(9) The ordinal position specified by integer-1 must exist in the native character set. If the IN phrase is
specified, the ordinal position must exist in the character set named by alphabet-name-2.

(10) The literals specified in the literal-4 phrase:

a. If numeric, must be unsigned integers and must have a value within the range of one through the
maximum number of characters in the native character set (256).

b. If nonnumeric and associated with a THROUGH phrase, must each be one character in length.

(11) Literal-6 must not specify a figurative constant.

(12) The ALPHABET phrase that does not have the ALPHABET keyword is an ANSI 74 format that is
supported for compatibility purposes only. A warning will be issued when it is used.

(13) @AUDIT must be all upper-case.

D.3.5 Syntax Rules (VXCOBOL)

(1) Literal-1 is an alphanumeric literal that specifies the name of a system I/O device or file.

(2) Mnemonic-name-1 is a mnemonic-name used in the program to refer to literal-1.

(3) Integer-1 is an integer literal that specifies a channel number with a value from 1 through 12.

(4) Literal-2 must be a nonnumeric literal that is either a single or multiple character alphanumeric literal.

(5) If the literal phrase of the alphabet clause is specified, a given character must not be specified more than
once in that clause.

(6) The literals specified in the literal phrase of the alphabet clause:

a. If numeric, must be unsigned integers and have a value within the range of one through the maximum
number of characters in the native character set (256).

b. If nonnumeric and associated with a THROUGH or ALSO phrase, must each be one character in length.

(7) The words THRU and THROUGH are equivalent.

82

ENVIRONMENT DIVISION (CONFIGURATION SECTION)

(8) Literal-6 must not specify a figurative constant.

D.3.6 General Rules (ANSI 74 and ANSI 85)

(0) The “literal-1 IS mnemonic-1" clause is for documentation purposes only.

(1) The on status and/or off status of a switch literal may be associated with condition-names. The status of that
switch may be interrogated by testing these condition-names.

(2) The status of a switch may be altered by execution of a Format 3 SET statement which specifies as its
operand the mnemonic-name associated with that switch. See the SET Statement.

(3) The ALPHABET clause provides a means for relating a name to a specified character code set and/or
collating sequence. When alphabet-name-1 is referenced in the SYMBOLIC CHARACTERS clause, the
ALPHABET clause specifies a character code set.

a. If the STANDARD-1 phrase is specified, the character code set or collating sequence identified is that
defined in the ANSI X3.4-1977, Code for Information Interchange. If the STANDARD-2 phrase is specified, the
character code set identified is the International Reference Version of the ISO 7-bit code defined in International
Standard 646, 7-bit Coded Character Set for Information Processing Interchange. Each character of the standard
character set is associated with its corresponding character of the native character set.

b. If the NATIVE phrase is specified, the native character code set or collating sequence is used.

c. If the literal phrase is specified, the alphabet-name may not be referenced in a CODE-SET clause. The
collating sequence identified is that defined according to the following rules:

1) The value of each literal specifies:

a) The ordinal number of a character within the native character set, if the literal is numeric. This
value must not exceed the value which represents the number of characters in the native character set (256).

b) The actual character within the native character set, if the literal is nonnumeric. If the value of
the nonnumeric literal contains multiple characters, each character in the literal, starting with the leftmost character,
is assigned successive ascending positions in the collating sequence being specified.

2) The order in which literals appear in the ALPHABET clause specifies, in ascending sequence, the
ordinal number of the character within the collating sequence being specified.

3) Any characters within the native collating sequence, which are not explicitly specified in the literal
phrase, assume a position, in the collating sequence being specified, greater than any of the explicitly specified
characters. The relative order within the set of these unspecified characters is unchanged from the native collating
sequence.

4) If the THROUGH phrase is specified, the set of contiguous characters in the native character set
beginning with the character specified by the value of literal-1, and ending with the characters specified by the value
of literal-2, is assigned a successive ascending position in the collating sequence being specified. In addition, the set
of contiguous characters specified by a given THROUGH phrase may specify characters of the native character set in
either ascending or descending sequence.

5) If the ALSO phrase is specified, the characters of the native character set specified by the value of
literal-1 and literal-3 are assigned to the same ordinal position in the collating sequence being specified or in the
character code set that is used to represent the data, and if alphabet-name-1 is referenced in a SYMBOLIC
CHARACTERS clause, only literal-1 is used to represent the character in the native character set.

83

Interactive COBOL Language Reference & Developer’s Guide - Part One

(4) When specified as literals in the SPECIAL-NAMES paragraph, the figurative constants HIGH-VALUE and
LOW-VALUE are associated with those characters having the highest and lowest positions, respectively, in the
native collating sequence.

(5) If the IN phrase is not specified, symbolic-character-1 represents the character whose ordinal position in the
native character set is specified by integer-1. If the IN phrase is specified, integer-1 specifies the ordinal position of
the character that is represented in the character set name by alphabet-name-2.

(6) The internal representation of symbolic-character-1 is the internal representation of the character that is
represented in the native character set.

(7) The CLASS clause provides a means for relating a name to the specified set of characters listed in that
clause. Class-name can be referenced only in a class-condition. The characters specified by the values of the literals
in this clause define the exclusive set of characters of which this class-name consists.

The value of each literal specifies:

a. The ordinal number of a character within the native character set, if the literal is numeric. This value
must not exceed the value which represents the number of characters in the native character set.

b. The actual character within the native character set, if the literal is nonnumeric. If the value of the
nonnumeric literal contains multiple characters, each character in the literal is included in the set of characters
identified by class-name-1.

If the THROUGH phrase is specified, the contiguous characters in the native character set beginning with
the character specified by the value literal-4, and ending with the character specified by the value of literal-5, are
included in the set of characters identified by class-name-1. In addition, the contiguous characters specified by a
given THROUGH phrase may specify characters of the native character set in either ascending or descending
sequence.

(8) Literal-6 which appears in the CURRENCY SIGN clause is used in the PICTURE clause to represent the
currency symbol. The literal must be nonnumeric and is limited to a single character. It may be any character from
the computer's character set except one of the following:

a. digits 0 through 9;

b. alphabetic characters consisting of the uppercase letters A, B, C, D, P, R, S, V, X, Z; the lowercase
letters a through z; or the space;

c. Special characters * + - , . ; () " = /

If this clause is not present, only the currency sign defined in the COBOL character set ($) may be used as
the currency symbol in the PICTURE clause.

(9) The clause DECIMAL-POINT IS COMMA means that the functions of comma and period are exchanged in
the character-string of the PICTURE clause and in numeric literals.

D.3.7 General Rules (VXCOBOL)

(1) The DEVICE clause (literal-1 IS mnemonic-name-1) is for documentation purposes only.

(2) The CHANNEL clause declares a line printer control channel. You can use channel names in the
ADVANCING clause of a WRITE statement to format printed forms.

(3) The on status and/or off status of a switch literal may be associated with condition-names. The status of that
switch may be interrogated by testing these condition-names.

84

ENVIRONMENT DIVISION (CONFIGURATION SECTION)

(4) The ALPHABET clause provides a means for relating a name to a specified character code set and/or
collating sequence.

a. If the ASCII, NATIVE, or STANDARD-1 phrase is specified, the character code set or collating
sequence identified is that defined in the ANSI X3.4-1977, Code for Information Interchange. Each character of the
standard character set is associated with its corresponding character of the native character set. APPENDIX J, on
page 899, provides a copy of the ASCII character set.

b. If the EBCDIC phrase is specified, the EBCDIC character code set or collating sequence is used.
APPENDIX K, on page 901, provides a copy of the EBCDIC character set.

c. The collating sequence identified is that defined according to the following rules:

1) The value of each literal specifies:

a) The ordinal number of a character within the native character set, if the literal is numeric. This
value must not exceed the value which represents the number of characters in the native character set.

b) The actual character within the native character set, if the literal is nonnumeric. If the value of
the nonnumeric literal contains multiple characters, each character in the literal, starting with the leftmost character,
is assigned successive ascending positions in the collating sequence being specified.

2) The order in which literals appear in the ALPHABET clause specifies, in ascending sequence, the
ordinal number of the character within the collating sequence being specified.

3) Any characters within the native collating sequence, which are not explicitly specified in the literal
phrase, assume a position, in the collating sequence being specified, greater than any of the explicitly specified
characters. The relative order within the set of these unspecified characters is unchanged from the native collating
sequence.

4) If the THROUGH phrase is specified, the set of contiguous characters in the native character set
beginning with the character specified by the value of literal-3, and ending with the characters specified by the value
of literal-4, is assigned a successive ascending position in the collating sequence being specified. In addition, the set
of contiguous characters specified by a given THROUGH phrase may specify characters of the native character set in
either ascending or descending sequence.

5) If the ALSO phrase is specified, the characters of the native character set specified by the value of
literal-3 and literal-5 are assigned to the same ordinal position in the collating sequence being specified or in the
character code set that is used to represent the data.

(5) When specified as literals in the SPECIAL-NAMES paragraph, the figurative constants HIGH-VALUE and
LOW-VALUE are associated with those characters having the highest and lowest positions, respectively, in the
native collating sequence.

(6) Literal-6, which appears in the CURRENCY SIGN clause, is used in the PICTURE clause to represent the
currency symbol. The literal must be nonnumeric and is limited to a single character. It may be any character from
the computer's character set except one of the following:

a. digits 0 through 9;

b. alphabetic characters consisting of the uppercase letters A, B, C, D, P, R, S, V, X, Z; the lowercase
letters a through z; or the space;

c. Special characters * + - , . ; () " = /

If this clause is not present, only the currency sign defined in the COBOL character set ($) may be used as
the currency symbol in the PICTURE clause.

85

Interactive COBOL Language Reference & Developer’s Guide - Part One

SPECIAL-NAMES.
SWITCH "MGR" ON STATUS IS MANAGER-JOB.

CHECK-SECURITY.
IF MANAGER-JOB MOVE 9 TO WS-SECURITY-CODE.

ANSI 74 and ANSI 85:

SPECIAL-NAMES.
 ALPHABET NEW-SEQ IS " ", "1" THRU "9", "a" THRU "z".

VXCOBOL:

SPECIAL-NAMES.
 NEW-SEQ IS " ", "1" THRU "9", "a" THRU "z".

ANSI 74 and ANSI 85:

SPECIAL-NAMES.
 ALPHABET NEW-SEQ IS 1 THRU 94, 96 THRU 126, 95.

VXCOBOL:

SPECIAL-NAMES.
 NEW-SEQ IS 1 THRU 94, 96 THRU 126, 95.

(7) The DECIMAL-POINT IS COMMA clause means that the functions of comma and period are exchanged in
the character-string of the PICTURE clause and in numeric literals.

D.3.8 Examples

(1) This example shows how a program switch is defined in the SPECIAL-NAMES paragraph in the
ENVIRONMENT DIVISION, and then illustrates how it is used it in the procedure division paragraph,
CHECK-SECURITY.

EXAMPLE 2. Using a Program Switch

The next several examples show how to modify the collating sequence from the native order, for the current
program.

(2) The following will cause characters to collate in the order: <space>, 1-9, a-z, null, |, ', #, ... All characters
not explicitly defined will follow in their native order.

EXAMPLE 3. Modifying the collating sequence for a program

(3) The following leaves the native system intact, with the exception of making the underscore (95) the highest
character.

EXAMPLE 4. Changing 1 character in the collating sequence

(4) The following equates the space with zero, giving them the same ordinal position in the collating sequence.

86

ENVIRONMENT DIVISION (CONFIGURATION SECTION)

ANSI 74 and ANSI 85:

SPECIAL-NAMES.
 ALPHABET NEW-SEQ IS " " ALSO "0".

VXCOBOL:

SPECIAL-NAMES.
 NEW-SEQ IS " " ALSO "0", "a" ALSO "A".

EXAMPLE 5. Making multiple characters the same in the collating sequence

 (5) The following reverses the typical collating sequence for digits and uppercase alphabet characters. Note,
however, that all other characters not explicitly defined will follow in their usual order.

ANSI 74 and ANSI 85:

SPECIAL-NAMES.
 ALPHABET REVERSE-SEQ IS "9" THRU "0", "Z" THRU "A".

VXCOBOL:

SPECIAL-NAMES.
 REVERSE-SEQ IS "9" THRU "0", "Z" THRU "A".

EXAMPLE 6. Reversing collating sequence for digits, uppercase alphabet

87

Interactive COBOL Language Reference & Developer’s Guide - Part One

88

ENVIRONMENT DIVISION (INPUT-OUTPUT SECTION)

E. INPUT-OUTPUT SECTION

The Input-Output Section is located in the Environment Division of a source program. The Input-Output Section
deals with the information needed to control transmission and handling of data between external media and the
object program. The Input-Output Section is optional in the Environment Division of a COBOL source program.

ANSI 74 and ANSI 85:

INPUT-OUTPUT SECTION.

FILE-CONTROL.
 { file-control-entry }...

[I-O-CONTROL.

[RERUN [ON file-name-1] EVERY]...d

[SAME AREA FOR file-name-3 { file-name-4 }...]...

d [MULTIPLE FILE TAPE CONTAINS { file-name-5 [POSITION integer-3] }...]...
.]

VXCOBOL

INPUT-OUTPUT SECTION.

FILE-CONTROL.
 { file-control-entry }...

[I-O-CONTROL.

[SAME AREA FOR file-name-1 { file-name-2 }...]...

d [MULTIPLE FILE TAPE CONTAINS { file-name-3 [POSITION integer] }...]...
.]

E.1. FILE-CONTROL Paragraph

E.1.1 Function

The FILE-CONTROL paragraph allows specification of file-related information.

E.1.2 General Format

FILE-CONTROL.
{ file-control-entry }...

89

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.2. File Control Entry

E.2.1 Function

The file control entry declares the relevant physical attributes of a sequential, relative, indexed, sort, or merge file.

E.2.2 General Format

The clauses for each SELECT are given in alphabetical order since they are order independent.

Sequential File (ANSI 74 and ANSI 85):

SELECT [OPTIONAL] file-name
[ACCESS MODE IS SEQUENTIAL]

[ASSIGN TO]

d [DATA SIZE is integer-1]
[FILE STATUS IS data-name]

[[ORGANIZATION IS] SEQUENTIAL]

[QUEUE IS]

[RECORD DELIMITER IS].

Sequential File (VXCOBOL):

SELECT [OPTIONAL] file-name
[ACCESS MODE IS SEQUENTIAL]
ASSIGN TO

[FILE STATUS IS data-name]
[INFOS STATUS IS data-name]
[[ORGANIZATION IS] SEQUENTIAL]

90

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (File Control Entry)

d [PARITY IS]

d [RESERVE integer] .

Relative File (ANSI 74 and ANSI 85):

SELECT [OPTIONAL] file-name

[ACCESS MODE IS]

[ASSIGN TO]

d [DATA SIZE IS integer]
d [INDEX SIZE IS integer]

[DELETE IS]

[FILE STATUS IS data-name]
[ORGANIZATION IS] RELATIVE .

Relative File (VXCOBOL):

SELECT file-name

[ACCESS MODE IS]

ASSIGN TO

[FILE STATUS IS data-name]
[INFOS STATUS IS data-name]
[ORGANIZATION IS] RELATIVE

d [RESERVE integer] .

Indexed File (ANSI 74 and ANSI 85):

SELECT [OPTIONAL] file-name

[ACCESS MODE IS]

[ALTERNATE RECORD KEY IS id-1 [= id-2]

[ORDER BY ALPHABETIC-UPPER]
[SUPPRESS WHEN literal]

91

Interactive COBOL Language Reference & Developer’s Guide - Part One

 [VALUES ARE]

[WITH DUPLICATES]]...

[ASSIGN TO]

d [DATA SIZE IS integer]
d [INDEX SIZE IS integer]

[DELETE IS]

[FILE STATUS IS data-name]
[ORGANIZATION IS] INDEXED

 RECORD KEY IS id-1 [= id-2 PLUS { id-3 }...]
[ORDER BY ALPHABETIC-UPPER]

[VALUES ARE] .

Indexed File (VXCOBOL):

 SELECT file-name

[ACCESS MODE IS]

[ALTERNATE RECORD data-name

[KEY LENGTH IS integer]
[WITH DUPLICATES]]...

ASSIGN INDEX TO

d [ROOT MERIT IS integer]
d [SPACE MANAGEMENT]
d [TEMPORARY]

d

d

d [DATA SIZE IS integer]
d [INDEX SIZE IS integer]

[FILE STATUS IS data-name]
[INFOS STATUS IS data-name]
[ORGANIZATION IS] INDEXED

RECORD data-name

[KEY LENGTH IS integer]

d [RESERVE integer INDEX]

d [RESERVE integer DATA] .

92

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (File Control Entry)

Sort-Merge File (ANSI 74 and ANSI 85):

SELECT file-name [ASSIGN TO] .

Sort-Merge File (VXCOBOL):

SELECT file-name ASSIGN TO [[ORGANIZATION IS] SEQUENTIAL].

INFOS Files (VXCOBOL):

 SELECT file-name

[ACCESS MODE IS]

[ALLOW SUB-INDEX
[LEVELS IS integer]]

ASSIGN INDEX TO { [MERIT integer] [VOLUME SIZE IS integer [CONTIGUOUS

d [[NO] INITIALIZATION]]] }...
d [TEMPORARY]

[SPACE MANAGEMENT]
[ROOT MERIT IS integer]

d

[ASSIGN DATA TO { [MERIT integer]

d [VOLUME SIZE IS integer [CONTIGUOUS [[NO] INITIALIZATION]]] }...
[SPACE MANAGEMENT]]

d [DATA SIZE IS integer]
d [INDEX SIZE IS integer]

[FILE STATUS IS data-name]
[INFOS STATUS IS data-name]
[ORGANIZATION IS] INDEXED

RECORD { data-name

[KEY LENGTH IS]

[WITH DUPLICATES [OCCURRENCE IS identifier]] }...

d [RESERVE integer INDEX]

d [RESERVE integer DATA] .

93

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.2.3 Syntax Rules:

(1) The SELECT clause must be specified first in the file control entry. The clauses which follow the SELECT
clause may appear in any order.

(2) Each file-name in the Data Division must be specified only once in the FILE-CONTROL paragraph. Each
file-name specified in the SELECT clause must have a file description entry in the Data Division of the same
program.

(3) Literal must be a nonnumeric literal and must not be a figurative constant.

(4) Each sort or merge file in the Data Division must be specified only once in the FILE-CONTROL paragraph.
Each sort or merge file specified in the SELECT clause must have a sort-merge file description entry in the Data
Division of the same program.

(5) For Sort-Merge Entry. Since file-name represents a sort or merge file, only the ASSIGN clause is permitted
to follow file-name in the FILE-CONTROL paragraph.

(6) The OPTIONAL phrase is only allowed for ANSI 85 and VXCOBOL.

For ANSI 74 and ANSI 85.

(7) The ORDER BY ALPHABETIC-UPPER phrase applies to version 7 or greater ICISAM indexed files.

(8) The DELETE clause applies only to version 7 or greater ICISAM files.

(9) The RECORD DELIMITER clause can only be specified on SEQUENTIAL files with the RECORD IS
VARYING clause in the FD. If the RECORD DELIMITER clause is absent and RECORD IS VARYING is
specified, the length of the record written is determined by the DEPENDING ON variable or implied by the record
definitions.

E.2.4 General Rules

(1) For ANSI 85, the OPTIONAL phrase applies only to files opened in input, I-O, or extend mode. Its
specification is required for files that are not necessarily present each time the object program is executed. See
OPEN for more information.

For VXCOBOL, the OPTIONAL phrase applies only to sequential files opened in input mode. Its
specification is required for files that are not necessarily present each time the object program is executed. If you
specify this clause and the file is not present, the first READ statement for the file signals an end-of-file condition.

(2) For VXCOBOL, the PARITY, DATA SIZE, INDEX SIZE, INITIALIZATION, TEMPORARY,
HIERARCHICAL/LRU, RESERVE, RESERVE INDEX, and RESERVE DATA clauses are used for documentation
purposes only.

For relative, indexed, and INFOS files:

(3) The native character set is assumed for data on the external media.

(4) For an indexed file or INFOS, the collating sequence associated with the native character set is assumed.
This is the sequence of values of a given key of reference used to process the file sequentially.

(5) The ASSIGN clause specifies the association of the file referenced by file-name to a storage medium
referenced by the specified name or literal.

94

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (File Control Entry)

(6) For ANSI 74 and ANSI 85, the INDEX SIZE and DATA SIZE clauses are used for documentation
purposes only.

95

Interactive COBOL Language Reference & Developer’s Guide - Part One

E 3. ACCESS MODE Clause

E.3.1 Function

The ACCESS MODE clause specifies the order in which records are to be accessed in the file.

E.3.2 General Format

Sequential File:

ACCESS MODE IS SEQUENTIAL

Relative File:

ACCESS MODE IS

Indexed File (all ICOBOL dialects) and INFOS File (VXCOBOL):

ACCESS MODE IS

E.3.3 Syntax Rules:

(1) ACCESS MODE is DYNAMIC or RANDOM can only be used for relative, indexed, or INFOS files.

For relative files:

(1) Data-name-1 may be qualified.

(2) Data-name-1 must reference an unsigned integer data item whose description does not contain the
PICTURE symbol `P'.

(3) If a relative file is referenced by a START statement, the RELATIVE KEY phrase within the ACCESS
MODE clause must be specified for that file.

(4) For ANSI 74 and ANSI 85, data-name-1 must not be defined in a record description entry associated with
that file-name.

E.3.4 General Rules

(1) If the ACCESS MODE clause is not specified, sequential access is assumed.

(2) Records in the file are accessed in the sequence dictated by the file organization. For sequential files, this
sequence is specified by predecessor-successor record relationships established by the execution of WRITE
statements when the file is created or extended. For relative files, this sequence is ascending relative record number
of existing records in the file. For indexed or INFOS files, this sequence is ascending within a given key of reference
according to the collating sequence of the file.

96

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (ACCESS MODE)

For relative files:

(3) If the access mode is random, the value of the relative key data item for relative files indicates the record to
be accessed.

(4) If the access mode is dynamic, records in the file may be accessed sequentially and/or randomly.

(5) All records stored in a relative file are uniquely identified by relative record numbers. The relative record
number of a given record specifies the record's logical ordinal position in the file. The first logical record has a
relative record number of 1, and subsequent logical records have relative record numbers 2, 3,

(6) The data item specified by data-name-1 is used to communicate a relative record number between the user
and the file system.

(7) The relative key data item associated with the execution of an input-output statement is the data item
referenced by data-name-1 in the ACCESS MODE clause.

For indexed files:

(8) If the access mode is random, the value of a record key data item for indexed files indicates the record to be
accessed.

For INFOS files (VXCOBOL):

(9) If the access mode is random, the value of a series of record key data items (with their associated occurrence
values, if any) and a relative motion specifier indicates the record to be accessed.

(10) If the access mode is sequential, the sequence of access is in ascending order by keys within a given index
or subindex. The subindex may be changed with a relative motion specifier.

97

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.4. ALLOW SUB-INDEX and LEVELS Clauses (VXCOBOL)

E.4.1 Function

The ALLOW SUB-INDEX and LEVELS clauses must be used to define the maximum number of subindex levels
permitted in an INFOS file.

E.4.2 General Format

ALLOW SUB-INDEX [LEVELS IS integer]

E.4.3 Syntax Rules

(1) Integer is a positive integer between 1 and 8 that specifies the maximum number of index and subindex
levels the file can have.

E.4.4 General Rules

(1) ALLOW SUB-INDEX must be specified for any file that already has subindexing or will allow
subindexing.

(2) The LEVELS clause indicates the expected maximum number of index and subindex levels that the file will
have. If you do not specify this clause on file creation, the maximum number of levels will default to the number of
keys in the RECORD KEY clause.

(3) The maximum number of levels for a U/FOS file is 8.

98

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (ALTERNATE RECORD KEY)

E.5. ALTERNATE RECORD KEY Clause (ANSI 74 and ANSI 85)

E.5.1 Function

The ALTERNATE RECORD KEY clause specifies an alternate record key access path to the records in an indexed
file. The ALSO, ORDER BY ALPHABETIC-UPPER, PLUS, SUPPRESS, and VALUES phrases are extensions to
ANSI COBOL.

E.5.2 General Format

ALTERNATE RECORD KEY IS id-1 [= id-2]

[ORDER BY ALPHABETIC-UPPER]
[SUPPRESS WHEN literal]

[VALUES ARE]

[WITH DUPLICATES]

E.5.3 Syntax Rules

(0) The ALTERNATE RECORD KEY clause may occur at most 16 times for ICISAM files.

(1) The phrases following the ALTERNATE RECORD KEY clauses (ORDER BY, SUPPRESS WHEN,
VALUES ARE, and WITH DUPLICATES) may be specified in any order.

(2) id-1 must not reference an item whose left-most character position corresponds to the left-most character
position of the primary record key or of any other alternate record key associated with this file. NOT ENFORCED
BY ICOBOL.

(3) If id-2 is not specified, id-1 may be qualified and must reference a data-item of category alphanumeric
within a record description entry associated with the file-name to which the ALTERNATE RECORD KEY is
subordinate. Id-1 must not reference a group item containing a variable occurrence data-item.

If id-2 is specified, id-1 must be a unique word within the program and is not defined elsewhere. Id-1 may be
referenced only in the KEY IS phrases of the READ or START statements.

(4) Each instance of id-2 or id-3 must reference a data-item of category alphanumeric within a record
description entry associated with the file-name to which the ALTERNATE RECORD KEY is subordinate. No
instance of id-2 or id-3 may reference a group item which contains a variable occurrence data-item

(5) If the ALSO phrase is specified, id-3 may be specified up to six times. If the ALSO phrase is not specified
(i.e., the PLUS case), id-3 may be specified up to three times.

(6) If id-2 is not specified, the length of id-1 may not exceed 255 bytes for ICISAM files.

If id-2 is specified, each instance of id-2 and id-3 must have a length that does not exceed 255 bytes. If the
ALSO phrase is specified, each id-3 must have the same length as id-2. If the ALSO phrase is not specified, the sum
of the lengths of id-2 and each id-3 must not exceed 255 bytes.

(7) If the OCCURS phrase is specified, integer must be in the range from 1 to 31. id-2 and each id-3 must each
be in the same record definition. Additionally, they must be subordinate to a common OCCURS phrase which is
defined as occurring integer times. Each of the identifiers must be specified without a subscript.

99

Interactive COBOL Language Reference & Developer’s Guide - Part One

If the OCCURS phrase is not specified, none of the identifiers may have an OCCURS phrase in their description
or be subordinate to an item which has an OCCURS phrase its definition.

(8) Within the record definition the byte positions of id-2 and each id-3 must be disjoint, i.e., they may not
overlap.

(9) If the SUPPRESS WHEN phrase is specified, lit may be either a single character alphanumeric literal or a
figurative constant.

(10) If the index files contains variable length records, each alternate record key must be contained within the
first x character positions of the record where x equals the minimum record size for the file.

E.5.4 General Rules

(1) The ALTERNATE RECORD KEY clause specifies an alternate record key for the file with which this
clause is associated. It may specify that one or more key values to be entered into the associated index for each
record.

The alternate key may consist of a single data-item (id-1 with no additional phrases). It may also be a composite
key (identified by the key name id-1) defined as a root key (id-2) plus one or more key suffixes (id-3). The value of
a composite alternate key is determined by appending the values of the root key and each key suffix together in the
order in which they appear in the ALTERNATE RECORD KEY clause.

Multiple key values (inversions) may be entered into the index for a given alternate key in two ways:

a. The ALSO phrase may be specified. In this case, the key-name id-1 represents an alternate record key
which supports multiple key values. A value is entered into the index for id-2 and each instance of id-3. This
allows for scattered fields in the record to be entered into the index as key values.

b. The OCCURS phrase may be specified. In this case, the key-name id-1 represents an alternate record
key which supports multiple key values in a tabularized form. For each occurrence of id-2 in the record definition,
optionally suffixed by occurrences of id-3, a key value is entered into the index.

(2) The data description and relative location within a record of id-1 (if it is used alone) and of id-2 and each
id-3 must be the same as that used when the file was created.

(3) If the file has more than one record description entry, id-1 (if it is used alone) or id-2 and each id-3 need
only be described in one of these record description entries except when the OCCURS phrase is present. If the
OCCURS phrase is present id-2 and each id-3 must be in the same record description entry. In all cases, the
identical character positions referenced by id-1 (if it is used alone), id-2, and each id-3 that appear in one record
description are implicitly referenced as keys for all other record description entries of that file.

(4) The ORDER BY ALPHABETIC-UPPER phrase applies to version 7 or greater ICISAM files. It specifies
that all values for this alternate key are entered into the index as uppercase only. Lookups for this key path will be
performed in uppercase. The effect is that the keys on this key path are processed in a case insensitive manner. If
ORDER BY ALPHABETIC-UPPER is not present, then key values are entered and looked up as they appear in the
record.

(5) The SUPPRESS WHEN lit phrase specifies that when all characters of a key value are equal to the character
specified by lit, that key value should not be entered into the index. This phrase applies to version 7 or greater
ICISAM files.

(6) The VALUES ARE phrase is used to specify the order in which key values are entered into the index. If the
ASCENDING phrase is specified, key values are entered in ascending order. That is, key values appear with
increasing values. If the DESCENDING phrase is specified, key values are entered in descending order. That is,

100

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (ALTERNATE RECORD KEY)

key values appear with decreasing values -- in reverse sequential order. If the VALUES ARE phrase is not present,
VALUES ARE ASCENDING is implied. This phrase applies to version 7 or greater ICISAM files.

(7) The WITH DUPLICATES phrase specifies that the value or values of the associated ALTERNATE
RECORD KEY may be duplicated within any of the records in the file and within the record itself if multiple key
values are specified. If the WITH DUPLICATES phrase is not specified, the value or values of the associated
alternate key must not be duplicated among any of the records in the file or within the record itself if multiple key
values are specified. If the phrase is not present, duplicate key values are not allowed. Version 7 and greater
indexed files observe the duplicates option correctly.

(8) Alternate record keys are sorted based on the following criteria:

a. ascending root segment position of id-1 (if it is a data-item) or by id-2 if it is present.

b. ascending root segment length of id-1 (if it is a data-item) or by id-2 if it is present.

c. absence of ALSO keys and, if present, ascending number of ALSO and ascending ALSO’s position.

d. absence of suffixes and, if present, ascending number of suffixes, ascending suffix position, and
ascending suffix length.

e. absence of OCCURS and, if present, ascending number of OCCURS and ascending occurs span.

f. absence of duplicates allowed.

g. absence of descending order.

h. absence of uppercase conversion.

i. absence of SUPPRESS when value and, if present, ascending suppress when value.

(9) If the associated file connector is an external file connector, every file control entry in the run unit which is
associated with that file connector must specify the same data description entry for data-name-1, the same relative
location within the associated record, the same number of alternate record keys, and the same DUPLICATES
phrase.

101

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.6. ALTERNATE RECORD KEY Clause (VXCOBOL)

E.6.1 Function

The ALTERNATE RECORD KEY clause specifies an alternate record key access path to the records in an indexed
file.

E.6.2 General Format

ALTERNATE RECORD data-name

[KEY LENGTH IS integer]
[WITH DUPLICATES]

E.6.3 Syntax Rules

(1) Data-name may be qualified.

(2) Data-name must be defined as a data item of the category alphanumeric within a record description entry
associated with the file-name to which the ALTERNATE RECORD KEY clause is subordinate. Data-name must
not reference a group item that contains a variable occurrence data-item.

(3) Data-name must not reference an item whose left-most character position corresponds to the left-most
character position of the primary record key or of any other alternate record key associated with this file. NOT
ENFORCED BY ICOBOL.

(4) integer must be exactly the length of the item referenced by data-name.

(5) If the index file contains variable length records, data-name must be contained within the maximum record
size number of characters. If data-name is not contained within the specified minimum record size, the minimum
record size will be adjusted upward to contain data-name.

E.6.4 General Rules

(1) An ALTERNATE RECORD KEY clause specifies an alternate record key for the file with which this clause
is associated. The ALTERNATE RECORD KEY clause may be specified no more than 16 times.

(2) The data description of data-name as well as its relative location within a record must be the same as that
used when the file was created. The number of alternate record keys for the file must also be the same as that used
when the file was created.

(3) The DUPLICATES phrase specifies that the value of the associated alternate record key may be duplicated
within any of the records in the file. If the DUPLICATES phrase is not specified, the value of the associated
alternate record key must not be duplicated among any of the records in the file.

(4) If the file has more than one record description entry, data-name need only be described in one of these
record description entries. The identical character positions referenced by data-name in any one record description
entry are implicitly referenced in keys for all other record description entries of that file.

(5) Alternate keys are sorted by their leftmost character position. Under ICOBOL, if multiple alternate keys
start at the same position, they are sorted in ascending order by length (smallest to largest).

102

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (ALTERNATE RECORD KEY)

(6) If the associated file connector is an external file connector, every file control entry in the run unit which is
associated with that file connector must specify the same data description entry for data-name, the same relative
location within the associated record, the same number of alternate record keys, and the same DUPLICATES
phrase.

103

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.7. ASSIGN Clause

E.7.1 Function

The ASSIGN clause specifies the association of the file referenced to a defined storage medium.

E.7.2 General Format (ANSI 74 and ANSI 85)

Sequential File:

ASSIGN TO

Relative, Indexed, and Sort-Merge Files:

ASSIGN TO

E.7.3 General Format (VXCOBOL)

Sequential:

ASSIGN TO

Relative:

ASSIGN TO

104

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (ASSIGN)

Indexed:

ASSIGN INDEX TO

d [ROOT MERIT IS integer] [SPACE MANAGEMENT] [TEMPORARY]

d

Sort-Merge File:

ASSIGN TO

INFOS Files:

ASSIGN INDEX TO { [MERIT integer] [VOLUME SIZE IS integer

d [CONTIGUOUS [[NO] INITIALIZATION]]] }...
d [TEMPORARY]

[SPACE MANAGEMENT]
[ROOT MERIT IS integer]

d

[ASSIGN DATA TO { [MERIT integer]

d [VOLUME SIZE IS integer [CONTIGUOUS [[NO] INITIALIZATION]]] }...
[SPACE MANAGEMENT]]

E.7.4 Syntax Rules

(1) Only one storage medium (PRINTER, PRINTER-1, DISPLAY, KEYBOARD, DISK, INPUT,
INPUT-OUTPUT, OUTPUT, or RANDOM) may be specified.

(2) Only one external filename specifier (identifier-1 or literal-1) may be specified except for INFOS files.

For VXCOBOL:

(3) Integer-1 and integer-4 are positive integer literals between 1 and 32 that specify the merit factor of a
volume. If not specified the merit factor is 1.

(4) Integer-2 and integer-5 are positive integer literals that specify a number of 512-byte blocks.

(5) Integer-3 is a positive integer literal between 1 and 32 that specifies which volume priority has the highest
level root node.

105

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.7.5 General Rules

(1) If no storage medium is specified DISK is assumed.

(2) If no identifier-1 or literal-1 is specified, the default external filename is defined below for sequential files.

 Device Default Filename VXCOBOL Default Filename ANSI 74/85

PRINTER @LPT $LPT

PRINTER-1 @LPT1 $LPT1

DISPLAY @CONSOLE $TTO

KEYBOARD @CONSOLE $TTI

DISK, INPUT,
INPUT-OUTPUT,
OUTPUT, RANDOM

Characters of the internal
filename with $ replacing -

First ten character of the
internal filename with $
replacing -.

TABLE 1. Default External Filenames for Sequential Files

NOTE: The -N h compiler switch will suppress the translation of “-“ to “$” in the generation of default filenames.

(3) For VXCOBOL, relative, indexed, and INFOS files have no default external filename. For ANSI 74 and
ANSI 85, an external filename is generated from the internal name by selecting the characters of the internal name
and replacing - with $.

(4) Only sequential files may be ASSIGN'ed to PRINTER, PRINTER-1, KEYBOARD, DISPLAY, INPUT,
INPUT-OUTPUT, or OUTPUT.

(5) For INFOS files, VOLUME SIZE sets the maximum volume size. It is ignored on sequential, relative, and
indexed files.

(6) For sequential files, RANDOM is equivalent to DISK.

(7) When INPUT is specified, the assigned storage medium is DISK and the compiler restricts the file usage to
only those operations that are compatible with an input-only usage: OPEN INPUT, READ, and as a USING file in a
SORT-MERGE operation.

(8) When OUTPUT is specified, the assigned storage medium is DISK, and the compiler restricts the file usage
to only those operations that are compatible with an output-only usage: OPEN OUTPUT or EXTEND, WRITE, and
as a GIVING file in a SORT-MERGE operation.

(9) When INPUT-OUTPUT is specified, the assigned storage medium is DISK with no further restrictions.

106

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (COMPRESSION)

E.8. COMPRESSION Clauses (VXCOBOL)

E.8.1 Function

The COMPRESSION clauses enable INFOS space saving.

E.8.2 General Format

E.8.3 General Rules

(1) KEY COMPRESSION enables space saving in an INFOS indexed file.

(2) DATA COMPRESSION enables space saving in an INFOS data file.

(3) COMPRESSION enables both KEY COMPRESSION and DATA COMPRESSION.

(4) U/FOS ignores the KEY COMPRESSION clause and the implied key compression in the COMPRESSION
clause.

107

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.9. DELETE LOGICAL/PHYSICAL Clause (ANSI 74 and ANSI 85)

E.9.1 Function

The DELETE LOGICAL/PHYSICAL clause specifies whether DELETE record operations should be either logical
(thus allowing the record to be UNDELETE'd) or physical (allowing reuse of the record area for a new record and
thus NOT allowing an UNDELETE). DELETE LOGICAL/PHYSICAL is an extension to ANSI COBOL.

E.9.2 General Format

DELETE IS

E.9.3 Syntax Rules

(1) The DELETE clause applies to version 7 or greater ICISAM (relative and indexed) files.

E.9.4 General Rules

(1) The DELETE clause specifies the value of the "delete-is-physical" attribute in version 7 or greater ICISAM
files and controls the default behavior for record deletions. If the DELETE IS LOGICAL clause is specified, a
deleted record is retained in the file and is simply flagged as being deleted. It may be undeleted. If DELETE IS
PHYSICAL is specified, the space used by the deleted record is made available for reuse. The record may not be
undeleted. The default behavior may be overridden by including the LOGICAL or PHYSICAL phrases on the
DELETE statement.

(2) If this clause is specified and an existing file is opened, the value of the specification must agree with the
value of the file's "delete-is-physical" attribute.

(3) If this clause is omitted and a file is created, the default is DELETE IS LOGICAL.

108

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (FILE STATUS)

E.10. FILE STATUS Clause

E.10.1 Function

The FILE STATUS clause specifies a data item which contains the status of an input-output operation.

E.10.2 General Format

FILE STATUS IS data-name

E.10.3 Syntax Rules

(1) Data-name may be qualified.

(2) Data-name must be defined in the Data Division as a two-character data item of the category alphanumeric
and must not be defined in the File Section.

E.10.4 General Rules

(1) If the FILE STATUS clause is specified, the data item referenced by data-name is always updated to
contain the value of the I-O status whenever the I-O status is updated. This value indicates the status of execution of
the statement. See I-O Status, page 267 or the APPENDIX on FILE STATUS codes for the values.

(2) The data item referenced by data-name which is updated during the execution of an input-output statement
is the one specified in the file control entry associated with that statement.

For VXCOBOL

(3) If either FILE STATUS or INFOS STATUS clause is specified for a file, then even if there is no
declaratives to trap an exception, the program proceeds. Only if there is neither a FILE STATUS nor INFOS
STATUS nor a declaratives entry will the program abort with a Fatal Error.

(4) FILE STATUS and INFOS STATUS are updated at the same time.

(5) INFOS STATUS values are either an octal number representing an INFOS or AOS/VS compatible error
code or a string beginning with an ‘X’ followed by a decimal number representing an exception status code.

109

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.11. INDEX SIZE, DATA SIZE Clauses

E.11.1 Function

These clauses are comment fields. They allow older programs with these clauses to compile without errors. INDEX
SIZE and DATA SIZE are extensions to ANSI COBOL.

E.11.2 General Format

DATA SIZE is integer
INDEX SIZE is integer

E.11.3 General Rules

(1) The INDEX clause can only be used for relative, indexed, and INFOS files.

(2) The DATA SIZE and INDEX SIZE clauses are used for documentation purposes only.

110

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (INFOS STATUS)

E.12. INFOS STATUS Clause (VXCOBOL)

E.12.1 Function

The INFOS STATUS clause specifies a data item which contains the INFOS status of an input-output operation.

E.12.2 General Format

INFOS STATUS IS data-name

E.12.3 Syntax Rules

(1) Data-name may be qualified.

(2) Data-name must be defined in the Data Division as a four-character to eleven-character data item of the
category alphanumeric and must not be defined in the File Section.

E.12.4 General Rules

(1) If the INFOS STATUS clause is specified, the data item referenced by data-name is always updated to
contain the value of the INFOS STATUS whenever the status is updated. This value indicates the status of execution
of the statement.

(2) The data item referenced by data-name which is updated during the execution of an input-output statement
is the one specified in the file control entry associated with that statement.

(3) If either a FILE STATUS or INFOS STATUS clause is specified for a file, then even if there is no
declaratives to trap an exception, the program proceeds. Only if there is neither a FILE STATUS nor INFOS
STATUS nor a declaratives entry will the program abort with a Fatal Error.

(4) FILE STATUS and INFOS STATUS are updated are the same time.

(5) INFOS STATUS values are either an octal number representing an INFOS or AOS/VS compatible error
code or a string beginning with an 'X' followed by a decimal number representing an exception status code.

111

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.13. ORGANIZATION Clause

E.13.1 Function

The ORGANIZATION clause specifies the type (sequential, relative, or indexed) of organization as the logical
structure of a file and, for sequential files, may also imply information about the record format.

E.13.2 General Format

E.7.2 General Format ()

ANSI 74 and ANSI 85 Sequential File:

[ORGANIZATION IS] SEQUENTIAL

Others:

[ORGANIZATION IS]

E.13.3 General Rules

(1) The ORGANIZATION IS SEQUENTIAL clause specifies sequential organization as the logical structure of
a file. The file organization is established at the time a file is created and cannot subsequently be changed.

(2) Sequential organization is a permanent logical file structure in which a record is identified by a
predecessor-successor relationship established when the record is placed into the file.

(3) The ORGANIZATION IS LINE SEQUENTIAL clause specifies sequential organization and it specifies
that the record format is data sensitive. If the ORGANIZATION IS LINE SEQUENTIAL clause is specified, the
RECORDING MODE clause of the file’s FD may not be specified.

(4) The ORGANIZATION IS BINARY SEQUENTIAL clause specifies sequential organization and it specifies
that the record format is binary and not data-sensitive. If the ORGANIZATION IS BINARY SEQUENTIAL clause
is specified, the RECORDING MODE clause of the file’s FD may not be specified.

(5) When the ORGANIZATION clause is not specified, sequential organization is implied (without the optional
LINE or BINARY option).

(6) The ORGANIZATION IS RELATIVE clause specifies relative organization as the logical structure of a
file. The file organization is established at the time a file is created and cannot subsequently be changed.

(7) Relative organization is a permanent logical file structure in which each record is uniquely identified by an
integer value greater than zero, which specifies the record's logical ordinal position in the file.

(8) The ORGANIZATION IS INDEXED clause specifies indexed organization as the logical structure of a file.
The file organization is established at the time a file is created and cannot subsequently be changed. For
VXCOBOL, the file may be either an indexed file or INFOS file.

(9) Indexed organization is a permanent logical file structure in which each record is identified by the value of
one or more keys within that record.

112

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (QUEUE)

E.14. QUEUE Clause (ANSI 74 and ANSI 85)

E.14.1 Function

The QUEUE clause allows the specification of a destination printer control queue for the sequential file.

E.14.2 General Format

QUEUE IS

E.14.3 Syntax Rules

(1) integer must be in the range 0 through 2047 inclusive. (Was 127 in pre-3.30 versions).

(2) identifier may be qualified, but may not be subscripted.

(3) identifier must be defined in the Data Division as an integer data-item and must not be defined in the File
Section.

E.14.4 General Rules

(1) If identifier is specified, its value must be in the range 0 through 2047 inclusive.

(2) The value specified in identifier us used to represent a particular printer control queue (PCQ). Zero
identifies @PCQ0, one identifies @PCQ1, two identifies @PCQ2, etc. The name of the specified file will be
entered into that queue.

(3) At runtime, the selected queue should correspond to a queue which is available.

113

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.15. RECORD DELIMITER Clause (ANSI 74 and ANSI 85)

E.15.1 Function

The RECORD DELIMITER clause indicates the method of determining the length of a variable-length record on the
external medium.

E.15.2 General Format

RECORD DELIMITER IS

E.15.3 Syntax Rules

(1) The RECORD DELIMITER clause may be specified only for sequential files that have variable-length
records. Such a file contains the RECORD IS VARYING clause in the FD.

(2) If the RECORD DELIMITER clause is absent and RECORD IS VARYING is specified, the implied
RECORD DELIMITER for a file with LINE SEQUENTIAL organization is DATA-SENSITIVE, and for others is
BINARY LENGTH.

(3) If the RECORD DELIMITER clause is specified, the RECORDING MODE clause of the file’s FD may not
be specified.

(4) identifier-1 must be a 2-byte alphanumeric data-item, not defined in the FILE Section.

(5) identifier-2 must be a 1-byte alphanumeric data-item not defined in the FILE Section.

E.15.4 General Rules

(1) The RECORD DELIMITER options are described below:

a. STANDARD-1 is for documentation purposes only and is processed in the same manner as SIZE.

b. BINARY LENGTH indicates the presence of a record header with the length of the record stored as a
2-byte big-endian unsigned binary value. This is the traditional ICOBOL format. The stored length does not
include the length of the header. The BINARY LENGTH option may not be specified if the organization is LINE
SEQUENTIAL.

c. ASCII LENGTH indicates the presence of a record header with the length of the record stored as 4
ASCII digits. This is the traditional VXCOBOL and AOS/VS format. The stored length includes the 4 bytes
occupied by the header. The ASCII LENGTH option may not be specified if the organization is LINE
SEQUENTIAL.

d. SIZE indicates that the size of the record is determined completely by the record length requested. The
file itself has no underlying structure and is simply a stream of bytes. If RECORD DELIMITER IS SIZE is
specified, then the RECORD IS VARYING clause must include a DEPENDING ON id from which the record's size
is obtained for both read and write operations. The SIZE option may not be specified if the organization is LINE
SEQUENTIAL.

114

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (RECORD DELIMITER)

e. DATA-SENSITIVE indicates that the size of the record is determined by the presence of a delimiter
from the set NL, CR, FF, NUL and the CR-NL pair. On WRITE operations, the length of the record is the minimum
of that which is explicitly specified in the RECORD IS VARYING clause and the size determined due to the
presence of a delimiter within the record itself. If a delimiter is in the record, it is emitted on the WRITE.
Otherwise, the standard delimiter for the operating system is emitted, i.e. NL on Linux and the CR-NL pair on
Windows. For READ operations with the ASSIGN TO KEYBOARD phrase, the delimiter is included in the record
area. If the DELIMITER INTO phrase is present, the delimiter is stored in the identifier. (The delimiter will be
stored with a LOW-VALUE as its second character if it is any delimiter other than the CR-NL pair.) The
DATA-SENSITIVE option may not be specified if the organization is BINARY SEQUENTIAL.

f. Literal is an alphanumeric literal in which each character serves as a record delimiter. On WRITE
operations, the length of the record is the minimum of that which is explicitly specified in the RECORD IS
VARYING clause and the size determined due to the presence of a delimiter within the record itself. If a delimiter is
in the record it is emitted on the WRITE. Otherwise, the character from the literal with the lowest ASCII value is
emitted as the record delimiter. For READ operations with the ASSIGN TO KEYBOARD phrase, the delimiter is
included in the record area in other cases it is not. If the DELIMITER INTO phrase is present, the delimiter is
stored in the identifier. The Literal option may not be specified if the organization is BINARY SEQUENTIAL.

(2) At the time of a successful execution of an OPEN statement, the record delimiter is the one specified in the
RECORD DELIMITER clause in the file control entry associated with the file-name specified in the OPEN
statement.

115

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.16. RECORD KEY Clause

E.16.1 Function

The RECORD KEY clause specifies the primary record key access path to the records in an indexed file. For an
INFOS file, it specifies the valid indexes for this file. The ORDER BY ALPHABETIC-UPPER, PLUS, VALUES
ARE, KEY LENGTH, and OCCURRENCE phrases are extensions to ANSI COBOL.

E.16.2 General Format (ANSI 74 and ANSI 85)

RECORD KEY IS id-1 [= id-2 PLUS { id-3 }...] [ORDER BY ALPHABETIC-UPPER]

[VALUES ARE]

E.16.3 General Format (VXCOBOL)

Indexed:

RECORD data-name-1 [KEY LENGTH IS literal-1]

INFOS:

RECORD { data-name-1

[KEY LENGTH IS]

[WITH DUPLICATES [OCCURRENCE IS identifier-2]] }...

E.16.4 Syntax Rules (ANSI 74 and ANSI 85)

(1) The phrases following the RECORD KEY clause (ORDER BY and VALUES ARE) may be specified in
any order.

(2) If id-2 is not specified, id-1 may be qualified and must reference a data-item of category alphanumeric
within a record description entry associated with the file-name to which the RECORD KEY is subordinate. Id-1
must not reference a group item which contains a variable occurrence data item.

If id-2 is specified, id-1 must be a unique word within the program and is not defined elsewhere. Id-1 may be
referenced only in the KEY IS phrases of the READ or START statements.

(3) Each instance of id-2 or id-3 must reference a data-item of category alphanumeric within a record
description entry associated with the file-name to which the RECORD KEY is subordinate. No occurrence of id-2 or
id-3 may reference a group item which contains a variable occurrence data item.

(4) If id-2 is not specified, the length of id-1 may not exceed 255 bytes for indexed files.

If id-2 is specified, each instance of id-2 and id-3 must have a length that does not exceed 255 bytes. The sum
of the lengths of id-2 and each id-3 must not exceed 255 bytes.

(5) Within the record definition the byte positions of id-2 and each id-3 must be disjoint, i.e., they may not
overlap.

116

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (RECORD KEY)

(6) id-3 may be specified at most three(3) times.

(7) If the indexed file contains variable length records, id-1 or all occurrences of id-2 and id-3 must be
contained in the first x character positions of the record where x equals the minimum record size specified for the
file.

E.16.5 Syntax Rules (VXCOBOL)

(1) Data-name-1 may be qualified.

(2) For indexed files, data-name-1 must reference a data item of the category alphanumeric within a record
description entry associated with the file-name to which the RECORD KEY clause is subordinate. Data-name-1
must not reference a group item that contains a variable occurrence data item.

(3) Identifier-1 or literal-1 specifies the length of the associated key. Identifier-1 must be an unsigned integer
data item and literal-1 must be a positive integer literal. If neither is specified, the key length defaults to be the
length of the item referenced by data-name-1. When used with an indexed file, literal-1 must be exactly equal to the
length of the item referenced by data-name-1.

(4) Identifier-2 is an unsigned integer or alphanumeric data item that receives an occurrence number. It can
hold up to 10 digits (PIC 9(10)). It must be defined in Working-Storage.

(5) If the indexed file contains variable length records, data-name-1 must be contained within the maximum
record size number of characters. If data-name-1 is not contained within the specified minimum record size, the
minimum record size will be adjusted upward to contain data-name-1.

E.16.5 General Rules (ANSI 74 and ANSI 85)

(1) The RECORD KEY clause specifies the primary key record key for the file with which this clause is
associated. The values of the primary key must be unique among all records of the file. The record key may consist
of a single data-item (id-1 with no additional phrases). It may also be a composite key (identified by the key name
id-1) defined as a root key (id-2) plus one or more key suffixes (id-3). The value of a composite primary key is
determined by appending the values of the root key and each key suffix together in the order in which they appear in
the RECORD KEY clause.

(2) The data description and relative location within a record of id-1 (if it is used alone) and of id-2 and each
id-3 must be the same as that used when the file was created.

(3) If the file has more than one record description entry, id-1 (if it is used alone) or id-2 and each id-3 need
only be described in one of these record description entries. In all cases, the identical character positions referenced
by id-1 (if it is used alone), id-2, and each id-3 that appear in one record description are implicitly referenced as keys
for all other record description entries of that file.

(4) The ORDER BY ALPHABETIC-UPPER phrase applies to version 7 or greater ICISAM files. It specifies
that all values for this alternate key are entered into the index as uppercase only. Lookups for this key path will be
performed in uppercase. The effect is that the keys on this key path are processed in a case insensitive manner. If
ORDER BY ALPHABETIC-UPPER is not present, then key values are entered and looked up as they appear in the
record.

(5) The VALUES ARE phrase is used to specify the order in which key values are entered into the index. If the
ASCENDING phrase is specified, key values are entered in ascending order. That is, key values appear with
increasing values. If the DESCENDING phrase is specified, key values are entered in descending order. That is,
key values appear with decreasing values -- in reverse sequential order. If the VALUES ARE phrase is not present,
VALUES ARE ASCENDING is implied. This phrase applies to version 7 or greater ICISAM files.

117

Interactive COBOL Language Reference & Developer’s Guide - Part One

(6) If the associated file connector is an external file connector, all file description entries in the run unit which
are associated with that file connector must specify the same data description entry for data-name-1 with the same
relative location within the associated record.

E.16.7 General Rules (VXCOBOL)

(1) For indexed, the RECORD KEY clause specifies the primary record key for the file with which this clause
is associated. The values of the primary record key must be unique among records of the file. For INFOS, the
RECORD KEY clause specifies a list of data-items which may be used as keys. These items may occur in any order
and there may be more or less keys specified that subindex levels in the file.

(2) For indexed, the data description of data-name-1 as well as its relative location within a record must be the
same as that used when the file was created.

(3) For indexed, if the file has more than one record description entry, data-name-1 need only be described in
one of these record description entries. The identical character positions referenced by data-name-1 in any one
record description entry are implicitly referenced as keys for all other record description entries of that file.

(4) For INFOS, if identifier-1 or literal-1 is given, then on an open of a file for output, that value is the
maximum key length for the main level, on a WRITE statement the value represents the number of characters in
data-name-1 that will be stored as the value of that record's index, and when you specify a READ with a GENERIC
clause, the value represents the number of characters in data-name-1 that must be matched in order to access a given
record.

(5) If you use the OCCURRENCE clause, an occurrence number is assigned for each duplicate key. With
INFOS II, occurrence numbers are only unique within a subindex. With U/FOS, occurrence numbers are unique
through the entire database.

(6) The occurrence number and length of a key can be obtained by issuing a RETRIEVE KEY statement.

(7) After a WRITE or a RETRIEVE statement, the occurrence number associated with the first key named in
the SELECT is updated.

(8) If the associated file connector is an external file connector, all file description entries in the run unit which
are associated with that file connector must specify the same data description entry for data-name-1 with the same
relative location within the associated record.

118

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (RESERVE)

E.17. RESERVE Clause (VXCOBOL) (Documentation only)

E.17.1 Function

The RESERVE clause allows the user to specify the number of input-output areas allocated.

E.17.2 General Format

Sequential and Relative:

d RESERVE integer

Indexed and INFOS:

d RESERVE integer DATA

d RESERVE integer INDEX

E.17.3 General Rules

(1) Under ICOBOL, the RESERVE clause is used for documentation only. ICOBOL buffers sequential disk
files as part of its implementation.

119

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.18. I-O-CONTROL Paragraph

E.18.1 Function

The I-O-CONTROL paragraph specifies the memory area which is to be shared by different files.

E.18.2 General Format (ANSI 74 and ANSI 85)

I-O-CONTROL.

[RERUN [ON file-name-1] EVERY]...d

[SAME AREA FOR file-name-1 { file-name-2 }...]...

d [MULTIPLE FILE TAPE CONTAINS { file-name-5 [POSITION integer-3] }...]...
.

E.18.3 General Format (VXCOBOL)

I-O-CONTROL.

[SAME AREA FOR file-name-1 { file-name-2 }...]...

d [MULTIPLE FILE TAPE CONTAINS { file-name-5 [POSITION integer-3] }...]...
.

E.18.4 Syntax Rules

(1) The order of appearance of the clauses is immaterial.

(2) The RERUN and MULTIPLE FILE TAPE clauses are used for documentation purposes only. Both clauses
are obsolete elements in Standard COBOL are to be deleted from the next revision of the standard.

120

ENVIRONMENT DIVISION - INPUT-OUTPUT SECTION (SAME)

E.19. SAME Clause

E.19.1 Function

The SAME clause specifies the memory area which is to be shared by different files.

E.19.2 General Format

SAME AREA FOR file-name-1 { file-name-2 }...

E.19.3 Syntax Rules

(1) File-name-1 and file-name-2 must be specified in the FILE-CONTROL paragraph of the same program.

(2) More than one SAME clause may be included in the program, subject to the following restrictions:

a. A file-name must not appear in more than one SAME AREA clause.

b. A file-name must not appear in more than one SAME RECORD AREA clause.

(3) The files referenced in the SAME AREA or SAME RECORD AREA clause need not all have the same
organization or access.

(4) SORT and SORT-MERGE are equivalent.

(5) A file-name that represents a sort or merge file must not appear in the SAME clause unless the SORT,
SORT-MERGE, or RECORD phrase is used, i.e. it may not appear in a SAME AREA clause.

(6) filename-1 and filename-2 may not reference external file connectors.

E.19.4 General Rules

(1) The SAME AREA clause is for documentation purposes only. We recommend that you remove them or
make them comment lines.

(2) The SAME RECORD AREA clause specifies that two or more files referenced by file-name-1, file-name-2
are to use the same memory area for processing of the current logical record. All of these files may be in the open
mode at the same time. A logical record in the SAME RECORD AREA is considered as a logical record of each file
open in the output mode whose file-name appears in this SAME RECORD AREA clause and of the most recently
read file open in the input mode whose file-name appears an this SAME RECORD AREA clause. This is equivalent
to an implicit redefinition of the area, i.e., records are aligned on the left-most character position.

(3) If the SAME SORT AREA or SAME SORT-MERGE AREA is used, at least one of the file-names must
represent a sort or merge file. The SAME SORT AREA and SAME SORT-MERGE AREA clause is for
documentation purposes only. We recommend that you remove them or make them comment lines.

121

Interactive COBOL Language Reference & Developer’s Guide - Part One

122

DATA DIVISION (Concepts)

V. DATA DIVISION

A. General Description

The Data Division describes the data that is to be processed by the object program. The Data Division is optional in
a COBOL source program.

B. Concepts

To make data as computer-independent as possible, the characteristics or properties of the data are described in
relation to a standard data format rather than an equipment-oriented format. This standard data format is oriented to
general data processing applications and uses the decimal system to represent numbers (regardless of the radix used
by the computer) and all characters of the COBOL character set to describe nonnumeric data items.

B.1. Logical Record Concept

In order to separate the logical characteristics of data from the physical characteristics of the data storage media,
separate clauses or phrases are used. The following paragraphs discuss the characteristics of files.

B.1.1 Physical Aspects of a File

The physical aspects of a file describe the data as it appears on the input or output media and includes the means by
which the file can be identified.

B.1.2 Conceptual Characteristics of a File

The conceptual characteristics of a file are the explicit definition of each logical entity within the file itself. In a
COBOL program, the input or output statements refer to one logical record.

A COBOL logical record is a group of related information, uniquely identifiable, and treated as a unit,

In this document, references to records mean references to logical records.

The concept of a logical record is not restricted to file data but is carried over into the definition or working storage.
Thus, working storage is grouped into logical records and defined by a series of record description entries.

B.1.3 Record Concepts

The record description consists of a set of data description entries which describe the characteristics of a particular
record. Each data description entry consists of a level-number followed by a data-name, if required, followed by a
series of independent clauses, as required.

B.2. Concept of Levels

A level concept is inherent in the structure of a logical record. This concept arises from the need to specify
subdivision of a record for the purpose of data reference. Once a subdivision has been specified, it may be further
subdivided to permit more detailed data referral.

The most basic subdivisions of a record, that is, those not further subdivided, are called elementary items;
consequently, a record is said to consist of a sequence of elementary items, or the record itself may be an elementary
item.

123

Interactive COBOL Language Reference & Developer’s Guide - Part One

In order to refer to a set of elementary items, the elementary items ate combined into groups. Each group consists of
a named sequence of one or more elementary items. Groups, in turn, may be combined into groups of two or more
groups, etc. Thus, an elementary item may belong to more than one group.

B.2.1 Level-Numbers

A system of level-numbers shows the organization of elementary items and group items. Since records are the most
inclusive data items, level-numbers for records start at 01. Less inclusive data items are assigned higher (not
necessarily successive) level-numbers not greater in value than 49. There are special level-numbers, 66, 77, and 88,
which are exceptions to this rule (see below). Separate entries are written in the source program for each
level-number used.

A group includes all group and elementary items following it until a level-number less than or equal to the
level-number of that group is encountered. All items which are immediately subordinate to a given group item must
be described using identical level-numbers greater than the level-number used to describe that group item.

Three types of entries exist for which there is no true concept of level. These are:

(1) Entries that specify elementary items or groups introduced by a RENAMES clause. Entries describing items
by means of RENAMES clauses for the purpose of re-grouping data items have been assigned the special
level-number 66.

(2) Entries that specify noncontiguous working storage and linkage data items. Entries that specify
noncontiguous data items, which are not subdivisions of other items, and are not, themselves, subdivided, have been
assigned the special level-number 77.

(3) Entries that specify condition-names. Entries that specify condition-names, to be associated with particular
values of a conditional variable, have been assigned the special level-number 88.

B.3. Concept of Class and Category of Data

Every elementary data item, every literal, and every identifier has a class and a category. The class and category of a
data item are defined by its picture character-string, by the BLANK WHEN ZERO clause, or by its usage. The class
and category of an identifier are the class and category of the unique data item referenced by that identifier, as
defined in the section on identifiers on page 133. The class and category of a literal are defined in the section on
literals beginning on page 47. The following table depicts the relationship of the class and categories of data items.

The class and category of a group item is alphanumeric.

(ISQL) The class and category of an item with usage CHARACTER is alphanumeric; and the class and category of
an item with usage INTEGER, SMALLINT, or NUMERIC is numeric.

124

DATA DIVISION - Concepts (Character Representation)

LEVEL OF ITEM CLASS CATEGORY

Elementary Alphabetic
 Numeric
 Alphanumeric
 "
 "
 Index
 Date-Time**
 "
 "
 Interval**
 "
 Indicator**

 Alphabetic
 Numeric
 Numeric edited
 Alphanumeric edited
 Alphanumeric
 Index
 Date**
 Time**
 Timestamp**
 Year-to-Month**
 Day-to-Time**
 Indicator**

Nonelementary
(group)

 Alphanumeric Alphanumeric

** ISQL only ** ISQL only

TABLE 2. Relationship of the Class and Categories of Data Items

B.4. Selection of Character Representation and Radix

The value of a numeric item may be represented in either binary or decimal form depending on the equipment. In
addition there are several ways of expressing decimal. Since these representations are actually combinations of bits,
they are commonly called binary-coded decimal forms. The selection of radix is generally dependent upon the
arithmetic capability of the computer. If more than one arithmetic radix is provided, the selection is dependent upon
the specification of the USAGE clause.

The size of an elementary data item or a group item is the number of characters in standard data format of the item.
Synchronization and usage may cause a difference between this size and that required for internal representation.

B.5. Algebraic Signs

Algebraic signs fall into two categories: operational signs, which are associated with signed numeric data items and
signed numeric literals to indicate their algebraic properties; and editing signs, which appear, for example on edited
reports to identify the sign of the item.

The SIGN clause permits the programmer to state explicitly the location of the operational sign. This clause is
optional; if it is not used, operational signs will be represented as defined by ICOBOL. See The USAGE clause,
pages 195, 198, 233.

Editing signs are inserted into a data item through the use of the sign control symbols of the PICTURE clause.

B.6. Standard Alignment Rules

The standard rules for positioning data within an elementary item depend on the category of the receiving item.
These rules are:

(1) If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved to the receiving digit positions with zero fill or
truncation on either end as required.

b. When an assumed decimal point is not explicitly specified, the data item is treated as if it has an assumed
decimal point immediately following its right-most digit and is aligned as in paragraph 1a.

(2) If the receiving data item is a numeric edited data item, the data moved to the edited data item is aligned by
decimal point with zero fill or truncation at either end as required within the receiving character positions of the data
item, except where editing requirements cause replacement of the leading zeros.

125

Interactive COBOL Language Reference & Developer’s Guide - Part One

(3) If the receiving data item is alphanumeric (other than a numeric edited data item), alphanumeric edited, or
alphabetic, the sending data is moved to the receiving character positions and aligned at the left-most character
position in the data item with space fill or truncation to the right, as required.

If the JUSTIFIED clause is specified for the receiving item, these standard rules are modified.

(4) (ISQL) If the receiving data item is an interval, the data is aligned by the fields that compose the interval
with re-computation of high-order fields or truncation of low order fields as necessary. With regard to fractional
seconds, the seconds and fractional seconds are treated as a standard numeric data item with regard to alignment.
For example, moving INTERVAL “48:12:13.1234" HOUR TO SECOND interval to INTERVAL DAY TO
MINUTE will result in the value INTERVAL “2 0:12" DAY TO MINUTE, where the high-order is re-computed and
the low-order is truncated.

B.7. Item Alignment for Increased Object-Code Efficiency

Some computer memories are organized in such a way that there are natural addressing boundaries in the computer
memory (e.g., word boundaries, half-word boundaries, byte boundaries). The way in which data is stored is
determined by the object program, and need not respect these natural boundaries.

However, certain uses of data (e.g., in arithmetic operations or in subscripting) may be facilitated if the data is stored
so as to be aligned on these natural boundaries. Specifically, additional machine operations in the object program
may be required for the accessing and storage of data if portions of two or more data items appear between adjacent
natural boundaries, or if certain natural boundaries bifurcate a single data item.

Data items which are aligned on these natural boundaries in such a way as to avoid such additional machine
operations are defined to be synchronized.

Synchronization can be accomplished in two ways:

(1) By use of the SYNCHRONIZED clause.

(2) By recognizing the appropriate natural boundaries and organizing the data suitably without the use of the
SYNCHRONIZED clause.

ICOBOL treats the SYNCHRONIZED clause as documentation. However, it aligns each 77 and 01 level item on an
even byte address. (This default alignment can be altered with the -B compiler switch to select 1, 2, or 4 byte
alignment.)

B.8. Table Handling

Tables of data are common components of business data processing problems. Although the repeating items that
make up a table could be otherwise described by a series of separate data description entries all having the same
level-number and all subordinate to the same group item, there are two reasons why this approach is not satisfactory.
First, from a documentation standpoint, the underlying homogeneity of the items would not be readily apparent; and
second, the problem of making available an individual element of such a table would be severe when there is a
decision as to which element is to be made available at object time.

Tables of data items are defined in COBOL by including the OCCURS clause in their data description entries. This
clause specifies that the item is to be repeated as many times as stated. The item is considered to be a table element
and its name and description apply to each repetition or occurrence. Since each occurrence of a table element does
not have assigned to it a unique data-name, reference to a desired occurrence may be made only by specifying the
data-name of the table element together with the occurrence number of the desired table element. The occurrence
number is known as a subscript.

The number of occurrences of a table element may be specified to be fixed or variable.

126

DATA DIVISION - Concepts (Table Handling)

01 TABLE-1.
02 TABLE-ELEMENT OCCURS 20 TIMES.

03 DOG...
03 FOX...

02 TABLE-1.
 03 TABLE-ELEMENT OCCURS 20 TIMES.
 04 DOG OCCURS 5 TIMES.

 05 EASY...
 05 FOX...

Example 9A:

01 ABLE.
 02 BAKER...
 02 CHARLIE OCCURS 20 TIMES...
 02 DOG...

Example 9B:

01 ABLE.
 02 BAKER OCCURS 20 TIMES...
 02 CHARLIE...
 02 DOG OCCURS 5 TIMES...

(ISQL) An SQL table is very similar to a simple two-dimensional data table in COBOL. It can be defined quite
simply as one or more columns and zero or more rows with each row containing one elementary value for each
column.

B.8.1 Table Definition

To define a one-dimensional table, the programmer uses an OCCURS clause as part of the data description of the
table element, but the OCCURS clause must not appear in the description of group items which contain the table
element. The following example shows a one-dimensional table defined by the item TABLE-ELEMENT.

EXAMPLE 7. Definition for a one-dimensional table

In the next example, TABLE-ELEMENT defines a one-dimensional table, but DOG does not since there is an
OCCURS clause in the description of the group item (TABLE-ELEMENT) which contains DOG.

EXAMPLE 8. Another one-dimensional table

In both of the two previous examples, the complete set of occurrences of TABLE-ELEMENT has been assigned the
name TABLE-1. However, it is not necessary to give a group name to the table unless it is desired to refer to the
complete table as a group item.

None of the three one-dimensional tables which appear in the following two examples has a group name.

EXAMPLE 9. Three one-dimensional tables without group names

Defining a one-dimensional table within each occurrence of an element of another one-dimensional table gives rise
to a two-dimensional table. To define a two-dimensional table, then, an OCCURS clause must appear in the data
description of the element of the table, and in the description of only one group item which contains that table
element. Thus, in the next example, DOG is an element of a two-dimensional table; it occurs 5 times within each
element of the item BAKER which itself occurs 20 times. BAKER is an element of a one dimensional table.

127

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 ABLE.
 02 BAKER OCCURS 20 TIMES...

03 CHARLIE...
03 DOG OCCURS 5 TIMES...

01 ABLE.
 02 BAKER OCCURS 20 TIMES...

03 CHARLIE...
03 DOG OCCURS 5 TIMES...

Invalid (DOG needs 2 subscripts):

DISPLAY BAKER(4) CHARLIE(4) DOG(4).

Valid:
DISPLAY BAKER(4) CHARLIE(4) DOG(5,4).

EXAMPLE 10. Definition for a two-dimensional table

In the general case, to define an n-dimensional table, the OCCURS clause should appear in the data description of
the element of the table and in the descriptions of (n - 1) group items which contain the element.

B.8.2 Initial Values of Tables

In the Working-Storage Section, initial values of elements within tables are specified in one of the following ways:

(1) The table may be described as a series of separate data description entries all subordinate to the same group
item, each of which specifies the value of an element, or part of an element, of the table. In defining the record and
its elements, any data description clause (USAGE, PICTURE, etc.) may be used to complete the definition, where
required. The hierarchical structure of the table is then shown by use of the REDEFINES entry and its associated
subordinate entries. The subordinate entries, following the REDEFINES entry, which are repeated due to OCCURS
clauses, must not contain VALUE clauses.

(2) All the dimensions of a table may be initialized by associating the VALUE clause with the description of the
entry defining the entire table. The lower level entries will show the hierarchical structure of the table; lower level
entries must not contain VALUE clauses.

(3) The value of selected table elements may be specified using VALUE clauses.

B.8.3 References to Table Items

Whenever the user references a table element or a condition-name associated with a table element, the reference
must indicate which occurrence of the element is intended. For access to a one-dimensional table the occurrence
number of the desired element provides complete information. For tables of more than one dimension, an
occurrence number must be supplied for each dimension of the table. In the previous example, then, a reference to
the fourth BAKER or the fourth CHARLIE would be complete, whereas a reference to the fourth DOG would not.
To reference DOG, which is an element of a two-dimensional table, the user must reference, for example, the fourth
DOG in the fifth BAKER.

EXAMPLE 11. Referencing single- and multi-dimensional table elements

128

DATA DIVISION - Concepts (Table Handling)

B.8.4 Subscripting

Occurrence numbers are specified by appending one or more subscripts to the data-name.

The subscript can be represented either by an integer, a data-name which references an integer numeric elementary
item, or an index-name associated with the table. A data-name or index-name may be followed by either the operator
+ or the operator - and an integer, which is used as an increment or decrement, respectively. It is permissible to mix
integers, data-names, and index-names. In addition to these standard subscripting options, ICOBOL allows any
arithmetic expression which evaluates to a positive integer to be used as a subscript.

The subscripts, enclosed in parentheses, are written immediately following any qualification for the name of the table
element. The number of subscripts in such a reference must equal the number of dimensions in the table whose
element is being referenced. That is, there must be a subscript for each OCCURS clause in the hierarchy containing
the data-name including the data-name itself.

When more than one subscript is required, they are written in the order of successively less inclusive dimensions of
the data organization. If a multi-dimensional table is thought of as a series of nested tables and the most inclusive or
outermost table in the nest is considered to be the major table with the innermost or least inclusive table being the
minor table, the subscripts are written from left to right in the order major, intermediate, and minor.

A reference to an item must not be subscripted if the item is not a table element or an item or condition-name within
a table element.

The lowest permissible occurrence number is 1. The highest permissible occurrence number in any particular case is
the maximum number of occurrences of the item as specified in the OCCURS clause.

B.8.4.1 Subscripting Using Integers or Data-Names

When an integer or data-name is used to represent a subscript, it may be used to reference items within different
tables. These tables need not have elements of the same size. The same integer or data-name may appear as the only
subscript with one item and as one of two or more subscripts with another item.

B.8.4.2 Subscripting Using Index-Names

In order to facilitate such operations as table searching and manipulating specific items, a technique called indexing
is available. To use this technique, the programmer assigns one or more index-names to an item whose data
description entry contains an OCCURS clause. An index associated with an index-name acts as a subscript, and its
value corresponds to an occurrence number for the item to which the index-name is associated.

The INDEXED BY phrase, by which the index-name is identified and associated with its table, is an optional part of
the OCCURS clause. There is no separate entry to describe the index associated with index-name since its definition
is completely hardware oriented. At object time the contents of the index correspond to an occurrence number for
that specific dimension of the table with which the index is associated. The initial value of an index at object time is
undefined, and the index must be initialized before use. The initial value of an index is assigned with the PERFORM
statement with the VARYING phrase, the SEARCH statement with the ALL phrase, or the SET statement.

The use of an arithmetic-expression or data-name as a subscript referencing a table element or an item within a table
element does not cause the alteration of any index associated with that table.

An index-name can be used to reference only the table to which it is associated via the INDEXED BY phrase.

Relative indexing is an additional option for making references to a table element or to an item within a table
element. When the name of a table element is followed by a subscript of the form (index-name + or - integer), the
occurrence number required to complete the reference is the same as if index-name were set up or down by integer
via the SET statement before the reference. The use of relative indexing does not cause the object program to alter
the value of the index.

129

Interactive COBOL Language Reference & Developer’s Guide - Part One

Consider the following data definition:

02 XCOUNTER...

02 BAKER OCCURS 20 TIMES INDEXED BY BAKER-INDEX...
 03 CHARLIE...
 03 DOG OCCURS 5 TIMES...

04 EASY
88 MAX VALUE IS...
04 FOX...
 05 GEORGE OCCURS 10 TIMES...

06 HARRY...
06 JIM...

The number of subscripts required to reference various table
elements is as follows, with an example for each:

1 subscript: BAKER(20)
CHARLIE(12)

2 subscripts: DOG(20,5)
EASY(5,5)
MAX(11,3)
FOX(5,1)

3 subscripts: GEORGE(20,5,10)
HARRY(5,5,5)
JIM(12,1,1)

The value of an index can be made accessible to an object program by storing the value in an index data item. Index
data items are described in the program by a data description entry containing a USAGE IS INDEX clause. The
index value is moved to the index data item by the execution of a SET statement.

The following example illustrates the subscripts needed for various elements in an example table.

EXAMPLE 12. Referencing elements in 1-, 2-, and 3-dimensional tables

B.9. Uniqueness of Reference

The purpose of every user-defined name in a COBOL program is to name a resource that is to be used in solving a
data processing problem. (See User-defined words, on page 44.) In order to use a resource, a statement in a
COBOL program must contain a reference that uniquely identifies the resource. In order to ensure uniqueness of
reference, a user-defined name may be qualified, subscripted , or reference modified, as described in the following
paragraphs.

When the same name has been assigned in separate programs to two or more occurrences of a resource of a given
type, and when qualification by itself does not allow the reference in one of those programs to differentiate between
the two identically named resources, then certain conventions which limit the scope of names apply. These
conventions ensure that the resource identified is that described in the program containing the reference.

Unless otherwise specified by the rules for a statement, any subscripting and reference modification are evaluated
only once as the first operation of the execution of that statement.

B.9.1 Qualification

Every user-defined name explicitly referenced in a COBOL source program must be uniquely referenced because
either:

(1) No other name has the identical spelling and hyphenation.

(2) It is unique within the context of a REDEFINES clause.

130

DATA DIVISION - Concepts (Uniqueness of Reference)

(3) The name exists within a hierarchy of names such that reference to the name can be made unique by
mentioning one or more of the higher level names in the hierarchy.

These higher level names are called qualifiers and this process that specifies uniqueness is called qualification.
Identical user-defined names may appear in a source program; however, uniqueness must then be established through
qualification for each user-defined name explicitly referenced, except in the case of redefinition. All available
qualifiers need not be specified so long as uniqueness is established. The LINAGE-COUNTER identifier requires
qualification to provide uniqueness of reference whenever a source program would result in more than one
occurrence of the identifier.

Regardless of the above, the same data-name must not be used as the name of an external record and as the name of
any other external data item described in any program contained within or containing the program which describes
that external data record.

The general formats for qualification are:

Format 1:

Format 2:

paragraph-name section-name

Format 3:

LINAGE-COUNTER file-name

The rules for qualification are as follows:

(1) For each non-unique user-defined name that is explicitly referenced, uniqueness must be established through
a sequence of qualifiers which precludes any ambiguity of reference.

(2) A name can be qualified even though it does not need qualification; if there is more than one combination of
qualifiers that ensures uniqueness, then any such set can be used.

(3) IN and OF are logically equivalent.

(4) In Format 1, each qualifier must be the name associated with a level indicator, the name of a group item to
which the item being qualified is subordinate, or the name of the conditional variable with which the condition-name
being qualified is associated. Qualifiers are specified in the order of successively more inclusive levels in the
hierarchy.

(5) In Format 1, data-name-1 or data-name-2 may be a record-name.

(6) If explicitly referenced, a paragraph-name must not be duplicated within a section. When a
paragraph-name is qualified by a section-name, the word SECTION must not appear. A paragraph-name need not
be qualified when referred to from within the same section.

(7) LINAGE-COUNTER must be qualified each time it is referenced if more than one file description entry
containing a LINAGE clause has been specified in the source program.

131

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.9.2 Subscripting

B.9.2.1 Function

Subscripts are used when reference is made to an individual element within a table of like elements that have not
been assigned individual data-names.

B.9.2.2 General Format

B.9.2.3 Syntax Rules

(1) The data description entry containing data-name-1 or the data-name associated with condition-name must
contain an OCCURS clause or must be subordinate to a data description entry which contains an OCCURS clause.

(2) Except as defined in syntax rule 4, when a reference is made to a table element, the number of subscripts
must equal the number of OCCURS clauses in the description of the table element being referenced. When more
than one subscript is required, the subscripts are written in the order of successively less inclusive dimensions of the
table.

(3) Index-name must correspond to a data description entry in the hierarchy of the table being referenced which
contains an INDEXED BY phrase specifying that index-name.

(4) Each table element reference must be subscripted except when such reference appears:

a) in a REDEFINES clause.

b) as subject of a SEARCH statement,

c) in the KEY IS phrase of an OCCURS clause.

(5) Data-name-2 may be qualified and must be a numeric elementary item representing an integer.

(6) Integer-1 may be signed and, if signed, it must be positive.

(7) Arithmetic-expression is any arithmetic expression that evaluates to a positive integer not more than the
number of occurrences specified in the OCCURS clause(s) associated with the table element being referenced.
(Note that all other forms are special cases of the arithmetic expression and are presented only for clarity.)

B.9.2.4 General Rules

(1) The value of the subscript must be a positive integer. The lowest possible occurrence number represented
by a subscript is 1. The first element of any given dimension of a table is referenced by an occurrence number of 1.
Each successive element within that dimension of the table is referenced by occurrence numbers of 2, 3, The
highest permissible occurrence number for any given dimension of the table is the maximum number of occurrences
of the item as specified in the associated OCCURS clause.

(2) The value of the index referenced by index-name corresponds to the occurrence number of an element in the
associated table.

132

DATA DIVISION - Concepts (Uniqueness of Reference)

(3) The value of the index referenced by index-name must be initialized before it is used as a subscript. An
index may be given an initial value by either a PERFORM statement with the VARYING phrase, or a SET
statement. An index may be modified only by the PERFORM and SET statements.

(4) If integer-2 is specified, the value of the subscript is determined by incrementing by the value of integer-2
(when the operator + is used) or by decrementing by the value of integer-2 (when the operator - is used) either the
occurrence number represented by the value of the index referenced by index-name or the value of the data item
referenced by data-name-2.

(5) If arithmetic-expression is specified, the value of the subscript is determined by evaluating the expression
and using this result to specify the occurrence number. This value must evaluate to a positive integer between 1 and
the specified maximum for the associated OCCURS clause.

B.9.3 Identifiers

B.9.3.1 Identifier

An identifier is a sequence of character-strings and separators used to reference a data item uniquely.

B.9.3.1.1 General format

Format 1 (function-identifier):

function-identifier-1

Format 2 (qualified-data-name-with-subscripts):

qualified-data-name-with-subscripts-1

Format 3 (reference-modification):

identifier-1 reference-modifier-1

Format 4 (predefined-address):

NULL

Format 5 (address-identifier):

ADDRESS OF identifier-1

Format 6 (qualified-linage-counter):

LINAGE-COUNTER filename-1

Format 7 (sqlstate-identifier):

SQLSTATE

133

Interactive COBOL Language Reference & Developer’s Guide - Part One

Format 8 (length-identifier):

LENGTH OF identifier-1

B.9.3.1.2 Syntax rules

All Formats

(1) Identifier is defined recursively: whenever the format for an identifier allows another identifier to be
specified, that other identifier may be any of the formats for an identifier, including the one being defined provided
the rules for each format are followed.

Format 1

(2) Function-identifier is defined on page 135.

Format 2

(3) Qualified-data-name-with-subscripts is defined on page 131, under Subscripting.

Format 3

(4) Reference-modification is defined on page 136.

Format 4

(5) Predefined-address is defined on page 137. This format is not available under VXCOBOL.

Format 5

(6) Address-identifier is defined on page 137, 138. This format is not available under VXCOBOL.

Format 6

(7) Qualified-linage-counter is defined on page 138.

Format 7

(8) (ISQL) Sqlstate-identifier is defined on page 139.

Format 8

(9) Length-identifier is defined on page 138.

B.9.3.1.3 General rules

(1) The order in which the various components of an identifier are applied is as follows, with the first to be
applied listed first:

a. a qualified-data-name-with-subscript; a function-identifier without arguments; a
qualified-linage-counter, a sqlstate-identifier or a predefined address are atomic identifiers

b. an address-identifier or length-identifier applies to an identifier on the right

c. a function-identifier with arguments applies the function-name on the left to a list of arguments enclosed

134

DATA DIVISION - Concepts (Uniqueness of Reference)

in parentheses on the right

d. a reference-modifier applies to the identifier on the left.

B.9.3.2 Function-identifier

A function-identifier references the unique data item that results from the evaluation of a function.

B.9.3.2.1 General format

FUNCTION { intrinsic-function-name-1 } [([argument-1]...)]

B.9.3.2.2 Syntax rules

(1) A function-identifier shall not be specified as a receiving operand.

(2) The word FUNCTION is required.

(3) If a function's definition permits arguments and a left parenthesis immediately follows
intrinsic-function-name-1, the left parenthesis is always treated as the left parenthesis of that function's arguments.

NOTE — For a function that may be referenced either with or without
arguments, such as the RANDOM function, careful coding is necessary to
ensure correct interpretation.

For example, in the following

FUNCTION MAX (FUNCTION RANDOM (A) B)

'A' is treated as an argument to the RANDOM function. If 'A' is instead
meant to be a second argument to the MAX function, different coding is
necessary - either:

FUNCTION MAX ((FUNCTION RANDOM) (A) B)
or

FUNCTION MAX (FUNCTION RANDOM () A B)
or

FUNCTION MAX (FUNCTION RANDOM A B).

EXAMPLE 13. Referencing an intrinsic function with and without arguments

(4) Argument-1 shall be an identifier, a literal, or an arithmetic expression. Specific rules governing the
number, class, and category of argument-1 are given for intrinsic functions in the definition of that intrinsic function.

(5) A numeric function shall not be specified where an integer operand is required, even though a particular
reference of the numeric function might yield an integer value.

(6) An integer function other than the integer form of the ABS function shall not be specified where an
unsigned integer is required.

B.9.3.2.3 General rules

(1) A function-identifier references a temporary data item whose value is determined when the function is
referenced at runtime.

If intrinsic-function-name-1 is specified, the temporary data item is an elementary data item whose description and
category are specified by the definition of that intrinsic function. The Intrinsic Functions section begins on page 613.

135

Interactive COBOL Language Reference & Developer’s Guide - Part One

(2) At the time reference is made to a function, its arguments are evaluated individually in the order specified in
the list of arguments, from left to right. An argument being evaluated may itself be a function-identifier or may be an
expression containing function-identifiers. There is no restriction preventing the function referenced in evaluating an
argument from being the same function as that for which the argument is specified. Additional rules for intrinsic
functions are given in the definitions for each intrinsic function, beginning on page 613.

(3) If a required argument is omitted, the ICOBOL compiler gives an error. There is no runtime error for a
missing argument.

(4) Evaluation of the function-identifier proceeds as follows:

a. Each argument-1 is evaluated at the beginning of the evaluation of the function-identifier. If an
exception condition exists, no function is activated. If an exception condition does not exist, the values of
argument-1 are made available to the activated function at the time control is transferred to that function.

b. he function specified by the function-identifier is made available for execution and control is transferred
to the activated function in a manner consistent with the call convention for the function.

c. After control is returned from the activated function, any exception condition (e.g. SIZE ERROR) is
propagated from the function and execution continues.

B.9.3.3 Reference-modifier

Reference modification defines a unique data item by specifying an identifier, a leftmost position, and a length.

B.9.3.3.1 General format

identifier-1 (leftmost-position : [length])

B.9.3.3.2 Syntax rules

(1) Identifier-1 shall reference a data item that is an alphanumeric, elementary item, a group item, or a numeric
item with USAGE DISPLAY..

(2) If identifier-1 is a function-identifier, it shall reference an alphanumeric function.

(3) Identifier-1 shall not be a reference-modification format identifier.

(4) Leftmost-position and length shall be arithmetic expressions.

(5) Unless otherwise specified, reference modification is allowed anywhere an identifier referencing a data item
of class alphanumeric is permitted.

B.9.3.3.3 General rules

(1) Leftmost-position shall represent an alphanumeric position.

(2) If the data item referenced by identifier-1 is explicitly or implicitly described as usage DISPLAY and its
category is other than alphanumeric, it shall be operated upon for purposes of reference modification as if it were
redefined as a data item of class and category alphanumeric of the same size as the data item referenced by
identifier-1.

(3) Each position of the data item referenced by identifier-1 is assigned an ordinal number incrementing by one
from the leftmost position to the rightmost position. The leftmost position is assigned the ordinal number one. If the

136

DATA DIVISION - Concepts (Uniqueness of Reference)

data description entry for identifier-1 contains a SIGN IS SEPARATE clause, the sign position is assigned an ordinal
number within that data item.

(4) Reference modification creates a unique data item that is a subset of the data item referenced by identifier-1.
This unique data item is defined as follows:

a. Positions used in evaluation are character positions.

b. The evaluation of leftmost-position specifies the ordinal position of the leftmost character of the unique
data item in relation to the leftmost character of the data item referenced by identifier-1. Evaluation of
leftmost-position shall result in a positive nonzero integer less than or equal to the number of positions in the data
item referenced by identifier-1.

c. The evaluation of length specifies the number of character positions of the data item to be used in the
operation. The evaluation of length shall result in a positive nonzero integer. The sum of leftmost-position and length
minus the value one shall be less than or equal to the number of positions in the data item referenced by identifier-1.
If length is not specified, the unique data item extends from and includes the position identified by leftmost-position
up to and including the rightmost position of the data item referenced by identifier-1.

If the evaluation of leftmost-position or length results in a non-integer value or a value that references a position
outside the area of identifier-1, the ICOBOL runtime system will halt the program executing with an appropriate
error.

(5) The unique data item is considered to be an elementary data item without the JUSTIFIED clause. The
unique data item has the same class, category, and usage as that defined for identifier-1, except that the categories
numeric, numeric-edited, and alphanumeric-edited are considered class and category alphanumeric.

B.9.3.4 Predefined-address

NULL is a predefined address of class pointer.

B.9.3.4.1 General Format

NULL

B.9.3.4.2 Syntax Rules

(1) This format may be used only as a sending operand in a SET statement, in the VALUE clause of an item
with usage POINTER, or in a data-pointer relation-condition.

B.9.3.4.3 General Rules

(1) The predefined address NULL references a data item of category data-pointer that contains the null address;
i.e., it does not represent the address of any data item.

B.9.3.5 Data-address-identifier

A data-address-identifier references the unique data item that contains the address of a data item.

B.9.3.5.1 General Format

ADDRESS OF identifier-1

137

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.9.3.5.2 Syntax Rules

(1) Identifier-1 shall reference a data item defined in the file section, working-storage section, or linkage
section.

(2) This identifier format shall not be specified as a receiving operand in a SET statement or in a data-pointer
relation condition.

B.9.3.5.3 General Rules

(1) Data-address-identifier creates a unique data item of class pointer and category data-pointer that contains
the address of identifier-1.

B.9.3.6 Length-identifier

A length-identifier references the unique data item that contains the length of a data item.

B.9.3.6.1 General Format

LENGTH OF identifier-1

B.9.3.6.2 Syntax Rules

(1) Identifier-1 shall reference a data item defined in the file section, working-storage section, or linkage
section.

(2) This identifier format shall not be specified as a receiving operand in a SET statement or in a data-pointer
relation condition.

B.9.3.6.3 General Rules

(1) LENGTH OF references a temporary unsigned integer data item of class and category numeric whose size is
equal to the number of character positions in identifier-1.

B.9.3.7 LINAGE-COUNTER

The LINAGE-COUNTER identifier is generated by the presence of a LINAGE clause in a file description entry.

B.9.3.7.1 General format

LINAGE-COUNTER filename-1

B.9.3.7.2 Syntax rules

(1) LINAGE-COUNTER shall only be referenced in procedure division statements.

138

DATA DIVISION - Concepts (Uniqueness of Reference)

(2) The LINAGE-COUNTER identifier shall not be referenced as a receiving operand or as an operand in the
USING list of a CALL or CALL PROGRAM statement..

(3) Qualification requirements for LINAGE-COUNTER are defined on page 130, under Qualification.

B.9.3.7.3 General rules

(1) LINAGE-COUNTER references a temporary unsigned integer data item of class and category numeric
whose size is equal to the page size specified in the LINAGE clause.

(2) The semantics of the LINAGE-COUNTER identifier is described on page 159, under the LINAGE clause
General Rules.

B.9.3.8 SQLSTATE (ISQL)

The SQLSTATE identifier is generated by the presence of an ISQL feature-set. Conceptually it is similar to a
FILE STATUS item.

B.9.3.8.1 General format

SQLSTATE

B.9.3.8.2 Syntax rules

(1) SQLSTATE shall only be referenced in procedure division statements.

(2) The SQLSTATE identifier shall not be referenced as a receiving operand or as an operand in the USING list
of a CALL or CALL PROGRAM statement.

(3) The SQLSTATE identifier shall not be subscripted, but it may be reference modified.

B.9.3.8.3 General rules

(1) SQLSTATE references a predefined data item of class and category alphanumeric whose size is exactly five
characters and whose scope is the run unit.

(2) The value of the SQLSTATE data item is initialized to “00000" when the run unit is initialized.

(3) The value of the SQLSTATE data item is modified by the execution of the following ISQL statements:
CONNECT, DISCONNECT, EXECUTE, FETCH, PREPARE, and SET CONNECTION.

(4) The value of the SQLSTATE data item is defined to be composed of a two-character class field followed by
a three-character subclass field. Some common class field values are:

00 - Successful completion
01 - Warning
02 - Data not found
07 - Dynamic SQL error
08 - Connection error
0A - Feature not supported
21 - Cardinality violation
22 - Data exception
23 - Constraint violation

139

Interactive COBOL Language Reference & Developer’s Guide - Part One

24 - Invalid cursor
25 - Invalid transaction state
26 - Invalid SQL identifier
40 - Rollback
42 - Syntax or access error
44 - Check option violation
HY -
IC - Generated by ICOBOL ISQL driver
IM - Generated by ODBC Driver Manager

(5) Some common values and their meaning:

00000 “Success”

From runtime/ISQL:

01000 “General Warning: The statement identifier does not exist"
01503 “The number of result columns is larger than the number of INTO items
02000 “No data was affected by the operation"
07001 “More data is needed"
07001 “The number of USING items is not the same as the number of parameter markers"
07004 “The USING clause is required for dynamic parameters"
07006 “Restricted data type attribute violation"
07500 “Numeric parameter conversion error"
07501 “Date parameter conversion error"
07502 “Time parameter conversion error"
07503 “Timestamp parameter conversion error"
07504 “Interval parameter conversion error"
08001 "Client unable to establish connection"
08002 "Connection name in use"
08003 "Connection does not exist"
08004 "Server rejected connection"
08S01 "Communication link failure"

22002 “Indicator variable required but not supplied"
22003 “Numeric value out of range"
22007 “Invalid datetime format"
22015 “Interval field overflow"
22018 “Invalid character value for cast specification"
24000 “Invalid cursor state"
26501 “The statement identifier does not exist"
28000 "Invalid authorization"
28001 “Authorization failure: ICSQL License could not be opened"
HY000 "General error"
HY001 "Memory allocation error"
HY004 “Invalid SQL type"
HY009 "Invalid use of null pointer"
HY010 "Invalud sequence error"
HY013 "Memory management error"

 HY090 "Invalid string or buffer length"

IC001 “General error: SQL is not loaded"
IC002 “Unable to load ODBC"
IC003 “Unable to load ODBC symbols"
IC004 “The ISQL subsystem is not properly initialized”
IC005 “Get Diagnostics exception number is out of range"
IC006 “Unable to allocate ODBC environment”
IC007 “Memory allocation error"

140

DATA DIVISION - Concepts (Uniqueness of Reference)

IC008 “Internal error"
IC009 “Unexpected Error from ODBC"
IC010 “Invalid Handle error from ODBC"

From driver/driver manager:

01001 “Cursor operation conflict”
01002 “Disconnect error”
01003 “NULL value eliminated in set function”
01004 “String data right truncated”
07002 “COUNT field incorrect”
08001 "Client unable to establish connection"
08002 "Connection name in use"
08003 "Connection does not exist"
08004 "Server rejected connection"
08S01 "Communication link failure"
23000 “Integrity constraint violation”
24000 "Invalid cursor"
25000 “Invalid transaction state”
28000 "Invalid authorization"

42000 “Syntax error or access violation”
HY000 "General error"
HY001 "Memory allocation error"
HY009 "Invalid use of null pointer"
HY010 "Invalud sequence error"
HY013 "Memory management error"
HY090 "Invalid string or buffer length"

HYC00 "Optional feature not implemented"
HYT00 "Timeout expired before the connection was made"
HYT01 "Connection timeout expired before the data source responded"
IM001 "Driver does not support this function"
IM002 “Database not found”
IM003 "Specified driver could not be connected to"
IM004 "Allocate on Environment failed"
IM005 "Allocate on DBC failed"
IM009 "Unable to load translation DLL"
IM010 "Data source name too long"

These are only some messages. The Driver Manager and/or Driver may have many more. Use the GET
DIAGNOSTICS statement to retrieve the text of the messages.

141

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.9.4. Condition-Name

A condition-name identifies a specific value, set of values, or range of values, within a complete set of values that a
data item may assume. The data item itself is called a conditional variable.

Condition-names may be defined in the data division or in the SPECIAL-NAMES paragraph within the environment
division where a condition-name shall be assigned to the on or off status, or both of implementor-defined switches.

A condition-name is used in conditions as an abbreviation for the relation condition; this relation condition posits
that the associated conditional variable is equal to one of the set of values to which that condition-name is assigned.
A condition-name is also used in a SET statement, indicating either that a value is moved to the associated
conditional variable that make the condition-name either ‘true’ or ‘false’, depending on the format of the SET
statement, or that an implementor-defined switch is set to ‘on’ or ‘off’ status.

If explicitly referenced, a condition-name must be unique or be made unique through qualification and/or
subscripting except when the scope of the names conventions by themselves ensure uniqueness of reference.

If qualification is used to make a condition-name unique, the associated conditional variable may be used as the first
qualifier. If qualification is used, the hierarchy of names associated with the conditional variable itself must be used
to make the condition-name unique.

If references to a conditional variable require subscripting, reference to any of its condition-names also requires the
same combination of subscripting.

The format and restrictions on the combined use of qualification and subscripting of condition-names is exactly that
of a Format 2 `identifier' . See page 131 under Subscripting.

In the general format of the chapters that follow, `condition-name' refers to a condition-name qualified or
subscripted, as necessary.

142

DATA DIVISION (Organization)

C. Organization

The Data Division is subdivided into sections. These are the File, Working-Storage, Linkage, and Screen sections.
With the VXCOBOL dialect, there is an additional section: Virtual-Storage.

C.1.1 Function

The File Section defines the structure of data files. Each file is defined by a file description entry and one or more
record description entries, or by a file description entry and one or more report description entries. Record
description entries are written immediately following the file description entry.

The Virtual-Storage Section (VXCOBOL) and the Working-Storage Section describe records and subordinate data
items which are not part of external data files but are developed and processed internally. Also described in these
sections are data items whose values are assigned in the source program and whose values do not change during the
execution of the object program.

The Linkage Section appears in the called program and describes data items that are to be referred to by the calling
program and the called program. Its structure is the same as the Working-Storage Section.

The Screen Section describes various input and output structures called screens that can be used by the ACCEPT and
DISPLAY verbs to present and/or get entire screen of data including literal fields.

C.1.2 General Format

The following gives the general format of the sections in the Data Division, and defines the order of their
presentation in the source program. The VIRTUAL-STORAGE section is available only with the VXCOBOL
dialect.

DATA DIVISION.

[FILE SECTION.

]

[WORKING-STORAGE SECTION.

]

[VIRTUAL-STORAGE SECTION. (VXCOBOL only)

]

[LINKAGE SECTION.

]

[SCREEN SECTION.
 [screen-description-entry]...]

143

Interactive COBOL Language Reference & Developer’s Guide - Part One

D. FILE SECTION

The File Section is located in the Data Division of a source program. The File Section defines the structure of data
files and sort files and merge files. Each data file is defined by a file description entry and one or more record
description entries. Each sort or merge file is defined by a sort-merge file description entry and one or more record
description entries. Record description entries are written immediately following the file description entry.

The general format of the File Section is shown below.

FILE SECTION.

D.1. File Description Entry/Sort-Merge Description Entry

In a COBOL program the file description entry (FD entry) represents the highest level of organization in the File
Section. The File Section header is followed by a file description entry consisting of a level indicator (FD), a
file-name, and a series of independent clauses. The clauses of a file description entry (FD entry) specify a number of
attributes of the file. The entry itself is terminated by a period.

In a COBOL program the sort-merge file description entry (SD entry) represents the highest level of organization in
the File Section. The File Section header is followed by a sort-merge file description entry consisting of a level
indicator (SD), a file-name, and a series of independent clauses. The clauses of a sort-merge file description entry
(SD entry) specify the size and the names of the data records associated with a sort file or a merge file. There are no
label procedures which the user can control, and the rules for blocking and internal storage are peculiar to the SORT
and MERGE statements. The entry itself is terminated by a period.

D.1.1 Function

The file description entry furnishes information concerning the physical structure, identification, and record-names
pertaining to a file.

The sort-merge file description entry furnishes information concerning the physical structure and record-names
pertaining to a sort or merge file.

144

DATA DIVISION - FILE SECTION (FD and SD entry)

D.1.2. General Format

Below is the general format with each phrase in alphabetical order since they are order independent.

Sequential File: (ANSI 74 and ANSI 85)

FD file-name [IS EXTERNAL]

d [BLOCK CONTAINS integer [TO integer]]

[CODE-SET IS]

[DATA { data-name }...]d

d [LABEL]

[[LINAGE IS LINES

[WITH FOOTING AT]

 [LINES AT TOP]

[LINES AT BOTTOM]]

[RECORDING MODE IS] .

145

Interactive COBOL Language Reference & Developer’s Guide - Part One

Sequential File: (VXCOBOL)

FD file-name [IS EXTERNAL]

d [BLOCK CONTAINS integer [TO integer]]

[CODE-SET [IS]]

d [DATA { data-name }...]

d [LABEL]

[[LINAGE IS LINES

[WITH FOOTING AT]

[LINES AT TOP]

[LINES AT BOTTOM]]

d [MULTIPLE I-O PROCEDURES]

d [PAD CHARACTER IS]

d [RECORD CONTAINS integer [TO integer] CHARACTERS]
[RECORDING MODE IS

]

d [VALUE OF [OWNER IS identifier] [EXPIRATION DATE IS identifier]
d [SEQUENCE NUMBER IS identifier] [GENERATION NUMBER IS identifier]
d [ACCESSIBILITY IS identifier] [OFFSET IS identifier]

d [VOLUME STATUS IS identifier] [USER VOLUME identifier, ...]

d [USER HEADER identifier, ...]

d [USER TRAILER identifier, ...]] .

146

DATA DIVISION - FILE SECTION (FD and SD entry)

Relative File & Indexed File: (ANSI 74 and ANSI 85)

FD file-name [IS EXTERNAL]

d [BLOCK CONTAINS integer [TO integer]]

d [DATA { data-name }...]

d [LABEL]

Relative File: (VXCOBOL)

FD file-name [IS EXTERNAL]

d [BLOCK CONTAINS integer [TO integer]]

d [DATA { data-name }...]

d [LABEL]

d [PAD CHARACTER IS]

d [RECORD CONTAINS integer [TO integer] CHARACTERS]

[RECORDING MODE IS FIXED] .

Indexed File: (VXCOBOL)

FD file-name [IS EXTERNAL]

d [DATA BLOCK CONTAINS integer [TO integer]]

d [DATA { data-name }...]

d [FEEDBACK IS identifier]
d [MERIT IS identifier]
d [INDEX BLOCK CONTAINS [integer TO] integer CHARACTERS]
d [INDEX NODE SIZE IS integer CHARACTERS]

d [LABEL]

d [RECORD CONTAINS integer [TO integer] CHARACTERS]

[RECORDING MODE IS] .

147

Interactive COBOL Language Reference & Developer’s Guide - Part One

INFOS File: (VXCOBOL)

FD file-name [IS EXTERNAL]

[DATA BLOCK CONTAINS [integer TO] integer]

d [DATA { data-name }...]

[FEEDBACK IS identifier]
d [MERIT IS identifier]

[INDEX BLOCK CONTAINS [integer TO] integer CHARACTERS]
d [INDEX NODE SIZE IS integer CHARACTERS]

d [LABEL]

[PARTIAL RECORD IS identifier]
d [RECORD CONTAINS integer [TO integer] CHARACTERS]

[RECORDING MODE IS VARIABLE [RECORD LENGTH IS identifier]] .

Sort-Merge File: (ANSI 74 and ANSI 85)

SD file-name

d [DATA { data-name }...]

[RECORD CONTAINS integer [TO integer] CHARACTERS] .

Sort-Merge File: (VXCOBOL)

SD file-name

d [BLOCK CONTAINS integer [TO integer]]

d [RECORDING MODE IS FIXED]

d [DATA { data-name }...]

d [RECORD CONTAINS integer [TO integer] CHARACTERS] .

D.1.3 Syntax Rules

(1) The level indicator FD identifies the beginning of a file description entry and must precede file-name.

(2) The level indicator SD identifies the beginning of a sort-merge file description entry and must precede
file-name.

(3) The clauses which follow file-name may appear in any order.

(4) One or more record description entries must follow the file description entry.

(5) One or more record description entries must follow the sort-merge file description entry; however no input-
output statements may be executed for this sort or merge file.

148

DATA DIVISION - FILE SECTION (Record Description)

D.1.4 General Rules

(1) A file description entry associates file-name with a file connector.

(2) The following chart lists the file description clauses for all of the ICOBOL dialects, by file type. It also
indicates which ones are for documentation purposes only. The clauses are presented on the following pages in
alphabetical order, with one exception: INDEX BLOCK is described with DATA BLOCK. Of the “documentation
only” clauses, only BLOCK CONTAINS, DATA RECORD and LABEL RECORD, are included.

File
Description

Clause

ANSI 74 & 85 VXCOBOL

BLOCK CONTAINS Sequential (doc only)
Relative & Indexed (doc only)

Sequential (doc only)
Relative & Indexed (doc only)

CODE-SET Sequential Sequential

DATA BLOCK N/A Indexed (doc only)
INFOS files

DATA RECORD Sequential (doc only)
Relative & Indexed (doc only)

Sequential (doc only)
Relative & Indexed (doc only)

EXTERNAL Sequential
Relative & Indexed

Sequential
Relative & Indexed
INFOS

FEEDBACK N/A Indexed (doc only)
INFOS (doc only)

INDEX BLOCK N/A Indexed (doc only)
INFOS

INDEX NODE N/A Indexed (doc only)
INFOS (doc only)

LABEL RECORD Sequential (doc only)
Relative & Indexed (doc only)

Sequential (doc only)
Relative & Indexed (doc only)
INFOS (doc only)

LINAGE Sequential Sequential

MERIT N/A Indexed & INFOS (doc only)

MULTIPLE N/A Sequential (doc only)

PAD CHARACTER N/A Sequential (doc only)
Relative (doc only)

PARTIAL RECORD N/A INFOS

RECORD Sequential
Relative & Indexed

Sequential (doc only)
Relative & Indexed (doc only)
INFOS (doc only)

RECORDING MODE Sequential Sequential
Relative & Indexed
INFOS

VALUE OF N/A Sequential (doc only)

TABLE 3. File Description Clauses by ICOBOL dialect and file type, noting which are documentation only

D.2. Record Description Structure

A record description consists of a set of data description entries which describe the characteristics of a particular
record. Each data description entry consists of a level-number followed by the data-name or FILLER clause, if
specified, followed by a series of independent clauses as required. A record description may have a hierarchical
structure and therefore the clauses used with an entry may vary considerably, depending upon whether or not it is
followed by subordinate entries. The structure of a record description and the elements allowed in a record
description entry are explained under Concept of Levels on page 123 and under Data Description Entry on page 172.

D.3. Initial Values

The initial value of a data item in the File Section is undefined.

149

Interactive COBOL Language Reference & Developer’s Guide - Part One

D.4. BLOCK CONTAINS Clause

D.4.1 Function

The BLOCK CONTAINS clause specifies the size of a physical record.

It is used for documentation purposes only.

D.4.2 General Format

d BLOCK CONTAINS integer-1 [TO integer-2]

D.4.3 General Rules

(1) The BLOCK CONTAINS clause is used for documentation purposes only, although the compiler does make
some simple consistency checks on the values of integer-1 and integer-2.

150

DATA DIVISION - FILE SECTION (CODE-SET)

D.5. CODE-SET Clause

D.5.1 Function

The CODE-SET clause specifies the character code convention used to represent data on the external media.

D.5.2 General Format

CODE-SET [IS]

D.5.3 Syntax Rules

(1) If the CODE-SET clause is specified for a file, all data in that file must be described as USAGE IS
DISPLAY and any signed numeric data must be described with the SIGN IS SEPARATE clause.

(2) The alphabet-name clause referenced by the CODE-SET clause must not specify the literal phrase.

(3) If specified, each id-1 must not be subscripted.

(4) id-1 must appear in a record-description for the associated file-connector, and if more than one id-1 is
specified all must appear within the same record-description.

(5) No two occurrences of id-1 may reference all or part of the same storage area.

D.5.4 General Rules

(1) ASCII, STANDARD-1, and NATIVE are equivalent and all represent the native character set of the
computer. For ICOBOL, this is ASCII. EBCDIC represents the EBCDIC character set.

(2) If the CODE-SET clause is specified:

a. Upon successful execution of an OPEN statement, the character set used to represent the data on the
external media is the one referenced by alphabet-name in the file-description entry associated with the file-name
specified in the OPEN statement.

b. It specifies the algorithm for converting the character set on the external media from/to the native
character set during the execution of an input or output operation. In particular, data is translated from the specified
character to the native character set upon execution of a READ statement, and from the native character set to the
specified character set upon execution of a WRITE or REWRITE statement. Note also that these translations also
occur as part of SORT and MERGE statements when records are read or written pursuant to processing the USING
or GIVING clauses.

c. If the FIELD IS/FIELDS ARE clause appears, the representation and conversion of data is restricted to
the fields referenced by each id-1. Otherwise, the entire data record is affected.

(3) If the CODE-SET is not specified, the native character set is assumed for data on the external media.

(4) If the associated file-connector is an external file connector, all CODE-SET clauses in the run unit which are
associated with that file connector must have the same character set. In addition, if the FIELD IS/FIELDS ARE

151

Interactive COBOL Language Reference & Developer’s Guide - Part One

clause is specified, the number of occurrences and the offset and length of each id-1 within the data record must be
the same for each file-connector in the run unit that is associated with the external file-connector.

(5) If the associated file-connector is specified with RECORD DELIMITER IS DATA-SENSITIVE or literal
(ANSI 74 and ANSI 85) or with RECORDING MODE IS DATA-SENSITIVE (VXCOBOL), any delimiter
characters specified are assumed to be in the native character set and are translated to the character set specified by
the CODE-SET clause.

(6) If the associated file-connector is specified with RECORD DELIMITER IS ASCII LENGTH (ANSI 74 and
ANSI 85) or with RECORDING MODE IS VARIABLE (VXCOBOL), only the data contained within the record is
translated. The record header, which contains the length, is assumed to be in the native character set and is not
translated.

(7) If the associated file-connector is specified with ASSIGN TO PRINTER or ASSIGN TO DISPLAY, only
the data contained within the record is translated. All carriage control is assumed to be in the native character set
and is not translated.

(8) The record area accessible to the program is always specified in the native character set.

152

DATA DIVISION - FILE SECTION (DATA BLOCK , INDEX BLOCK)

D.6. DATA BLOCK and INDEX BLOCK Clauses (VXCOBOL)

D.6.1 Function

The DATA BLOCK and INDEX BLOCK clauses specifies the page sizes used when creating an INFOS file.

D.6.2 General Format

DATA BLOCK CONTAINS [integer-1 TO] integer-2]

INDEX BLOCK CONTAINS [integer-3 TO] integer-4] CHARACTERS

D.6.3 Syntax Rules

(1) Integer-1 and integer-3 are ignored.

(2) Integer-2 is a positive integer literal that specifies the maximum number of characters or records that a
logical block in a data file can contain.

(3) Integer-4 is a positive integer literal that specifies the maximum number of characters that a logical block in
an indexed file can contain.

(4) Both clauses are ignored if specified for an indexed file.

D.6.4 General Rules

(1) DATA BLOCK and INDEX BLOCK clauses are used to specify the page sizes used when an INFOS file is
created. Only two page sizes are allowed: 2048 characters and 4096 characters. Any value less than or equal to
2048 will be treated as 2048, and any value greater that 2048 will be treated as 4096. If the RECORDS keyword is
specified in the DATA BLOCK CONTAINS clause, then integer-2 is multiplied by the record size and the result is
used to select either a 2048 or 4096 characters page.

(2) If DATA BLOCK or INDEX BLOCK is not specified 2048 is used.

(3) Note: U/FOS also supports page sizes of 512, 1024, and 8192 if the file is created with the ufos_create
utility. These may be specified in these clauses, but will result in runtime errors if a program attempts to create a file
using any of these three values.

153

Interactive COBOL Language Reference & Developer’s Guide - Part One

D.7. DATA RECORDS Clause

D.7.1 Function

The DATA RECORDS clause serves as documentation for the names of data records within their associated file.
The DATA RECORDS clause is an obsolete element in Standard COBOL because it is to be deleted from the next
revision of Standard COBOL. We suggest that you remove it from your source or change it to be a comment line.

D.7.2 General Format

DATA { data-name }...

D.7.3 Syntax Rules

(1) Data-name is the name of a data record and must have an 01 level-number record description, with the same
name, associated with it.

D.7.4 General Rules

(1) The DATA RECORDS clause is used for documentation purposes only, although the compiler checks that
the specified names do occur as record descriptors.

(2) The presence of more than one data-name indicates that the file contains more than one type of data record.
These records may be of differing sizes, different formats, etc. The order in which they are listed is not significant.

(3) Conceptually, all data records within a file share the same area. This is in no way altered by the presence of
more than one type of data record within the file.

154

DATA DIVISION - FILE SECTION (EXTERNAL)

D.8. EXTERNAL Clause

D.8.1 Function

The EXTERNAL clause specifies that a file connector is external. The file and constituent data records are available
in a run unit to all programs that describe the file as external.

D.8.2 General Format

IS EXTERNAL

D.8.3 Syntax Rules

(1) If you define data items in the FD or SELECT statement of an EXTERNAL file, you must specify them as
EXTERNAL. For example, INFOS STATUS (VXCOBOL), FILE STATUS, RECORD LENGTH, etc. must be
EXTERNAL if the file is external. The compiler will flag these items with a warning if they are not EXTERNAL
but the file is EXTERNAL.

D.8 .4 General Rules

(1) The file connector associated with this file description entry is an external file connector.

(2) The data contained in all record description entries subordinate to that file description entry are external and
may be accessed by any runtime element in the run unit that describes the same file and records as external, subject
to the following rules.

(3) Any LINAGE-COUNTER data item associated with the file is external.

(4) An EXTERNAL file uses the declaratives of the program which it is currently running. To ensure that the
same action is taken for all exceptions, a COPY file for the declaratives should be used in all programs that reference
this file.

(5) An EXTERNAL file can only be opened once. An error will occur if you attempt to open the file again
(either in the main program or a subprogram) without first explicitly closing the file.

(6) If record keys are declared for a file with the EXTERNAL clause, then the record keys must also be
declared EXTERNAL if there are not implicitly external by being in the data record, and in the same order in each
subprogram which references the file.

(7) At runtime, if any of the file's characteristics do not match those of a previously referenced external file,
ICOBOL will generate an exception status 1296 "External item in called program does not match existing item" on
the call of a subprogram that contains an external file.

155

Interactive COBOL Language Reference & Developer’s Guide - Part One

D.9. FEEDBACK Clause (VXCOBOL)

D.9.1 Function

The FEEDBACK clause contains the location of records for an INFOS file.

D.9.2 General Format

FEEDBACK IS identifier

D.9.3 Syntax Rules

(1) Identifier is a 4-byte data item in Working-Storage that receives feedback information about the location of
records in INFOS files.

(2) This clause is ignored for an indexed file.

D.9.4 General Rules

(1) If you specify FEEDBACK for a file, each time you read, write, or rewrite a record in the file, the
FEEDBACK data item is updated with the location of the record you just accessed. A WRITE INVERTED uses the
FEEDBACK data item to obtain the location of the record to which another key is already pointing.

(2) READ, REWRITE, and WRITE update the FEEDBACK data items if specified.

(3) FEEDBACK can not be used to READ a particular record.

156

DATA DIVISION - FILE SECTION (INDEX NODE)

D.10. INDEX NODE Clause (VXCOBOL)

D.10.1 Function

The INDEX NODE clause specifies the size, in characters, of an index node in an INFOS file.

D.10.2 General Format

INDEX NODE SIZE IS integer CHARACTERS

D.10.3 Syntax Rules

(1) Integer is a positive integer literal that specifies the number of characters in an index node.

(2) This clause is ignored for an indexed file.

D.10.4 General Rules

(1) The node size must be large enough to hold three keys. If you omit this option, the system calculates the
size according to the maximum key length, the partial record length, and whether or not subindexing is allowed.

157

Interactive COBOL Language Reference & Developer’s Guide - Part One

D.11. LABEL RECORD Clause

D.11.1 Function

The LABEL RECORD clause specifies whether labels are present. The LABEL RECORD clause is an obsolete
element in Standard COBOL because it is to be deleted from the next revision of Standard COBOL.

D.11.2 General Format

ANSI 74 and ANSI 85

d LABEL

VXCOBOL

d LABEL

D.11.3 Syntax Rules

(1) int-1 is a positive integer literal indicating the level number of the tape; it may be either 1 or 3.

(2) int-2 is a positive integer literal indicating the level number of the tape; it may be either 1 or 2.

D.11.4 General Rules

(1) The LABEL RECORD clause is used for documentation purposes only.

(2) OMITTED specifies that no explicit labels exist for the file or the device to which the file is assigned.

(3) STANDARD specifies that labels exist for the file or the device to which the file is assigned and the labels
conform to the label specifications.

(4) For VXCOBOL, EBCDIC indicates IBM format labels. If int-2 is not specified it is assumed to be 2.
ASCII is equivalent to STANDARD. NATIVE refers to Data General Format. If int-1 is not specified it is assumed
to be 3.

158

DATA DIVISION - FILE SECTION (LINAGE)

D.12. LINAGE Clause

D.12.1 Function

The LINAGE clause provides a means for specifying the depth of a logical page in terms of number of lines. It also
provides for specifying the size of the top and bottom margins on the logical page, and the line number, within the
page body, at which the footing area begins.

D.12.2 General Format

LINAGE IS LINES

[WITH FOOTING AT]

[LINES AT TOP]

[LINES AT BOTTOM]

D.12.3 Syntax Rules

(1) Data-name-1, data-name-2, data-name-3, and data-name-4 must reference elementary unsigned numeric
data items.

(2) Data-name-1, data-name-2, data-name-3, and data-name-4 may be qualified.

(3) Integer-2 must not be greater than integer-1.

(4) Integer-3 and integer-4 may be zero.

D.12.4 General Rules

(0) The associated file must have been specified with PRINTER or PRINTER-1 in the ASSIGN Clause of the
SELECT statement. If no device or DISK is specified and the LINAGE clause is present, the file will be treated as if
PRINTER was specified in the ASSIGN clause.

(1) The LINAGE clause provides a means for specifying the size of a logical page in terms of number of lines.
The logical page size is the sum of the values referenced by each phrase except the FOOTING phrase. If the LINES
AT TOP or LINES AT BOTTOM phrases are not specified, the values of these items are zero. If the FOOTING
phrase is not specified, no end-of-page condition independent of the page overflow condition exists.

There is not necessarily any relationship between the size of the logical page and the size of a physical page.

(2) Integer-1 or the value of the data item referenced by data-name-1 specifies the number of lines that can be
written and/or spaced on the logical page. The value must be greater than zero. That part of the logical page in
which these lines can be written and/or spaced is called the page body.

(3) Integer-2 or the value of the data item referenced by data-name-2 specifies the line number within the page
body at which the footing begins. The value must be greater than zero and not greater than integer-1 or the value of
the data item referenced by data-name-1.

The footing area comprises the area of the page body between the line represented by integer-2 or the value
of the data item referenced by data-name-2 and the line represented by integer-1 or the value of the data item
referenced by data-name-1, inclusive.

159

Interactive COBOL Language Reference & Developer’s Guide - Part One

(4) Integer-3 or the value of the data item referenced by data-name-3 specifies the number of lines that
comprise the top margin on the logical page. The value may be zero.

(5) Integer-4 or the value of the data item referenced by data-name-4 specifies the number of lines that
comprise the bottom margin on the logical page. The value may be zero.

(6) Integer-1, integer-3, and integer-4, if specified, are used at the time the file is opened by the execution of an
OPEN statement with the OUTPUT phrase, to specify the number of lines that comprise each of the indicated
sections of a logical page. Integer-2, if specified, is used at that time to define the footing area. These values are
used for all logical pages written for that file during a given execution of the program.

(7) The values of the data items referenced by data-name-1, data-name-3, and data-name-4, if specified, are
used as follows:

a. The values of the data items, at the time an OPEN statement with the OUTPUT phrase is executed for the
file, are used to specify the number of lines that are to comprise each of the indicated sections for the first logical
page.

b. The values of the data items, at the time a WRITE statement with the ADVANCING PAGE phrase is
executed or a page overflow condition occurs, are used to specify the number of lines that are to comprise each of
the indicated sections for the next logical page. (See the WRITE Statement.)

(8) The value of the data item referenced by data-name-2, if specified, at the time an OPEN statement with the
OUTPUT phrase is executed for the file, is used to define the footing area for the first logical page. At the time a
WRITE statement with the ADVANCING PAGE phrase is executed or a page overflow condition occurs, it is used
to define the footing area for the next logical page.

(9) A LINAGE-COUNTER is generated by the presence of a LINAGE clause. The value in the
LINAGE-COUNTER at any given time represents the line number at which the device is positioned within the
current page body. The rules governing the LINAGE-COUNTER are as follows:

a. A separate LINAGE-COUNTER is supplied for each file described in the File Section whose file
description entry contains a LINAGE clause.

b. LINAGE-COUNTER may be referenced only in Procedure Division statements; however, only the
input-output control system may change the value of LINAGE-COUNTER. Since more than one
LINAGE-COUNTER may exist in a program, the user must qualify LINAGE-COUNTER by file-name when
necessary.

c. LINAGE-COUNTER is automatically modified, according to the following rules, during the execution of
a WRITE statement to an associated file:

1) When the ADVANCING PAGE phrase of the WRITE statement is specified, the
LINAGE-COUNTER is automatically reset to one. During the resetting of LINAGE-COUNTER to the value one,
the value of LINAGE-COUNTER is implicitly incremented to exceed the value specified by integer-1 or the data
item referenced by data-name-1.

2) When the ADVANCING identifier-2 or integer-1 phrase of the WRITE statement is specified, the
LINAGE-COUNTER is incremented by integer-1 or the value of the data item referenced by identifier-2.

3) When the ADVANCING phrase of the WRITE statement is not specified, the LINAGE-COUNTER
is incremented by the value one. (See the WRITE Statement.)

4) The value of LINAGE-COUNTER is automatically reset to one when the device is repositioned to
the first line that can be written on for each of the succeeding logical pages. (See the WRITE Statement.)

160

DATA DIVISION - FILE SECTION (LINAGE)

d. The value of LINAGE-COUNTER is automatically set to one at the time an OPEN statement with the
OUTPUT phrase is executed for the associated file. An OPEN with the EXTEND phrase leaves the value of
LINAGE-COUNTER undefined.

(10) Each logical page is contiguous to the next with no additional spacing provided.

(11) If the file connector associated with this file description entry is an external file connector, all file
description entries in the run unit which are associated with this file connector must have:

a. A LINAGE clause, if any file description entry has a LINAGE clause.

b. The same corresponding values for integer-1, integer-2, integer-3, and integer-4, if specified.

c. The same corresponding external data items referenced by data-name-1, data-name-2, data-name-3, and
data-name-4.

161

Interactive COBOL Language Reference & Developer’s Guide - Part One

D.13. MERIT Clause (VXCOBOL)

D.13.1 Function

The MERIT clause allows record distribution to be optimized in an INFOS file.

D.13.2 General Format

MERIT IS identifier

D.13.3 Syntax Rules

(1) Identifier is an integer data item that specifies a merit factor from 1 to 32. Two volumes can have the same
merit factor.

D.13.4 General Rules

(1) If a merit factor is given for a record, INFOS places the record on the first volume that has both available
space and a merit factor equal to or less than the record's merit factor. If the system cannot find a volume that
satisfies these criteria, it places the record on the volume with the lowest merit factor that is higher than the one
specified.

(2) This clause is ignored.

162

DATA DIVISION - FILE SECTION (PARTIAL RECORD)

D.14. PARTIAL RECORD Clause (VXCOBOL)

D.14.1 Function

The PARTIAL RECORD clause allows a frequently used portion of the record to be accessed with a key.

D.14.2 General Format

PARTIAL RECORD IS identifier

D.14.3 Syntax Rules

(1) Identifier is an alphanumeric data item that receives the partial record data. It receives the partial record on
every operation that accesses a data record (unless the partial record is suppressed.)

D.14.4 General Rules

(1) The size of the data item specified by identifier determines the length that the partial record can have. This
length cannot be larger than the maximum size of the partial record set at index or subindex creation time (up to
255). When a data record for this file is accessed, the partial record is returned to identifier.

(2) With INFOS II, the partial record is stored in the index with the key. With U/FOS, the partial record is
stored as a second data record.

163

Interactive COBOL Language Reference & Developer’s Guide - Part One

D.15. RECORD Clause (ANSI 74 and ANSI 85)

D.15.1 Function

The RECORD clause specifies the number of character positions in a fixed length record, or specifies the range of
character positions in a variable length record. If the number of character positions does vary, the clause specifies
the minimum and maximum number of character positions.

D.15.2 General Format

Format 1 (fixed-length):

RECORD CONTAINS integer-1 CHARACTERS

Format 2 (variable-length):

RECORD IS VARYING IN SIZE [[FROM integer-2] [TO integer-3] CHARACTERS]
[DEPENDING ON data-name-1]

Format 3 (fixed or variable length):

RECORD CONTAINS integer-4 TO integer-5 CHARACTERS

D.15.3 Syntax Rules

Format 1:

(1) No record description entry for the file may specify a number of character positions greater than integer-1.

(2) For VXCOBOL, this format is for documentation purposes only.

Format 2:

(3) This format is not supported under VXCOBOL.

(4) No record description entry for the file may specify a number of character positions less than integer-2 or
greater than integer-3.

(5) Integer-3 shall be greater than integer-2.

(6) Data-name-1 shall describe an elementary unsigned integer in working storage or linkage section.

(7) Integer-2 shall be greater than zero.

(8) This format may not be specified if the RECORDING MODE clause is specified.

Format 3:

(9) For VXCOBOL, this format is for documentation purposes only.

(10) Integer-4 shall be greater than zero.

(11) Integer-5 shall be greater than integer-4.

164

DATA DIVISION - FILE SECTION (RECORD)

D.15.4 General Rules

All Formats:

(1) Each integer in a RECORD clause specifies a record size in terms of alphanumeric character positions.

(2) The implicit or explicit RECORD clause specifies the size of the records in the record area. The size of
records on physical storage media may be different due to control information required by the operating
environment.

(3) The size of each data record is specified in terms of the number of alphanumeric character positions
required to store the logical record, regardless of the types of characters used to represent the items within the logical
record. The size of the record is determined by the sum of the number of alphanumeric character positions in all
fixed length elementary items plus the sum of the maximum number of alphanumeric character positions in any
variable-length data item subordinate to the record.

(4) If the RECORD clause is not specified, an implicit format 1 or format 2 RECORD clause is assumed to be
specified. This implicit RECORD clause is defined with the following characteristics:

a. Format 1 is implied when RECORDING MODE clause is absent or FIXED. Integer-1 shall be the
record size of the largest record description entry in this file description entry.

b. Format 2 is implied when the RECORDING MODE IS VARIABLE. Integer-2 shall be the record size
of the smallest record description entry in this file description entry, and integer-3 shall be the largest record
description entry in this file description entry. The DEPENDING ON phrase is assumed to be omitted.

Format 1:

(5) Format 1 is used to specify fixed length records. Integer-1 specifies the number of character positions
contained in each record in the file.

Format 2:

(6) Format 2 is used to specify variable-length records. Integer-2 specifies the minimum number of
alphanumeric character positions to be contained in any record of the file. Integer-3 specifies the maximum number
of alphanumeric character positions in any record of the file.

(7) The number of alphanumeric character positions associated with a record description is determined by the
sum of the number of alphanumeric character positions in all elementary data items excluding redefinitions and
renamings, plus any implicit FILLER due to synchronization. If a table is specified:

a. The minimum number of table elements described in the record is used in the summation above to
determine the minimum number of alphanumeric character positions associated with the record description.

b. The maximum number of table elements described in the record is used in the summation above to
determine the maximum number of alphanumeric character positions associated with the record description.

(8) If integer-2 is not specified, the minimum number of alphanumeric character positions to be contained in
any record of the file is equal to the least number of alphanumeric character positions described for a record in that
file.

(9) If integer-3 is not specified, the maximum number of alphanumeric character positions to be contained in
any record of the file is equal to the greatest number of alphanumeric character positions described for a record in
that file.

165

Interactive COBOL Language Reference & Developer’s Guide - Part One

(10) If data-name-1 is specified, the number of alphanumeric character positions in the record shall be placed
into the data item referenced by data-name-1 before any RELEASE, REWRITE, or WRITE statement is executed
for the file.

(11) If data-name-1 is specified, the execution of a DELETE, RELEASE, REWRITE, START, or WRITE
statement or the unsuccessful execution of a READ or RETURN statement does not alter the content of the data item
referenced by data-name-1.

(12) During the execution of a RELEASE, REWRITE, or WRITE statement, the number of alphanumeric
character positions in the record is determined by the following conditions:

a. If data-name-1 is specified, by the content of the data item referenced by data-name-1.

b. If data-name-1 is not specified and the record does not contain a variable-occurrence data item, by the
number of alphanumeric character positions in the record.

c. If data-name-1 is not specified and the record does contain a variable-occurrence data item, by the sum
of the fixed portion and that portion of the table described by the number of occurrences at the time of execution of
the output statement.

d. If the file had been specified with a RECORD DELIMITER IS DATA-SENSITIVE or RECORD
DELIMITER IS literal, by the first occurrence of a delimiter character or as determined by rules a) - c) if that
number of alphanumeric character positions is less.

(13) If the number of alphanumeric character positions in the record to be written is less than integer-2 or
greater than integer-3, then if a RELEASE, REWRITE, or WRITE statement is being executed, exception 185
condition is set to exist, and the execution of the RELEASE, REWRITE, or WRITE statement is unsuccessful with
I-O status 92 (ANSI 74) or I-O status 44 (ANSI 85).

(14) If data-name-1 is specified, after the successful execution of a READ or RETURN statement for the file,
the contents of the data item referenced by data-name-1 will indicate the number of alphanumeric character positions
in the record just read.

(15) If the INTO phrase is specified in the READ or RETURN statement, the number of alphanumeric
character positions in the current record that participate as the sending operands in the implicit MOVE statement is
determined by the following conditions:

a. If data-name-1 is specified, by the content of the data item referenced by data-name-1.

b. If data-name-1 is not specified, by the value that would have been moved into the data item referenced
by data-name-1 had data-name-1 been specified.

If the number of alphanumeric character positions determined as above is zero, the record is a zero-length
item.

(16) INDEXED and RELATIVE files are varying length within a fixed allocation. SEQUENTIAL files are
written with a varying length and format based on the RECORD DELIMITER clause of the SELECT statement.

Format 3

(17) Format 3 of the RECORD clause produces fixed-length records if the RECORDING MODE clause is
absent or FIXED. Format 3 produces variable-length records if the RECORDING MODE is VARIABLE.
.

(18) When format 3 of the RECORD clause is used, integer-4 and integer-5 refer to the minimum number of
alphanumeric characters in the smallest size data record and the maximum number of alphanumeric characters in the
largest size data record, respectively. However, in this case, the size of each data record is completely defined in the
record description entry.

166

DATA DIVISION - FILE SECTION (RECORD)

(19) If the number of alphanumeric character positions in the logical record to be written is less than integer-4
or greater than integer-5, then if a RELEASE, REWRITE, or WRITE statement is being executed, the exception 185
is set to exist and the execution of the RELEASE, REWRITE, or WRITE statement is unsuccessful with I-O status
92 (ANSI 74) or 44 (ANSI 85).

167

Interactive COBOL Language Reference & Developer’s Guide - Part One

D.16. RECORDING MODE Clause (ANSI 74 and ANSI 85)

D.16.1 Function

The RECORDING MODE clause specifies whether a sequential disk file is have a fixed length record or a variable
length record based on the specified record. This clause is obsolete; variable sequential files may be obtained with
the RECORD DELIMITER IS BINARY LENGTH and RECORD IS VARYING clauses. The RECORDING
MODE clause is an extension to ANSI COBOL.

D.16.2 General Format

RECORDING MODE IS .

D.16.3 Syntax Rules

(1) RECORDING MODE is only allowed for sequential disk files.

(2) This clause may not be specified with the RECORD IS VARYING clause.

D.16.4 General Rules

(1) If this clause is not specified, RECORDING MODE IS FIXED is assumed.

168

DATA DIVISION ((FILE) RECORDING MODE)

D.17. RECORDING MODE Clause (VXCOBOL)

D.17.1 Function

The RECORDING MODE clause specifies the record format used in the file. The RECORDING MODE clause is
an extension to ANSI COBOL.

D.17.2 General Format

RECORDING MODE IS

D.17.3 Syntax Rules

(1) Identifier-1 is an integer data item that either specifies or receives a number of characters.

(2) Literal-1 is a numeric literal specifying a character that delimits the end of a record, replacing the default
delimiter.

(3) RECORDING MODE IS FIXED is the only format allowed for relative files.

(4) RECORDING MODE IS VARIABLE is the only format allowed for INFOS files.

(5) RECORDING MODE IS FIXED and RECORDING MODE IS VARIABLE are allowed for indexed files.

D.17.4 General Rules

(1) If this clause is not specified, RECORDING MODE IS FIXED is assumed for sequential and relative.
RECORD MODE IS VARIABLE is assumed for indexed and INFOS files.

(2) If FIXED is specified, all records have the same number of characters, the length of which is determined by
the size of the file's record area.

(3) If VARIABLE is specified, the maximum length for records can be specified in the RECORD LENGTH
clause. No two records in the file need to be the same length. However, they cannot exceed the maximum length
and they must never be 1. If a RECORD LENGTH clause is not used, the number of characters in a record
determines the maximum length for that record. For an index file, the record length must always be large enough to
include the RECORD key and all the ALTERNATE keys.

(4) If DYNAMIC is specified, the value of the data item specified in the RECORD LENGTH clause is used as
the length of the record. Therefore the RECORD LENGTH clause must be specified when using DYNAMIC.

(5) If DATA-SENSITIVE is specified, the length of the record is determined by the occurrence of a special
character (literal-1). If a delimiter character is not specified, carriage-return, form feed, null, or newline is used.
The RECORD LENGTH clause can also be used to set a maximum length for a data-sensitive record. The delimiter
should be counted as part of the record. DATA-SENSITIVE is ignored for printer files unless you use the
DELIMITER IS clause to specify the delimiters.

169

Interactive COBOL Language Reference & Developer’s Guide - Part One

(6) If undefined is specified, the file is read only as a sequence of binary bytes rather than a sequence of
records.

(7) If all cases, if RECORD LENGTH is omitted, a record cannot be more than the length of the file's record
area. If RECORD LENGTH is specified, the number of characters read from a record is returned. On output in
variable record format, identifier will specify the number of characters to write.

170

DATA DIVISION - WORKING-STORAGE SECTION (General Format)

E. WORKING-STORAGE SECTION

The Working-Storage Section is located in the Data Division of a source program. The Working-Storage Section
describes records and subordinate data items which are not part of data files.

The Working-Storage Section is composed of the section header, followed by record description entries and/or data
description entries for noncontiguous data items.

The general format of the Working-Storage Section is shown below.

WORKING-STORAGE SECTION.

E.1. Noncontiguous Working Storage

Items and constants in working storage which bear no hierarchical relationship to one another need not be grouped
into records, provided they do not need to be further subdivided. Instead, they are classified and defined as
noncontiguous elementary items. Each of these items is defined in a separate data description entry which begins
with the special level-number, 77.

The following data clauses are required in each data description entry:

1. level-number 77
2. data-name
3. the PICTURE clause, the USAGE IS INDEX clause, or the USAGE IS POINTER (ANSI 74and ANSI 85)

clause

Other data description clauses are optional and can be used to complete the description of the item if necessary.

E.2. Working Storage Records

Data elements in working storage which bear a definite hierarchical relationship to one another must be grouped into
records according to the rules for formation of record descriptions. Data elements in the Working-Storage Section
which bear no hierarchical relationship to any other data item may be described as records which are single
elementary items. All clauses which are used in record descriptions in the File Section can be used in record
descriptions in the Working-Storage Section.

E.3. Record Description Structure

A record description consists of a set of data description entries which describe the characteristics of a particular
record. Each data description entry consists of a level-number followed by the data-name or FILLER clause, if
specified, followed by a series of independent clauses as required. A record description may have a hierarchical
structure and therefore the clauses used within an entry may vary considerably, depending upon whether or not it is
followed by subordinate entries. The structure of a record description and the elements allowed in a record
description entry are explained in Concept of Levels and in The Data Description Entry.

E.4. Initial Values

The initial value of any data item in the Working-Storage Section except an index data item is specified by
associating the VALUE clause with the data item. The initial value of any index data item or any data item not
associated with a VALUE clause is undefined.

171

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.5. Data Description Entry

E.5.1 Function

A data description entry specifies the characteristics of a particular item of data.

E.5.2 General Format

Format 1:

level-number [IS EXTERNAL]

[BLANK WHEN ZERO]

[RIGHT]

[OCCURS]

[INDEXED BY { index-name }...]]

[IS character-string]

[REDEFINES data-name-2]

[[SIGN IS] [SEPARATE CHARACTER]]

d []

[usage-clause]

[VALUE IS] .

Where usage-clause is:

For ANSI 74 and ANSI 85:

 [USAGE IS]

172

DATA DIVISION - WORKING-STORAGE SECTION (Data Description Entry)

For VXCOBOL:

 [USAGE IS]

For ISQL: add the following selections:

 [USAGE IS]

Format 2:

66 data-name-1 RENAMES data-name-2 [data-name-3] .

Format 3:

88 condition-name .

173

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.5.3 Syntax Rules

(1) Level number in Format 1 may be any number from 01 through 49 or 77.

(2) In Format 1, the data-name-1 or FILLER clause, if specified, must immediately follow the level number.
The REDEFINES clause, if specified, must immediately follow the data-name-1 or FILLER clause if either is
specified; otherwise, it must immediately follow the level-number. The remaining clauses may be written in any
order.

(3) The EXTERNAL clause and the REDEFINES clause must not be specified in the same data description
entry.

(4) Data-name-1 must be specified for an entry containing the EXTERNAL clause or for record descriptions
associated with a file description entry which contains the EXTERNAL clause.

(5) The PICTURE clause must be specified for every elementary item except an index or pointer data item in
which case use of this clause is prohibited.

(6) The words THRU and THROUGH are equivalent.

(7) (ISQL) The words CHAR and CHARACTER are equivalent.

(8) (ISQL) The words INT and INTEGER are equivalent.

(9) The EXTERNAL clause may be specified only in data description entries in the Working-Storage Section
whose level-number is 01 or 77.

E.5.4 General Rules

(1) The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO must not be specified
except for an elementary item.

(2) Format 3 is used for each condition-name. Each condition-name requires a separate entry with
level-number 88. Format 3 contains the name of the condition and the value, values, or range of values associated
with the condition-name. The condition-name entries for a particular conditional variable must immediately follow
the entry describing the item with which the condition-name is associated. A condition-name can be associated with
any data description entry which contains a level-number except the following:

a. Another condition-name.

b. A level 66 item.

c. A group containing items with descriptions including JUSTIFIED, SYNCHRONIZED, or USAGE
(other than USAGE IS DISPLAY).

d. An index or pointer data item.

(3) Multiple level 01 entries subordinate to any given level indicator (i.e., FD or SD) represent implicit
redefinitions of the same area.

174

DATA DIVISION - WORKING-STORAGE SECTION (BLANK WHEN ZERO)

E.6. BLANK WHEN ZERO Clause

E.6.1 Function

The BLANK WHEN ZERO clause permits the blanking of an item when its value is zero.

E.6.2 General Format

BLANK WHEN ZERO

E.6.3 Syntax Rules

(1) The BLANK WHEN ZERO clause can be specified only for an elementary item whose PICTURE is
specified as numeric or numeric edited.

(2) The numeric or numeric edited data description entry to which the BLANK WHEN ZERO clause applies
must be described, either implicitly or explicitly, as USAGE IS DISPLAY.

E.6.4 General Rules

(1) When the BLANK WHEN ZERO clause is used, the item will contain nothing but spaces if the value of the
item is zero.

(2) When the BLANK WHEN ZERO clause is used for an item whose PICTURE is numeric, the category of
the item is considered to be numeric edited.

175

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.7. Data-Name or FILLER Clause

E.7.1 Function

A data-name specifies the name of the data item being described. The keyword FILLER may be used to specify a
data item which is not referenced explicitly.

E.7.2 General Format

E.7.3 Syntax Rules

(1) In the File, Working-Storage, and Linkage Sections, data-name-1 or the keyword FILLER, if either is
specified, must be the first word following the level-number in each data description entry.

E.7.4 General Rules

(1) If this clause is omitted, the data item being described is treated as though FILLER had been specified.

(2) The keyword FILLER may be used to name a data item. Under no circumstances can a FILLER item be
referred to explicitly. However, the keyword FILLER may be used to name a conditional variable because such use
does not require explicit reference to the data item itself, but only to the value contained therein.

176

DATA DIVISION - WORKING-STORAGE SECTION (EXTERNAL)

E.8. EXTERNAL Clause

E.8.1 Function

The EXTERNAL clause specifies that a data item is external. A data item is external if the storage associated with
that object is associated with the run unit rather than with any particular program within the run unit. The constituent
data items and group data items of an external data record are available to every program in the run unit which
describes that record.

E.8.2 General Format

IS EXTERNAL

E.8.3 Syntax Rules

(1) The EXTERNAL clause may be specified only in data description entries in the Working-Storage Section
whose level number is 01 or 77. For VXCOBOL, the EXTERNAL clause may be specified on a data description in
the FILE SECTION as long as it is also specified on the FD of the file.

(2) In the same program, the data-name specified as the subject of the entry whose level-number is 01 or 77 that
includes the EXTERNAL clause must not be the same data-name specified for any other data description entry
which includes the EXTERNAL clause.

(3) The EXTERNAL clause shall not be specified for a data item of class pointer.

E.8.4 General Rules

(1) The data contained in the data description entry named by the data-name clause is external and may be
accessed and processed by any program in the run unit which describes and optionally, redefines it subject to the
following general rules.

(2) Within a run unit, if two or more programs describe the same external data record or elementary item, each
record-name or data-name of the associated data description entries must be the same and the data descriptions must
define the same number of standard format characters. The items must be of the same type. However, a program
which describes an external record may contain a data description entry including the REDEFINES clause which
redefines the complete external record, and this complete redefinition need not occur identically in other programs in
the run unit.

(3) If the VALUE clause is specified for a data description entry with the EXTERNAL clause or subordinate to
a data description entry with an EXTERNAL clause, then every program describing that external item must specify
an identical VALUE clause on its declaration of the external item.

(4) On the call of a subprogram that contains the declaration of an EXTERNAL item, if any of the external data
item's characteristics fail to match those of a previously loaded external item of the same name, ICOBOL will
generate an exception status 1296 "External item in called program does not match existing item" and the call will
fail.

177

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.9. JUSTIFIED Clause

E.9.1 Function

The JUSTIFIED clause permits alternate positioning of data within a receiving data item, specifically right
justification.

E.9.2 General Format

 RIGHT

E.9.3 Syntax Rules

(1) The JUSTIFIED clause can be specified only at the elementary item level.

(2) JUST is an abbreviation for JUSTIFIED.

(3) The JUSTIFIED clause cannot be specified for any data item described as numeric or for which editing is
specified. (i.e., it can only be used with an unedited alphabetic or alphanumeric data item.)

(4) The JUSTIFIED clause must not be specified for an index data item.

E.9.4 General Rules

(1) When the receiving data item is described with the JUSTIFIED clause and the sending data item is larger
than the receiving data item, the left-most characters are truncated. When the receiving data item is described with
the JUSTIFIED clause and it is larger than the sending data item, the data is aligned at the right-most character
position in the data item with space fill for the left-most character positions.

(2) When the JUSTIFIED clause is omitted, the standard rules for aligning data within an elementary item
apply.

178

DATA DIVISION - WORKING-STORAGE SECTION (Level-Number)

E.10. Level-Number

E.10.1 Function

The level-number indicates the position of a data item within the hierarchical structure of a logical record. In
addition, it is used to identify entries for working storage items, linkage items, condition-names and the RENAMES
clause.

E.10.2 General Format

level-number

E.10.3 Syntax Rules

(1) A level-number is required as the first element in each data description entry.

(2) Data description entries subordinate to a FD or SD entry must have level-numbers with the values 01
through 49, 66, or 88.

(3) Data description entries in the Working-Storage Section and Linkage Section must have level-numbers 01
through 49, 66, 77, or 88.

(4) Data description entries in the Screen Section must have level-numbers 01 through 49.

(5) A level number in the range 01 through 09 may be specified as 1 through 9.

E.10.4 General Rules

(1) The level-number 01 identifies the first entry in each record description.

(2) Special level-numbers have been assigned to certain entries where there is no real concept of hierarchy:

a. Level-number 77 is assigned to identify noncontiguous working storage data items, noncontiguous
linkage data items, and can be used only as described by Format 1 of the data description entry.

b. Level-number 66 is assigned to identify RENAMES entries and can be used only as described by Format
2 of the data description entry.

c. Level-number 88 is assigned to entries which define condition-names associated with a conditional
variable and can be used only as described by Format 3 of the data description entry.

(3) Multiple level 01 entries subordinate to any given level indicator (i.e., FD or SD) represent implicit
redefinitions of the same area.

179

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.11. OCCURS Clause

E.11.1 Function

The OCCURS clause eliminates the need for separate entries for repeated data items and supplies information
required for the application of subscripts.

E.11.2 General Format

OCCURS

[INDEXED BY { index-name-1 }...]

E.11.3 Syntax Rules

(1) The OCCURS clause must not be specified in a data description entry that has a level-number of 01, 66, 77,
88, or which has a variable occurrence data-item subordinate to it. For VXCOBOL, the occurs clause may occur on
a data description entry that has a level number or 01.

(2) Data-name-1 and data-name-2 may be qualified.

(3) The first specification of data-name-2 must be the name of either the entry containing the OCCURS clause
or an entry subordinate to the entry containing the OCCURS clause. Subsequent specification of data-name-2 must
be subordinate to the entry containing the OCCURS clause.

(4) Data-name-2 must be specified without the subscripting that is normally required.

(5) Integer-2 must be greater than zero.

(6) If integer-1 is given it must be greater than or equal to zero, and integer-2 must be greater than integer-1 but
less than or equal to 16,777,216.

(7) Data-name-1 must describe an integer and its picture must not include the character P. The data item
described by data-name-1 must not occupy a character position within the range of the first character position
defined by the data description entry containing the OCCURS clause and the last character position defined by the
record description entry containing that OCCURS clause.

(8) If the OCCURS clause is specified in a data description entry included in a record description entry
containing the EXTERNAL clause, data-name if specified, must reference a data item possessing the external
attribute which is described in the same Data Division.

(9) A data description entry that contains a DEPENDING ON may only be followed, within that record
description, by data description entries which are subordinate to it.

(10) The data item identified by data-name-2 must not contain an OCCURS clause except when data-name-2 is
the subject of the entry.

(11) There must not be an entry that contains an OCCURS clause between the descriptions of the data items
identified by data-names in the KEY IS phrase and the subject of the entry.

180

DATA DIVISION - WORKING-STORAGE SECTION (OCCURS)

(12) An INDEXED BY phrase is required if the subject of this entry, or an entry subordinate to this entry, is to
be referenced by indexing. The index-name-1 identified by this phrase is not defined elsewhere since its allocation
and format are dependent on the hardware and, not being data, cannot be associated with any data hierarchy.

(13) Index-name-1 must be a unique word within the program.

E.11.4 General Rules

(1) Except for the OCCURS clause itself, all data description clauses associated with an item whose description
includes an OCCURS clause apply to each occurrence of the item described.

(2) If the DEPENDING ON phrase is not given, the value of integer-2 represents the exact number of
occurrences of the subject entry. If the DEPENDING ON phrase is given, the number of occurrences of the subject
entry is defined to be the value of the data item referenced by data-name-1. In this case the subject of the entry has a
variable number of occurrences. The value of integer-2 represents the maximum number of occurrences and the
value of integer-1 represents the minimum number of occurrences. This does not imply that the length of the subject
entry is variable, but that the number of occurrences is variable.

At the time the subject entry is referenced or any data item subordinate or superordinate to the subject of
entry is referenced, the value of the data item referenced by identifier must fall within the range of integer-1 through
integer-2. The contents of the data items whose occurrence numbers exceed the value of the data item referenced by
data-name-1 are undefined. ICOBOL will raise an "Index out of range" error in this case.

(3) When a group data item, having subordinate to it an entry that specifies a DEPENDING ON, is referenced,
the part of the table area used in the operation is determined as follows:

a. If the data item referenced by data-name-1 is outside the group, only that part of the table area that is
specified by the value of the data item referenced by data-name-1 at the start of the operation will be used.

b. If the data item referenced by data-name-1 is included in the same group and the group data item is
referenced as a sending item, only that part of the table area that is specified by the value of the data item referenced
by data-name-1 at the start of the operation will be used in the operation. If the group is a receiving item, the
maximum length of the group will be used. (This last sentence is different than how AOS/VS COBOL behaves.)

(4) When the KEY IS phrase is specified, the repeated data must be arranged in ascending or descending order
according to the values contained in data-name-3. The ascending or descending order is determined according to
the rules for the comparison of operands. The data-names are listed in their descending order of significance.

(5) At most ten (10) KEY IS phrases may be specified.

(6) If the OCCURS WITH DEPENDING is specified in a record description entry and the associated file
description or sort-merge description entry contains the VARYING phrase of the RECORD clause, the records are
variable length. If the DEPENDING ON phrase of the RECORD clause is not specified, the content of the data item
referenced by data-name-1 of the OCCURS clause must be set to the number of occurrences to be written before the
execution of any RELEASE, REWRITE, or WRITE statement.

181

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.12. PICTURE Clause

E.12.1 Function

The PICTURE clause describes the general characteristics and editing requirements of an elementary item.

E.12.2 General Format

 IS character-string

E.12.3 Syntax Rules

(1) The PICTURE clause can be specified only at the elementary item level.

(2) A character-string consists of certain allowable combinations of characters in the COBOL character set
used as symbols. The allowable combinations determine the category of the elementary item.

(3) The lowercase letters corresponding to the uppercase letters representing the PICTURE symbols A, B, P, S,
V, X, Z, CR, and DB are equivalent to their uppercase representations in a PICTURE character-string. All other
lowercase letters are not equivalent to their corresponding uppercase representations.

(4) The maximum number of characters allowed in the character-string is 30.

(5) The PICTURE clause must be specified for every elementary item except an index data item. In that case
the use of this clause is prohibited.

(6) PIC is an abbreviation for PICTURE.

(7) The asterisk, when used as the zero suppression symbol, and the clause BLANK WHEN ZERO may not
appear in the same entry.

(8) In the Screen section, unless the SIGN IS phrase is specified, the S PICTURE character is ignored by the
compiler to be consistent with older versions of Interactive COBOL.

(9) In the Screen section, the PICTURE symbols P, V, CR, and DB can only be used with output (FROM)
fields.

E.12.4 General Rules

(1) There are five categories of data that can be described with a PICTURE clause: alphabetic, numeric,
alphanumeric, alphanumeric edited, and numeric edited.

(2) To define an item as alphabetic:

a. Its PICTURE character-string can contain only the symbol `A'; and

b. Its content, when represented in standard data format, must be one or more alphabetic characters.

182

DATA DIVISION - WORKING-STORAGE SECTION (PICTURE)

(3) To define an item as numeric:

a. Its PICTURE character-string can contain only the symbols `9', `P', `S', and `V'. The number of digit
positions that can be described by the PICTURE character-string must range from 1 to 18 inclusive; and

b. If unsigned, its content when represented in standard data format must be one or more numeric
characters; if signed, the item may also contain a `+', `-', or other representation of an operational sign.

(4) To define an item as alphanumeric:

a. Its PICTURE character-string is restricted to certain combinations of the symbols `A', `X', `9', and the
item is treated as if the character-string contained all `X's. A PICTURE character-string which contains all `A's or all
`9's does not define an alphanumeric item, and;

b. Its content, when represented in standard data format, must be one or more characters in the computer's
character set.

(5) To define an item as alphanumeric edited:

a. Its PICTURE character-string is restricted to certain combinations of the following symbols: `A', `X', `9',
`B', `0', and `/'; and must contain at least one `A' or `X' and must contain at least one `B' or `0' (zero) or `/' (slant).

b. Its content when represented in standard data format must be two or more characters in the computer's
character set.

(6) To define an item as numeric edited:

a. Its PICTURE character-string is restricted to certain combinations of the symbols `B', `/', `P', `V', `Z', `0',
`9', `,', `.', `*', `+', `-', `CR', `DB', and the currency symbol. The allowable combinations are determined from the
order of precedence of symbols and the editing rules; and

1) The number of digit positions that can be represented in the PICTURE character-string must range
from 1 to 18 inclusive; and

2) The character-string must contain at least one `0', `B', `/', `Z', `*', `+', `,', `.', `-', `CR', `DB', or the
currency symbol.

b. The content of each of the character positions must be consistent with the corresponding PICTURE
symbol.

(7) The size of an elementary item, where size means the number of character positions occupied by the
elementary item in standard data format, is determined by the number of allowable symbols that represent character
positions. An unsigned nonzero integer which is enclosed in parentheses following the symbols `A', `,', `X', `9', `P',
`Z', `*,' `B', `/', `0', `+', `-', or the currency symbol indicates the number of consecutive occurrences of the symbol.
The following symbols may appear only once in a given PICTURE: `S', `V', `.', `CR', and `DB'.

(8) The functions of the symbols, used to describe an elementary item are explain as follows:

A Each `A' in the character-string represents a character position which can contain only an alphabetic
character and is counted in the size of the item.

B Each `B' in the character-string represents a character position into which the space character will be
inserted and is counted in the size of the item.

P Each `P' in the character-string indicates an assumed decimal scaling position and is used to specify the
location of an assumed decimal point when the point is not within the number that appears in the data item. The
scaling position character `P' is not counted in the size of the data item. Scaling position characters are counted in

183

Interactive COBOL Language Reference & Developer’s Guide - Part One

determining the maximum number of digit positions (18) in numeric edited items or numeric items. The scaling
position character. `P' can appear only as a continuous string of `P's in the left-most or right-most digit positions
within a PICTURE character-string; since the scaling position character `P' implies an assumed decimal point (to the
left of `P's if `P's are left-most PICTURE symbols and to the right if `P's are right-most PICTURE symbols), the
assumed decimal point symbol `V' is redundant as either the left-most or right-most character within such a
PICTURE description. The symbol `P' and the insertion symbol ` .' (period) cannot both occur in the same
PICTURE character-string.

In certain operations that reference a data item whose PICTURE character-string contains the symbol `P',
the algebraic value of the data item is used rather than the actual character representation of the data item. This
algebraic value assumes the decimal point in the prescribed location and zero in place of the digit position specified
by the symbol `P'. The size of the value is the number of digit positions represented by the PICTURE
character-string. These operations are any of the following:

a. Any operation requiring a numeric sending operand.

b. A MOVE statement where the sending operand is numeric and its PICTURE character-string contains
the symbol `P'.

c. A MOVE statement where the sending operand is numeric edited and its PICTURE character-string
contains the symbol `P' and the receiving operand is numeric or numeric edited.

d. A comparison operation where both operands are numeric.

In all other operations the digit positions specified with the symbol `P' are ignored and are not counted in the size of
the operand.

S The `S' is used in a character-string to indicate the presence, but neither the representation nor,
necessarily, the position of an operational sign; it must be written as the left-most character in the PICTURE. The `S'
is not counted in determining the size (in terms of standard data format characters) of the elementary item unless the
entry is subject to a SIGN clause which specifies the optional SEPARATE CHARACTER phrase.

V The `V' is used in a character-string to indicate the location of the assumed decimal point and may only
appear once in a character-string. The `V' does not represent a character position and therefore is not counted in the
size of the elementary item. When the assumed decimal point is to the right of the right-most symbol in the string
representing a digit position or scaling position, the `V' is redundant.

X Each `X' in the character-string is used to represent a character position which contains any allowable
character from the computer's character set and is counted in the size of the item.

Z Each `Z' in a character-string may only be used to represent the left-most leading numeric character
positions which will be replaced by a space character when the content of that character position is a leading zero.
Each `Z' is counted in the size of the item.

9 Each `9' in the character-string represents a digit position which contains a numeric character and is
counted in the size of the item.

0 Each `0' (zero) in the character-string represents a character position into which the character zero will be
inserted. The `0' is counted in the size of the item.

/ Each `/' (slant) in the character-string represents a character position into which the slant character will be
inserted. The `/' is counted in the size of the item.

, Each `,' (comma) in the character-string represents a character position into which the character `,' will be
inserted. This character position is counted in the size of the item.

184

DATA DIVISION - WORKING-STORAGE SECTION (PICTURE)

. When the symbol `.' (period) appears in the character-string it is an editing symbol which represents the
decimal point for alignment purposes and, in addition, represents a character position into which the character `.' will
be inserted. The character `.' is counted in the size of the item. For a given program the functions of the period and
comma are exchanged if the clause DECIMAL-POINT IS COMMA is stated in the SPECIAL-NAMES paragraph.
In this exchange the rules for the period apply to the comma and the rules for the comma apply to the period
wherever they appear in a PICTURE clause.

+ - CR DB These symbols are used as editing sign control symbols. When used, they represent the
character position into which the editing sign control symbol will be placed. The symbols are mutually exclusive in
any one character-string and each character used in the symbol is counted in determining the size of the data item.

* Each `*' (asterisk) in the character-string represents a leading numeric character position into which an
asterisk will be placed when the content of that position is a leading zero. Each `*' is counted in the size of the item.

cs The currency symbol in the character-string represents a character position into which a currency symbol
is to be placed. The currency symbol in a character-string is represented by either the currency sign ($) or by the
single character specified in the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph. The currency
symbol is counted in the size of the item.

E.12.5 Editing Rules

(1) There are two general methods of performing editing in the PICTURE clause, either by insertion or by
suppression and replacement. There are four types of insertion editing available. They are:

a. Simple insertion
b. Special insertion

c. Fixed insertion
d. Floating insertion

There are two types of suppression and replacement editing:

a. Zero suppression and replacement with spaces
b. Zero suppression and replacement with asterisks

(2) The type of editing which may be performed upon an item is dependent upon the category to which the item
belongs. The following table specifies which type of editing may be performed upon a given category:

CATEGORY TYPE OF EDITING

 Alphabetic None

 Numeric None

 Alphanumeric None

 Alphanumeric edited Simple insertion `0', `B', and `/'

 Numeric edited All, subject to rule 3 below

TABLE 4. PICTURE Editing

(3) Floating insertion editing and editing by zero suppression and replacement are mutually exclusive in a
PICTURE clause. Only one type of replacement may be used with zero suppression in a PICTURE clause.

(4) Simple insertion editing. The `,' (comma), `B' (space), `0' (zero), and `/' (slant) are used as the insertion
characters. The insertion characters are counted in the size of the item and represent the position in the item into
which the character will be inserted. If the insertion character `,' (comma) is the last symbol in the PICTURE
character-string, the PICTURE clause must be the last clause of the data description entry and must be immediately
followed by the separator period. This results in the combination of `,.' appearing in the data description entry, or, if
the DECIMAL POINT IS COMMA clause is used, in two consecutive periods.

(5) Special insertion editing. The `.' (period) is used as the insertion character. In addition to being an insertion
character it also represents the decimal point for alignment purposes. The insertion character used for the actual

185

Interactive COBOL Language Reference & Developer’s Guide - Part One

decimal point is counted in the size of the item. The use of the assumed decimal point, represented by the symbol
`V' and the actual decimal point, represented by the insertion character, in the same PICTURE character-string is
disallowed. If the insertion character is the last symbol in the PICTURE character-string, the PICTURE clause must
be the last clause of that data description entry and must be immediately followed by the separator period. This
results in two consecutive periods appearing in the data description entry, or in the combination of `,.' if the
DECIMAL-POINT IS COMMA clause is used. The result of special insertion editing is the appearance of the
insertion character in the item in the same position as shown in the character-string.

(6) Fixed insertion editing. The currency symbol and the editing sign control symbols `+', `-', `CR', and `DB'
are the insertion characters. Only one currency symbol and only one of the editing sign control symbols can be used
in a given PICTURE character-string. When the symbols `CR' or `DB' are used they represent two character
positions in determining the size of the item and they must represent the right-most character positions that are
counted in the size of the item. If these character positions contain the symbols `CR' or `DB', the uppercase letters
are the insertion characters. The symbol `+' or `-' when used, must be either the left-most or right-most character
position to be counted in the size of the item. The currency symbol must be the left-most character position to be
counted in the size of the item except that it can be preceded by either a `+' or a `-' symbol. Fixed insertion editing
results in the insertion character occupying the same character position in the edited item as it occupied in the
PICTURE character-string. Editing sign control symbols produce the following results depending upon the value of
the data item:

EDITING SYMBOL IN PICTURE
CHARACTER-STRING

RESULT

DATA ITEM
POSITIVE OR

ZERO

DATA ITEM
NEGATIVE

+ + -

- space -

CR 2 spaces CR

DB 2 spaces DB

TABLE 5. Sign Control in Fixed PICTURE Editing

(7) Floating insertion editing. The currency symbol and editing sign control symbols `+' and `-' are the floating
insertion characters and as such are mutually exclusive in a given PICTURE character-string.

Floating insertion editing is indicated in a PICTURE character-string by using a string of at least two of the
floating insertion characters. This string of floating insertion characters may contain any of the simple insertion
characters or have simple insertion characters immediately to the right of this string. These simple insertion charac-
ters are part of the floating string. When the floating insertion character is the currency symbol, this string of floating
insertion characters may have the fixed insertion characters `CR' and `DB' immediately to the right of this string.

The left-most character of the floating insertion string represents the left-most limit of the floating symbols
in the data item. The right-most character of the floating string represents the right-most limit of the floating symbols
in the data item.

The second floating character from the left represents the left-most limit of the numeric data that can be
stored in the data item. Nonzero numeric data may replace all the characters at or to the right of this limit.

In a PICTURE character-string, there are only two ways of representing floating insertion editing. One way
is to represent any or all of the leading numeric character positions on the left of the decimal point by the insertion
character. The other way is to represent all of the numeric character positions in the PICTURE character-string by
the insertion character.

If the insertion character positions are only to the left of the decimal point in the PICTURE character-string,
the result is that a single floating insertion character will be placed into the character position immediately preceding
either the decimal point or the first nonzero digit in the data represented by the insertion symbol string, whichever is
farther to the left in the PICTURE character-string. The character positions preceding the insertion character are
replaced with spaces.

186

DATA DIVISION - WORKING-STORAGE SECTION (PICTURE)

If all numeric character positions in the PICTURE character-string are represented by the insertion
character, at least one of the insertion characters must be to the left of the decimal point.

When the floating insertion character is the editing control symbol `+' or `-' the character inserted depends
upon the value of the data item:

EDITING SYMBOL IN PICTURE
CHARACTER-STRING

RESULT

DATA ITEM
POSITIVE OR

ZERO

DATA ITEM
NEGATIVE

+ + -

- space -

TABLE 6. Sign Control in Floating PICTURE Editing

If all numeric character positions in the PICTURE character-string are represented by the insertion
character, the result depends upon the value of the data. If the value is zero the entire data item will contain spaces.
If the value is not zero, the result is the same as when the insertion character is only to the left of the decimal point.

To avoid truncation, the minimum size of the PICTURE character-string for the receiving data item must be
the number of characters in the sending data item, plus the number of nonfloating insertion characters being edited
into the receiving data item, plus one for the floating insertion character. If truncation does occur, the value of the
data that is used for editing is the value after truncation.

(8) Zero suppression editing. The suppression of leading zeros in numeric character positions is indicated by
the use of the alphabetic character `Z' or the character `*' (asterisk) as suppression symbols in a PICTURE
character-string. These symbols are mutually exclusive in a given PICTURE character-string. Each suppression
symbol is counted in determining the size of the item. If `Z' is used the replacement character will be the space and if
the asterisk is used, the replacement character will be `*'.

Zero suppression and replacement is indicated in a PICTURE character-string by using a string of one or
more of the allowable symbols to represent leading numeric character positions which are to be replaced when the
associated character position in the data contains a leading zero. Any of the simple insertion characters embedded in
the string of symbols or to the immediate right of this string are part of the string.

In a PICTURE character-string, there are only two ways of representing zero suppression. One way is to
represent any or all of the leading numeric character positions to the left of the decimal point by suppression
symbols. The other way is to represent all of the numeric character positions in the PICTURE character-string by
suppression symbols.

If the suppression symbols appear only to the left of the decimal point, any leading zero in the data which
corresponds to a symbol in the string is replaced by the replacement character. Suppression terminates at the first
nonzero digit in the data represented by the suppression symbol string or at the decimal point, whichever is
encountered first.

If all numeric character positions in the PICTURE character-string are represented by suppression symbols
and the value of the data is not zero the result is the same as if the suppression characters were only to the left of the
decimal point. If the value is zero and the suppression symbol is `Z', the entire data item, including any editing
characters, is spaces. If the value is zero and the suppression symbol is `*' the entire data item, including any
insertion editing symbols except the actual decimal point, will be `*'. In this case, the actual decimal point will
appear in the data item.

(9) The symbols `+', `-', `*', `Z', and the currency symbol, when used as floating replacement characters, are
mutually exclusive within a given character-string.

187

Interactive COBOL Language Reference & Developer’s Guide - Part One

Note: When two of the same symbols appear twice in the chart, the left-most column and
upper-most row symbol represents its use to the left of the decimal point position.
The second appearance of the symbol in the chart represents its use to the right of
the decimal point position.

E.12.6 Precedence Rules

The following table shows the order of precedence when using characters as symbols in a character-string. An `X' at
an intersection indicates that the symbol(s) at the top of the column may precede (but not necessarily immediately),
in a given character-string, the symbol(s) at the left of the row. Two arguments appearing together indicate that the
symbols are mutually exclusive. The currency symbol is indicated by the symbol `cs'.

At least one of the symbols `A', `X', `Z', `9', or `*', or at least two occurrences of one of the symbols `+', `-', or `cs'
must be present in a PICTURE character-string.

Nonfloating insertion symbols `+' and `-', floating insertion symbols `Z', `*', `+', `-', and `cs', and other symbol `P'
appear twice in the PICTURE character precedence chart in the table. The left-most column and upper-most row for
each symbol represents its use to the left of the decimal point position. The second appearance of the symbol in the
chart represents its use to the right of the decimal point position.

First Symbol
Non-floating Insertion

Symbols
Floating
Insertion
Symbols

Other Symbols

Second
Symbol

B O / , . +
-

+
-

CR
DB

cs Z
*
Z
*

+
-

+
-

cs cs 9 A
X

S V P P

Non-
floating
Insertion
Symbols

B x x x x x x x x x x x x x x x x x

0 x x x x x x x x x x x x x x x x x

/ x x x x x x x x x x x x x x x x x

, x x x x x x x x x x x x x x x x

. x x x x x x x x x x

+
-

+
-

x x x x x x x x x x x x x x

CR
DB

x x x x x x x x x x x x x x

cs x

Floating
Insertion
Symbols

Z
*

x x x x x x x

Z
*

x x x x x x x x x x x

+
-

x x x x x x

+
-

x x x x x x x x x x

cs x x x x x x

cs x x x x x x x x x x

Other
Symbols

9 x x x x x x x x x x x x x x x

A
X

x x x x x

S

V x x x x x x x x x x x x

P x x x x x x x x x x x x

P x x x x x

TABLE 7. PICTURE Precedence Rules

188

DATA DIVISION - WORKING-STORAGE SECTION (REDEFINES)

Note: Level-number, data-name-1, and FILLER are shown in the above format to improve clarity. Level-number, data-name-1, and
FILLER are not part of the REDEFINES clause.

E.13. REDEFINES Clause

E.13.1 Function

The REDEFINES clause allows the same computer storage area to be described by different data description entries.

E.13.2 General Format

level-number [REDEFINES data-name-2]

E.13.3 Syntax Rules

(1) The REDEFINES clause, when specified, must immediately follow the subject of the entry.

(2) The level-numbers of data-name-2 and the subject of the entry must be identical, but must not be 66 or 88.

(3) This clause must not be used in level 01 entries in the File Section.

(4) The data description entry for data-name-2 cannot contain an OCCURS clause. However, data-name-2
may be subordinate to an item whose data description entry contains an OCCURS clause. In this case, the reference
to data-name-2 in the REDEFINES clause may not be subscripted. Neither the original definition nor the
redefinition can include a variable occurrence item.

(5) Data-name-2 must not be qualified even if it is not unique; no ambiguity of reference exists in this case
because of the required placement of the REDEFINES clause within the source program.

(6) Multiple redefinitions of the same character positions are permitted. Multiple redefinitions of the same
character positions must all use the data-name of the entry that originally defined the area.

(7) The entries giving the new description of the character positions must not contain any VALUE clauses,
except in condition-name entries.

(8) No entry having a level-number numerically lower than the level-number of data-name-2 and the subject of
the entry may occur between the data description entries of data-name-2 and the subject of the entry.

(9) The entries giving the new descriptions of the character positions must follow the entries defining the area
of data-name-2, without intervening entries that define new character positions.

(10) Data-name-2 may be subordinate to an entry which contains a REDEFINES clause.

(11) If the data item referenced by data-name-2 is either declared to be an external data record or is specified
with a level-number other than 01, the number of character positions it contains must be equal to the number of
character positions in the data item referenced by the subject of this entry. If the data-name referenced by
data-name-2 is specified with a level-number of 01 and is not declared to be an external data record, there is no such
constraint.

189

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.13.4 General Rules

(1) Storage allocation starts at data-name-2 and continues over a storage area sufficient to contain the number
of character positions in the data item referenced by the data-name-1 or FILLER clause.

(2) When the same character position is defined by more than one data description entry, the data-name
associated with any of those data description entries can be used to reference that character position.

190

DATA DIVISION - WORKING-STORAGE SECTION (RENAMES)

Note: Level-number 66 and data-name-1 are shown in the above format to improve clarity. Level-number 66 and data-name-1 are
not part of the RENAMES clause.

E.14. RENAMES Clause

E.14.1 Function

The RENAMES clause permits alternative, possibly overlapping, groupings of elementary items.

E.14.2 General Format

66 data-name-1 RENAMES data-name-2 [data-name-3] .

E.14.3 Syntax Rules

(1) Any number of RENAMES entries may be written for a logical record.

(2) All RENAMES entries referring to data items within a given logical record must immediately follow the last
data description entry of the associated record description entry.

(3) Data-name-1 cannot be used as a qualifier, and can only be qualified by the names of the associated level
01, FD, or SD entries. Neither data-name-2 nor data-name-3 may have an OCCURS clause in its data description
entry nor be subordinate to an item that has an OCCURS clause in its data description entry.

(4) Data-name-2 and data-name-3 must be names of elementary items or groups of elementary items in the
same logical record, and cannot be the same data-name. A 66 level entry cannot rename another 66 level entry nor
can it at rename a 77, 88, or 01 level entry.

(5) Data-name-2 and data-name-3 may be qualified.

(6) None of the items within the range, including data-name-2 and data-name-3, if specified, can be variable
occurrence data items.

(7) The words THROUGH and THRU are equivalent.

(8) The beginning of the area described by data-name-3 must not be to the left of the beginning of the area
described by data-name-2. The end of the area described by data-name-3 must be to the right of the end of the area
described by data-name-2. Data-name-3, therefore, cannot be subordinate to data-name-2.

E.14.4 General Rules

(1) When data-name-3 is specified, data-name-1 is a group item which includes all elementary items starting
with data-name-2 (if data-name-2 is an elementary item) or the first elementary item in data-name-2 (if
data-name-2 is a group item), and concluding with data-name-3 (if data-name-3 is an elementary item) or the last
elementary item in data-name-3 (if data-name-3 is a group item).

(2) When data-name-3 is not specified, all of the data attributes of data-name-2 become the data attributes for
data-name-1.

191

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.15. SIGN Clause

E.15.1 Function

The SIGN clause specifies the position and the mode of representation of the operational sign when it is necessary to
describe these properties explicitly.

E.15.2 General Format

[SIGN IS] [SEPARATE CHARACTER]

E.15.3 Syntax Rules

(1) The SIGN clause may be specified only for a numeric data description entry whose PICTURE contains the
character `S'.

(2) The numeric data description entries to which the SIGN clause applies must be described, implicitly or
explicitly, as USAGE IS DISPLAY.

(3) If the CODE-SET clause is specified in a file description entry, any signed numeric data description entries
associated with that file description entry must be described with the SIGN IS SEPARATE clause.

E.15.4 General Rules

(1) The optional SIGN clause, if present, specifies the position and the mode of representation of the
operational sign for the numeric data description entry to which it applies, or for each numeric data description entry
subordinate to the group to which it applies. The SIGN clause applies only to numeric data description entries
whose PICTURE contains the character `S'; the `S' indicates the presence of, but neither the representation nor,
necessarily, the position of the operational sign.

(2) If a SIGN clause is specified in a group item subordinate to a group item for which a SIGN clause is
specified, the SIGN clause specified in the subordinate group item takes precedence for that subordinate group item.

(3) If a SIGN clause is specified in an elementary numeric data description entry subordinate to a group item for
which a SIGN clause is specified, the SIGN clause specified in the subordinate elementary numeric data description
entry takes precedence for that elementary numeric data item.

(4) A numeric data description entry whose PICTURE contains the character `S', but to which no optional
SIGN clause applies, has an operational sign, but neither the representation, nor, necessarily, the position of the
operational sign is specified by the character `S'. For items whose USAGE IS DISPLAY, the default operational
sign is the same as SIGN IS TRAILING. For items whose USAGE IS COMPUTATION, the operational sign is
inherent in the binary representation of the value. General rules 5 through 7 do not apply to such default signed
numeric data items.

(5) If the optional SEPARATE CHARACTER phrase is not present, then:

a. The operational sign will be presumed to be associated with the leading (or, respectively, trailing) digit
position of the elementary numeric data item, more commonly called over punched.

b. The letter `S' in a PICTURE character-string is not counted in determining the size of the item (in terms
of standard data format characters).

192

DATA DIVISION - WORKING-STORAGE SECTION (SIGN)

c. The table below defines the valid sign(s) for data items.

Digit Positive Negative

0 { <173> } <175>

1 A <101> J <112>

2 B <102> K <113>

3 C <103> L <114>

4 D <104> M <115>

5 E <105> N <116>

6 F <106> O <117>

7 G <107> P <120>

8 H <110> Q <121>

9 I <111> R <122>

TABLE 8. SIGN Overpunch Characters

(6) If the optional SEPARATE CHARACTER phrase is present, then:

a. The operational sign will be presumed to be the leading (or, respectively, trailing) character position of
the elementary numeric data item; this character position is not a digit position.

b. The letter `S' in a PICTURE character-string is counted in determining the size of the item (in terms of
standard data format characters).

c. The operational signs for positive and negative are the standard data format characters `+' and `-'
respectively.

(7) Every numeric data description entry whose PICTURE contains the character `S' is a signed numeric data
description entry. If a SIGN clause applies to such an entry and conversion is necessary for purposes of computation
or comparisons, conversion takes place automatically.

193

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.16. SYNCHRONIZED Clause (Documentation only)

E.16.1 Function

The SYNCHRONIZED clause specifies the alignment of an elementary item on the natural boundaries of the
computer memory.

E.16.2 General Format

d

d

E.16.3 Syntax Rules

(1) This clause may only appear with an elementary item.

(2) SYNC is an abbreviation for SYNCHRONIZED.

E.16.4 General Rules

(1) The SYNCHRONIZED clause is used for documentation only. All data items within a record are aligned
on the next available byte in storage.

(2) All 01 and 77 level items are aligned on an even byte boundary. This default alignment may be overridden
with the -B compiler switch.

194

DATA DIVISION - WORKING-STORAGE SECTION (USAGE)

E.17. USAGE Clause

E.17.1 Function

The USAGE clause specifies the format of a data item in the computer storage.

E.17.2 General Format (ANSI 74 and ANSI 85)

[USAGE IS]

E.17.3 General Format (VXCOBOL)

[USAGE IS]

E.17.4 Syntax Rules

(1) A USAGE clause specifying BINARY, COMPUTATION-5, PACKED-DECIMAL, or POINTER may not
be used with the VXCOBOL dialect.

(2) The USAGE clause may be written in any data description entry with a level-number other than 66 or 88.

(3) If the USAGE clause is written in the data description entry for a group item, it may also be written in the
data description entry for any subordinate elementary item or group item, but the same usage must be specified in
both entries.

(4) An elementary data item whose declaration contains, or an elementary data item subordinate to a group item
whose declaration contains, a USAGE clause specifying BINARY, COMPUTATIONAL, COMPUTATIONAL-3,
COMPUTATIONAL-5, or PACKED-DECIMAL, must be declared with a PICTURE character-string that describes
a numeric item, i.e., a PICTURE character-string that contains only the symbols `P', `S', `V', and `9'.

(5) COMP is an abbreviation for COMPUTATIONAL.

(6) COMP-3 is an abbreviation for COMPUTATIONAL-3.

(7) COMP-5 is an abbreviation for COMPUTATIONAL-5.

(8) An index data item can be referenced explicitly only in a SET statement, a relation condition, the USING
phrase of a Procedure Division header, or the USING phrase of a CALL statement.

(9) The BLANK WHEN ZERO, JUSTIFIED, PICTURE, SIGN, SYNCHRONIZED, and VALUE clauses must
not be specified for data items whose usage is INDEX.

195

Interactive COBOL Language Reference & Developer’s Guide - Part One

(10) An elementary data item described with a USAGE IS INDEX or USAGE IS POINTER clause must not be
a conditional variable.

(11) An elementary data item described with a USAGE IS POINTER must contain no other data description
clauses other than VALUE IS NULL.

E.17.5 General Rules

(1) If the USAGE clause is written at a group level, it applies to each elementary item in the group.

(2) The USAGE clause specifies the manner in which a data item is represented in the storage of a computer. It
may affect the use of the data item, and the specifications for some statements in the Procedure Division may restrict
the USAGE clause of the operands referred to. The USAGE clause may affect the radix or type of character
representation of the item.

(3) The USAGE IS BINARY or COMPUTATIONAL clause specifies a twos-complement big-endian binary
representation of the numeric item in the storage of the computer. The table below lists the bytes required to store
BINARY and COMPUTATIONAL items.

VXCOBOL ANSI 74 and ANSI 85

Number of Decimal Digits Number of Decimal Digits
Bytes Required

Unsigned Signed

1-2 1-2 1-2 1

3-4 3-4 3-4 2

5-6 5-7 5-6 3

7-9 8-9 7-9 4

10-11 10-12 10-11 5

12-14 13-14 12-14 6

15-16 15-16 15-16 7

17-18 17-18 17-18 8

TABLE 9. BINARY & COMPUTATIONAL Storage Allocation

(4) The USAGE IS DISPLAY clause (whether specified explicitly or implicitly) specifies that a standard data
format is used to represent a data item in the storage of the computer, and that the data item is aligned on a character
boundary. The data is stored as ASCII characters in bytes.

(5) If the USAGE clause is not specified for an elementary item, or for any group to which the item belongs, the
usage is implicitly DISPLAY.

(6) The USAGE IS COMPUTATIONAL-3 and PACKED-DECIMAL clauses specify that a radix of 10
(packed decimal) is used to represent a numeric item in the storage of the computer. Furthermore, this clause
specifies that each digit position must occupy the minimum possible configuration in computer storage.
COMPUTATIONAL-3 and PACKED-DECIMAL items are stored most significant digit first as a string of 4-bit
half-bytes (nibbles). Each nibble except the rightmost, contains a hexadecimal digit of 0 through 9; the remaining
nibble contains a hexadecimal C if the data is positive or unsigned or D if the data is negative. The sign nibble is
always present as the last nibble. Because there must be an even number of nibbles (i.e., you cannot store a
half-byte) and a sign nibble is always stored, the number of digits stored is always rounded up to an odd number.
Thus a PIC 99 is stored the same as a PIC 999.

(7) The usage is COMPUTATIONAL-5 clause specifies a twos-complement binary representation of the
numeric item in the storage of the computer. The format of a COMPUTATIONAL-5 item differs from that of a
COMPUTATIONAL item in that in is stored in an order that is natural to the host computer. On "big-endian"
machines, data is stored with high-order bytes at the lowest addresses and successively lower-order bytes at
successively higher addresses. On "little-endian" machines, data is stored in the reverse order, i.e., the lower the
address the lower the significance of the byte. For example, a computational item with a four byte hexadecimal

196

DATA DIVISION - WORKING-STORAGE SECTION (USAGE)

value of 12 34 56 78 would be stored as 12 34 56 78 on a “big-endian” machine and as 78 56 34 12 on a
“little-endian” machine. Most RISC processors are “big-endian” and most Intel processors are “little-endian”.

NOTE: Data stored in a COMPUTATIONAL-5 field may not be transportable to a different machine since
different machines have different byte orderings.

The number of bytes required to store COMPUTATIONAL-5 items is described in the following table. Storage does
not differ between signed and unsigned items.

Number of Decimal Digits Bytes Required

1-2 1

3-4 2

5-9 4

10-18 8

TABLE 10. COMPUTATIONAL-5 Storage Allocation

(8) The USAGE IS INDEX clause specifies that a data item is an index data item and contains a value which
must correspond to an occurrence number of a table element. INDEX items are represented internally as 4-byte
unsigned items.

(9) The USAGE IS POINTER clause specifies a data-item in which the address of a data item can be stored. A
pointer item requires 4 bytes with compiler revisions 6 and below and 8 bytes for revision 7 and greater. The format
of the item is machine dependent. USAGE IS POINTER data items have their values assigned by the SET or
INITIALIZE statements and may appear in relational conditions for equality and inequality.

(10) When a MOVE statement or an input-output statement that references a group item that contains an index
data item or a pointer data item is executed, no conversion of the data item takes place.

(11) The ON SIZE condition is processed as follows for the various usages:

a. For a BINARY item, the number of digits used in the check is based on the picture specified.

b. For a COMPUTATIONAL item, the check is based on the picture specified except for ANSI 74 where it
is based on storage size rather than the picture. (The -G p and -G b compiler switches allow COMPUTATIONAL
items to be size checked based on picture and storage respectively thus allowing the default behavior to be
overridden.)

c. For a PACKED-DECIMAL item, the number of digits used in the check is based on the picture
specified.

d. For a COMPUTATIONAL-3 item, the check is based on storage size rather than the picture; i.e., it uses
the rounded-up digit count as explained in rule 8.

e. For a COMPUTATIONAL-5 item, the check is based on storage size rather than picture.

197

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.18. USAGE Clause (ISQL)

E.18.1 Function

This USAGE clause specifies the format of a data item in the computer storage when used with the ISQL feature set..

E.18.2 General Format

 [USAGE IS]

E.18.3 Syntax Rules

(1) A USAGE clause specifying BIGINT, CHARACTER, DATE, INDICATOR, INTEGER, INTERVAL,
NUMERIC, SMALLINT, TIME, or TIMESTAMP is available only when the ISQL feature-set is enabled and
appear as USAGE options that are in addition to certain dialect-specific options.

(2) The USAGE clause may be written in any data description entry with a level-number other than 66 or 88.

(3) A USAGE clause specifying BIGINT, CHARACTER, DATE, INDICATOR, INTEGER, INTERVAL,
NUMERIC, SMALLINT, TIME, or TIMESTAMP must not be specified at the group level.

(4) If the USAGE clause is written in the data description entry for a group item, it may also be written in the
data description entry for any subordinate elementary item or group item, but the same usage must be specified in
both entries.

(5) CHAR is an abbreviation for CHARACTER.

(6) INT is an abbreviation for INTEGER.

(7) The BLANK WHEN ZERO, JUSTIFIED, PICTURE, SIGN, and SYNCHRONIZED clauses must not be
specified for data items whose usage is BIGINT, CHARACTER, DATE, INDICATOR, INTEGER, INTERVAL,
NUMERIC, SMALLINT, TIME, or TIMESTAMP.

198

DATA DIVISION - WORKING-STORAGE SECTION (USAGE (ISQL))

01 TOP-LEVEL.
02 VARYING-ITEM CHARACTER VARYING (20).
02 VARYING-RED REDEFINES VARYING-ITEM.

03 RED-LENGTH PIC 9(4) COMPUTATIONAL.
03 RED-ITEM PIC X(20).

(8) The value of integer-1 must be greater than zero and less than or equal to 65535. If integer-1 is omitted it is
assumed to have a value of one.

(9) The value of integer-2 must be greater than zero and less than the values specified in the general rules
below.

(10) The value of integer-3 must be greater than zero and less than or equal to six.

(11) The value of integer-4 must be greater than zero and less than or equal to 18.

(12) The value of integer-5 must be greater than or equal to zero and less than or equal to the value of
integer-4. If integer-5 is omitted it is assumed to have a value of zero.

E.18.4 General Rules

(1) If the USAGE clause is written at a group level, it applies to each elementary item in the group.

(2) The USAGE clause specifies the manner in which a data item is represented in the storage of a computer. It
may affect the use of the data item, and the specifications for some statements in the Procedure Division may restrict
the USAGE clause of the operands referred to. The USAGE clause may affect the radix or type of character
representation of the item.

(3) The USAGE IS BIGINT clause specifies a data item which can store an SQL integer value. It has the same
storage format and runtime behavior as a signed 8-byte COMPUTATIONAL-5 data item.

(4) The USAGE IS CHARACTER clause specifies a data-item which can store an SQL character string value.
The value of integer-1 specifies the number of characters that can be stored in the item. If integer-1 is omitted, it is
assumed to have a value of one. The maximum value for integer-1 is 65535.

If the VARYING phrase is specified, the data item may vary in length from zero characters to the number of
characters specified by integer-1. The format of an elementary item in storage has a two-byte binary current-length
field (equivalent to a 2-byte unsigned COMPUTATIONAL field) followed by the alphanumeric data field. The
format is equivalent to the following data redefinition:

When the data item is referenced at execution, the value of the length field is implicitly referenced to determine the
effective length of the data field. Only the data positions encompassed by the current length are referenced.

(5) The USAGE IS DATE clause specifies a data item which can store an SQL date value. The value is stored
as a sequence of 8 ASCII decimal digits (yyyymmdd), with the leftmost four-digits specifying the year field, the next
two-digits specifying the month field, and the final two digits specifying the day of the month field. The values or
the various fields must meet the rules for valid month and day values in the Gregorian calendar. The size of a DATE
data item is 8 bytes.

(6) The USAGE IS INTEGER clause specifies a data item which can store an SQL integer value. It has the
same storage format and runtime behavior as a signed 4-byte COMPUTATIONAL-5 data item.

199

Interactive COBOL Language Reference & Developer’s Guide - Part One

(7) The USAGE IS INDICATOR clause specifies a data item which can store the value that indicates whether
an item has no value (is NULL), has a valid value (is VALID), or has a truncated value (is OVERFLOW). The value
can be set by using the SET statement or by specifying the data-item in the INDICATOR clause in the parameter list
of an SQL statement.

(8) The USAGE IS INTERVAL clause specifies a data item which can store an SQL interval value. The value
is stored as a sign, containing an ASCII ‘+’ or ‘-‘ character, followed by a sequence of ASCII decimal digits
expressing the interval value in units of the rightmost field. Thus “10:08" MINUTE TO SECOND is stored as
+0608. The number of digits in the leftmost field can be set by specifying integer-2. The maximum and default
values for integer-2 depend on the type of the leftmost field specifier and are specified in the following table. The
size is 1 byte plus the sum of the sizes of the individual fields in the range, except for the DAY TO SECOND
interval, which is one less (just the sum of the sizes of the individual fields.) This yields a minimum size of 2 bytes
(sign plus a single field of precision 1) and a maximum size of 19 bytes.

Field Maximum Precision
as Leftmost Field

Default Precision

YEAR 4 4

MONTH 6 2

DAY 7 2

HOUR 8 2

MINUTE 10 2

SECOND 12 2

TABLE 11. INTERVAL Field Maximum Precision (ISQL)

(9) The USAGE IS NUMERIC clause specifies a data item that can store an SQL decimal numeric value. It has
the same storage format and runtime behavior as an numeric data item declared as follows.

If integer-5 is not specified:

PICTURE S9(integer-4) SIGN IS LEADING SEPARATE USAGE IS DISPLAY

If integer-5 is specified:

PICTURE S9(integer-4 – integer-5)V9(integer-5) SIGN IS LEADING SEPARATE USAGE IS DISPLAY

(10) The USAGE IS SMALLINT clause specifies a data item which can store an SQL small integer value. It
has the same storage format and runtime behavior as a signed 2-byte COMPUTATIONAL-5 data item.

(11) The USAGE IS TIME clause specifies a data item which can store an SQL time value. The value is stored
as a sequence of 6 (hhmmss) plus integer-3 ASCII decimal digits, with the leftmost two-digits specifying the hours
field, the next two-digits specifying the minutes field, the next two-digits specifying the seconds field, and the final
integer-3 digits specifying the fractional seconds field. If integer-3 is omitted, it is assumed to be zero. The value of
integer-3 must be less than or equal to 6. The values for the various fields must meet the rules for time keeping
using a 24 hour clock, i.e., 00-23 for hours and 00-59 for minutes and seconds. Thus size of a TIME item is 6 plus
integer-3 bytes, with a maximum of 12 bytes.

(12) The USAGE IS TIMESTAMP clause specifies a data item which can store an SQL timestamp value. The
value is stored as a DATE data item directly followed by a TIME data item with integer-3 fraction digits. The size
of a TIMESTAMP data item is 14 plus integer-3 bytes.

(13) When a MOVE statement or an input-output statement that references a group item that contains an
indicator data item is executed, no conversion of the data item takes place.

(14) The ON SIZE condition is processed as follows for the various usages:

a. For an INTEGER or SMALLINT item, the check is based on storage size rather than picture.

200

DATA DIVISION - WORKING-STORAGE SECTION (USAGE (ISQL))

b. For a NUMERIC item, the check is based on the declared precision.

(14) Uninitialized DATE and TIME items can cause exceptions if used before a valid value is stored.

201

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.19. VALUE Clause

E.19.1 Function

The VALUE clause defines the initial value of Working-Storage data items and the values associated with
condition-names.

E.19.2 General Format

Format 1:

VALUE IS

Format 2:

E.19.3 Syntax Rules

(1) The words THROUGH and THRU are equivalent.

(2) A signed numeric literal must have associated with it a signed numeric PICTURE character-string or a
usage that represents a signed numeric item.

(3) All numeric literals in a VALUE clause of an item must have a value which is within the range of values
indicated by the PICTURE clause, and must not have a value which would require truncation of nonzero digits.
Items whose USAGE enables size checking by storage must have a value which will fit in the storage allocated.

(4) Nonnumeric literals in a VALUE clause of an item must not exceed the size indicated by the PICTURE
clause.

(5) The word NULL may only be specified for an item with usage POINTER or (ISQL) INDICATOR.

(6) (ISQL) The words VALID and OVERFLOW may only be specified for an item of usage INDICATOR.

(7) (ISQL) If the class of the item is date-time or interval, the literals in the VALUE clause must be of the
same category and must not have a value which would require the truncation of nonzero digits.

(8) Literal-1 may not be specified for an item with usage POINTER or (ISQL) usage INDICATOR.

E.19.4 General Rules

(1) The VALUE clause must not conflict with other clauses in the data description of the item or in the data
description within the hierarchy of the item.

(2) If the category of the item is numeric, all literals in the VALUE clause must be numeric. If the literal
defines the value of a working storage item, the literal is aligned in the data item according to the standard alignment
rules.

202

DATA DIVISION - WORKING-STORAGE SECTION (VALUE)

(3) If the category of the item is alphabetic, alphanumeric, alphanumeric edited, or numeric edited, all literals in
the VALUE clause must be nonnumeric literals. The literal is aligned in the data item as if the data item had been
described as alphanumeric. Editing characters in the PICTURE clause are included in determining the size of the
data item but have no effect on initialization of the data item. Therefore, the VALUE for an edited item must be
specified in an edited form.

(4) Initialization is not affected by any BLANK WHEN ZERO or JUSTIFIED clause that may be specified.

(5) (ISQL) If the category of the item is date, time, or timestamp the literals in the VALUE clause must be of
the same category. If the literal defines the value of a working-storage item, the literal may also be a simple
nonnumeric literal whose content matches the content of a literal of the same category as the item.

(6) (ISQL) If the category of the item is year-to-month or day-to-time, the literals in the VALUE clause must be
of the same category and have the same range of field specifiers. If the literal defines the value of a working-storage
item, the literal may also be a simple nonnumeric literal whose content matches the content of a literal of the same
category and with the same range of field specifiers as the item.

E.19.5 Condition-Name Rules

(1) In a condition-name entry, the VALUE clause is required. The VALUE clause and the condition-name
itself are the only two clauses permitted in the entry. The characteristics of a condition-name are implicitly those of
its conditional variable.

(2) Format 2 can be used only in conjunction with condition-names. Whenever the THRU phrase is used,
literal-2 must be less than literal-3.

(3) A condition-name entry may not be used if the conditional variable is defined with usage POINTER, usage
INDEX or (ISQL) usage INDICATOR.

E.19.6 Data Description Entries Other Than Condition-Names

(1) Rules governing the use of the VALUE clause differ with the respective sections of the Data Division:

a. In the File Section, the VALUE clause may be used only in condition-name entries; therefore, the initial
value of the data item in the File Section is undefined.

b. In the Linkage Section, the VALUE clause may only be used in condition-name entries.

c. In the Working-Storage Section, the VALUE clause must be used in condition-name entries. VALUE
clauses in the Working-Storage Section of a program take effect only when the program is placed into its initial state.
If the VALUE clause is used in the description of the data item, the data item is initialized to the defined value. If
the VALUE clause is not associated with a data item, the initial value of that data item is undefined.

d. In the Screen Section a figurative constant cannot be used.

(2) The VALUE clause must not be stated in a data description entry that contains a REDEFINES clause, or in
an entry that is subordinate to an entry containing a REDEFINES clause. This rule does not apply to condition-name
entries.

(3) If the VALUE clause is used in an entry at the group level, the literal must be a figurative constant or a
nonnumeric literal, and the group area is initialized without consideration for the individual elementary or group
items contained within this group. The VALUE clause cannot be stated at the subordinate levels within this group.

(4) The VALUE clause must not be specified for a group item containing items subordinate to it with
descriptions including JUSTIFIED, SYNCHRONIZED, or USAGE (other than USAGE IS DISPLAY).

203

Interactive COBOL Language Reference & Developer’s Guide - Part One

(5) A Format 1 VALUE clause specified in a data description entry that contains an OCCURS clause or in a
entry that is subordinate to an OCCURS clause causes every occurrence of the associated data item to be assigned
the specified value.

(6) If a VALUE clause is specified in a data description entry of a data item which is associated with a variable
occurrence data item, the initialization of the data item behaves as if the value of the data item referenced by the
DEPENDING ON phrase in the OCCURS clause specified for that variable occurrence data item is set to the
maximum number of occurrences as specified by the OCCURS clause. A data item is associated with a variable
occurrence data item in any of the following cases:

a. It is a group data item containing a variable occurrence data item.

b. It is a variable occurrence data item.

c. It is subordinate to a variable occurrence data item.

If a VALUE clause is associated with the data item referenced by a DEPENDING ON phrase, that value is
considered to be placed in the data item after the variable occurrence data item has been initialized.

(7) (ISQL) If the VALUE clause is specified in a data description entry that contains the VARYING phrase, the
current length of the data item is also initialized to the length of the literal item specified in the VALUE clause. If
the literal item is a figurative constant, the length is the length of a single occurrence of the constant.

204

DATA DIVISION - VIRTUAL-STORAGE SECTION

F. VIRTUAL-STORAGE SECTION (VXCOBOL)

The Virtual-Storage Section is located in the Data Division of a source program. The Virtual-Storage Section is
treated as an extension of the Working-Storage Section.

The general format of the Virtual-Storage Section is the same as that shown for the Working-Storage Section.

All rules that apply to the Working-Storage Section apply equally to the Virtual-Storage Section.

205

Interactive COBOL Language Reference & Developer’s Guide - Part One

G. LINKAGE SECTION

The Linkage Section is located in the Data Division of a source program. The Linkage Section appears in the called
program and describes data items that are to be referred to by the calling program and the called program.

The Linkage Section in a program is meaningful if and only if the object program is to function under the control of
a CALL statement, and the CALL statement in the calling program contains a USING phrase or if the program was
passed data from another program with a CALL PROGRAM statement that contained a USING phrase or the
program was started with data passed in when the runtime system was initially started.

The Linkage Section is used for describing data that is available through the calling program but is to be referred to
in both the calling and the called program. The mechanism by which a correspondence is established between the
data items described in the Linkage Section of a called program and data items described in the calling program is
described elsewhere in these specifications. In the case of index-names, no such correspondence is established and
index-names in the called and calling programs always refer to separate indices.

The structure of the Linkage Section is the same as that previously described for the Working-Storage Section,
beginning with a section header, followed by noncontiguous data items and/or record description entries.

The general format of the Linkage Section is shown below.

LINKAGE SECTION.

If a data item in the Linkage Section is accessed in a program which is not a called program, the effect is undefined.

G.1. Noncontiguous Linkage Storage

Items in the Linkage Section that bear no hierarchical relationship to one another need not be grouped into records
and are classified and defined as noncontiguous elementary items. Each of these items is defined in a separate data
description entry which begins with the special level-number 77.

The following data clauses are required in each data description entry:

1. level-number 77
2. data-name
3. the PICTURE clause or a USAGE clause that precludes the use of a PICTURE clause.

Other data description clauses are optional and can be used to complete the description of the item if necessary.

G.2. Linkage Records

Data elements in the Linkage Section which bear a definite hierarchical relationship to one another must be grouped
into records according to the rules for formation of record descriptions. Data elements in the Linkage Section which
bear no hierarchical relationship to any other data item may be described as records which are single elementary
items.

G.3. Initial Values

The VALUE clause must not be specified in the Linkage Section except in condition-name entries (level-number
88).

206

DATA DIVISION - SCREEN SECTION (General Format)

H. SCREEN SECTION

The Screen Section is located in the Data Division of a source program. The Screen Section defines the attributes of
screens to be used in interactive screen I/O. Screen section entries are referenced in the procedure Division with the
ACCEPT and DISPLAY verbs. The Screen Section is an extension to ANSI COBOL.

The Screen Section is composed of the section header, followed by screen description entries.

The general format of the Screen Section is shown below.

SCREEN SECTION.
[screen-description-entry]...

H.1. Screen Description

A screen description consists of a set of screen description entries which describe the characteristics of a particular
screen. Each screen description entry consists of a level-number followed by the screen-name, if specified, followed
by a series of independent clauses as required. A screen description may have a hierarchical structure and therefore
the clauses used within an entry may vary considerably, depending upon whether or not it is followed by subordinate
entries.

In its simplest form, the screen description consists of a single, named 01 level item that can be a screen-literal or
screen-data format entry. In its more complex form, the screen description consists of a named 01 level item that is a
screen-group format item. The screen description consists of the 01 level item and all items subordinate to it. It can
have the same type of hierarchical structure as a record description.

The screen description entry and the allowable elements are explained in the next section.

H.2. Screen Description Entry

H.2.1 Function

A screen description entry specifies the characteristics of a particular item in a screen.

Screen data description entries can be screen-literal, screen-data, or screen-group format items. Screen-literal format
is used to display constant information, such as prompts. Screen-data format is used to perform input/output
operations and transfer data between the screen-data and data items in the File, Working-Storage, and Linkage
sections. Screen-group format is used to organize multiple screen-literal and screen-data items into logical groups
for input/output operations as well as to specify attributes that apply to several screen-data items.

Screen description entries consist of a level number, an optional screen-name, and optional clauses that specify the
position of a field, along with various attributes.

207

Interactive COBOL Language Reference & Developer’s Guide - Part One

H.2.2 General Format

Screen-Literal Format: (ANSI 74 and ANSI 85)

level-number []

[BLANK]

[ERASE]

[BLINK]

[]

[]

[]

[[VALUE IS] literal] .

208

DATA DIVISION - SCREEN SECTION (General Format)

Screen-Literal Format: (VXCOBOL)

[BELL]

[BLANK]

[BLINK]
[BOLD]

[[VALUE IS] literal] .

209

Interactive COBOL Language Reference & Developer’s Guide - Part One

Screen-Data Format: (ANSI 74 and ANSI 85)

level-number []

[BLANK]

[ERASE]

[BLINK]

[]

[]

[OCCURS integer TIMES]
[AUTO]
[BLANK WHEN ZERO]

[CONVERTING]

[FULL]

[RIGHT]

 IS character-string

[REQUIRED]

210

DATA DIVISION - SCREEN SECTION (General Format)

[SECURE]

[[SIGN IS] SEPARATE CHARACTER]

d [[USAGE IS] DISPLAY]

.

For ISQL Add:

[[USAGE IS]]

211

Interactive COBOL Language Reference & Developer’s Guide - Part One

Screen-Data Format: (VXCOBOL)

[AUTO]
[BELL]

[BLANK]

[BLANK WHEN ZERO]
[BLINK]
[BOLD]

[FULL]

[RIGHT]

 IS character-string

[REQUIRED]
[SECURE]

[[SIGN IS] SEPARATE CHARACTER]

d [[USAGE IS] DISPLAY]

 .

For ISQL Add:

[[USAGE IS]]

212

DATA DIVISION - SCREEN SECTION (General Format)

Screen-Group Format: (ANSI 74 and ANSI 85)

level-number []

[BLANK SCREEN]

[]

[]

[]

[]

[OCCURS integer TIMES]
[AUTO]
[FULL]
[REQUIRED]

[SECURE]

d [[USAGE IS] DISPLAY]

[[SIGN IS] SEPARATE CHARACTER] .

213

Interactive COBOL Language Reference & Developer’s Guide - Part One

Screen-Group Format: (VXCOBOL)

[AUTO]

[BLANK SCREEN]
[BELL]
[BOLD]
[FULL]
[REQUIRED]
[SECURE]

214

DATA DIVISION - SCREEN SECTION (General Format)

H.2.3 Syntax Rules

(1) Level-number may be any number from 01 through 49.

(2) Screen-name is required for level 01.

(3) In all formats, if screen-name is present it must immediately follow the level number.

(4) The literal in the VALUE clause must be a nonnumeric literal and it cannot be a figurative constant.

(5) Unnamed items cannot be referenced individually, but only indirectly by referencing a containing named
screen-group item.

(6) A screen-literal format item cannot specify a PICTURE clause.

(7) A screen-data format item cannot specify a VALUE clause.

(8) A screen-data format item must include a PICTURE clause as well as one of the following combinations of
the TO, FROM, and USING clauses:

a. a FROM clause,
b. a TO clause,
c. a FROM clause and a TO clause, or
d. a USING clause.

(9) The JUSTIFIED and BLANK WHEN ZERO clauses may only be specified for a screen-data format item
and are subject to the same PICTURE compatibility restrictions as apply to a data item in Working Storage.

(10) If more than one clause is specified for an entry, the clauses may occur in any order. Since at execution
time a specific order is followed, it is useful to follow this same order in the source program.

The order of execution for a DISPLAY statement is as follows:

For ANSI 74 and ANSI 85:

BACKGROUND-COLOR & FOREGROUND-COLOR
BLANK SCREEN
COLUMN and LINE positioning
BLANK LINE/ERASE EOL, ERASE EOS, ERASE LINE
BELL
display literal or data with appropriate attributes

For VXCOBOL:

BLANK SCREEN
COLUMN and LINE positioning
BLANK LINE
BELL
display literal or data with appropriate attributes

215

Interactive COBOL Language Reference & Developer’s Guide - Part One

Notes:
1. The default appearance for literal and output fields is DIM.
2. The default appearance for input, input-output, and update fields is BOLD.

The order of execution for an ACCEPT statement is as follows:

For ANSI 74 and ANSI 85:

BACKGROUND-COLOR & FOREGROUND-COLOR
COLUMN and LINE positioning
accept data with appropriate attributes

For VXCOBOL:

COLUMN and LINE positioning
accept data with appropriate attributes

(11) USAGE IS DISPLAY is for documentation purposes only as USAGE IS DISPLAY is the default.

Additional Syntax Rule for VXCOBOL:

(12) The VIRTUAL clause is used for documentation only, but may only be specified for an 01 level entry.

H.2.4 General Rules

(1) The PICTURE, JUSTIFIED, and BLANK WHEN ZERO clauses have the same meaning for screen-data
items as for data items in Working Storage. The other clauses are described more fully in the sections that follow.

(2) A screen-data item with a FROM clause and no TO clause is described as an output field.

(3) A screen-data item with a TO clause and no FROM clause is described as an input field.

(4) A screen-data item with both a FROM clause and a TO clause is described as an input-output field.

(5) A screen-data item with a USING clause is described as an update field.

(6) The relationship of the level numbers in a screen description are used to differentiate between the
screen-group format items and the elementary format items, which are screen-literal and screen-data.

(7) For the two elementary format items, the presence of a PICTURE clause is used to differentiate between a
screen-data format item and a screen-literal format item.

216

DATA DIVISION - SCREEN SECTION (AUTO, FULL, REQUIRED)

Note: A non-blank update field will always satisfy this requirement.

H.3. AUTO, FULL, REQUIRED Clauses

H.3.1 Function

The clauses AUTO, FULL, and REQUIRED affect the behavior of data entry to input, input-output, and update
fields during the execution of an ACCEPT statement.

H.3.2 General Format

AUTO
FULL
REQUIRED

H.3.3 Syntax Rules

(1) These clauses can only be used with input, input-output, or update screen-data items or with screen-group
items.

H.3.4 General Rules

(1) If one of these clauses is written at a screen-group level, it applies to each elementary input, input-output,
and update item in the screen-group.

(2) These clauses have no effect during the execution of a DISPLAY statement.

(3) The AUTO clause causes data entry for the field to automatically terminate when data is entered into the last
character position in the field. If this field is the last field in the screen the ACCEPT is terminated as if a normal
terminator (any key with an ESCAPE KEY value of 00) had been entered.

(4) The FULL clause requires that a character or space must be entered in every position of a field, if any
character is entered. USING fields are initially always full.

(5) The REQUIRED clause requires that there must be at least one non-blank character in the data entry field
before data entry for the field can be terminated.

217

Interactive COBOL Language Reference & Developer’s Guide - Part One

H.4. BACKGROUND-COLOR, FOREGROUND-COLOR Clauses (ANSI 74 and ANSI 85)

H.4.1 Function

The BACKGROUND-COLOR and FOREGROUND-COLOR clauses set the background and foreground color for a
screen item.

H.4.2 General Format

H.4.3 Syntax Rules

(1) BACKGROUND-COLOR and BACKGROUND are synonyms.

(2) FOREGROUND-COLOR and FOREGROUND are synonyms.

H.4.4 General Rules

(1) The BACKGROUND-COLOR clause determines the background color for a screen item.

(2) The FOREGROUND-COLOR clause determines the foreground color for a screen item.

(3) These clauses are effective only with color screens.

(4) The color is specified by entering an integer from 0 to 7, the appropriate color-name, or and integer whose
value ranges from 0 to 7. The color-names with their integer values are shown in the chart below.

Color BLACK BLUE GREEN CYAN RED MAGENTA BROWN WHITE

Integer 0 1 2 3 4 5 6 7

TABLE 12. BACKGROUND-COLOR and FOREGROUND-COLOR

(5) If the value of identifier falls outside of the range 0 through 7, then the associated BACKGROUND-
COLOR or FOREGROUND-COLOR clause is ignored.

(6) When used at the screen-group level, these clauses apply to all subordinate screen items. If no colors are
specified, the terminal uses its default background and foreground colors.

218

DATA DIVISION - SCREEN SECTION (BELL)

H.5. BELL Clause

H.5.1 Function

The BELL clause sounds the tone on the user's display device.

H.5.2 General Format

H.5.3 Syntax Rules

(1) The words BELL and BEEP are synonyms.

H.5.4 General Rules

(1) The BELL clause is effective only during the execution of a DISPLAY statement.

(2) If BELL is specified on a screen-group format item, the tone is only sounded when the screen-group item is
processed, not when each item subordinate to the screen-group item is processed.

219

Interactive COBOL Language Reference & Developer’s Guide - Part One

H.6. BLANK Clause

H.6.1 Function

The BLANK clause is used to erase part or all of the user's display device during the execution of a DISPLAY
statement.

H.6.2 General Format

BLANK

H.6.3 General Rules

(1) The BLANK LINE, BLANK SCREEN, and BLANK REMAINDER clauses are effective only during the
execution of a DISPLAY statement.

(2) BLANK SCREEN erases the entire screen and positions the cursor to line 1 column 1.

(3) BLANK SCREEN is processed before any LINE and COLUMN positioning clauses because it has an
implicit positioning of the cursor.

(4) BLANK LINE erases the current line from the cursor position to the end of the line without changing the
cursor position.

(5) BLANK REMAINDER erases the screen starting at the cursor position to the end of the screen. The cursor
is not affected.

(6) BLANK LINE and BLANK REMAINDER are processed after the LINE and COLUMN positioning clauses
and before any screen-literal or screen-data items so that they can be used to clear data previously displayed on the
screen before displaying new data at the same position.

NOTE: If the compiler’s ISO screen behavior option (-G e) is specified, the BLANK LINE clause will erase the
entire line starting in column 1 rather than starting at the specified or implied column position.

220

DATA DIVISION - SCREEN SECTION (BLINK, BOLD, REVERSE, UNDERLINE)

H.7. BLINK, BOLD/BRIGHT/HIGHLIGHT/DIM/LOWLIGHT, REVERSE/REVERSED/REVERSED-VIDEO,
UNDERLINE/UNDERLINED Clauses

H.7.1 Function

These clauses are used to control the appearance of data that is displayed on the user's display device.

H.7.2 General Format (ANSI 74 and ANSI 85)

BLINK

H.7.3 General Format (VXCOBOL)

BLINK
BOLD

H.7.4 Syntax Rules

(1) These clauses can be specified for a screen-literal format item, a screen-data format item, or a screen-group
format item.

H.7.5 General Rules

(1) These clauses apply to both ACCEPT and DISPLAY.

(2) The BLINK clause causes the field to blink.

(3) The BOLD, BRIGHT, or HIGHLIGHT clauses cause the field to be displayed at high intensity.

(4) The DIM, LOWLIGHT, or NO HIGHLIGHT clauses cause the field to be displayed at low intensity.

(5) The REVERSE, REVERSED, or REVERSE-VIDEO clauses cause the field to be displayed in reverse-
video.

(6) The UNDERLINE or UNDERLINED clauses cause a field to be displayed underlined.

(7) The clauses can be combined to provide combined effects, such as bold and underlined. However, not all
video display devices are capable of displaying all of the combinations.

221

Interactive COBOL Language Reference & Developer’s Guide - Part One

Notes:
1. The default appearance for literal and output fields is DIM.
2. The default appearance for input, input-output, and update fields is BOLD.

222

DATA DIVISION - SCREEN SECTION (BLANK, ERASE)

H.8. CONVERTING Clause

H.8.1 Function

The CONVERTING clause is used to insure that accepted data is in a consistent case.

H.8.2 General Format

CONVERTING

H.8.3 Syntax Rules

(1) The CONVERTING clause may only be specified in a screen description which includes either the TO or
USING clauses.

H.8.4 General Rules

(1) The CONVERTING clause is effective only during the execution of an ACCEPT statement.

(2) If CONVERTING UP is specified character data entered during an ACCEPT is echoed to the screen and
stored in uppercase. In particular characters between ‘a’ and ‘z’ inclusive are converted to the corresponding
character between ‘A’ and ‘Z’.

(3) If CONVERTING DOWN is specified character data entered during an ACCEPT is echoed to the screen
and stored in lowercase. In particular characters between ‘A’ and ‘Z’ inclusive are converted to the corresponding
character between ‘a’ and ‘z.

223

Interactive COBOL Language Reference & Developer’s Guide - Part One

H.9. ERASE Clause

H.9.1 Function

The ERASE clause is used to erase part or all of the user's display device during the execution of a DISPLAY
statement.

H.9.2 General Format

ERASE

H.9.3 Syntax Rules

(1) The word EOL is equivalent to the phrase END OF LINE.

(2) The word EOS is equivalent to the phrase END OF SCREEN.

H.9.4 General Rules

(1) The ERASE clause is effective only during the execution of a DISPLAY statement.

(2) ERASE SCREEN and ERASE with no additional modifiers erases the entire screen and positions the cursor
to line 1 column 1.

(3) ERASE LINE erases the current line from column 1 to the end of the line without changing the cursor
position.

(4) ERASE EOL and ERASE END OF LINE erase the screen starting at the cursor position to the end of the
line. The cursor is not affected.

(5) ERASE EOS and ERASE END OF SCREEN erase the screen starting at the cursor position and continuing
to the end of the screen. The cursor position is not changed.

(6) ERASE and ERASE SCREEN are processed before any LINE and COLUMN positioning clauses because
they have an implicit positioning of the cursor. All other ERASE clauses are processed after the LINE and
COLUMN positioning clauses and before any screen-literal or screen-data items so that they can be used to clear
data previously displayed on the screen before displaying new data at the same position.

NOTE: If the compiler’s ISO screen behavior option (-G e) is specified, the ERASE LINE
clause will erase the line beginning at the cursor position and continuing to the end of the line. Similarly,
the ERASE SCREEN clause will erase from the cursor position to the end of the screen.

224

DATA DIVISION - SCREEN SECTION (FROM, TO, USING)

H.10. FROM, TO, USING Clauses

H.10.1 Function

These clauses are used to determine the types of input-output operations (ACCEPT and DISPLAY) that can be
performed on an item, as well as the associated data items or values.

H.10.2 General Format

H.10.3 General Rules

(1) A FROM clause with no TO clause defines the field as an output field.

(2) A TO clause with no FROM clause defines the field as an input field.

(3) A FROM clause and a TO clause together define a field as an input-output field.

(4) A USING clause defines the field as an update field.

(5) The default attribute for output fields is DIM, and for input, input-output, or update fields is BOLD. This
may be overridden by using the appropriate attribute.

(6) When a DISPLAY statement is executed, an input field is displayed as underscore characters. The number
of underscores displayed corresponds to the number of characters in the picture string.

(7) The item specified by literal-1 or identifier-1 (for an output or input-output field) or by identifier-3 (for an
update field) must be compatible with the screen-data according to the rules for the MOVE statement, where
literal-1, identifier-1, or identifier-3 is the sending item, and the screen-data is the receiving item.

(8) The item specified by identifier-2 (for an input or input-output field) or identifier-3 (for an update field)
must be compatible with the screen-data according to the rules for the MOVE statement, where screen-data is the
sending item and identifier-2 or identifier-3 is the receiving item, with the exception that the combination of a
numeric edited sending item and numeric receiving item is allowed.

(9) If the subject of the TO, FROM or USING entry is subject to an OCCURS clause,
identifier-1, identifier-2, or identifier-3 shall be specified without the subscripting normally required.

(10) For more on how each clause works see ACCEPT screen, page 289; or DISPLAY screen, page 346.

225

Interactive COBOL Language Reference & Developer’s Guide - Part One

H.11. LINE and COLUMN Clauses

H.11.1 Function

The LINE and COLUMN clauses specify the vertical and horizontal location of the cursor on the user's display
device (and thus the location of the erase, input, or output operation being specified.)

H.11.2 General Format

H.11.3 Syntax Rules

(1) Integer-1 and integer-2 must be unsigned and non-zero.

(2) Identifier-1 and identifier-2 must represent an unsigned elementary numeric data item.

(3) The word COL is an abbreviation for the word COLUMN.

(4) PLUS and + are synonyms.

(5) MINUS and - are synonyms.

(6) Neither the PLUS nor MINUS phrase shall be specified for the first elementary item in a screen record.

(7) If generating for code revision 1, identifier-1 and identifier-2 may not be specified if either the PLUS or
MINUS clauses are present.

H.11.4 General Rules

(1) The screen description entries in a screen description are processed beginning with the 01 level item and
proceeding through all screen description entries subordinate to the 01 level item in the order in which they appear in
the source program.

(2) As the screen description entries are processed, the compiler maintains a current cursor position for the
screen description. The current cursor position determines the placement of fields on the user's display screen when
an ACCEPT or DISPLAY statement is executed. This current cursor position is composed of two components, the
current cursor line and the current cursor column, with the upper left corner of the display being line 1, column 1.

(3) The current cursor position cannot be greater than line 128 or column 128 at the beginning of a BLANK
LINE operation or as the starting character position for a screen-literal or screen-data item.

(4) The current cursor position after a screen-literal or screen-data cannot be greater than line 128 or column
256.

(5) At execution time, if the current cursor position exceeds the size of the display device, the component of the
position that exceeds the display size (line or column or both), is re-computed to be the remainder of the original

226

DATA DIVISION - SCREEN SECTION (LINE, COLUMN)

value divided by the display size, e.g., a cursor position of line 20 column 132 on a 24 line, 80 column display is re-
computed as line 20, column 52.

(6) Each screen description is assumed to start (at the 01 level) with a current cursor position of line 1, column
1.

(7) If no LINE or COLUMN clause is specified, the current cursor position is not modified before the
processing of any input, output, input-output, or update field that might be present, except by the BLANK SCREEN
or ERASE SCREEN clause (which sets the current cursor position to line 1, column 1.)

(8) In the rules that follow, the components of the current cursor position are often treated independently.

(9) Line and/or column positions may be specified in one of three ways: Absolute positioning; Relative
positioning; and Variable positioning.

(10) Absolute line positioning is defined by a LINE clause with integer-1 and without either PLUS or MINUS.
The value of integer-1 becomes the new current cursor line value. It may not exceed the value 128 and should not
exceed the usual number of lines in the display device. If a COLUMN phrase is also specified, it is handled
independently. If one is not specified, it is assumed to be the same as specifying COLUMN 1.

(11) Absolute column positioning is defined by a COLUMN clause with integer-2 and without either PLUS or
MINUS. The value of integer-2 becomes the current cursor column value. It may not exceed the value 128 and
should not exceed the usual number of columns in the display device.

(12) Relative line positioning is defined by using the LINE clause with either the PLUS or MINUS phrase and
integer-1 or identifier-1. If PLUS is specified, the current cursor line is incremented by the value of integer-1 or the
contents of identifier-1. If MINUS is specified, the current cursor line is decremented by the value of integer-1 or
the contents of identifier-1. The resulting value must not exceed 128 or be less than 1. If a COLUMN phrase is also
specified, it is handled independently. If one is not specified, it is assumed to be the same as specifying COLUMN
1.

(13) Relative column positioning is defined by using the COLUMN clause with either the PLUS or MINUS
phrase and integer-2 or identifier-2. If PLUS is specified, the current cursor column is incremented by the value of
integer-2 or the contents of identifier-2. If MINUS is specified, the current cursor column is decremented by the
value of integer-2 or the contents of identifier-2. The resulting value must not exceed 128 or be less than 1.

(14) Variable line positioning is defined by using the LINE clause with identifier-1 and without either PLUS or
MINUS. The actual line value is not known until execution time. If a COLUMN phrase is also specified, it is
handled independently. If one is not specified, it is assumed to be the same as specifying COLUMN 1.

(15) Variable column positioning is defined by using the COLUMN clause with identifier-2 and without either
PLUS or MINUS. The actual column value is not known until execution time.

(16) If generating for code revision 1, relative line positioning cannot be specified for an entry that follows an
entry with variable line positioning unless there is an intervening entry with absolute line positioning. If generating
for code revision 2 or greater, the this restriction does not apply.

(17) If generating for code revision 1, relative column positioning cannot be specified for an entry that follows
an entry with variable column positioning unless there is an intervening entry with absolute column positioning. The
absolute column positioning may be derived from the COLUMN 1 clause that is implied in certain cases. If
generating for code revision 2 or greater, this restriction does not apply.

(18) If the screen description entry also contains a VALUE clause or is an input, output, input-output, or update
field, the value of the current cursor position is associated with the literal or field item. The current cursor column is
also updated to be positioned at the first column after the literal or field item (i.e., it is incremented by the length of
the literal or field item) unless the current cursor column is currently undefined because of variable column
positioning. The updated current column position cannot exceed 256.

227

Interactive COBOL Language Reference & Developer’s Guide - Part One

(19) The effects of LINE and COLUMN clauses in combination with each other is defined in the following
table:

 LINE Clause COLUMN Clause Field Position

 No clause No clause No change

COL Same line, column plus 1

COL n Same line, column n

COL PLUS n Same line, column plus n

COL id Same line, column id

 LINE No clause Line plus 1, column 1

COL Line plus 1, column plus 1

COL n Line plus 1, column n

COL PLUS n Line plus 1, column plus n

COL id Line plus 1, column id

 LINE m No clause Line m, column 1

COL Line m, column plus 1

COL n Line m, column n

COL PLUS n Line m, column plus n

COL id Line m, column id

 LINE PLUS m No clause Line plus m, column 1

COL Line plus m, column plus 1

COL n Line plus m, column n

COL PLUS n Line plus m, column plus n

COL id Line plus m, column id

 LINE id No clause Line id, column 1

COL Line id, column plus 1

COL n Line id, column n

COL PLUS n Line id, column plus n

COL id Line id, column id

TABLE 13. LINE and COLUMN relationship

228

DATA DIVISION - SCREEN SECTION (OCCURS)

H.12. OCCURS Clause

H.12.1 Function

The OCCURS clause is similar to the OCCURS clause defined in the Working-Storage Section. It is eliminates the
need for separate entries for repeated screen items and supplies information needed for the application of subscripts.

H.12.2 General Format

OCCURS integer TIMES

H.12.3 Syntax Rules

(1) The maximum number of dimensions for a table described in a screen description entry is two.

(2) If a screen description entry includes the OCCURS clause, then if it or any item subordinate to it has a
description that includes the TO, FROM, or USING clause, that screen description entry shall be part of a table with
the same number of dimensions and number of occurrences in each dimension as the identifier representing the
receiving or sending operand. The identifier representing the receiving or sending operand shall not be subordinate
to an OCCURS clause with the DEPENDING phrase.

(3) If a screen description entry that includes the OCCURS clause also contains the COLUMN clause, then the
COLUMN clause shall include the PLUS or MINUS phrase, unless the screen description entry also includes a LINE
clause with a PLUS or MINUS phrase.

(4) If a screen description entry that includes the OCCURS clause also contains the LINE clause, then the LINE
clause shall include the PLUS or MINUS phrase, unless the screen description entry also includes a COLUMN
clause with a PLUS or MINUS phrase.

H.12.4 General Rules

(1) During a DISPLAY screen or an ACCEPT screen statement that references a screen item whose description
includes the OCCURS clause and whose description or whose subordinate’s description includes a FROM, TO, or
USING clause, the data values for corresponding table elements are moved from the data table element to the screen
table element or from the screen table element to the data table element.

(2) If the description of a screen item includes the OCCURS clause, the positioning within the screen record of
each occurrence of that screen item is as follows:

a. If the description of that screen item contains a COLUMN clause, each occurrence behaves as though it
had the same column clause specified.

b. If that screen item is a group item with a subordinate screen item whose description contains a
COLUMN clause with the PLUS or MINUS phrase and that group screen item is subordinate to a screen item whose
description contains a LINE clause, each occurrence behaves as though it had the same subordinate entries with the
same COLUMN clause specified.

c. If the description of that screen item contains a LINE clause with the PLUS or MINUS phrase, each
occurrence behaves as though it had the same LINE clause specified.

d. If that screen item is a group item with a subordinate screen item whose description contains a LINE
clause with the PLUS or MINUS phrase, each occurrence behaves as though it had the same subordinate entries with
the same LINE clause specified.

229

Interactive COBOL Language Reference & Developer’s Guide - Part One

H.13. PICTURE Clause

H.13.1 Function

The PICTURE clause is similar to the PICTURE clause defined in the Working-Storage Section. It is used to
determine the size of a screen-data, the format of the data when it is presented to the user through the execution of a
DISPLAY statement, and the data validation rules to apply to the data when it is entered by the user in response to
the execution of an ACCEPT statement.

H.13.2 General Format

 IS character-string

H.13.3 Syntax Rules

(1) The picture characters P, V, CR, and DB can be used only with output (FROM) fields.

H.13.4 General Rules

(1) The rules for compatibility between the screen-data PICTURE and the literal or data items specified in the
TO, FROM, or USING clauses are specified under the section for TO, FROM, and USING.

(2) Unless the SIGN IS clause is also specified, the S PICTURE character is ignored by the compiler to be
consistent with older versions of Interactive COBOL.

230

DATA DIVISION - SCREEN SECTION (SECURE)

H.14. SECURE Clause

H.14.1 Function

This clause affects the behavior of data entry to input fields while in an ACCEPT and how the entry is displayed
during an ACCEPT.

ANSI 74 and ANSI 85:

The SECURE or SECURE ECHO clause causes asterisks to be echoed on the display during data entry or data
display. The SECURE NO ECHO clause prevents characters from echoing on the display during data entry or
data display.

VXCOBOL:

The SECURE clause prevents characters from echoing on the display during data entry or data display.

H.14.2 General Format (ANSI 74 and ANSI 85)

SECURE

H.14.3 General Format (VXCOBOL)

SECURE

H.14.4 Syntax Rules

(1) This clause can only be used with input, input-output, or update screen-data items or with screen-group
format items.

H.14.5 General Rules

(1) The SECURE clause is effective only during the execution of an ACCEPT statement.

(2) If the SECURE clause is specified for a screen-group item, the clause applies to each elementary input,
input-output, and update item subordinate to the screen-group item.

ANSI 74 and ANSI 85:
(3) During the execution of an ACCEPT statement for a screen item that contains SECURE or SECURE

ECHO, any characters entered by the user will be echoed as asterisks.

(4) During the execution of an ACCEPT statement for a screen item that contains SECURE NO ECHO, any
characters entered by the user will not be echoed, and the cursor will not move as the characters are entered.

VXCOBOL:
(5) During the execution of an ACCEPT statement, any characters entered by the user will not be echoed.

Additionally, the cursor will not move as the characters are entered.

231

Interactive COBOL Language Reference & Developer’s Guide - Part One

H.15. SIGN Clause

H.15.1 Function

The SIGN clause specifies the position and the mode of representation of the operational sign when it is necessary to
describe these properties explicitly.

H.15.2 General Format

[SIGN IS] SEPARATE CHARACTER

H.15.3 Syntax Rules

(1) The SIGN clause may be specified only for a numeric data description entry whose PICTURE contains the
character `S'.

(2) The numeric data description entries to which the SIGN clause applies must be described, implicitly or
explicitly, as USAGE IS DISPLAY.

H.15.4 General Rules

(1) The optional SIGN clause, if present, specifies the position and the mode of representation of the
operational sign for the numeric data description entry to which it applies, or for each numeric data description entry
subordinate to the group to which it applies. The SIGN clause applies only to numeric data description entries
whose PICTURE contains the character `S'; the `S' indicates the presence of, but neither the representation nor,
necessarily, the position of the operational sign.

(2) If a SIGN clause is specified in a group item subordinate to a group item for which a SIGN clause is
specified, the SIGN clause specified in the subordinate group item takes precedence for that subordinate group item.

(3) If a SIGN clause is specified in an elementary numeric data description entry subordinate to a group item for
which a SIGN clause is specified, the SIGN clause specified in the subordinate elementary numeric data description
entry takes precedence for that elementary numeric data item.

(4) a. The operational sign will be presumed to be the leading (or, respectively, trailing) character position of
the elementary numeric data item; this character position is not a digit position.

b. The letter `S' in a PICTURE character-string is counted in determining the size of the item (in terms of
standard data format characters).

c. The operational signs for positive and negative are the standard data format characters `+' and `-'
respectively.

(5) Every numeric data description entry whose PICTURE contains the character `S' is a signed numeric data
description entry. If a SIGN clause applies to such an entry and conversion is necessary for purposes of computation
or comparisons, conversion takes place automatically.

232

DATA DIVISION - SCREEN SECTION (USAGE)

H.16. USAGE Clause (ISQL)

H.16.1 Function

The USAGE clause specifies the special formatting of the data for the corresponding usage in the TO, FROM, or
USING data items or literals.

H.16.2 General Format

 [USAGE IS]

H.16.3 Syntax Rules

(1) The USAGE clause specifying DATE, INTERVAL, TIME, or TIMESTAMP is available only when the
ISQL feature-set is enabled and appear as USAGE options that are in addition to certain dialect-specific options.

(2) A USAGE clause specifying DATE, INTERVAL, TIME, or TIMESTAMP must not be specified at the
group level.

(3) The BLANK WHEN ZERO, JUSTIFIED, PICTURE, and SIGN clauses must not be specified for screen
items whose usage is DATE, INTERVAL, TIME, or TIMESTAMP.

(4) The value of integer-2 must be greater than zero and less than the values specified in the general rules
below.

(5) The value of integer-3 must be greater than zero and less than or equal to six.

E.17.5 General Rules

(1) If the USAGE clause is not specified, the usage is implicitly DISPLAY.

(2) The USAGE IS DATE clause specifies a screen item that can accept and display an SQL date value. Upon
output, the date value will be formatted with intervening hyphens in the same manner as a date literal. Upon input,
the field will appear as three separate fields separated by intervening hyphens. The system will automatically skip
over the hyphens. The entered value will be tested to be a valid date and an appropriate message will be displayed to
the user if it is not. A screen field of usage DATE occupies 10 characters. (yyyy-mm-dd)

(3) The USAGE IS INTERVAL clause specifies a screen item that can accept or display an SQL interval value.
Upon output, the interval value will be formatted in the same manner as the corresponding interval literal. The
number of digits in the leftmost field can be set by specifying integer-3. The maximum and default values for

233

Interactive COBOL Language Reference & Developer’s Guide - Part One

integer-3 depend on the type of the leftmost field specifier and are specified in the following table. The size of the
screen field is 1 byte plus the sum of the sizes of the individual fields in the range, plus the number of fields minus
one for the intervening formatting characters. Upon input, the field will appear as separate fields (one for each of the
interval fields) separated by the appropriate punctuation. The system will automatically skip over the punctuation.
The entered value will be tested to be a valid interval and an appropriate message will be displayed to the user if it is
not. The field has a minimum size of 2 characters (sign plus a single field of precision 1) and a maximum size of 24
characters.

For example, DAY (7) TO SECOND (6) may have a value that displays as:

+1234567 12:34:56.123456

Field Maximum Precision
as Leftmost Field

Default Precision

YEAR 4 4

MONTH 6 2

DAY 7 2

HOUR 8 2

MINUTE 10 2

SECOND 12 2

TABLE 14. INTERVAL Field Maximum Precision (ISQL)

(4) The USAGE IS TIME clause specifies a screen item that can accept and display an SQL time value. If
integer-3 is omitted, it is assumed to be zero. The value of integer-3 must be less than or equal to 6 and specifies the
number of fractional seconds field. Upon output, the data is formatted in the same manner as a time literal with the
intervening colons and an optional decimal point. Upon input, the field will appear as three (or four) separate fields
separated by the colons and an optional decimal point. The system will automatically skip over the colons (and
decimal point) as data is entered. The entered value will be tested to be a valid time and an appropriate message will
be displayed to the user if it is not. A screen field of usage TIME occupies from 8 to 15 characters on the screen.
I.E., from hh:mm:ss to hh:mm:ss.nnnnnn.

(5) The USAGE IS TIMESTAMP clause specifies a screen item that can accept and display an SQL timestamp
value. The screen item is a composite of a date screen field and a time screen field with an intervening space. A
TIMESTAMP screen item occupies from 19 to 26 characters, depending on the number of fractional second digits.

234

DATA DIVISION - SCREEN SECTION (VALUE)

H.17. VALUE Clause

H.17.1 Function

The VALUE clause specifies literal information to be displayed.

H.17.2 General Format

[VALUE IS] literal-1

H.17.3 Syntax Rules

(1) Literal-1 must be a nonnumeric-literal.

(2) Literal-1 must not be a figurative constant.

(3) The words VALUE IS are not required.

H.17.4 General Rules

(1) During the execution of a DISPLAY statement, the contents of literal-1 are displayed on the user's display
device at the current cursor position (see LINE and COLUMN clauses).

(2) Literals are displayed DIM unless the BOLD/BRIGHT/HIGHLIGHT attribute was specified.

235

Interactive COBOL Language Reference & Developer’s Guide - Part One

236

PROCEDURE DIVISION

VI. PROCEDURE DIVISION

A. General Description

The Procedure Division contains procedures to be executed by the object program. The Procedure Division is
optional in a COBOL source program.

A.1. DECLARATIVES

Declarative sections must be grouped at the beginning of the Procedure Division preceded by the keyword
DECLARATIVES and followed by the keywords END DECLARATIVES.

A.2. Procedures

A procedure is composed of a paragraph, or a group of successive paragraphs, or a section, or a group of successive
sections within the Procedure Division. If one paragraph is in a section, all paragraphs must be in sections. A
procedure-name is a word used to refer to a paragraph or section in the source program in which it occurs. It
consists of a paragraph-name (which may be qualified) or a section-name.

A section consists of a section header followed by zero, one, or more successive paragraphs. A section ends
immediately before the next section or at the end of the Procedure Division or, in the declaratives portion of the
Procedure Division, at the keywords END DECLARATIVES.

A paragraph consists of a paragraph-name followed by a period and a space and by zero, one, or more successive
sentences. A paragraph ends immediately before the next paragraph-name or section-name or at the end of the
Procedure Division or, in the declaratives portion of the Procedure Division, at the keywords END
DECLARATIVES. A sentence consists of one or more statements and is terminated by the separator period.

A statement is a syntactically valid combination of words, literals, and separators beginning with a COBOL verb.

The term `identifier' is defined as the word or words necessary to make unique reference to a data item.

A.3. Execution

Execution begins with the first statement of the Procedure Division, excluding declaratives. Statements are then
executed in the order in which they are presented for compilation, except where the rules indicate some other order.

The general formats of the Procedure Division are shown below.

237

Interactive COBOL Language Reference & Developer’s Guide - Part One

Format 1:

PROCEDURE DIVISION [USING { data-name }...] .

[DECLARATIVES.

{ section-name SECTION [segment-number] .

USE statement.

[paragraph-name.

[sentence]...]... }...

END DECLARATIVES.]

{ section-name SECTION [segment-number] .

[paragraph-name.

[sentence]...]... }...

Format 2:

PROCEDURE DIVISION [USING { data-name }...] .

{ paragraph-name.

[sentence]... }...

B. Concepts

B.1. Arithmetic Expressions

B.1.1 Definition of an Arithmetic Expression

An arithmetic expression can be an identifier of a numeric elementary item, a numeric literal, the figurative constant
ZERO (ZEROS, ZEROES), such identifiers, figurative constants, and literals separated by arithmetic operators, two
arithmetic expressions separated by an arithmetic operator, or an arithmetic expression enclosed in parentheses. Any
arithmetic expression may be preceded by a unary operator. The permissible combinations of identifiers, numeric
literals, arithmetic operators, and parentheses are given in the table, Combination of Symbols in Arithmetic
Expressions, below.

Those identifiers and literals appearing in an arithmetic expression must represent either numeric elementary items or
numeric literals on which arithmetic may be performed.

B.1.2 Arithmetic Operators

There are five binary arithmetic operators and two unary arithmetic operators that may be used in arithmetic
expressions. They are represented by specific characters that must be preceded by a space and followed by a space.

238

PROCEDURE DIVISION - Concepts (Arithmetic Expressions)

Binary
Arithmetic Operator Meaning

+ Addition
- Subtraction
* Multiplication
/ Division
** Exponentiation

Unary
Arithmetic Operator Meaning

+ The effect of multiplication by the numeric literal +1
- The effect of multiplication by the numeric literal -1

B.1.3 Formation and Evaluation Rules

(1) Parentheses may be used in arithmetic expressions to specify the order in which elements are to be
evaluated. Expressions within parentheses are evaluated first, and, within nested parentheses, evaluation proceeds
from the least inclusive set to the most inclusive set. When parentheses are not used, or parenthesized expressions
are at the same level of inclusiveness, the following hierarchical order of execution is implied:

1st - Unary plus and minus
2nd - Exponentiation
3rd - Multiplication and division
4th - Addition and subtraction

(2) Parentheses are used either to eliminate ambiguities in logic where consecutive operations of the same
hierarchical level appear, or to modify the normal hierarchical sequence of execution in expressions where it is
necessary to have some deviation from the normal precedence. When the sequence of execution is not specified by
parentheses, the order of execution of consecutive operations of the same hierarchical level is from left to right.

(3) The ways in which identifiers, literals, operators, and parentheses may be combined in an arithmetic
expression are summarized in the table below, where:

a. The letter `P' indicates a permissible pair of symbols.

b. The character `-' indicates an invalid pair.

FIRST SYMBOL
SECOND SYMBOL

Identifier
or Literal

+ - * / ** Unary +
or -

()

 Identifier or
 Literal

- P - - P

 + - * / ** P - P P -

 Unary + or - P - - P -

 (P - P P -

) - - - - P

TABLE 15. Combination of Symbols in Arithmetic Expressions

(4) An arithmetic expression may only begin with the symbol `(', `+', `-', an identifier, or a literal and may only
end with a `)', an identifier, or a literal. There must be a one-to-one correspondence between left and right
parentheses of an arithmetic expression such that each left parenthesis is to the left of its corresponding right

239

Interactive COBOL Language Reference & Developer’s Guide - Part One

parenthesis. If the first operator in an arithmetic expression is a unary operator, it must be immediately preceded by
a left parenthesis if that arithmetic expression immediately follows an identifier or another arithmetic expression.

(5) The following rules apply to evaluation of exponentiation in an arithmetic expression:

a. If the value of an expression to be raised to a power is zero, the exponent must have a value greater than
zero. Otherwise, the size error condition exists.

b. If the evaluation yields both a positive and a negative real number, the value returned as the result is the
positive number.

c. If no real number exists as the result of the evaluation, the size error condition exists.

(6) Arithmetic expressions allow the user to combine arithmetic operations without the restrictions on
composite of operands and/or receiving data items.

(7) (ISQL) The following table summarizes the valid arithmetic operations involving items of class date-time
and interval.

First Operand Operator(s) Second Operand Result

date-time - date-time interval

date-time + - interval date-time

interval + date-time date-time

interval + - interval interval

interval + - * / number interval

number + * interval interval

(8) (ISQL) The following rules apply to arithmetic operations involving items of class date-time and interval:

a. If both operands are of class date-time, they must both have the same category.

b. If both operands are of class interval, they must both have the same category. The result is of the same
category with a span of fields that encompasses the span of fields of both operands. For example. Adding a DAY TO
HOUR interval to an HOUR TO MINUTE interval will yield a DAY TO MINUTE interval as the result.

c. If one operand is class date-time and the other operand is class interval, the category of the interval
operand must be defined such that it contains date-time fields that are also contained in the date-time operand. The
category of the date-time result is of the same as the category of the date-time operand.

d. The difference of two timestamp operands, two date operands, or two time operands is a day-time
interval.

e. The computation of an interval combined with a number is accomplished by first converting the interval
into an equivalent interval value consisting of just the lowest order field, performing the arithmetic on that value,
discarding any fraction that cannot be contained in the field, and then converting back to the original interval
(normalized). For example, INTERVAL “4:30.25" MINUTE TO SECOND(2) / 2 is handled by converting to the
equivalent INTERVAL “270.25" SECOND (3, 2), dividing by 2 to yield INTERVAL “135.12" SECOND (3,2),
discarding the .005 second fraction, and then converting back to the original format INTERVAL “2:15.12"
MINUTE TO SECOND (2).

B.2. Conditional Expressions

Conditional expressions identify conditions that are tested to enable the object program to select between alternate
paths of control depending upon the truth value of the condition. A conditional expression has a truth value

240

PROCEDURE DIVISION - Concepts (Conditional Expressions)

represented by either true or false. Conditional expressions are specified in the EVALUATE, IF, PERFORM, and
SEARCH statements. There are two categories of conditions associated with conditional expressions: simple
conditions and complex conditions. Each may be enclosed within any number of paired parentheses, in which case
its category is not changed.

B.2.1 Simple Conditions

The simple conditions are the relation, class, condition-name, switch-status, and sign conditions. A simple condition
has a truth value of true or false. The inclusion in parentheses of simple conditions does not change the simple
condition truth value.

B.2.1.1 Relation Condition

A relation condition causes a comparison of two operands, each of which may be the data item referenced by an
identifier, a literal, the value resulting from an arithmetic-expression, or an index-name. A relation condition has a
truth value of true if the relation exists between the operands. Comparison of two numeric operands is permitted
regardless of the formats specified in their respective USAGE clauses. However, for all other comparisons, the
operands must have the same usage. If either of the operands is a group item, the nonnumeric comparison rules
apply. Comparisons involving POINTER items have their own explicit rules. See section B.2.1.1.4 on page 243,
244.

The format for a relation condition is as follows:

The first operand (identifier-1, literal-1, arithmetic-expression-1, or index-name-1) is called the subject of the
condition; the second operand (identifier-2, literal-2, arithmetic-expression-2, or index-name-2) is called the object
of the condition. The relation condition must contain at least one reference to a variable.

The relational operators specify the type of comparison to be made in a relation condition. A space must precede
and follow each reserved word comprising the relational operator. When used, NOT and the next keyword or
relation character are one relational operator that defines the comparison to be executed for truth value. The
following relational operators are equivalent:

IS NOT GREATER THAN is equivalent to IS LESS THAN OR EQUAL TO;

IS NOT LESS THAN is equivalent to IS GREATER THAN OR EQUAL TO.

IS <> is equivalent to IS NOT =.

IS NOT <> is equivalent to IS =.

241

Interactive COBOL Language Reference & Developer’s Guide - Part One

Relational Operator Meaning

IS [NOT] GREATER THAN
IS [NOT] >

Greater than OR
not greater than

IS [NOT] LESS THAN
IS [NOT] <

Less than OR
not less than

IS [NOT] EQUAL TO
IS [NOT] =

Equal to OR
not equal to

IS [NOT] GREATER THAN OR EQUAL TO
IS [NOT] >=

Greater than or equal to OR
not greater than or equal to

IS [NOT] LESS THAN OR EQUAL TO
IS [NOT] <=

Less than or equal to OR
not less than or equal to

IS <> Not equal to

TABLE 16. Relational Operators

B.2.1.1.1 Comparison of Numeric Operands

For operands whose class is numeric, a comparison is made with respect to the algebraic value of the operands. The
length of the literal or arithmetic-expression operands, in terms of the number of digits represented, is not significant.
Zero is considered a unique value regardless of the sign.

Comparison of these operands is permitted regardless of the manner in which their usage is described. Unsigned
numeric operands are considered positive for purposes of comparison.

B.2.1.1.2 Comparison of Nonnumeric Operands

For nonnumeric operands, or one numeric and one nonnumeric operand, a comparison is made with respect to a
specified collating sequence of characters. If one of the operands is specified as numeric, it must be an integer data
item or an integer literal and:

(1) If the nonnumeric operand is an elementary data item or a nonnumeric literal, the numeric operand is treated
as though it were moved to an elementary alphanumeric data item of the same size as the numeric data item (in terms
of standard data format characters), and the content of this alphanumeric data item were then compared to the
nonnumeric operand.

(2) If the nonnumeric operand is a group item, the numeric operand is treated as though it were moved to a
group item of the same size as the numeric data item (in terms of standard data format characters), and the content of
this item were then compared to the nonnumeric operand.

(3) A non-integer numeric operand cannot be compared to a nonnumeric operand.

The size of an operand is the total number of standard data format characters in the operand. Numeric and
nonnumeric operands may be compared only when their usage is the same.

When comparing two nonnumeric operands there are two cases to consider: operands of equal size and operands of
unequal size.

(1) Operands of equal size. If the operands are of equal size, comparison effectively proceeds by comparing
characters in corresponding character positions starting from the high order end and continuing until either a pair of
unequal characters is encountered or the low order end of the operand is reached, whichever comes first. The
operands are determined to be equal if all pairs of corresponding characters are equal.

The first encountered pair of unequal characters is compared to determine their relative position in the
collating sequence. The operand that contains the character that is positioned higher in the collating sequence is
considered to be the greater operand.

242

PROCEDURE DIVISION - Concepts (Conditional Expressions)

(2) Operands of unequal size. If the operands are of unequal size, comparison proceeds as though the shorter
operand were extended on the right by sufficient spaces to make the operands of equal size.

B.2.1.1.3 Comparisons Involving Index-Names and/or Index Data Items

Relation tests may be made only between:

(1) Two index-names. The result is the same as if the corresponding occurrence numbers were compared.

(2) An index-name and a data item (other than an index data item) or literal. The occurrence number that
corresponds to the value of the index-name is compared to the data item or literal.

(3) An index data item and an index-name or another index data item. The actual values are compared without
conversion.

B.2.1.1.4 Comparisons Involving USAGE POINTER Data Items (ANSI 74 and ANSI 85)

Two data items that are explicitly or implicitly defined as USAGE POINTER can be compared. Pointer
comparisons can include only relational operators which test for equality or inequality. The general format of such
comparisons is:

Syntax Rules:

(1) Identifier-1 and identifier-3 can refer to any data items defined in the Data Division.

(2) Identifier-2 and identifier-4 must be defined as USAGE IS POINTER.

General Rules:

(1) If ADDRESS OF clause is specified, the address if the named identifier is referenced, not the contents of the
identifier.

(2) The operands are equal if the two address are identical. Otherwise, they are unequal.

(3) This type of condition is allowed in the IF, PERFORM and Format 1 SEARCH statement. It is not allowed
in a Format 2 SEARCH statement (SEARCH ALL) since there is no implied ordering to pointer data items.

B.2.1.1.5 Comparisons Involving Date-Time Items (ISQL)

General Rules:

(1) Two items of class date-time may be compared provided that they have the same category.

(2) Comparisons are performed in accordance with chronological ordering.

243

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.2.1.1.6 Comparisons Involving Interval Items (ISQL)

General Rules:

(1) Two items of class interval may be compared provided that they have the same category.

(2) An item of class interval and a numeric item may be compared provided that the interval item consists of
only a single date-time field. The interval items is treated as a signed integer item for the purpose of the comparison.

(3) Comparisons are performed in accordance with the sign and magnitude.

(4) When the set of fields of the two intervals match, the comparison is straightforward and proceeds field by
field from left to right.

(5) When the set of fields of the two intervals does not match, the comparison extends either operand as
necessary with additional fields of value zero such that the set of fields matches. The extended values are
‘normalized’ by beginning with the rightmost field and normalizing it to its usual range and carrying any overflow to
the next field to the left. Comparison then proceeds as in rule 4.

For example:

Taking the comparison (INTERVAL “1:45" HOUR TO MINUTE < INTERVAL “105:23" MINUTE TO
SECOND) and applying the rules of extension above, we would have (INTERVAL “1:45:00" HOUR TO
SECOND < INTERVAL “0:105:23" HOUR TO SECOND) and normalizing the second operand yields
(INTERVAL “1:45:00" HOUR TO SECOND < INTERVAL “1:45:23" HOUR TO SECOND), which evaluates
to TRUE.

B.2.1.2 Class Condition

The class condition determines whether an operand is numeric, alphabetic, or contains only the characters in the set
of characters specified by the CLASS clause as defined in the SPECIAL-NAMES paragraph of the Environment
Division.

B.2.1.2.1 General Format

ANSI 74 and ANSI 85

identifier IS [NOT]

VXCOBOL

identifier IS [NOT]

B.2.1.2.1 Syntax Rules

(1) If the NUMERIC phrase is specified, the usage of the operand being tested must be described as DISPLAY,
except for VXCOBOL where the NUMERIC test will allow any numeric item.

244

PROCEDURE DIVISION - Concepts (Conditional Expressions)

(2) If the NUMERIC phrase is specified, the operand being tested must not be an item whose data description
describes the item as alphabetic or as a group item composed of elementary items whose data description indicates
the presence of operational sign(s).

(3) If the NUMERIC phrase is not specified, the usage of the operand being tested must be described as
DISPLAY.

(4) If the ALPHABETIC, ALPHABETIC-UPPER, ALPHABETIC-LOWER, or class-name-1 phrase is
specified, the operand being tested must not be an item whose data description describes the item as numeric.

B.2.1.2.2 General Rules

(1) When used, NOT and the next keyword specify one class condition that defines the class test to be executed
for truth value and which has the opposite truth value from the test without the NOT. So, e.g., NOT NUMERIC is a
truth test for determining that an operand is nonnumeric. The remaining rules are expressed in terms of the truth of
the condition expressed without the NOT.

(2) When the operand being tested is a zero-length item, the result of the test is always false.

(3) If the NUMERIC phrase is specified, the following rules apply:

a. If the data description of the item being tested does not indicate the presence of an operational sign, the
item being tested is determined to be numeric only if the content is numeric and an operational sign is not present. If
the data description of the item does indicate the presence of an operational sign, the item being tested is determined
to be numeric only if the content is numeric and a valid operational sign is present. Valid operational signs for data
items described with the SIGN IS SEPARATE clause are the standard data format characters + and -; see The
USAGE clause on page 195, 198, 233 for more information.

b. (VXCOBOL) The result is true for a usage display operand if it consists entirely of the characters 0, 1,
2, ... 9 and space with or without the operation sign; however, if the ‘-G a’ compiler switch is used, space is not
allowed. The result is true for non-display identifiers if their content is in agreement with the data description.

c. (ANSI 74 and ANSI 85) The result is true if the operand consists entirely of the characters 0, 1, 2, 3, ... ,
9, with or without an operational sign.

(4) If the ALPHABETIC phrase is specified, the following rules apply:

a. (ANSI 74 and VXCOBOL) The result is true if the operand consists entirely of the uppercase letters A,
B, C, ... , Z, or space, or any combination of the uppercase letters and spaces.

b. (ANSI 85) The result is true if the operand consists entirely of the uppercase letters A, B, C, ... , Z,
space, or the lowercase letters a, b, c, ... , z, or any combination of the uppercase and lowercase letters and spaces.

(5) If the ALPHABETIC-LOWER phrase is specified, the result is true if the operand consists entirely of the
lowercase letters a, b, c, ... , z, or space, or any combination of the lowercase letters and spaces.

(6) If the ALPHABETIC-UPPER phrase is specified, the result is true if the operand consists entirely of the
uppercase letters A, B, C, ... , Z, or space, or any combination of the uppercase letters and spaces.

(7) If the class-name-1 phrase is specified, the result is true if the operand consists entirely of the characters
listed in the definition of class-name-1 in the SPECIAL-NAMES paragraph.

245

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.2.1.3 Condition-Name Condition (Conditional Variable)

In a condition-name condition, a conditional variable is tested to determine whether or not its value is equal to one of
the values associated with condition-name-1. The general format for the condition-name condition is as follows:

condition-name-1

If condition-name-1 is associated with a range or ranges of values, then the conditional variable is tested to
determine whether or not its value falls in this range, including the end values.

The rules for comparing a conditional variable with a condition-name value are the same as those specified for
relation conditions.

The result of the test is true if one of the values corresponding to condition-name-1 equals the value of its associated
conditional variable.

B.2.1.4 Switch-Status Condition

A switch-status condition determines the on or off status of an external switch. The switch-name and the on or off
value associated with the condition must be named in the SPECIAL-NAMES paragraph of the Environment
Division. (See The SPECIAL-NAMES paragraph on page 80 for the description of switch conditions.) The general
format for the switch-status condition is as follows:

condition-name-1

The result of the test is true if the switch is set to the specified position corresponding to condition-name-1.

B.2.1.5 Sign Condition

The sign condition determines whether or not the algebraic value of an arithmetic expression is less than, greater
than, or equal to zero. The general format for a sign condition is as follows:

arithmetic-expression-1 IS [NOT]

When used, NOT and the next keyword specify one sign condition that defines the algebraic test to be executed for
truth value; e.g., NOT ZERO is a truth test for a nonzero (positive or negative) value. An operand is positive, if its
value is greater than zero, negative if its value is less than zero, and zero if its value is equal to zero.
Arithmetic-expression-1 must contain at least one reference to a variable.

B.2.1.6 (ISQL) Indicator Condition

The indicator condition determines the status of an indicator value. The general format for an indicator condition is
as follows:

identifier IS [NOT]

When used, NOT and the next keyword specify one indicator condition that defines the test to be executed for truth
value. Since there are only three valid values, the NOT test is a test for either one of the values other than the one
specified, e.g., NOT VALID is a truth test for either NULL or OVERFLOW. An indicator value of NULL means

246

PROCEDURE DIVISION - Concepts (Conditional Expressions)

that the database item was a NULL item and the corresponding data item was not set. An indicator value of VALID
means that the database item was fetched and stored in the corresponding data item. An indicator value of
OVERFLOW means that the database item was fetched, but it had to be truncated in order to be stored in the data
item.

B.2.2 Complex Conditions

A complex condition is formed by combining simple conditions and/or complex conditions with logical connectors
(logical operators `AND' and `OR') or by negating these conditions with logical negation (the logical operator
`NOT')'. The truth value of a complex condition, whether parenthesized or not, is that truth value which results from
the interaction of the stated logical operators on its constituent conditions.

The logical operators and their meanings are:

Logical Operator Meaning

AND Logical conjunction; the truth value is true if both of the conjoined conditions are true; false if
both of the conjoined conditions is false.

OR Logical inclusive OR; the truth value is true if one or both of the included conditions is true;
false if both included conditions are false.

NOT Logical negation or reversal of truth value; the truth value is true if the condition is false; false
if the condition is true.

The logical operators must be preceded by a space and followed by a space.

B.2.2.1 Negated Conditions

A condition is negated by use of the logical operator `NOT' which reverses the truth value of the condition to which
it is applied. Thus, the truth value of a negated condition is true if and only if the truth value of the condition being
negated is false; the truth value of a negated condition is false if and only if the truth value of the condition being
negated is true. Including a negated condition in parentheses does not change its truth value.

The general format for a negated condition is:

NOT condition-1

B.2.2.2 Combined Conditions

A combined condition results from connecting conditions with one of the logical operators `AND' or `OR'. The
general format of a combined condition is:

condition { condition }...

B.2.2.3 Precedence of Logical Operators and the Use of Parentheses

In the absence of the relevant parentheses in a complex condition, the precedence (i.e., binding power) of the logical
operators determines the conditions to which the specified logical operators apply and implies the equivalent
parentheses. The order of precedence is `NOT', `AND', `OR'. Thus, specifying `condition-1 OR NOT condition-2
AND condition-3' implies and is equivalent to specifying `condition-1 OR ((NOT condition-2) AND condition-3)'.

247

Interactive COBOL Language Reference & Developer’s Guide - Part One

Where parentheses are used in a complex condition, they determine the binding of conditions to logical operators.
Parentheses can, therefore, be used to depart from the normal precedence of logical operators as specified above.
Thus, the example complex condition above can be given a different meaning by specifying it as `(condition-1 OR
(NOT condition-2)) AND condition-3'.

The following table indicates the ways in which conditions and logical operators may be combined and parenthe-
sized. There must be a one-to-one correspondence between left and right parentheses such that each left parenthesis
is to the left of its corresponding right parenthesis.

Given the
following
element:

In a conditional
expression:

In a left-to-right sequence of
elements:

May
element

be
first?

May
element

be
last?

Element, when
not first, may
be immediately
followed by

only:

Element, when
not last, may
be immediately
followed by

only:

simple-
condition

Yes Yes OR, NOT, AND, (OR, AND,)

OR or AND No No simple-
condition,)

simple-
condition,
NOT, (

NOT Yes No OR, AND, (simple-
condition, (

(Yes No OR, NOT, AND, (simple-
condition,
NOT, (

) No Yes simple-
condition,)

OR, AND,)

TABLE 17. Combinations of Conditions, Logical Operators, and Parentheses

Thus, the element pair `OR NOT' is permissible, while the pair `NOT OR' is not permissible; the pair `NOT (' is
permissible, while the pair `NOT NOT' is not permissible.

B.2.3 Abbreviated Combined Relation Conditions

When simple or negated simple relation conditions are combined with logical connectives in a consecutive sequence
such that a succeeding relation condition contains a subject or subject and relational operator that is common with
the preceding relation condition, and no parentheses are used within such a consecutive sequence, any relation
condition except the first may be abbreviated by:

(1) The omission or the subject of the relation condition, or

(2) The omission of the subject and relational operator of the relation condition.

The format for an abbreviated combined relation condition is:

relation-condition { [NOT] [relational-operator] object }...

Within a sequence of relation conditions both of the above forms of abbreviation may be used. The effect of using
such abbreviations is as if the last preceding stated subject were inserted in place of the omitted subject, and the last
stated relational operator were inserted in place of the omitted relational operator. The result of such implied
insertion must comply with the rules of TABLE 17. This insertion of an omitted subject and/or relational operator
terminates once a complete simple condition is encountered within a complex condition.

The interpretation applied to the use of the word NOT in an abbreviated combined relation condition is as follows:

(1) If the word immediately following NOT is GREATER, >, LESS, <, EQUAL, =, then the NOT participates
as part of the relational operator; otherwise,

248

PROCEDURE DIVISION - Concepts (Conditional Expressions)

(2) The NOT is interpreted as a logical operator and, therefore, the implied insertion of subject or relational
operator results in a negated relation condition.

Some examples of abbreviated combined and negated combined relation conditions and expanded equivalents
follow.

Abbreviated Combined
Relation Condition

Expanded Equivalent

a > b AND NOT < c OR d ((a > b) AND (a NOT < c)) OR (a NOT < d)

a NOT EQUAL b OR c (a NOT EQUAL b) OR (a NOT EQUAL c)

NOT a = b OR c (NOT (a = b)) OR (a = c)

NOT (a GREATER b OR < c) NOT ((a GREATER b) OR (a < c))

NOT (a NOT > b AND c AND NOT d) NOT (((a NOT > b) AND (a NOT > c)) AND
(NOT (a NOT > d)))

EXAMPLE 14. Abbreviated combined and negated combined relation conditions

B.2.4 Order of Evaluation of Conditions

Parentheses, both explicit and implicit, denote a level of inclusiveness within a complex condition. Two or more
conditions connected by only the logical operator `AND' or only the logical operator `OR' at the same level of
inclusiveness establish a hierarchical level within a complex condition. Thus, an entire complex condition may be
considered to be a nested structure of hierarchical levels with the entire complex condition itself being the most
inclusive hierarchical level. Within this context, the evaluation of the conditions within an entire complex condition
begins at the left of the entire complex condition and proceeds according to the following rule recursively applied
where necessary:

(1) The constituent connected conditions within a hierarchical level are evaluated in order from left to right, and
evaluation of that hierarchical level proceeds until all the constituent connected conditions within that hierarchical
level have been evaluated.

Negated conditions are evaluated when it is necessary to evaluate the complex condition that they represent.

249

Interactive COBOL Language Reference & Developer’s Guide - Part One

Application of the above rules is shown in the 4 figures that follow.

FIGURE 1. Evaluation of condition-1 AND condition-2 AND ... condition-n

250

PROCEDURE DIVISION - Concepts (Conditional Expressions)

FIGURE 2. Evaluation of condition-1 OR condition-2 OR ... condition-n

251

Interactive COBOL Language Reference & Developer’s Guide - Part One

FIGURE 3. Evaluation of condition-1 OR condition-2 AND condition-3

252

PROCEDURE DIVISION - Concepts (ROUNDED Phrase)

FIGURE 4. Evaluation of (condition-1 OR NOT condition-2) AND condition-3 AND condition-4

B.3. Common Options and Rules for Statements

Paragraph B and its subordinate paragraphs provide a description of the common options and conditions that pertain
to or appear in several different statements.

B.3.1 ROUNDED Phrase

If, after decimal point alignment, the number of places in the fractions of the result of an arithmetic operation is
greater than the number of places provided for the fraction of the resultant identifier, truncation is relative to the size
provided for the resultant identifier. When rounding is requested, the absolute value of the resultant identifier is
increased by one in the low-order position whenever the most significant digit of the excess is greater than or equal
to five.

When the low-order integer positions in a resultant identifier are represented by the character P in the PICTURE for
that resultant identifier, rounding or truncation occurs relative to the right-most integer position for which storage is
allocated.

253

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.3.2 ON SIZE ERROR Phrase

The size error condition occurs under the following circumstances:

(1) Violation of the rules for evaluation of exponentiation always terminates the arithmetic operation and
always causes a size error condition.

(2) Division by zero always terminates the arithmetic operation and always causes a size error condition.

(3) If, after radix point alignment, the absolute value of a result exceeds the largest value that can be contained
in the associated resultant identifier, a size error condition exists. If the ROUNDED phrase is specified, rounding
takes place before checking for size error.

(4) (ISQL) If, after adding or subtracting an interval from a date-time value, the resulting date-time value is not
a valid date-time value, the size error condition exists. For example, DATE “2001-01-30" + INTERVAL “1"
MONTH yields DATE “2001-02-30", which is not a valid date.

If the ON SIZE ERROR phrase is specified and a size error condition exists after the execution of the arithmetic
operations specified by an arithmetic statement, the values of the affected resultant identifiers remain unchanged
from the values they had before execution of the arithmetic statement. The values of resultant identifiers for which
no size error condition exists are the same as they would have been if the size error condition had not resulted for
any of the resultant identifiers. After completion of the arithmetic operations, control is transferred to the
imperative-statement specified in the ON SIZE ERROR phrase and execution continues according to the rules for
each statement specified in that imperative-statement. If a procedure branching or conditional statement which
causes explicit transfer of control is executed, control is transferred in accordance with the rules for that statement;
otherwise, upon completion of the execution of the imperative-statement specified in the ON SIZE ERROR phrase,
control is transferred to the end of the arithmetic statement and the NOT ON SIZE ERROR phrase, if specified, is
ignored.

If the ON SIZE ERROR phrase is not specified and a size error condition exists after the execution of the arithmetic
operations specified by an arithmetic statement, the values of the affected resultant identifiers are undefined. The
values of resultant identifiers for which no size error condition exists are the same as they would have been if the size
error condition had not resulted for any of the resultant identifiers. After completion of the arithmetic operations,
control is transferred to the end of the arithmetic statement and the NOT ON SIZE ERROR phrase, if specified, is
ignored.

If the size error condition does not exist after the execution of the arithmetic operations specified by an arithmetic
statement, the ON SIZE ERROR phrase, if specified, is ignored and control is transferred to the end of the arithmetic
statement or to the imperative-statement specified in the NOT ON SIZE ERROR phrase, if it is specified. In the
latter case, execution continues according to the rules for each statement specified in that imperative-statement. If a
procedure branching or conditional statement which causes explicit transfer of control is executed, control is
transferred in accordance with the rules for that statement; otherwise, upon completion of the execution of the
imperative-statement specified in the NOT ON SIZE ERROR phrase, control is transferred to the end of the
arithmetic statement

For the ADD or SUBTRACT statement with the CORRESPONDING phrase, if any of the individual operations
produces a size error condition, imperative-statement-1 in the ON SIZE ERROR phrase is not executed until all of
the individual additions or subtractions are completed.

B.3.3 CORRESPONDING Phrase

For the purpose of this discussion, D1 and D2 must each be identifiers that refer to group items. A pair of data
items, one from D1 and one from D2 correspond if the following conditions exist:

(1) A data item in D1 and a data item in D2 are not designated by the keyword FILLER and have the same
data-name and the same qualifiers up to, but not including, D1 and D2.

254

PROCEDURE DIVISION - Concepts (CORRESPONDING)

(2) At least one of the data items is an elementary data item and the resulting move is legal according to the
move rules in the case of a MOVE statement with the CORRESPONDING phrase; and both of the data items are
elementary numeric data items in the case of the ADD statement with the CORRESPONDING phrase or the
SUBTRACT statement with the CORRESPONDING phrase.

(3) The description of D1 and D2 must not contain level-number 66, 77, or 88, the USAGE IS INDEX clause,
or (for ANSI 74 and ANSI 85) the USAGE IS POINTER clause.

(4) A data item that is subordinate to D1 or D2 and contains a REDEFINES, RENAMES, OCCURS, or
USAGE IS INDEX clause is ignored, as well as those data items subordinate to the data item that contains the
REDEFINES, OCCURS, USAGE IS INDEX clause, or (for ANSI 74 and ANSI 85) the USAGE IS POINTER
clause.

(5) The name of each data item which satisfies the above conditions must be unique after application of the
implied qualifiers.

The following examples demonstrate the MOVE CORRESPONDING and ADD CORRESPONDING
statements.

FD PATIENT-FILE.
01 PATIENT-RECORD.
 03 PATIENT-KEY.

05 PATIENT-NO PIC 9(6).
05 PATIENT-EMPLOYER PIC X(30).

 03 PATIENT-NAME PIC X(20).
 03 PATIENT-INSURANCE-CO PIC X(15).

 03 PATIENT-INS-GROUP-NO PIC 9(3).
 03 TODAYS-CHARGES PIC 9(4)V99.
 03 PATIENT-BALANCE.
 05 0-30 PIC 9(4)V99.
 05 31-60 PIC 9(4)V99.
 05 OVER-60 PIC 9(4)V99.

01 BILL-DETAIL-LINE.
 03 PATIENT-NAME PIC X(20).
 03 FILLER PIC X(5) VALUE SPACE.
 03 TODAYS-CHARGES. PIC 9(4)V99.
 03 FILLER PIC X(5) VALUE SPACE.
 03 PREVIOUS-BALANCE PIC 9(4)V99.
 03 TOTAL-BALANCE PIC 9(6)V99.
01 ACCTS-REC-TOTALS
 03 SUPPLIER-BALANCE PIC 9(8)V99.
 03 PATIENT-BALANCE.

 05 0-30 PIC 9(4)V99.
 05 31-60 PIC 9(4)V99.
 05 OVER-60 PIC 9(4)V99.

*** The following MOVE statement is the equivalent to:

*** MOVE PATIENT-NAME OF PATIENT-RECORD
*** TO PATIENT-NAME OF BILL-DETAIL-LINE.
*** MOVE TODAYS-CHARGES OF PATIENT-RECORD
*** TO TODAYS-CHARGES OF BILL-DETAIL-LINE.

MOVE CORR PATIENT-RECORD TO BILL-DETAIL-LINE.

*** The following ADD statement is equivalent to:

*** ADD 0-30 OF PATIENT-BALANCE OF PATIENT-RECORD
*** TO 0-30 OF PATIENT-BALANCE OF ACCTS-REC-TOTALS.
*** ADD 31-60 OF PATIENT-BALANCE OF PATIENT-RECORD
*** TO 31-60 OF PATIENT-BALANCE OF ACCTS-REC-TOTALS.
*** ADD OVER-60 OF PATIENT-BALANCE OF PATIENT-RECORD
*** TO OVER-60 OF PATIENT-BALANCE OF ACCTS-REC-TOTALS.

ADD CORR PATIENT-BALANCE OF PATIENT-RECORD TO PATIENT-BALANCE
 OF ACCTS-REC-TOTALS.

EXAMPLE 15. MOVE CORRESPONDING and ADD CORRESPONDING

255

Interactive COBOL Language Reference & Developer’s Guide - Part One

The following code demonstrates the MOVE CORRESPONDING statement.

WORKING-STORAGE SECTION.
01 SYSTEM-DATE PIC 9(8) VALUE ZERO.
01 SYSTEM-DATE-R REDEFINES SYSTEM-DATE.
 03 SYSTEM-YEAR PIC 9(4).
 03 SYSTEM-MONTH PIC 9(2).
 03 SYSTEM-DAY PIC 9(2).
01 CURRENT-DATE.
 03 SYSTEM-MONTH PIC 9(2).
 03 SYSTEM-DAY PIC 9(2).
 03 SYSTEM-YEAR PIC 9(4).
01 CURRENT-DATE-R REDEFINES CURRENT-DATE PIC 9(8).

 ACCEPT SYSTEM-DATE FROM DATE YYYYMMDD.
 MOVE CORRESPONDING SYSTEM-DATE-R TO CURRENT-DATE.

EXAMPLE 16. MOVE CORRESPONDING

B.3.4 Arithmetic Statements

The arithmetic statements are the ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements. They
have several common features.

(1) The data descriptions of the operands need not be the same; any necessary conversion and decimal point
alignment is supplied throughout the calculation.

(2) The maximum size of each operand is 18 decimal digits. The composite of operands, which is a
hypothetical data item resulting from the superimposition of specified operands in a statement aligned on their
decimal points, must not contain more than 18 decimal digits.

B.3.5 Overlapping Operands

When a sending and a receiving data item in any statement share a part or all of their storage areas, yet are not
defined by the same data description entry, the result of the execution of such a statement is undefined. For
statements in which the sending and receiving data items are defined by the same data description entry, the results
of the execution of the statement may or may not be defined depending on the general rules associated with the
applicable statement. If there are no specific rules addressing such overlapping operands, the results are undefined.

In the case of reference modification, the unique data item produced by reference modification is not considered to
be the same data description entry as any other data description entry. Therefore, if an overlapping situation exists,
the results of the operation are undefined.

B.3.6 Multiple Results in Arithmetic Statements

The ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements may have multiple results. Such
statements behave as though they had been written in the following way:

(1) A statement whose execution accesses all data items that are part of the initial evaluation of the statement,
performs any necessary arithmetic or combining of these data items and stores the result of this operation in a
temporary location. See the individual statements for the rules indicating which items are part of the initial
evaluation.

256

PROCEDURE DIVISION - Concepts (Statements and Sentences)

(2) A sequence of statements whose execution transfers or combines the value in this temporary location with
each single resulting data item. These statements are considered to be written in the same left-to-right sequence that
the multiple results are specified.

The result of the statement

ADD a, b, c, TO c, d(c), e

is equivalent to

ADD a, b, c GIVING temp
ADD temp TO c
ADD temp TO d(c)
ADD temp TO e

and the result of the statement

MULTIPLY a(i) BY i, a(i)

is equivalent to

MOVE a(i) TO temp
MULTIPLY temp BY i
MULTIPLY temp BY a(i)

in both cases, `temp' is an intermediate result item provided by the compiler.

B.3.7 Incompatible Data

Except for the class condition, when the content of a data item is referenced in the Procedure Division and the
content of that data item is not compatible with the class specified for that data item by its PICTURE clause, then the
result of such a reference is undefined.

B.4. Statements and Sentences

There are four types of statements: imperative statements, conditional statements, compiler directing statements, and
delimited scope statements.

There are three types of sentences: imperative sentences, conditional sentences, and compiler directing sentences.

B.4.1 Conditional Statements and Sentences

B.4.1.1 Definition of Conditional Statement

A conditional statement specifies that the truth value of a condition is to be determined and that the subsequent
action of the object program is dependent on this truth value.

A conditional statement is one of the following:

(1) An EVALUATE, IF, SEARCH, or RETURN statement.

(2) A READ statement that specifies the AT END, NOT AT END, INVALID KEY, or NOT INVALID KEY
phrase.

257

Interactive COBOL Language Reference & Developer’s Guide - Part One

(3) A WRITE statement that specifies the INVALID KEY, NOT INVALID KEY, END-OF-PAGE, or NOT
END-OF-PAGE phrase.

(4) A DEFINE SUB-INDEX, DELETE, EXPUNGE SUB-INDEX, LINK SUB-INDEX, RETRIEVE,
REWRITE, START, or UNDELETE statement that specifies the INVALID KEY or NOT INVALID KEY phrase.

(5) An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY, SUBTRACT) that specifies the ON
SIZE ERROR or NOT ON SIZE ERROR phrase.

(6) A STRING or UNSTRING statement that specifies the ON OVERFLOW or NOT ON OVERFLOW
phrase.

(7) A CALL statement that specifies the ON OVERFLOW, ON EXCEPTION, or NOT ON EXCEPTION
phrase.

(8) A CALL PROGRAM statement that specifies the ON EXCEPTION or NOT ON EXCEPTION phrase.

(9) An ACCEPT statement that specifies ON ESCAPE or NOT ON ESCAPE.

 (10) (ISQL) A COMMIT, CONNECT, DEALLOCATE, DISCONNET, EXECUTE, EXECUTE
IMMEDIATE, FETCH, PREPARE, ROLLBACK, or SET CONNECTION statement that specifies ON
SQLERROR or NOT ON SQLERROR.

(11) (ISQL) A GET DIAGNOSTICS statement that specifies the ON EXCEPTION or NOT ON EXCEPTION
phrase.

B.4.1.1.1 Definition of Conditional Phrase

A conditional phrase specifies the action to be taken upon determination of the truth value of a condition resulting
from the execution of a conditional statement.

A conditional phrase is one of the following:

(1) an AT END or NOT AT END phrase when specified within a READ statement.

(2) an INVALID KEY or NOT INVALID KEY phrase when specified within a DELETE, READ, REWRITE,
START, UNDELETE, or WRITE statement.

(3) a SIZE ERROR or NOT SIZE ERROR phrase when specified within an ADD, COMPUTE, DIVIDE,
MULTIPLY, or SUBTRACT statement.

(4) an ON OVERFLOW or NOT ON OVERFLOW phrase when specified within a STRING or UNSTRING
statement.

(5) an ON OVERFLOW, ON EXCEPTION, NOT ON OVERFLOW, or NOT ON EXCEPTION phrase when
specified within a CALL statement.

(6) an ON EXCEPTION or NOT ON EXCEPTION phrase when specified within a CALL PROGRAM
statement.

(7) an END-OF-PAGE or NOT END-OF-PAGE phrase when specified with a WRITE statement.

(8) an ON ESCAPE or NOT ON ESCAPE phrase when specified with an ACCEPT statement.

258

PROCEDURE DIVISION - Concepts (Statements and Sentences)

(9) (ISQL) an ON SQLERROR or NOT ON SQLERROR phrase when specified with a COMMIT,
CONNECT, DEALLOCATE, DISCONNECT, EXECUTE, EXECUTE IMMEDIATE, FETCH, PREPARE,
ROLLBACK, SET CONNECTION statement.

(10) (ISQL) an ON EXCEPTION or NOT ON EXCEPTION phrase when specified within a GET
DIAGNOSTICS statement.

B.4.1.2 Definition of Conditional Sentence

A conditional sentence is a conditional statement, optionally preceded by an imperative statement, terminated by the
separator period.

B.4.2 Compiler Directing Statements and Sentences

B.4.2.1 Definition of Compiler Directing Statement

A compiler directing statement consists of a compiler directing verb and its operands. The compiler directing verbs
are COPY and USE. A compiler directing statement causes the compiler to take a specific action during
compilation.

B.4.2.2 Definition of Compiler Directing Sentence

A compiler directing sentence is a single compiler directing statement terminated by the separator period.

B.4.3 Imperative Statements and Sentences

B.4.3.1 Definition of Imperative Statement

An imperative statement begins with an imperative verb and specifies an unconditional action to be taken by the
object program or is a conditional statement that is delimited by its explicit scope terminator (delimited scope
statement). An imperative statement may consist of a sequence of imperative statements, each possibly separated
from the next by a separator. The imperative verbs are:

ACCEPT 7

ADD 1

CALL 5

CALL PROGRAM 6

CANCEL
CLOSE
COMPUTE 1

CONNECT 9

CONTINUE
DEALLOCATE 9

DEFINE SUB-INDEX
DELETE 2

DISCONNECT 9

DISPLAY
DIVIDE 1

EXECUTE 9

EXIT
EXPUNGE
EXPUNGE SUB-INDEX 2

FETCH 9

GET 6

GO TO
INITIALIZE
INSPECT

LINK SUB-INDEX 2

MERGE
MOVE
MULTIPLY 1

OPEN
PERFORM
PREPARE 9

READ 4

RELEASE
RETRIEVE 2

REWRITE 2

SET

SET (ISQL) 9

SORT
START 2

STOP
STRING 3

SUBTRACT 1

UNDELETE 2

UNSTRING 3

WRITE 8

1 without the optional ON SIZE ERROR and NOT ON SIZE ERROR phrases
2 without the optional INVALID KEY and NOT INVALID KEY phrases
3 without the optional ON OVERFLOW and NOT ON OVERFLOW phrases
4 without the optional AT END, NOT AT END, INVALID KEY, and NOT INVALID KEY phrases
5 without the optional ON OVERFLOW, ON EXCEPTION, and NOT ON EXCEPTION phrases
6 without the optional ON EXCEPTION and NOT ON EXCEPTION phrases
7 without the optional ON ESCAPE and NOT ON ESCAPE phrases
8 without the optional INVALID KEY, NOT INVALID KEY, END-OF-PAGE, and NOT END-OF-PAGE phrases
9 without the optional ON SQLERROR and NOT ON SQLERROR phrases

259

Interactive COBOL Language Reference & Developer’s Guide - Part One

Whenever `imperative-statement' appears in the general format of statements, `imperative-statement' refers to that
sequence of consecutive imperative statements that must be ended by a period or by any phrase associated with a
statement containing that `imperative-statement'.

(ISQL) The COMMIT, CONNECT, DEALLOCATE, DISCONNECT, EXECUTE, EXECUTE IMMEDIATE,
FETCH, GET DIAGNOSTICS, PREPARE, ROLLBACK, and SET CONNECTION statements are only available
when the ISQL feature-set is enabled.

B.4.3.2 Definition of Imperative Sentence

An imperative sentence is an imperative statement terminated by the separator period.

B.5. Scope of Statements

A delimited scope statement is any statement which includes its explicit scope terminator. (See section B.6.5 on
page 262.)

When statements are nested within other statements, a separator period which terminates the sentence also implicitly
terminates all nested statements.

Whenever any statement is contained within another statement, the next phrase of the containing statement following
the contained statement terminates the scope of any unterminated contained statement.

When statements are nested within other statements which allow optional conditional phrases, any optional
conditional phrase encountered is considered to be the next phrase of the nearest preceding unterminated statement
with which that phrase is permitted to be associated according to the general format and the syntax rules for that
statement, but with which no such phrase has already been associated. An unterminated statement is one which has
not been previously terminated either explicitly or implicitly.

B.6. Explicit and Implicit Specifications

There are four types of explicit and implicit specifications that occur in COBOL source programs:

(1) Explicit and implicit Procedure Division references

(2) Explicit and implicit transfers of control

(3) Explicit and implicit attributes

(4) Explicit and implicit scope terminators

B.6.1 Explicit and Implicit Procedure Division References

A COBOL source program can reference data items either explicitly or implicitly in Procedure Division statements.
An explicit reference occurs when the name of the referenced item is written in a Procedure Division statement or
when the name of the referenced item is copied into the Procedure Division by the processing of a COPY statement.
An implicit reference occurs when the item is referenced by a Procedure Division statement without the name of the
referenced item being written in the source statement. An implicit reference also occurs, during the execution of a
PERFORM statement, when the index or data item referenced by the index-name or identifier specified in the
VARYING, AFTER, or UNTIL phrase is initialized, modified, or evaluated by the control mechanism associated
with that PERFORM statement. Such an implicit reference occurs if and only if the data item contributes to the
execution of the statement.

260

PROCEDURE DIVISION - Concepts (Explicit and Implicit Specifications)

B.6.2 Explicit and Implicit Transfers of Control

The mechanism that controls program flow transfers control from statement to statement in the sequence in which
they were written in the source program unless an explicit transfer of control overrides this sequence or there is no
next executable statement to which control can be passed. The transfer of control from statement to statement occurs
without the writing of an explicit Procedure Division statement, and, therefore, is an implicit transfer of control.

COBOL provides both explicit and implicit means of altering the implicit control transfer mechanism.

In addition to the implicit transfer of control between consecutive statements, implicit transfer of control also occurs
when the normal flow is altered without the execution of a procedure branching statement. COBOL provides the
following types of implicit control flow alterations which override the statement-to-statement transfers of control:

(1) If a paragraph is being executed under control of another COBOL statement (for example, PERFORM,
USE, SORT, and MERGE) and the paragraph is the last paragraph in the range of the controlling statement, then an
implied transfer of control occurs from the last statement in the paragraph to the control mechanism of the last
executed controlling statement. Further, if a paragraph is being executed under the control of a PERFORM
statement which paragraph is being executed under the control of a PERFORM statement which causes iterative
execution, and that paragraph is the first paragraph in the range of that PERFORM statement, an implicit transfer of
control occurs between the control mechanism associated with that PERFORM statement and the first statement in
that paragraph for each iterative execution of the paragraph.

(2) When a SORT or MERGE statement is executed, an implicit transfer of control occurs to any associated
input or output procedures.

(3) When any COBOL statement is executed which results in the execution of a declarative section, an implicit
transfer of control to the declarative section occurs. Another implicit transfer of control occurs after execution of the
declarative section, as described in paragraph 1 above.

An explicit transfer of control consists of an alteration of the implicit control transfer mechanism by the execution of
a procedure branching or conditional statement. An explicit transfer of control can be caused only by the execution
of a procedure branching or conditional statement. The procedure branching statement EXIT PROGRAM causes an
explicit transfer of control only when the statement is executed in a called program.

In this document, the term `next executable statement' is used to refer to the next COBOL statement to which control
is transferred according to the rules above and the rules associated with each language element.

There is no next executable statement when the program contains no Procedure Division or does contain the
following:

(1) The last statement in a declarative section when the paragraph in which it appears is not being executed
under the control of some other COBOL statement.

(2) The last statement in a declarative section when the statement is in the range of an active PERFORM
statement executed in a different section and this last statement of the declarative section is not also the last statement
of the procedure that is the exit of the active PERFORM statement.

(3) The last statement in a program when the paragraph in which it appears is not being executed under the
control of some other COBOL statement in that program.

(4) A STOP RUN statement or EXIT PROGRAM statement that transfers control outside the COBOL program.

When there is no next executable statement and control is not transferred outside the COBOL program, the program
flow of control is undefined unless the program execution is in the nondeclarative procedures portion of a program
under control of a CALL statement, in which case an implicit EXIT PROGRAM statement is executed.

261

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.6.3 Explicit and Implicit Attributes

Attributes may be implicitly or explicitly specified. Any attribute which has been explicitly specified is called an
explicit attribute. If an attribute has not been specified explicitly, then the attribute takes on the default specification.
Such an attribute is known as an implicit attribute.

For example, the usage of a data item need not be specified, in which case a data item's usage is DISPLAY.

B.6.4 Scope Terminators

Scope terminators serve to delimit the scope of certain Procedure Division. Scope terminators are of two types:
explicit and implicit.

B.6.5 Explicit Scope Terminators

The explicit scope terminators are the following:

END-ACCEPT
END-ADD
END-CALL
END-COMMIT
END-COMPUTE
END-CONNECT
END-DEALLOCATE
END-DEFINE
END-DELETE

END-DISCONNECT
END-DIVIDE
END-EXECUTE
END-EVALUATE
END-EXPUNGE
END-FETCH
END-GET
END-IF
END-LINK

END-MULTIPLY
END-PERFORM
END-PREPARE
END-READ
END-RETRIEVE
END-RETURN
END-REWRITE
END-ROLLBACK
END-SEARCH

END-SET
END-START
END-STRING
END-SUBTRACT
END-UNDELETE
END-UNSTRING
END-WRITE

B.6.6 Implicit Scope Terminators

The implicit scope terminators are the following:

(1) At the end of any sentence, the separator period which terminates the scope of all previous statements not
yet terminated.

(2) Within any statement containing another statement, the next phrase of the containing statement following the
contained statement terminates the scope of any unterminated contained statement. Examples of such phrases are
ELSE, NOT AT END, etc.

262

PROCEDURE DIVISION (File Concepts)

C. File Concepts

A file is a collection of records which may be placed into or retrieved from a storage medium. The user not only
chooses the file organization, but also chooses the file processing method and sequence. Although the file
organization and processing method are restricted for sequential media, no such restrictions exist for mass storage
media.

When describing the capabilities of COBOL programs to manipulate files, the following conventions are used. The
term `file-name' means the user-defined word used in the COBOL source program to reference a file. The terms `file
referenced by file-name' and `file' mean the physical file regardless of the file-name used in the COBOL program.
The term `file connector' means the entity containing information concerning the file. All accesses to physical files
occur through file connectors. In various implementations, the file connector is referred to as a file information
table, a file control block, etc.

C.1. File Attributes

A file has several attributes which apply to the file at the time it is created and cannot be changed throughout the
lifetime of the file. The primary attribute is the organization of the file, which describes its logical structure. Other
fixed attributes of the file provided by the COBOL program are primary record key, alternate record keys, code set,
the minimum and maximum logical record size, the record type (fixed or variable), the collating sequence of the keys
for indexed files, the blocking factor, the padding character, and the record delimiter.

For ANSI 74 and ANSI 85, there are three organizations: sequential, relative, and indexed. For VXCOBOL, there
are four organizations: sequential, relative, indexed, and INFOS.

C.1.1 Sequential Organization

Sequential files are organized so that each record, except the last, has a unique successor record; each record, except
the first, has a unique predecessor record. The successor relationships are established by the order of execution of
WRITE statements when the file is created. Once established, successor relationships do not change except in the
case where records are added to the end of a file.

A sequentially organized mass storage file has the same logical structure as a file on any sequential medium;
however, a sequential mass storage file may be updated in place. When this technique is used, new records cannot
be added to the file and each replaced record must be the same size as the original record.

C.1.2 Relative Organization

A file with relative organization is a mass storage file from which any record may be stored or retrieved by providing
the value of its relative record number.

Conceptually, a file with relative organization comprises a serial string of areas, each capable of holding a logical
record. Each of these areas is denominated by a relative record number. Each logical record in a relative file is
identified by the relative record number of its storage area. For example, the tenth record is the one addressed by
relative record number 10 and is in the tenth record area, whether or not records have been written in any of the first
through the ninth record areas.

In order to achieve more efficient access to records in a relative file, the number of character positions reserved on
the medium to store a particular logical record may be different from the number of character positions in the
description of that record in the program.

263

Interactive COBOL Language Reference & Developer’s Guide - Part One

C.1.3 Indexed Organization

A file with indexed organization is a mass storage file from which any record may be accessed by giving the value of
a specified key in that record. For each key data item defined for the records of a file, an index is maintained. Each
such index represents the set of values from the corresponding key data item in each record. Each index, therefore,
is a mechanism which can provide access to any record in the file.

Each indexed file has a primary index which represents the primary record key of each record in the file. Each
record is inserted in the file, changed, or deleted from the file based solely upon the value of its primary record key.
The primary record key of each record in the file must be unique, and it must not be changed when updating a
record. The primary record key is declared in the RECORD KEY clause of the file control entry for the file.

Alternate record keys provide alternative means of retrieval for the records of a file. Such keys are named in the
ALTERNATE RECORD KEY clauses of the file control entry. The value of a particular alternate record key in
each record need not be unique. When these values may not be unique, the DUPLICATES phrase is specified in the
ALTERNATE RECORD KEY clause.

C.1.4 INFOS Organization (VXCOBOL)

NOTE: As of Revision 5.30, the U/FOS data manager that provided runtime support for INFOS files is no longer
sold or supported.

A file with INFOS organization is a mass storage file from which any record may be accessed by giving the value of
a specified key or keys. For each key data item defined for the records of a file, a subindex is maintained. Each such
index represents the set of values from the corresponding key data item. One or more keys can be associated with
each record in the file.

A key may or may not be contained within the record. A key may or may not be associated with a record.

A file with INFOS organization can have several modes of indexing:

(1) simple indexing (one index per file)

(2) alternate indexing (multiple paths to a record)

(3) multiple indexing

(4) multilevel indexing

ICOBOL requires the U/FOS data management software from Transoft, Inc. to provide INFOS support.

C.2. Logical Records

A logical record is the unit of data which is retrieved from or stored into a file. There are two types of records: fixed
length and variable length. When a file is created, it is declared to contain either fixed length or variable length
records. In any case, the content of the record does not reflect any information the implementor may add to the
record on the physical storage medium (such as record length headers), nor does the length of the record used by the
COBOL programmer reflect these additions.

C.2.1 Fixed Length Records

Fixed length records must contain the same number of character positions for all the records in the file. All
input-output operations on the file can only process this one record size.

264

PROCEDURE DIVISION - File Concepts (File Processing)

For ANSI 74 and ANSI 85, fixed length records may be explicitly selected by specifying a Format 1 RECORD
clause in the file description entry for the file regardless of the individual record descriptions.

For VXCOBOL, fixed length records may be explicitly selected by specifying RECORDING MODE IS FIXED
clause in the file description entry for the file regardless of the individual record descriptions.

C.2.2 Variable Length Records (ANSI 74 and ANSI 85)

Variable length records may contain differing numbers of character positions among the records on the file. To
define variable length records explicitly, the VARYING phrase may be specified in the RECORD clause in the file
description entry or the sort-merge file description entry for the file. The length of a record is affected by the
data-item referenced in the DEPENDING phrase of the RECORD clause or the DEPENDING phrase of an
OCCURS clause or by the length of the record description entry for this file. They may also be obtained with the
RECORDING MODE IS VARIABLE clause, however this is obsolete and applies to sequential files only.

C.2.3 Variable Length Records (VXCOBOL)

Variable length records may contain differing numbers of character positions among the records on the file. Variable
length records may be explicitly selected by selecting the RECORDING MODE IS VARIABLE clause in the file
regardless of the individual record descriptions.

C.3. File Processing

A file can be processed by performing operations upon individual records or upon the file as a unit, or (for INFOS
files when using the VXCOBOL dialect) by performing operations upon individual keys. Unusual conditions that
occur during processing are communicated back to the program.

C.4. Record Operations

The ACCESS MODE clause of the file description entry specifies the manner in which the object program operates
upon records within a file. The access mode may be sequential, random, or dynamic.

For files that are organized as relative, indexed, or INFOS, any of the three access modes can be used to access the
file regardless of the access mode used to create the file. A file with sequential organization may only be accessed in
sequential mode.

When a file is accessed in random mode, input-output statements are used to access the records in a
programmer-specified order. With the indexed organization, the programmer specifies the desired record by placing
the value of one of its record keys in a record key or an alternate record key data item.

With dynamic access mode, the programmer may change at will from sequential accessing to random accessing,
using appropriate forms of input-output statements.

C.4.1 Sequential Access Mode

A file can be accessed sequentially irrespective of the file organization.

For sequential organization, the order of sequential access is the order in which the records were originally written.
The START statement may be used to establish a starting point for a series of subsequent retrievals.

265

Interactive COBOL Language Reference & Developer’s Guide - Part One

For relative organization, the order of sequential access is ascending or descending based on the value of the relative
record numbers. Only records which currently exist in the file are made available. The START statement may be
used to establish a starting point for a series of subsequent sequential retrievals.

For indexed organization or INFOS, the order of sequential access is ascending or descending based on the value of
the key of reference according to the collating sequence associated with the native character set. Any of the keys
associated with the file may be established as the key of reference during the processing of the file. The order of
retrieval from a set of records which have duplicate key of reference values is the original order of arrival of those
records into the set. The START statement may be used to establish a starting point within an indexed file for a
series of subsequent sequential retrievals.

For VXCOBOL, each individual I/O operation may be used to establish a starting point within an INFOS file for
subsequent sequential retrievals.

C.4.2 Random Access Mode

When a file is accessed in random mode, input-output statements are used to access the records in a
programmer-specified order. The random access mode may only be used with relative, indexed, or INFOS file
organizations.

For a file with relative organization, the programmer specifies the desired record by placing its relative record
number in a relative key data item. With the indexed organization, the programmer specifies the desired record by
placing the value of one of its record keys in a record key or an alternate record key data item. With INFOS
organization, the programmer specifies the desired record by placing the value of one or more of its record keys in
appropriate record key data items.

C.4.3 Dynamic Access Mode

With dynamic access mode, the programmer may change at will from sequential accessing to random accessing,
using appropriate forms of input-output statements. The dynamic access mode may only be used on files with
relative, indexed, or INFOS organizations.

C.4.4 Open Mode

The open mode of the file is related to the actions to be performed upon is in the file. The open modes and purposes
are: INPUT, to retrieve records; OUTPUT, to place records into a file; EXTEND, to append records to an existing
file; and I-O, to retrieve and update records. The open mode is specified in the OPEN statement.

When the open mode is INPUT, a file may be accessed by the READ and for VXCOBOL the RETRIEVE
statement. The START statement may also be used for files organized as indexed, relative, INFOS which are in
sequential or dynamic access modes or for files organized as sequential.

When the open mode is OUTPUT, the records are placed into the file by issuing WRITE statements.

When the open mode is EXTEND, new records are added to the logical end of a file by issuing WRITE statements.

Only mass storage files may be referenced in the open I-O mode. The additional capabilities of mass storage devices
permit updating in place, thus READ and REWRITE statements may always be used. A mass storage file may be
updated in the same manner as a file on a sequential medium, by transcribing the entire file into another file (perhaps
in a separate area of mass storage) using READ and WRITE statements. However, it is sometimes more efficient to
update a mass storage file in place. This mass storage file maintenance technique uses the REWRITE statement to
return to their previous locations on the storage medium only those records which have changed.

266

PROCEDURE DIVISION - File Concepts (File Operations)

READ, REWRITE, and START statements are the only operations allowed, while updating in place sequentially
organized files. However, for indexed, relative, or INFOS organized files, the following additional functions may be
applied: the DELETE Statement may be used with any access mode to remove a record logically from a file; the
UNDELETE Statement may be used with any access mode to add a record that had been logically removed from a
file; the WRITE statement may be used in random or dynamic access mode to insert a new record into the file.

C.4.5 Current Volume Pointer

The current volume pointer is a conceptual entity used in this document to facilitate exact specification of the current
physical volume of a sequential file. The status of the current volume pointer is affected by the CLOSE, OPEN,
READ, and WRITE statements.

C.4.6 File Position Indicator

The file position indicator is a conceptual entity used in this document to facilitate exact specification of the next
record to be accessed within a given file during certain sequences of input-output operations. The concept of a file
position indicator has no meaning for a file opened in the output or extend mode.

For sequential, relative, and indexed files, the setting of the file position indicator is affected only by the OPEN,
READ, and START statements. The file position indicator can be updated on all INFOS file operations.

C.5. File Operations

Several COBOL statements operate upon files as entities or as collections of records. These are the CLOSE,
DELETE FILE, and OPEN statements. For VXCOBOL, the EXPUNGE statement is also included.

C.6. Exception Handling

During the execution of any input or output operation, unusual conditions may arise which preclude normal
completion of the operation. There are four methods by which these conditions are communicated to the object
program; status keys, exception declaratives, optional phrases associated with the imperative statement, and the
ACCEPT FROM EXCEPTION STATUS statement. If a fatal I/O error is encountered and the program terminates,
the current Exception Status is displayed right after the current opcode location and current PC.

C.6.1 I-O Status (FILE STATUS)

The I-O status is a two-character conceptual entity whose value is set to indicate the status of an input-output
operation during the execution of a CLOSE, DEFINE SUB-INDEX, DELETE, DELETE FILE, EXPUNGE,
EXPUNGE SUB-INDEX, LINK SUB-INDEX, OPEN, READ, RETRIEVE, REWRITE, START, UNDELETE,
UNLOCK, or WRITE statement and prior to the execution of any imperative statement associated with that input-ou-
tput statement or prior to the execution of any applicable USE AFTER STANDARD EXCEPTION procedure. The
value of the FILE STATUS is made available to the COBOL program through the use of the FILE STATUS clause
in the file control entry for the file.

For VXCOBOL, whenever the I-O status is updated the INFOS STATUS is also updated. INFOS STATUS is an
extension to ANSI COBOL.

The I-O status also determines whether an applicable USE AFTER STANDARD EXCEPTION procedure will be
executed. If any condition other than those contained under the heading "Successful Completion" below results,
such a procedure may be executed depending on rules stated elsewhere. If one of the conditions listed under the
heading "Successful Completion" below results, no such procedure will be executed. (See The USE Statement, page
491).

267

Interactive COBOL Language Reference & Developer’s Guide - Part One

Certain classes of I-O status values indicate critical error conditions. These are:

any that begin with the digit 3 or 4, and
any that begin with the digit 9.

If the value of the I-O status for an input-output operation indicates such an error condition, and an applicable USE
AFTER STANDARD EXCEPTION procedure exists, it is executed. After execution of the USE procedure, control
returns to the statement following the statement that caused the error. If no applicable USE AFTER STANDARD
EXCEPTION applies, after completion of the normal input-output control system error processing, and NO I-O
status (FILE STATUS) or INFOS STATUS was associated with this file, the COBOL program is terminated with a
Fatal Error indicating the type of error encountered and the COBOL pc. To prevent this from happening, a
Declaratives section with an applicable USE procedure should be defined.

C.6.2 I-O Status (ANSI 74)

I-O status expresses one of the following conditions upon completion of the input-output operation:

(1) Successful Completion (0x). The input-output statement was successfully executed.

(2) At End (1x). A sequential READ statement was unsuccessfully executed as a result of an at end condition.

(3) Invalid Key (2x). The input-output statement was unsuccessfully executed as a result of an invalid key
condition.

(4) Permanent Error (3x). The input-output statement was unsuccessfully executed as the result of an error that
precluded further processing of the file. Any specified exception procedures are executed. The permanent
error condition remains in effect for all subsequent input-output operations on the file unless an
implementor-defined technique is invoked to correct the permanent error condition.

(5) ICOBOL-Defined (Implementor-Defined) (9x). The input-output statement was unsuccessfully executed as
a result of a condition that is specified by ICOBOL.

The following is a list of the values placed in the I-O status for the previously named conditions resulting from the
execution of an input-output operation on a file.

(1) Successful Completion

00 The input-output statement is successfully executed and no further information is available concerning the
input-output operation.

02 The input-output statement is successfully executed but a duplicate key is detected. SUPPORTED WITH
-G d OPTION TO ICRUN.

a. For a READ random or READ NEXT statement, the key value for the current key of reference is equal
to the value of the same key in the next record within the current key of reference. For a READ PREVIOUS
statement, the key value for the current key of reference is equal to the value of the same key in the previous record
within the current key of reference.

b. For a REWRITE or WRITE statement, the record just written created a duplicate key value for at least
one alternate record key for which duplicates are allowed.

04 A READ statement is successfully executed but the length of the record being processed does not conform
to the fixed file attributes for that file.

268

PROCEDURE DIVISION - File Concepts (ANSI 74 I-O Status)

(2) At End Condition With Unsuccessful Completion

10 A sequential READ statement is attempted and no next logical record exists in the file because:

a. The end of the file has been reached, or

b. A sequential READ statement is attempted for the first time on an optional input file that is not present.

(3) Invalid Key Condition With Unsuccessful Completion

21 A sequence error exists for a sequentially accessed indexed file. The primary record key value has been
changed by the program between the successful execution of a READ statement and the execution of the
next REWRITE statement for that file, or the ascending sequence requirements for successive record key
values are violated.

22 The duplicates condition exists because:

a. An attempt is made to write a record that would create a duplicate key in a relative file, on the primary
key, or on an alternate key that does not allow duplicates in an indexed file, or

b. An attempt is made to UNDELETE a record that was not deleted. THIS IS AN EXTENSION TO
ANSI COBOL.

23 The no record found condition exists because:

a) An attempt is made to randomly access a record that does not exist in the file, or

b) A START or random READ statement is attempted on an optional input file that is not present.

24 An attempt is made to write beyond the externally defined boundaries of a relative or indexed file. Under
ICOBOL this implies: for a relative file writing beyond the record number limit; and for an Indexed file the
index structure is full.

(4) Permanent Error Condition With Unsuccessful Completion

30 A permanent error exists and no further information is available concerning the input-output operation.
Generally related to some hardware condition.

34 A permanent error exists because of a boundary violation; an attempt is made to write beyond the externally
defined boundaries of a sequential file. Generally out of disk space.

(5) ICOBOL-Defined (Implementor-Defined) Condition With Unsuccessful Completion.

91 An OPEN error. The possible violations are:

a. An OPEN statement referred to a file that was nonexistent.

b. An OPEN statement referred to a file that was already open. This is a 41 with ANSI 85.

c. An OPEN statement referred to a file that was had an illegal name.

d. A CLOSE statement referred to a file that had not been opened. This is a 42 with ANSI 85.

e. On OPEN, the filename already existed.

f. On OPEN, a nondirectory argument was in the pathname.

269

Interactive COBOL Language Reference & Developer’s Guide - Part One

g. On OPEN, a zero-length filename was specified.

h. On OPEN, no more files could be opened from the operating system.

i. On OPEN, for devices the hardware is not present.

j. On a data-sensitive READ, the line is too long for the record. This is a 34 with ANSI 85.

92 An Access mode error. The possible violations are:

a. File not opened.

b. WRITE attempted to file opened for input. This is a 48 with ANSI 85.

c. DELETE attempted to file opened for input. This is a 49 with ANSI 85.

d. READ attempted for file opened for output. This is a 47 with ANSI 85.

e. OPEN attempted for file closed with lock. This is a 38 with ANSI 85.

f. DELETE or REWRITE statement not preceded by a READ statement for a file in sequential access
mode. This is a 43 with ANSI 85.

g. OPEN attempted on a file with insufficient access rights for OPEN mode. This is a 37 with ANSI 85.

h. An attempt is made to WRITE or REWRITE a record that is larger than the largest or smaller than the
smallest record allowed by the RECORD IS VARYING clause of the associated filename. This is a 44 with ANSI
85.

94 An In Use Error. The possible violations are:

a. File cannot be exclusively opened because it is in use.

b. Record cannot be accessed because it is locked.

c. DELETE FILE attempted for an opened file.

96 A directory named by the program does not exist.

97 Maximum number of open files exceeded.

98 Attempt to write more than 65,535 records to a relative file. This is a 24 with ANSI 85.

99 Printer control file is full.

9A File description inconsistency. Record length, key length, or key positions specified in program does not
agree with the data file. This is a 39 with ANSI 85. ICISAM file version is not valid.

9B Corruption error. The possible violations are:

a. After a successful OPEN of an ISAM file, the runtime system has detected possible corruption in the file.
Close this file; this sets the ISAM reliability flags and prevents further access to the file.

b. The data (.XD) portion of an Indexed or relative file is full. The ICISAM reliability flags are set.

c. On an attempted OPEN of an ICISAM file, the runtime has detected that the file is possibly corrupt
although the ICISAM reliability flags are clear. The appropriate reliability flag(s) are set and the file is not opened.

270

PROCEDURE DIVISION - File Concepts (ANSI 85 I-O Status)

9C Index (.NX) portion of an Indexed or relative file is full. The ICISAM reliability flags are not set.

9E Record lock limit has been exceeded.

9F Possible corruption of an ICISAM file has been detected on an attempted OPEN of the file; i.e., one or both
of the ICISAM reliability flags had previously been set.

9T A time out condition has occurred on an I/O operation.

C.6.3 I-O Status (ANSI 85)

I-O status expresses one of the following conditions upon completion of the input-output operation:

(1) Successful Completion (0x). The input-output statement was successfully executed.

(2) At End (1x). A sequential READ statement was unsuccessfully executed as a result of an at end
condition.

(3) Invalid Key (2x). The input-output statement was unsuccessfully executed as a result of an invalid key
condition.

(4) Permanent Error (3x). The input-output statement was unsuccessfully executed as the result of an error
that precluded further processing of the file. Any specified exception procedures are executed. The
permanent error condition remains in effect for all subsequent input-output operations on the file unless
an implementor-defined technique is invoked to correct the permanent error condition.

(5) Logic Error (4x). The input-output statement was unsuccessfully executed as a result of an improper
sequence of input-output operations that were performed on the file or as a result of violating a limit
defined by the user.

(6) ICOBOL-Defined (Implementor-Defined) (9x) Condition With Unsuccessful Completion. The
input-output statement was unsuccessful executed as a result of a condition that is specified by
ICOBOL.

The following is a list of the values placed in the I-O status for the previously named conditions resulting from the
execution of an input-output operation on a file.

(1) Successful Completion

00 The input-output statement is successfully executed and no further information is available concerning the
input-output operation.

02 The input-output statement is successfully executed but a duplicate key is detected.

a) For a READ random or READ NEXT statement, the key value for the current key of reference is equal
to the value of the same key in the next record within the current key of reference. For a READ
PREVIOUS statement, the key value for the current key of reference is equal to the value of the same
key in the previous record within the current key of reference.

b) For a REWRITE or WRITE statement, the record just written created a duplicate key value for at least
one alternate record key for which duplicates are allowed.

04 A READ statement is successfully executed but the length of the record being processed does not conform
to the fixed file attributes for that file.

271

Interactive COBOL Language Reference & Developer’s Guide - Part One

05 An OPEN statement is successfully executed but the referenced optional file is not present at the time the
OPEN statement is executed. If the open mode is I-O or extend, the file has been created.

(2) At End Condition With Unsuccessful Completion

10 A sequential READ statement is attempted and no next logical record exists in the file because:

a. The end of the file has been reached, or

b. A sequential READ statement is attempted on an optional input file that is not present.

14 A sequential READ statement is attempted for a relative file and the number is larger than the size of the
relative key data item described for the file. NEVER GENERATED BY ICOBOL.

(3) Invalid Key Condition With Unsuccessful Completion

21 A sequence error exists for a sequentially accessed indexed file. The primary record key value has been
changed by the program between the successful execution of a READ statement and the execution of the
next REWRITE statement for that file, or the ascending sequence requirements for successive record key
values are violated.

22 The duplicates condition exists because:

a. An attempt is made to write a record that would create a duplicate key in a relative file, on the primary
key, or on an alternate key that does not allow duplicates in an indexed file.

b. An attempt is made to UNDELETE a record that was not deleted. THIS IS AN EXTENSION TO
ANSI COBOL.

23 The no record found condition exists because:

a. An attempt is made to randomly access a record that does not exist in the file; or

b. A START or random READ statement is attempted on an optional input file that is not present.

24 An attempt is made to write beyond the externally defined boundaries of a relative or indexed file. Under
ICOBOL this implies: for a relative file writing beyond the record number limit; and for an Indexed file the
index structure is full.

(4) Permanent Error Condition With Unsuccessful Completion

30 A permanent error exists and no further information is available concerning the input-output operation.
Generally related to some hardware condition.

34 A permanent error exists because of a boundary violation; an attempt is made to write beyond the externally
defined boundaries of a sequential file. Generally out of disk space. On a DATA-SENSITIVE READ the
line is too long for the record.

35 A permanent error exists because an OPEN statement with the INPUT, I-O, or EXTEND phrase is
attempted on a non-optional file that is not present.

37 A permanent error exists because an OPEN statement is attempted on a file and that file will not support the
open mode specified in the OPEN statement.

The possible violations are:

a. The EXTEND or OUTPUT phrase is specified but the file will not support write operations.

272

PROCEDURE DIVISION - File Concepts (ANSI 85 I-O Status)

b. The I-O phrase is specified but the file will not support the input and output operations that are permitted
for a sequential file when opened in the I-O mode.

c. The INPUT phrase is specified but the file will not support read operations.

38 A permanent error exists because an OPEN statement is attempted on a file previously closed with lock.

39 The OPEN statement is unsuccessful because a conflict has been detected between the fixed file attributes
and the attributes specified for that file in the program.

(5) Logic Error Condition With Unsuccessful Completion.

41 An OPEN statement is attempted for a file in the open mode.

42 A CLOSE statement is attempted for a file not in open mode.

43 For a mass storage file in the sequential access mode, the last input-output statement executed for the
associated file prior to the execution of a REWRITE statement was not a successfully executed READ
statement.

44 A boundary violation exists because:

a. An attempt is made to write or rewrite a record that is larger than the largest or smaller than the smallest
record allowed by the RECORD IS VARYING clause of the associated file-name, or

b. An attempt is made to rewrite a record to a sequential, relative, or indexed file and the record is not the
same size as the record being replaced.

46 A sequential READ statement is attempted on a file open in the input or I-O mode and no valid next record
has been established because:

a. The preceding READ statement was unsuccessful but did not cause an at end condition, or

b. The preceding READ statement caused an at end condition.

c. The preceding START statement was unsuccessful.

47 The execution of a READ or START statement is attempted on a file not open in the input or I-O mode.

48 The execution of a WRITE statement is attempted on a file not open in the I-O, output or extend mode.

49 The execution of a DELETE, REWRITE, or UNDELETE statement is attempted file not open in the I-O
mode.

(6) ICOBOL-Defined (Implementor-Defined) Condition With Unsuccessful Completion.

91 An OPEN error. The possible violations are:

a. An OPEN statement referred to a file that was nonexistent.

b. An OPEN statement referred to a file that was had an illegal name.

c. On OPEN, the filename already existed.

d. On OPEN, a nondirectory argument was in the pathname.

e. On OPEN, a zero-length filename was specified.

273

Interactive COBOL Language Reference & Developer’s Guide - Part One

f. On OPEN, no more files could be opened from the operating system.

g. On OPEN, for devices the hardware is not present.

92 An Access mode error. The possible violations are:

a. File not opened.

94 An In Use Error. The possible violations are:

a. File cannot be exclusively opened because it is in use.

b. Record cannot be accessed because it is locked.

c. DELETE FILE attempted for an opened file.

96 A directory named by the program does not exist.

97 Maximum number of open files exceeded.

99 Printer control file is full.

9A ICISAM file version is not valid.

9B Corruption error. The possible violations are:

a. After a successful OPEN of an ICISAM file, the runtime system has detected possible corruption in the
file. Close this file; this sets the ICISAM reliability flags and prevents further access to the file.

b. The data (.XD) portion of an Indexed or relative file is full. The ICISAM reliability flags are set.

c. On an attempted OPEN of an ICISAM file, the runtime has detected that the file is possibly corrupt
although the ICISAM reliability flags are clear. The appropriate reliability flag(s) are set and the file is not opened.

9C Index (.NX) portion of an Indexed or relative file is full. The ICISAM reliability flags are not set.

9E Record lock limit has been exceeded.

9F Possible corruption of an ICISAM file has been detected on an attempted OPEN of the file; i.e., one or both
of the ICISAM reliability flags had previously been set.

9T A time out condition has occurred on an I/O operation.

C.6.4 I-O Status (VXCOBOL)

I-O status expresses one of the following conditions upon completion of the input-output operation:

(1) Successful Completion (0x). The input-output statement was successfully executed.

(2) At End (1x). A sequential READ statement was unsuccessfully executed as a result of an at end condition.

(3) Invalid Key (2x). The input-output statement was unsuccessfully executed as a result of an invalid key
condition.

(4) Permanent Error (3x). The input-output statement was unsuccessfully executed as the result of an error that
precluded further processing of the file. Any specified exception procedures are executed. The permanent error

274

PROCEDURE DIVISION - File Concepts (VXCOBOL I-O Status)

condition remains in effect for all subsequent input-output operations on the file unless an implementor-defined
technique is invoked to correct the permanent error condition.

(5) ICOBOL-Defined (Implementor-Defined) (9x). The input-output statement was unsuccessfully executed as
a result of a condition that is specified by ICOBOL.

The following is a list of the values placed in the I-O status for the previously named conditions resulting from the
execution of an input-output operation on a file.

(1) Successful Completion

00 The input-output statement is successfully executed and no further information is available concerning the
input-output operation.

02 The input-output statement is successfully executed but a duplicate key is detected.

a. For a READ random or READ NEXT statement, the key value for the current key of reference is equal
to the value of the same key in the next record within the current key of reference. For a READ BACKWARD
statement, the key value for the current key of reference is equal to the value of the same key in the previous record
within the current key of reference.

b. For a REWRITE or WRITE statement, the record just written created a duplicate key value for at least
one alternate record key for which duplicates are allowed.

(2) At End Condition With Unsuccessful Completion

10 A sequential READ statement is attempted and no next logical record exists in the file because:

a. The end of the file has been reached,

b. The end of a subindex has been reached, or

c. A sequential READ statement is attempted for the first time on an optional input file that is not present.

(3) Invalid Key Condition With Unsuccessful Completion

21 A sequence error exists for a sequentially accessed indexed file. The primary record key value has been
changed by the program between the successful execution of a READ statement and the execution of the
next REWRITE statement for that file, or the ascending sequence requirements for successive record key
values are violated.

22 The duplicates condition exists because:

a. An attempt is made to write a record that would create a duplicate key in a relative file, on the primary
key, or on an alternate key that does not allow duplicates in an indexed file, or any key which does not allow
duplicates in an INFOS file.

b. For an INFOS file, an attempt has been made to write a record or partial record which already exists.

c. For an INFOS file, an attempt to write a duplicate key in a subindex which does not allow duplicate
keys.

23 The no record found condition exists because:

a. An attempt is made to randomly access a key, data record, or partial record that does not exist in the file;

b. A START or random READ statement is attempted on an optional input file that is not present.

275

Interactive COBOL Language Reference & Developer’s Guide - Part One

c. Relative key is too large.

d. For relative and indexed files, no valid current record pointer has been established.

e. A subindex referenced in an INFOS key path does not exist.

f. The total length of an INFOS key path is too long or is a single null byte.

g. Attempt to UNDELETE a record which is not logically deleted.

24 An attempt is made to write beyond the externally defined boundaries of a relative or indexed file. Under
ICOBOL, this implies that the index structure is full.

(4) Permanent Error Condition With Unsuccessful Completion

30 A permanent error exists and no further information is available concerning the input-output operation.
Generally related to some hardware condition or any condition for which there is no logical I-O status.
(more specific information is found in EXCEPTION Status.)

34 A permanent error exists because of a boundary violation; an attempt is made to write beyond the externally
defined boundaries of a file. Generally out of disk space.

(5) ICOBOL-Defined (Implementor-Defined) Condition With Unsuccessful Completion.

91 An OPEN error. The possible violations are:

a. An OPEN statement referred to a file that was nonexistent.

b. An OPEN statement referred to a file that was already open.

c. An OPEN statement referred to a file that was had an illegal name.

d. On OPEN, the filename already existed.

e. On OPEN, a nondirectory argument was in the pathname.

f. On OPEN, a zero-length filename was specified.

g. On OPEN, no more files could be opened from the operating system.

h. On OPEN, for devices the hardware is not present.

i. On OPEN, access to the file or device is denied.

j. Any consistency errors on open of an INFOS file.

92 An Access mode error. The possible violations are:

a. An I/O operation referred to a file that was not opened.

b. WRITE attempted to file opened for input.

c. DELETE attempted to file opened for input.

d. READ attempted for file opened for output.

e. OPEN attempted for file closed with lock.

276

PROCEDURE DIVISION - File Concepts (VXCOBOL I-O Status)

f. OPEN attempted on a file with insufficient access rights for OPEN mode.

94 An In Use Error. The possible violations are:

a. File cannot be exclusively opened because it is in use.

b. Record cannot be accessed because it is locked.

c. DELETE FILE attempted for an opened file.

96 The record the program is trying to access has been previously marked as logically deleted either globally
or locally.

97 REWRITE or DELETE attempted without executing previous READ statement for an indexed file with
sequential access.

99 On a data-sensitive READ, the line is too long for the record, or for INFOS, an INFOS error has occurred
for which there is no corresponding file status code. See INFOS Status for more information.

9A File description inconsistency. Record length, key length, or key positions specified in program does not
agree with the data file. ICISAM file version is not valid.

9B Corruption error. The possible violations are:

a. After a successful OPEN of an ICISAM file, the runtime system has detected possible corruption in the
file. Close this file; this sets the ICISAM reliability flags and prevents further access to the file.

b. The data (.XD) portion of an ICISAM file is full. The ICISAM reliability flags are set.

c. On an attempted OPEN of an ICISAM file, the runtime has detected that the file is possibly corrupt
although the ICISAM reliability flags are clear. The appropriate reliability flag(s) are set and the file is not opened.

9C Index (.NX) portion of an ICISAM file is full. The ICISAM reliability flags are not set.

9E Record lock limit has been exceeded.

9F Possible corruption of an ICISAM file has been detected on an attempted OPEN of the file; i.e., one or both
of the ICISAM reliability flags had previously been set.

9T A time out condition has occurred on an I/O operation.

277

Interactive COBOL Language Reference & Developer’s Guide - Part One

C.6.5 INFOS Status (VXCOBOL)

The INFOS STATUS data item receives a value representing an exception code that INFOS II, U/FOS, or the
operating system returns during an input-output operation. Whenever the I-O status (FILE Status) is updated,
INFOS STATUS is also updated. INFOS STATUS is an 11-character item taking one of two forms:

(1) A string representing an octal AOS/VS error message code. For example, "00000007030" represents the
octal AOS/VS error code 7030, "Keyed positioning error".

(2) A string beginning with the letter `X' and representing a decimal ICOBOL exception status. For example,
"X0000000073" corresponds to exception status 73, "Reliability flag indicates the .NX file may be corrupt.".

In the first form, an AOS/VS-compatible error code is returned even on Linux or Windows systems.

On a successful input-output operation INFOS STATUS will be set to zero, i.e. "00000000000".

C.6.6 The At End Condition

The at end condition can occur as a result of the execution of a READ or RETRIEVE statement.

C.6.7 The Invalid Key Condition

The invalid key condition can occur as a result of the execution of a DEFINE SUB-INDEX, DELETE, EXPUNGE
SUB-INDEX, LINK SUB-INDEX, READ, RETRIEVE, REWRITE, START, UNDELETE, or WRITE statement.
When the invalid key condition occurs, execution of the input-output statement which recognized the condition is
unsuccessful and the file is not affected.

If the invalid key condition exists after the execution of the input-output operation specified in an input-output
statement, the following actions occur in the order shown:

(1) The I-O status of the file connector associated with the statement is set to a value indicating the invalid key
condition.

(2) If the INVALID KEY phrase is specified in the input-output statement, any USE AFTER STANDARD
EXCEPTION procedure associated with the file connector is not executed and control is transferred to the
imperative-statement specified in the INVALID KEY phrase. Execution then continues according to the rules for
each statement specified in that imperative-statement. If a procedure branching or conditional statement which
causes explicit transfer of control is executed, control is transferred in accordance with the rules for that statement;
otherwise, upon completion of the execution of the imperative-statement specified in the INVALID KEY phrase,
control is transferred to the end of the input-output statement and the NOT INVALID KEY phrase is ignored, if
specified.

(3) If the INVALID KEY phrase is not specified in the input-output statement, a USE AFTER STANDARD
EXCEPTION procedure must be associated with the file connector and that procedure is executed and control is
transferred according to the rules of the USE statement. The NOT INVALID KEY phrase is ignored, if specified.

(4) For VXCOBOL, if neither the INVALID KEY phrase nor a USE procedure is applicable, then control
proceeds to the end of the input-output statement if either INFOS STATUS or FILE STATUS is specified.
Otherwise the program is aborted.

If the invalid key condition does not exist after the execution of the input-output operation specified by an
input-output statement, the INVALID KEY phrase is ignored, if specified. The I-O status of the file connector
associated with the statement is updated and the following actions occur:

278

PROCEDURE DIVISION - File Concepts (File Attribute Conflict Condition)

(1) If an exception condition which is not an invalid key condition exists, control is transferred according to the
rules of the USE statement following the execution of any USE AFTER STANDARD EXCEPTION procedure
associated with the file connector. (See The USE Statement, page 491.) For VXCOBOL, if there is no applicable
USE statement and either INFOS STATUS or FILE STATUS has been specified, control passes to the end of the
input-output statement. Otherwise, for all dialects, the program is aborted.

(2) If no exception condition exists, control is transferred to the end of the input-output statement or to the
imperative-statement specified in the NOT INVALID KEY phrase, if it is specified. In the latter case, execution
continues according to the rules for each statement specified in that imperative-statement. If a procedure branching
or conditional statement which causes explicit transfer of control is executed, control is transferred in accordance
with the rules for that statement; otherwise, upon completion of the execution of the imperative-statement in the
NOT INVALID KEY phrase, control is transferred to the end of the input-output statement.

C.6.8 The File Attribute Conflict Condition

The file attribute conflict condition can result from the execution of an OPEN, REWRITE, or WRITE statement.
When the file attribute conflict condition occurs, execution of the input-output statement that recognized the
condition is unsuccessful and the file is not affected. (See The OPEN Statement, page 411; The REWRITE
Statement, page 445; and The WRITE Statement, page 495.)

When the file attribute conflict condition is recognized, these actions take place in the following order:

(1) A value is placed in the I-O status associated with the file-name to indicate the file attribute conflict
condition.

(2) A USE AFTER STANDARD EXCEPTION procedure, if any, associated with the file-name is executed.

C.6.9 Exception Declaratives

A USE AFTER STANDARD EXCEPTION procedure, when one is specified for the file, is executed whenever an
input or output condition arises which results in an unsuccessful input-output operation. However, the exception
declarative is not executed if the condition is invalid key and the INVALID KEY phrase is specified, or if the
condition is at end and the AT END phrase is specified.

C.6.10 Optional Phrases

The INVALID KEY and NOT INVALID KEY phrases may be associated with the DEFINE SUB-INDEX,
DELETE, EXPUNGE SUB-INDEX, LINK SUB-INDEX, READ, RETRIEVE, REWRITE, START, UNDELETE,
or WRITE statements.

Some of the conditions that give rise to an invalid key condition are:

(1) A requested key does not exist in the file (DELETE, READ, START, or UNDELETE statements),

(2) A key is already in a file and duplicates are not allowed (WRITE statement),

(3) A key does not exist in the file, or

(4) A key was not the last key read (REWRITE statement).

If the invalid key condition occurs during the execution of a statement for which the INVALID KEY phrase has been
specified, the statement identified by that INVALID KEY phrase is executed.

279

Interactive COBOL Language Reference & Developer’s Guide - Part One

The AT END and NOT AT END phrase may be associated with a READ statement. The at end condition occurs in
a sequentially accessed file when no next logical record exists in the file, when the number of significant digits in the
relative record number is larger than the size of the relative key data item, when an optional file is not present, or
when a READ statement is attempted and the at end condition already exists. If the at end condition occurs during
the execution of a statement for which the AT END phrase has been specified, the statement identified by that AT
END phrase is executed.

C.6.11 ACCEPT FROM EXCEPTION STATUS

The exception status is a very specific error number that allows much better reporting of errors than I-O status (FILE
STATUS) values. An exception status is not specific to I-O. More on exception status can be found in the ACCEPT
FROM EXCEPTION STATUS statement discussion starting on page 296. ACCEPT FROM EXCEPTION
STATUS is an extension to ANSI COBOL.

C.7. Shared Record Area

This feature saves memory space in the object program, as it allows more than one file to share the same file area and
input-output areas.

When the RECORD option of the SAME clause is used, only the record area is shared and the input-output areas for
each file remain independent. In this case, any number of the files sharing the same record area may be active at one
time. This can increase the execution speed of the object program.

To illustrate this point, consider file maintenance. If the programmer assigns the same record area to both the old
and new files, he not only saves memory in the object program, but because this technique eliminates a move of each
record from the input to the output area, significant time savings result. An additional benefit of this technique is
that the programmer need not define the record in detail as a part of both the old and new files. Rather, he defines
the record completely in one case and simply includes the level 01 entry in the other. Because these record areas are
in fact the same area, one set of names suffices for all processing requirements without requiring qualification.

C.8. INFOS File I-O Common Phrases (VXCOBOL)

Many of the INFOS input-output statements share a set of common phrases that direct the operation of the statement.
In particular, they direct positioning of the record pointer, motion through the index structure, and the manner in
which keys are used.

C.8.1 The POSITION Phrase (VXCOBOL)

The POSITION phrase allows for control of positioning within an INFOS file. The current position is a marker in an
INFOS file which establishes a reference point for relative motion within the file.

The format of the position phrase is:

If FIX POSITION is specified, the file's current position is set to the key accessed by the statement if the operation
was successful. The file's current position remains unchanged if RETAIN POSITION is specified.

Each input-output statement has a default positioning behavior. This behavior can be overridden with the
POSITION phrase.

280

PROCEDURE DIVISION - File Concepts (Relative Motion Phrase)

RETAIN POSITION is the default for the DEFINE SUB-INDEX, EXPUNGE SUB-INDEX, LINK SUB-INDEX,
RETRIEVE SUB-INDEX, RETRIEVE STATUS, REWRITE, UNDELETE, and WRITE statements. The current
position remains unchanged from its last position.

FIX POSITION is the default for READ, RETRIEVE HIGH KEY, and RETRIEVE KEY. The current position is
set to the key it last accessed.

The default positioning for the START and DELETE statements cannot be overridden. START sets the current
position to the key it last accessed. DELETE sets the current position to the key prior to the one just deleted,
possibly in front of a subindex if it was the first key.

OPEN sets the current position in front of the main index for files in SEQUENTIAL or DYNAMIC access modes.

C.8.2 The Relative Motion Phrase (VXCOBOL)

The relative motion phrase is used to control motion within an INFOS file. With relative motion, the key being
sought in the INFOS file is in a position relative to the current position.

The format of the relative motion phrase is:

NEXT and FORWARD are equivalent. They imply movement to the next higher key in the index relative to the
current position. If there is no next higher key, an "end of subindex" error (I-O status 10, INFOS STATUS 7011)
occurs.

BACKWARD implies movement to the next lower key in the index relative to the current position. If there is no
next lower key, an "end of subindex" error (I-O status 10, INFOS STATUS 7011) occurs.

UP implies movement to the key entry in the immediately higher index level relative to the current position. If the
current position is in the top level index (main index), a "positioned above main index" error (I-O status 99, INFOS
STATUS 7006) will occur with upward motion.

DOWN implies movement to a position prior to the first key in the subindex defined for the current key. If the
current key does not have an associated subindex, a "subindex not defined" error (I-O status 99, INFOS STATUS
7010) occurs.

UP FORWARD, UP BACKWARD, and DOWN FORWARD combine processing between index levels with
movement to keys in the index. UP FORWARD and UP BACKWARD imply movement to the next higher level and
movement to the next higher or lower key respectively. DOWN FORWARD implies movement to the first key in
the subindex defined for the current key.

STATIC means no movement relative to the current position.

281

Interactive COBOL Language Reference & Developer’s Guide - Part One

C.8.3 The KEY Series Phrase (VXCOBOL)

The key series phrase is used to specify a specific key in an INFOS file. The format of the key series phrase is:

where identifier is a RECORD KEY named in the SELECT statement for the INFOS file.

For a single level file, at most one key may be specified. If the key series phrase is present then no relative motion
phrase (NEXT, FORWARD, BACKWARD, or STATIC) may be specified on the input-output statement.

For a multilevel file, the maximum number of keys that may be specified in the key series phrase on an input-output
statement is equal to the number of levels in the file. If no relative motion phrase is specified on the statement, each
key identifies an index entry at increasingly lower levels, i.e. the first key identifies the entry at the top level, the
second key indicates an entry in the subindex defined for the top key, etc. If a relative motion phrase is specified on
the input-output statement, the relative motion is performed first and the key series phrase identifies a path beginning
at the key determined by the relative motion.

Each key specified in the key series phrase may be modified with the GENERIC or APPROXIMATE clauses.
ICOBOL searches for keys in the following manner:

(1) Without either clause, the key value sought is the value contained in the identifier up to the length of the
identifier or an optionally specified KEY LENGTH. The match must be exact in both content and length.

(2) If the GENERIC clause is specified, the first key in the current index or subindex that matches the key up to
the length specified will be a match. The key located may be longer than the key that was specified. This allows for
matching based only on the first few characters of a value.

(3) If the APPROXIMATE clause is specified, the first key in the current index or subindex that is greater than
or equal to the value specified, within the length specified, will be a match.

C.8.4 The SUPPRESS Phrase (VXCOBOL)

ICOBOL allows for suppressing the input or output of a data record or partial record. The SUPPRESS phrase has
the following format:

[SUPPRESS [PARTIAL RECORD] [DATA RECORD]]

If PARTIAL RECORD is specified, the contents of the partial record for the key is neither read nor written. For
example, a WRITE statement with a SUPPRESS PARTIAL RECORD will write only the data record.

If DATA RECORD is specified, the contents of the data record for the key is neither read nor written. For example,
a READ statement with a SUPPRESS DATA RECORD will retrieve only the data in the partial record.

Both clauses may be specified together. If both clauses are specified on a READ, the result is to change the current
position without retrieving any data. If both clauses are specified on a WRITE, only a key is written.

SUPPRESS alone is equivalent to specifying both phrases.

282

PROCEDURE DIVISION - File Concepts (LOCK/UNLOCK Phrase)

C.8.5 The LOCK/UNLOCK Phrase (VXCOBOL)

Many input-output statements for INFOS files support the LOCK/UNLOCK phrase. The format of the phrase is:

Record locks are a binary condition. A record is either locked or it is not locked. Data records and partial records
can be locked and unlocked independently.

If the LOCK phrase is specified on an operation, the record is locked and no other user can access the record until it
is unlocked. If the UNLOCK phrase is specified, the record is unlocked and becomes accessible to any user. (Locks
typically occur at the beginning of an operation and unlocks at the end.)

Data record locks are not regarded if SUPPRESS DATA RECORD is specified on the input-output statement.
Partial record locks are not regarded if SUPPRESS PARTIAL RECORD is specified.

All records in a file that have been locked can be unlocked at once with the UNLOCK statement or by closing the
file.

283

Interactive COBOL Language Reference & Developer’s Guide - Part One

D. Header

The Procedure Division is identified by, and must begin with, the following header:

PROCEDURE DIVISION [USING { data-name-1 }...] .

The USING phrase is necessary only if the object program is to be invoked by a CALL statement or a CALL
PROGRAM statement, and that statement includes a USING phrase.

The USING phrase of the Procedure Division header identifies the names used by the program for any parameters
passed to it by a calling program. The parameters passed to a called program are identified in the USING phrase of
the calling program's CALL statement. The correspondence between the two lists of names is established on a
positional basis.

Data-name-1 must be defined as a level 01 entry or a level 77 entry in the Linkage Section. A particular
user-defined word may not appear more than once as data-name-1. The data description entry for data-name-1 must
not contain a REDEFINES clause. Data-name-1 may, however, be the object of a REDEFINES clause elsewhere in
the Linkage Section.

The following additional rules apply:

(1) If the reference to the corresponding data item in the CALL statement declares the parameter to be passed
by content, the value of the item is moved when the CALL statement is executed and placed into a system-defined
storage item possessing the attributes declared in the Linkage Section for data-name-1. The data description of each
parameter in the BY CONTENT phrase of the CALL statement must be the same, meaning no conversion or
extension or truncation, as the data description of the corresponding parameter in the USINAG phrase of the
Procedure Division header.

(2) If the reference to the corresponding data item in the CALL statement declares the parameter to be passed
by reference, the object program operates as if the data item in the called program occupies the same storage area as
the data item in the calling program. The description of the data item in the called program must describe the same
number of character positions as described by the description of the corresponding data item in the calling program.

(3) At all times in the called program, references to data-name-1 are resolved in accordance with the
description of the item given in the Linkage Section of the called program.

(4) Data items defined in the Linkage Section of the called program may be referenced within the Procedure
Division of that program if, and only if, they satisfy one of the following conditions:

a. They are operands of the USING phrase of the Procedure Division header.

b. They are subordinate to operands of the USING phrase of the Procedure Division header.

c. They are defined with a REDEFINES or RENAMES clause, the object of which satisfies the above
conditions.

d. They are items subordinate to any item which satisfies the condition in rule 4c.

e. They are condition-names or index-names associated with data items that satisfy any of the above four
conditions.

284

PROCEDURE DIVISION (ACCEPT (keyboard))

E. Statements

E.1. ACCEPT (keyboard)

E.1.1 Function

The ACCEPT statement causes data from the keyboard to be made available to data items in the File,
Working-Storage, or Linkage sections.

Screens are an extension to ANSI COBOL. The TIME-OUT clause is an extension to ANSI COBOL.

E.1.2 General Format (ANSI 74 and ANSI 85)

Format 1:

ACCEPT identifier-1 [FROM mnemonic-name] [TIME-OUT AFTER]

[ON ESCAPE imperative-statement-1]
[NOT ON ESCAPE imperative-statement-2]
[END-ACCEPT]

Format 2:

ACCEPT screen-name [AT]

[TIME-OUT AFTER]

[ON ESCAPE imperative-statement-1]
[NOT ON ESCAPE imperative-statement-2]
[END-ACCEPT]

Format 3:

ACCEPT { identifier-1 [UNIT] [{ accept-clause }]... }...

[END-ACCEPT]

where accept-clause is one of the following:

285

Interactive COBOL Language Reference & Developer’s Guide - Part One

NO

BLINK

CONTROL

CONVERT

CONVERTING

CURSOR

ECHO

ERASE

LINE

PROMPT [literal-11]

SIZE

286

PROCEDURE DIVISION (ACCEPT (keyboard))

TAB

BEFORE TIME

TIME-OUT AFTER

UPDATE

E.1.3 General Format (VXCOBOL)

Format 1:

ACCEPT identifier-1 [FROM mnemonic-name] [TIME-OUT AFTER SECONDS]

[ON ESCAPE imperative-statement-1]
[NOT ON ESCAPE imperative-statement-2]
[END-ACCEPT]

Format 2:

ACCEPT screen-name [AT]

[TIME-OUT AFTER SECONDS]

[ON ESCAPE imperative-statement-1]
[NOT ON ESCAPE imperative-statement-2]
[END-ACCEPT]

E.1.4 Syntax Rules

(1) Screen-name may not be subscripted.

(2) If screen-name is a group format item, it must have at least one input, input-output, or update screen-data
item; otherwise, it must specify an input, input-output, or update screen-data item.

(3) In Format 1 and 3, identifier-1 cannot be larger than the 132 characters for ANSI 74 and ANSI 85 and 2048
for VXCOBOL.

(4) In Format 2, identifier-2, identifier-3, literal-1, and literal-2 must be elementary integer items.

(5) In Format 3, identifier-5, identifier-6, identifier-7, identifier-9, identifier-10, identifier-11, identifier-12,
identifier-13, identifier-14, literal-4, literal-5, literal-6, literal-8, literal-9, literal-10, literal-12, literal-13
must be unsigned elementary integer items. Identifier-8 must be a nonnumeric data-item and literal-7 must be a
nonnumeric literal. Literal-6 must be a nonnumeric literal exactly one character in length.

(6) Identifier-4 and literal-3 may represent any numeric literal or elementary numeric data-item.

(7) Color-name-1 and color-name-2 represent one of the predefined color names: BLACK, BLUE, GREEN,
CYAN, RED, MAGENTA, BROWN, or WHITE.

287

Interactive COBOL Language Reference & Developer’s Guide - Part One

(8) The word COL is an abbreviation for the word COLUMN.

(9) In Format 1, Mnemonic-name must be specified in the SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVISION and must be associated with a hardware device.

(10) In Format 1, the FROM clause is for documentation purposes only.

(11) In Format 3, the word EXCEPTION is a synonym for ESCAPE, the word POSITION is a synonym for
COLUMN, and the word BEEP is a synonym for BELL.

E.1.5 General Rules

Format 1:

(1) The ACCEPT statement causes the transfer of data from the keyboard. This data replaces the contents of
the data item referenced by identifier-1 according to the rules for the MOVE statement.

(2) Data input for identifier-1 must be valid for the identifier. For ANSI 74 and ANSI 85, if the characters that
are input do not agree with the item's PICTURE, then an error message is displayed on the last line of the display
screen, and the input must be corrected. For example, alphabetic characters entered into a numeric item will be
rejected. For complete details of PICTURE definitions and acceptable input, see the PICTURE Clause discussion in
the WORKING-STORAGE section. For VXCOBOL, the data will be converted and assigned to identifier-1 as
closely as is possible if it is not valid for the identifier.

(3) If a field terminator key (i.e., any key configured in the terminal description to generate a value of 00) is
pressed at any time during an ACCEPT statement, the data is validated and transferred to the data item referenced by
identifier-1. The ON ESCAPE clause, if present, is bypassed and the NOT ON ESCAPE phrase, if specified, is
executed; otherwise, control is transferred to the end of the ACCEPT statement.

(4) If the ESC function key (i.e., any key configured in the terminal description to generate a value of 01) is
pressed at any time during an ACCEPT statement, the data from the keyboard is discarded, and the data item
referenced by identifier-1 is not changed. The ACCEPT terminates, and the ON ESCAPE clause, if present, is
executed.

(5) If a normal function key (i.e., any key configured in the terminal description to generate a value that is not
00 or 01) is pressed at any time during an ACCEPT statement, the data is validated and transferred to the data item
referenced by identifier-1. The ACCEPT terminates, and the ON ESCAPE clause, if present, is executed.

(6) Each keyboard sequence is interpreted as defined by the current ICTERM entry. If you wish to read binary
data from the terminal, you should open a file whose SELECT clause contains an ASSIGN TO DISK “@CON” and
perform a READ to get non-interpreted binary data with no positioning codes sent to the terminal.

(7) An ACCEPT statement should not be executed while in Print Pass Through mode on a terminal, as the
ACCEPT will generate some output that will then be printed.

(8) For ANSI 74 and ANSI 85, A non-screen ACCEPT is limited to a single line and is truncated at the column
width of the terminal. After entering the data, a <nl><nl><up-arrow> sequence is generated to position to the first
column on the next line. For VXCOBOL, up to 2048 characters are read with echoing and backspace processing
starting at the current cursor position. An ESC or function key will exit with an ON ESCAPE processing, but no
echoing of the ESC or function key. A NL or CR will echo as a newline with no ON ESCAPE processing.

288

PROCEDURE DIVISION (ACCEPT (keyboard))

Format 2:

(9) A screen ACCEPT that extends past a terminal’s width is supported by allowing the ACCEPT to wrap to the
next line since the screen does not have to scroll; i.e., the wrap would otherwise move to the line after the last line on
the screen.

(10) ACCEPT screen-name transfers information entered on the screen via the keyboard to the data items
associated with screen-name. The program should have executed a DISPLAY screen-name before the ACCEPT to
display any associated prompts.

(11) ACCEPT screen-name without the LINE or COLUMN phrases is equivalent to ACCEPT screen-name AT
LINE 0 COLUMN 0.

(12) If screen-name refers to a screen-group item, the ACCEPT statement processes all input, input-output, and
update screen-data items subordinate to screen-name. The fields are processed in the order in which they appear in
the source program.

(13) The LINE phrase and COLUMN phrase in DISPLAY and ACCEPT statements allow the entire screen
description referenced by screen-name to be moved to a different starting position on the user's display device. This
capability is called variable origin. All screen descriptions assume that the origin is at line 1 and column 1 on the
user's display device. The value specified in the DISPLAY or ACCEPT’s LINE phrase, if present, is treated as a
relative offset to be added to all line positions in the screen. Similarly, the value of the COLUMN phrase, if
specified, is treated as a relative offset to be added to all column positions in the screen. If any line or column
position becomes larger than what is supported by the current screen, the screen will wrap at its limits, and the new
(wrapped) values will in turn be offset again by the variable origin.

For example, consider the code fragments:

01 ANY-CHANGE-SCREEN.
 05 LINE 23 COL 60 “ANY CHANGE?”.
 05 LINE 23 COL 75 PIC X TO ANY-CHANGE-ANSWER.

ANY-CHANGE-1.
 DISPLAY ANY-CHANGE-SCREEN.
 ACCEPT ANY-CHANGE-SCREEN.

ANY-CHANGE-2.
 DISPLAY ANY-CHANGE-SCREEN AT LINE 5 COLUMN 30.
 ACCEPT ANY-CHANGE-SCREEN AT LINE 5 COLUMN 30.

The following discussion describes how to determine the origin point for each of the two DISPLAY and ACCEPT
pairs in the code fragments above. Assume the display device has 24 lines and 80 columns.

a. Remember, all screen descriptions assume an origin point of line 1, column 1. This screen has a
positioning definition of line 23, column 60, and the first screen DISPLAY statement contains no positioning (line or
column) clauses. Therefore, the origin point for the first DISPLAY is line 23, column 60.

b. For the second screen DISPLAY statement, which contains the positioning clauses AT LINE 5
COLUMN 30, the offset position will be line 28, column 90. (We added the line and column variable-positioning
values in the DISPLAY statement to the origin point established in the previous step.)

c. Then, because the line and column numbers are larger than the size of the display device, we subtract the
line and column size of the display device, to find the wrap values: line 4, column 10. This becomes the new origin
point.

d. Finally, add the line and column positioning values which in turn will be offset to line 9, column 40.
Therefore, the second screen DISPLAY will begin at line 9, column 40.

289

Interactive COBOL Language Reference & Developer’s Guide - Part One

e. Determining the origin point for the ACCEPT field is similar. The table below illustrates how the
origin points are calculated for the second ACCEPT and DISPLAY.

literal field input field Description

LINE COLUMN LINE COLUMN

23 60 23 75 Origin point in screen definition

5 30 5 30 ADD offset from DISPLAY/ACCEPT

28 90 28 105 Giving offset position

24 80 24 80 SUBTRACT display device size

4 10 4 25 Giving new origin point

5 30 5 30 ADD offset from DISPLAY/ACCEPT

9 40 9 55 Giving origin point for 2nd

DISPLAY/ACCEPT

TABLE 18. Variable Origin for DISPLAY and ACCEPT

(14) If variable origin is used for an ACCEPT operation on a screen-name, the same variable origin
specification should be used for the corresponding DISPLAY statement of the screen-name in order to have the
correct visual association between prompts and data-entry items..

(15) The basic operation of the ACCEPT statement is described by the following steps. The discussion
assumes that screen-name represents a group item in the screen description that has several subordinate input,
input-output, and/or update fields. The case where screen-name specifies a single screen-data item is simply a subset
of the description below.

a. The screen management system positions to the first (in terms of its position in the source definition of
screen-name) input, input-output, or update field that is subordinate to screen-name.

b. The content of the screen field (which has either been set by a previous execution of a DISPLAY
statement for the field, or which remains from a previous execution of an ACCEPT statement for the field) is
redisplayed on the screen with the specified attributes. If the field is a numeric-edited picture, the field is first de-
edited by removing all the editing characters (i.e., all but the plus or minus sign, the decimal point, and the numeric
digits).

For ANSI 74 and ANSI 85, if the field has the SECURE ECHO attribute, the field is redisplayed as all
asterisk (*) characters; if the field has the SECURE NO ECHO attribute, nothing is displayed.

For VXCOBOL, if the field has the SECURE attribute, nothing is displayed.

c. The cursor is positioned to the first character of the field, and the screen control system waits for the user
to enter data into the field. The user may enter new data characters, field editing keys, or field termination keys. The
screen management system echoes input characters and positions the cursor appropriately in response to the user's
input. The field is terminated by entering an appropriate field termination key (see the ESCAPE KEY table above)
or, if the field has the AUTO attribute, by entering a character into the last data position in the field.

For ANSI 74 and ANSI 85, if the field has the SECURE ECHO attribute, the field is redisplayed as all
asterisk (*) characters; if the field has the SECURE NO ECHO attribute, nothing is displayed and the cursor does
not move.

For VXCOBOL, if the field has the SECURE attribute, nothing is displayed and the cursor does not move.

290

PROCEDURE DIVISION (ACCEPT (keyboard))

d. If the field is terminated by an ESC function key (any key with an ESCAPE KEY value of 01), the data
entered by the user is discarded, no field validation is performed, the screen field is not changed, the entire accept
operation is ended, and the ESCAPE KEY value is set to 01.

e. If the field is terminated by a field terminator key (any key with an ESCAPE KEY value of 00), the
screen control system checks that the data entered by the user is valid for its PICTURE. It also checks to make sure
the data entry requirements implied by REQUIRED and FULL have been met. If there is an error, the screen control
system sounds the tone, puts an error message on the last line of the display, and positions the cursor at the location
of the error. The user must enter correct data before the field can be terminated. When the field passes the system
checks, any error message that was displayed is erased, and the system processes the terminator. If the terminator
indicates motion to a previous field, and the field is not the first field, the cursor is positioned to the previous field
and the accept operation begins for that field; otherwise, the tone is sounded and the cursor remains at the first field.
If the terminator indicates motion to the next field, and the field is not the last field, the cursor is moved to the next
field and the accept operation begins for that field; otherwise, the action depends on additional attributes of the
terminator. If it is a field terminator key, the entire accept operation is completed, and ESCAPE KEY is set to 00.

f. If the field is terminated by a normal function key (any key with an ESCAPE KEY value greater than
01), the field validation takes place as for a field terminator key. Once the field validation has been successfully
completed, the entire accept operation is also terminated, and ESCAPE KEY is set to the value for the terminator.

g. When the entire accept operation is terminated, the screen fields are moved to their corresponding data
items. Those fields that were processed during the execution of the ACCEPT will have the new data. Those fields
that were not processed (whether due to entering an ESC function key or a normal function key) will have the old
data (for input fields, this will usually be underscores). When the screen field is a numeric-edited item and the data
item is a numeric item, the screen field is first de-edited before moving the data, thus only the numeric value is
moved. In all other cases, the moves take place according to the rules for the MOVE statement.

(16) If the accept operation was terminated by a field terminator key (a key with an ESCAPE KEY value of 00),
the ON ESCAPE clause, if specified, is bypassed and control passes to the NOT ON ESCAPE clause, if present, or
to the end of the ACCEPT statement.

(17) If the accept operation was terminated by an ESC function key or a normal function key (any key with an
ESCAPE KEY value that is not 00), control passes to the ON ESCAPE clause, if specified. If no ON ESCAPE
clause was specified, control passes to the end of the ACCEPT statement.

(18) The value of the ESCAPE KEY is available through the Format 2 ACCEPT FROM ESCAPE KEY
statement.

(19) Entries that start past column 128 are undefined. When hard coded, the ICOBOL compiler will give an
error for entries past column 128. In all other cases, the runtime will behave in an undefined fashion for a particular
terminal type.

Format 3:

(20) The ACCEPT statement causes the transfer of data from the keyboard. This data replaces the contents of
the data item referenced by identifier-1 according to the rules for the MOVE statement.

(21) Data input for identifier-1 must be valid for the identifier. If the characters that are input do not agree with
the item's PICTURE, then an error message is displayed on the last line of the display screen, and the input must be
corrected. For example, alphabetic characters entered into a numeric item will be rejected. For complete details of
PICTURE definitions and acceptable input, see the PICTURE Clause discussion in the WORKING-STORAGE
section.

(22) If a field terminator key (i.e., any key configured in the terminal description to generate a value of 00) is
pressed at any time during an ACCEPT statement, the data is validated and transferred to the data item referenced by
identifier-1. When a field terminator key is pressed for the last identifier-1, the ON ESCAPE clause, if present, is
bypassed and the NOT ON ESCAPE phrase, if specified, is executed; otherwise, control is transferred to the end of

291

Interactive COBOL Language Reference & Developer’s Guide - Part One

the ACCEPT statement. When a field terminator key is pressed for any other identifier-1, the ACCEPT statement
continues processing with the next identifier-1.

(23) If the ESC function key (i.e., any key configured in the terminal description to generate a value of 01) is
pressed at any time during an ACCEPT statement, the data from the keyboard is discarded, and the data item
referenced by identifier-1 is not changed. If the ESC function key is pressed for the last identifier-1, the ACCEPT
terminates, and the ON ESCAPE clause, if present, is executed. Otherwise, processing continues with the next
identifier-1.

(24) If a normal function key (i.e., any key configured in the terminal description to generate a value that is not
00 or 01) is pressed at any time during an ACCEPT statement, the data is validated and transferred to the data item
referenced by identifier-1. When a normal function key is pressed for the last identifier-1, the ON ESCAPE clause,
if present, is executed; otherwise, control is transferred to the end of the ACCEPT statement. When a normal
function key is pressed for any other identifier-1, the ACCEPT statement continues processing with the next
identifier-1.

(25) If the ON ESCAPE clause is executed and identifier-14 has been specified, the two-digit code generated
by the key that terminated the last identifier-1 is stored into identifier-14. This is equivalent to executing an
ACCEPT identifier-14 FROM ESCAPE KEY statement as the first statement of the ON ESCAPE clause.

(26) Format 3 ACCEPTs that extend past a terminal’s width are supported by allowing the ACCEPT to wrap to
the next line since the screen does not have to scroll; i.e., the wrap would otherwise move to the line after the last
line on the screen.

(27) The BACKGROUND-COLOR and FOREGROUND-COLOR phrases determine the background and
foreground colors used during the processing of identifier-1. The color is identified by an integer value from 0 to 7
specified for literal-5 or literal-9 or as the contents of identifier-6 or identifier-10. It may also be specified by use of
color-name-1 or color-name-2. The color names with their integer values are BLACK=0, BLUE=1, GREEN=2,
CYAN=3, RED=4, MAGENTA=5, BROWN=6, WHITE=7. BACKGROUND is a synonym for BACKGROUND-
COLOR and FOREGROUND is a synonym for FOREGROUND-COLOR.

(28) The NO BELL phrase causes suppression of the bell (or beep) signal which normally sounds as each
identifier-1 is processed.

(29) BLINK causes the PROMPT character and any data displayed for the field to be displayed in a blinking
mode.

(30) The COLUMN and LINE phrases are used to position identifier-1 on the screen based on the line and
leftmost character position. The top line is line 1 and each succeeding line has a value one larger than the previous
line. The leftmost character of a line is column 1 and the column value increases by one for each succeeding
character on the line. The line number is specified by literal-11 or the contents of identifier-11 and should be
between 1 and 128. The column number is specified by literal-6 or the contents of identifier-7.

The line and column positions are determined as follows:

a. If the COLUMN phrase is omitted, column 1 is assumed for the first identifier-1 or if a UNIT phrase has
been specified for the same identifier-1. Otherwise the column position is set to zero.

b. If the LINE phrase is omitted or the line position is zero the line position is set as follows: If an ERASE
or ERASE SCREEN phrase is specified for the same identifier-1, then line 1 is assumed. If the column position is
not zero, the line position is the current line plus one. If the column position is zero, the line position is set to the
current line.

c. If the column position is equal to zero, it is set to the current line.

At runtime, values outside the allowable ranges are wrapped.

292

PROCEDURE DIVISION (ACCEPT (keyboard))

(31) The CONTROL phrase is used to dynamically specify options to be used or overridden. Identifier-8 or
literal-7 are used to hold an options list. This list consists of a series of keywords separated by commas. The
keywords may be specified in any order, but are processed from left to right as they appear in the string. While
processing the list, lowercase characters are considered equivalent to the corresponding uppercase character and
blanks or unprintable characters are ignored.

The following keywords impact execution of the ACCEPT statement: BEEP, BLINK, CONVERT, ECHO, ERASE,
ERASE EOL, ERASE EOS, ERASE LINE, ERASE SCREEN, HIGH, LOW, LOWER, NO BEEP, NO BLINK,
NO CONVERT, NO ECHO, NO ERASE, NO LOWER, NO OFF, NO PROMPT, NO REVERSE, NO SECURE,
NO TAB, NO UNDERLINE, NO UPDATE, NO UPPER, OFF, PROMPT, SECURE, SECURE ECHO, SECURE
NO ECHO, TAB, UNDERLINE, UPDATE, and UPPER.

Each of the keywords has the same meaning as when statically coded plus the negative versions (NO xxx) to allow
suppression of the of the option. The keywords UPPER, LOWER, NO UPPER, and NO LOWER are used to enable
or suppress the CONVERTING UP or CONVERTING DOWN options.

(32) The CONVERT phrase is used to control input conversion. If identifier-1 is numeric and the CONVERT
phrase is specified, the data input from the screen is converted to a signed numeric value and stored in identifier-1
according to the rules for a numeric MOVE. (CONVERT is implied for numeric values unless the
“NO CONVERT” is specified as a value for the CONTROL option.) CONVERT is implied by the UPDATE option
when identifier-1 is numeric. If identifier-1 is numeric and input conversion is not specified either implicitly or
explicitly, identifier-1 is treated as an elementary alphanumeric item of the same size and the unconverted input data
is moved to that item according to the rules for an alphanumeric MOVE.

If identifier-1 is numeric edited and the CONVERT phrase is specified, the data input from the screen is converted to
a signed numeric value and stored in identifier-1 according to the PICTURE of identifier-1.

If identifier-1 is alphanumeric edited and the CONVERT phrase is specified, the data input from the screen is stored
in identifier-1 according to the rules for a alphanumeric to alphanumeric edited MOVE. (CONVERT is implied
when identifier-1 is alphanumeric edited.)

In all other cases or if CONVERT is not specified, data is moved from the screen to identifier-1 according to the
rules for an alphanumeric MOVE.

NOTE: Interactive validation is performed on numeric or numeric edited values whenever the CONVERT option is
supplied or implied.

(33) The CONVERTING phrase is used to control the case of the data accepted. If CONVERTING UP is
specified character data entered during an ACCEPT is echoed to the screen and stored in uppercase. In particular,
characters between ‘a’ and ‘z’ inclusive are converted to the corresponding character between ‘A’ and ‘Z’. If
CONVERTING DOWN is specified character data entered during an ACCEPT is echoed to the screen and stored in
lowercase. In particular, characters between ‘A’ and ‘Z’ inclusive are converted to the corresponding character
between ‘a’ and ‘z.

(34) The CURSOR option is used to specify the initial cursor position within the screen field. The initial
position is specified by literal-8 or the contents of identifier-9. The leftmost position is 1. A value of 0 is treated as
one and a value greater than the size of the screen field is treated as the size of the screen field. If identifier-9 is
specified, the cursor position at field termination is returned in it.

(35) The ECHO phrase causes the contents of identifier-1 to be displayed in the screen field following
completion of data input for the field. The display is performed as if a DISPLAY with similar options was
performed. Note that CONVERT in an ACCEPT statement controls only input conversion. Output conversion is
controlled by the UPDATE phrase. If identifier-1 is numeric and input conversion was specified or implied, output
conversion will be used on the display. If the ECHO phrase is not specified, the original input data remains in the
screen field.

293

Interactive COBOL Language Reference & Developer’s Guide - Part One

(36) The ERASE clause is used to control erasure of portions of the screen prior to accepting data. ERASE
SCREEN and ERASE with no additional modifiers erases the entire screen and positions the cursor to line 1 column
1. ERASE LINE erases the current line from column 1 to the end of the line without changing the cursor position.
ERASE EOL erase the screen starting at the cursor position to the end of the line. The cursor is not affected.
ERASE EOS erase the screen starting at the cursor position and continuing to the end of the screen. The cursor
position is not changed.

(37) The HIGH, HIGHLIGHT, BOLD, and BRIGHT options cause the accepted and displayed data to be
displayed at high intensity. The LOW, LOWLIGHT, and DIM options cause the accepted and displayed data to be
displayed at low intensity.

(38) The PROMPT clause causes fill characters to be displayed on the screen in the positions in which data is to
be accepted. If literal-11 is not specified, the fill character used is an underscore. If literal-11 is specified, it must
be of length one and represents the fill character. When PROMPT is not specified, no prompting occurs an the
original contents of the screen field are not modified unless UPDATE is specified. If both PROMPT and UPDATE
are specified, all positions in the screen field not occupied by characters in identifier-1 are filled with the fill
character.

(39) The REVERSE, REVERSED, and REVERSE-VIDEO options cause the accepted and displayed data to be
displayed in reverse video mode. If not specified, data is displayed in normal mode.

(40) The SECURE clause controls echoing of input data as it is entered. If either SECURE with no additional
options or SECURE WITH ECHO is specified, an asterisk is echoed and the cursor moved right one position as each
character is entered. If SECURE NO ECHO is specified, no echoing or cursor movement takes place. If OFF is
specified, a space is echoed and the cursor moved right one position as each character is entered.

(41) The SIZE clause controls the size of the screen input field. If the SIZE clause is present and literal-12 or
the contents of identifier-12 is not zero, the size of the screen field is determined by the value of literal-12 or
identifier-12. Otherwise, the size of the screen field is determined by description of identifier-1.

When identifier-1 is numeric and input conversion is specified or implied, the size is the number of digits in
identifier-1's PICTURE plus 1 if its is signed plus 1 if it is not an integer. When identifier-1 is numeric and input
conversion is not specified, the size value is determined by the number of bytes of stored required for identifier-1.

(42) The TAB clause causes the ACCEPT statement to wait for a field termination key to be pressed before
completing the accept of the screen field. If the TAB clause is not present, the field will terminate when the end of
the screen input field is reached or when a field termination key is pressed. (When TAB is absent, the field behaves
much like an AUTO field in a screen description.)

(43) The BEFORE TIME clause is used to specify an interval of time to wait before automatically terminating
the field when no data has been entered. Literal-13 or the contents of identifier-13 are integer values which specify
this time interval in hundredths of seconds. If the user enters any data in the field prior to the expiration of the time
interval, then the timer is cancelled and the ACCEPT of the field behaves as if no BEFORE TIME clause was
specified. Valid values and their behavior are:

Time-out value Meaning
>= 4,294,967,295 No time-out (Wait forever)
0 Time-out immediately
> 630000 Set to 6300 seconds
1-630000 Set to n seconds

If the specified time interval completes before any data is entered, the field is terminated as if a Newline or Enter key
was pressed. The escape key code returned will be 99.

NOTE: The TIME-OUT clause described below is similar, but is expressed in seconds and does not have to be an
integer. It represents a time to wait between keystrokes before terminating a field. If the time-out occurs it
behaves as if the ESC key were pressed. Both TIME-OUT and BEFORE TIME may not be specified for
the same identifier-1.

294

PROCEDURE DIVISION (ACCEPT (keyboard))

 NOTE:
Using an extended open option to set timeout on your console does NOT
affect an ACCEPT or STOP statement. Extended open options are discussed
later Developer’s Guide Section.

IC_SET_TIMEOUT is discussed in this document beginning on page 590, 591.

(44) The UNDERLINE and UNDERLINED options cause the accepted and displayed data to be displayed in
underlined mode.

(45) The UNIT clause is for documentation only and is ignored except for its impact on the COLUMN clause
as previously described.

(46) The UPDATE clause control output conversion of the current value of identifier-1. This option changes
the contents from its internal form into a form appropriate for display. The user may then modify the screen field
and upon field termination the data in the screen field is stored with input conversion back into identifier-1.

With output conversion, numeric data is converted such that a leading separate sign is provided for negative values,
an explicit decimal point is added for non-integers, leading zeros are removed and the remaining digits are left-
justified.

If both UPDATE and CONVERT are specified for a numeric edited item, a numeric value for identifier-1 is
determined by the rules for a MOVE from a numeric edited item to numeric item. The numeric values is then
converted as described above. If identifier-1 is numeric edited, but only the UPDATE clause is present, then it is not
converted before display.

Output conversion does not itself change the value of identifier-1, but only the appearance of data in the screen field.
The UPDATE clause signals output conversion, and implies input conversion. Unlike with the DISPLAY statement,
CONVERT does not signal output conversion, but rather signals input conversion.

All formats:

(47) The TIME-OUT phrase enables a local time-out for the particular ACCEPT statement. If provided, it
overrides any other specified time-out value. The time-out specifies the amount of time, in seconds, that the runtime
will wait between keystrokes. If the time expires, the ACCEPT terminates as if an ESCAPE had been struck and sets
the ESCAPE KEY value to 99. Valid values are:

Time-out value Meaning
<= 0 or >= 65535 No time-out (Wait forever)
65534 Time-out immediately
> 6300 Set to 6300 seconds
1-6300 Set to n seconds

(48) If the time-out value specified by identifier-4 or literal-3 is not an integer, its value is rounded to the
nearest tenth of a second..

(49) When using timeouts, ICOBOL handles them in the following order for both the ACCEPT statement and
the STOP literal statement:

a. If a local timeout was specified by the TIME-OUT or BEFORE TIME clause of the ACCEPT statement,
then it is used; otherwise,

b. If a timeout had been set with the IC_SET_TIMEOUT builtin, then it is used; otherwise,

c. The global timeout as set with ICTIMEOUT will be used. The default case for global timeout is to wait
forever.

295

Interactive COBOL Language Reference & Developer’s Guide - Part One

(50) Any system generated messages are erased whenever an ACCEPT is terminated.

296

PROCEDURE DIVISION (ACCEPT (system))

E.2. ACCEPT (system)

E.2.1 Function

The ACCEPT (system) statements cause data from the system to be made available to data items in the File,
Working-Storage, or Linkage sections.

ENVIRONMENT, ESCAPE KEY, EXCEPTION STATUS, LINE NUMBER, and USER NAME are extensions to
ANSI COBOL.

E.2.2 General Format (ANSI 74 and ANSI 85)

Format 1:

ACCEPT identifier FROM

Format 2:

ACCEPT identifier FROM

E.2.3 General Format (VXCOBOL)

Format 1:

ACCEPT identifier FROM

Format 2:

ACCEPT identifier FROM

ACCEPT identifier FROM LINE NUMBER
d [ON VIRTUAL TERMINAL imperative-statement [END-ACCEPT]]

E.2.4 Syntax Rules

(1) (ISQL) In Format 1, the TIMESTAMP phrase may only be specified if the ISQL feature-set is enabled.

(2) (ISQL) If identifier specifies an item of class date-time and category date, the DATE phrase must be
specified. The YYYYMMDD phrase is implied if it is omitted.

(3) (ISQL) If identifier specifies an item of class date-time and category time, the TIME phrase must be
specified.

297

Interactive COBOL Language Reference & Developer’s Guide - Part One

(4) (ISQL) If identifier specifies an item of class date-time and category timestamp, the TIMESTAMP phrase
must be specified.

E.2.5 General Rules

(1) The ACCEPT statement causes the information requested to be transferred to the data item specified by
identifier according to the rules for the MOVE statement. DATE, DAY, DAY-OF-WEEK TIME, and
TIMESTAMP reference the current date and time provided by the system on which the ACCEPT statement is
executed. DATE, DAY, DAY-OF-WEEK and TIME are standard COBOL conceptual data items and, therefore, are
not described in the COBOL program. TIMESTAMP, ENVIRONMENT, ESCAPE KEY, EXCEPTION STATUS,
LINE NUMBER, and USER NAME are conceptual data items and, therefore, are not described in the COBOL
program.

(2) DATE, without the phrase YYYYMMDD, is composed of the data elements: year of century, month of
year, and day of month (yymmdd). Therefore, December 25, 1986, would be expressed as 861225. DATE without
the phrase YYYYMMDD, when accessed by a COBOL program, behaves as if it had been described in a COBOL
program as an unsigned elementary numeric integer data item six digits in length (PIC 9(6)).

(3) DATE, with the phrase YYYYMMDD behaves as it had been described as an unsigned elementary integar
data item of usage display eight digits in length, the character positions of which, numbered from left to right, are:

Character Positions Contents
1-4 Four numeric characters of the year in the Gregorian calendar.
5-6 Two numeric characters of the day of the year in the range 01

through 12.
7-8 Two numeric characters of the day of the month in the range 01

through 31.

(4) DAY, without the phrase YYYYDDD, is composed of the data elements: year of century and day of year
(yyddd). Therefore, December 25, 1986, would be expressed as 86359. DAY, when accessed by a COBOL
program, behaves as if it had been described in a COBOL program as an unsigned elementary numeric integer data
item five digits in length (PIC 9(5)).

(5) DAY with the phrase YYYYDDD behaves as if it had been described as an unsigned elementary integer
data item of usage display seven digits in length, the character positions of which, numbered from left to right are:

Character Positions Contents

1-4 Four numeric characters of the year in the Gregorian calendar.
5-7 Three numeric characters of the day of the year in the range 001

through 366.

(6) TIME is composed of the data elements hours, minutes, seconds, and hundredths of a second (hhmmsshh).
TIME is based on elapsed time after midnight on a 24-hour clock basis; thus, 2:41 p. m. would be expressed as
14410000. TIME, when accessed by a COBOL program, behaves as if it had been described in a COBOL program
as an unsigned elementary numeric integer data item eight digits in length (PIC 9(8)). The minimum value of TIME
is 00000000; the maximum value of TIME is 23595999. If the system does not have the facility to provide
fractional parts of a second, the value zero is returned for those parts which cannot be determined (e.g., 386UNIX
returns 00 as the hundredths of a second in the seventh and eight character positions).

NOTE: If the ISQL feature-set is enabled, one can use the TIMESTAMP features to retrieve a
date and time as one operation. Otherwise, the recommended method is to use either the
IC_FULL_DATE builtin call or the CURRENT-DATE function. Each of the three
methods return a four-digit year and assure that the both date and time were retrieved
without the system crossing midnight, which can occur if one uses separate ACCEPT
FROM DATE and ACCEPT FROM TIME statements. IC_FULL_DATE is discussed
in this document beginning on page 544, and the CURRENT-DATE function is
discussed on page 628.

298

PROCEDURE DIVISION (ACCEPT (system))

(7) DAY-OF-WEEK is composed of a single data element whose content represents the day of the week.
DAY-OF-WEEK, when accessed by a COBOL program, behaves as if it had been described in a COBOL program
as an unsigned elementary numeric integer data item one digit in length. In DAY-OF-WEEK, the value 1 represents
Monday, 2 represents Tuesday, ... , 7 represents Sunday.

(8) (ISQL) TIMESTAMP is composed of a 4-digit year field, a 2-digit month field, a 2-digit day field, a 2-digit
hour field, a 2-digit minute field, a 2-digit second field, and a 2-digit hundredths of second field. It is equivalent to
SQL TIMESTAMP(2). Conceptually it is equivalent to PIC 9(16). If <identifier> is a timestamp, then the internal
timestamp will have all 6 fractional digits for seconds.

299

Interactive COBOL Language Reference & Developer’s Guide - Part One

(9) ENVIRONMENT is composed of a structure containing specific information for a particular operating
system environment. The amount of data transferred depends on the environment and the revision of the runtime
system. For revision 3.30 of ICOBOL, the structure is defined as follows:

01 ENV-STRUCTURE.
 02 SYSTEM-CODE PIC 99.
 88 IC-AOSVS VALUE IS 01.
 88 IC-AOSVSII VALUE IS 04.
 88 IC-MSDOS VALUE IS 30.
 88 IC-386UNIX VALUE IS 31.
 88 IC-DGUX-88K VALUE IS 34.
 88 IC-AIX-RS VALUE IS 39.
 88 IC-SUN-SPARC VALUE IS 40.
 88 IC-HPUX-PA-RISC VALUE IS 41.
 88 IC-MOTOROLA-88K VALUE IS 43.
 88 IC-STRATUS-860 VALUE IS 44.
 88 IC-LINUX-INTEL32 VALUE IS 45. (Renamed)
 88 IC-DGUX-INTEL VALUE IS 47.
 88 IC-SCO-UNIX-INTEL VALUE IS 48.
 88 IC-UNIXWARE-INTEL VALUE IS 49.
 88 IC-MACOSX VALUE IS 51.
 88 IC-LINUX-INTEL64 VALUE IS 52. (New)
 88 IC-WINDOWS-9X VALUE IS 60.
 88 IC-WINDOWS-32 VALUE IS 61. (Renamed)
 88 IC-WINDOWS-64 VALUE IS 62. (New)
 02 REVISION-CODE PIC 99.
 02 PROGRAM-NAME PIC X(28).
 02 PID PIC 9(5).
 02 CONSOLE-TYPE PIC X.
 88 CON-BATCH VALUE IS "B".
 88 CON-NORMAL VALUE IS "C".
 88 CON-MASTER VALUE IS "M". (end rev 00)
 02 SCREEN-LINES PIC 9(3).
 02 SCREEN-COLUMNS PIC 9(3).
 02 PRIVILEGES PIC X(16).
 02 PRIV-REDEF REDEFINES PRIVILEGES.
 03 ABORT-PROGRAM PIC X.
 03 INTERNAL-INFORMATION PIC X.
 03 MESSAGE-SENDING PIC X.
 03 TERMINAL-STATUS PIC X.
 03 PRINTER-CONTROL PIC X.
 03 PRINTER-CONTROL-MGMT PIC X.
 03 SHUTDOWN-RUNTIME PIC X.
 03 BG-CONSOLE-OR-HOST-EXEC PIC X.
 03 CONSOLE-INTERRUPT PIC X.
 03 DEBUG-PROGRAM PIC X.
 03 WATCH-FACILITY PIC X.
 03 XWATCH-FACILITY PIC X. (new rev 05)
 03 FILLER PIC X(4).
 02 FILENAME-CASE PIC X.
 88 CONVERT-TO-LOWER VALUE "L".
 88 CONVERT-TO-UPPER VALUE "U".
 88 CONVERT-NONE VALUE "N". (end rev 01)
 02 ICREV-INFO PIC X(8). (end rev 02)
 02 PROGRAM-TYPE PIC X.
 88 NORMAL-PROGRAM VALUE IS "N".
 88 HOTKEY-PROGRAM VALUE IS "H".
 88 NORMAL-PROGRAM-CHILD VALUE IS "C".
 02 MAX-LEVELS PIC 99.
 02 CURRENT-LEVEL PIC 99. (end rev 03)
 02 LARGE-PID PIC 9(10). (end rev 04)
 02 SCREEN-COLUMNS-MIN PIC 9(3).
 02 SCREEN-COLUMNS-MAX PIC 9(3).
 02 SYS-NODENAME PIC X(16). (end rev 05)

300

PROCEDURE DIVISION (ACCEPT (system))

Where
SYSTEM-CODE indicates that this COBOL program is currently running under ICOBOL on the operating

system corresponding to the 2-digit code that is returned. New codes are added as additional systems are
supported. Please see the ICOBOL product’s README file for the latest values. The current system-code
can be overridden when starting the runtime with the Set System code switch (-S).

REVISION-CODE indicates the current revision of this structure under ICOBOL for this system and is set to 05
for this revision.

PROGRAM-NAME is the current program that is running (i.e., the same as would be seen by a
IC_TERM_STAT on another console).

PID is the current process id.
 CONSOLE-TYPE is `B' if this process is a batch job or detached program or otherwise has the standard input

set to the null device; `C' if it is attached to an interactive console, or `M' if this is console 0 in the
configuration file (.cfi), even if the Master Console has been reset to a console number other than 0 by use
of the Lowest Console number switch to ICEXEC.

SCREEN-LINES and SCREEN-COLUMNS is the number of lines and columns that ICOBOL is currently
using for this terminal. When in Batch mode these numbers are undefined.

PRIVILEGES contains characters defining the privileges that the current program has. If the privilege is
granted the indicated column will contain the letter specified, otherwise the column will contain a space.

Position Contents Meaning
 1 A User can run Abort Terminals
 2 I User can run System Information
 3 M User can run Message Sending
 4 T User can run Terminal Status
 5 P User can run Printer Control
 6 C User has printer control management
 7 S User can run Shutdown
 8 O User can Detach jobs or call host
 9 B Program Interrupts are allowed
 10 D User can debug
 11 W User can use the Watch Facility
 12 X This user can NOT be watched
 13-16 space Undefined (reserved)

FILENAME-CASE contains the case that ICOBOL on Linux is using for filenames, i.e., the -C value from the
command line as U=upper, L=lower, and N=none.

ICREV-INFO contains the 8-byte string set with the ICREVSET utility or with the compiler OEM Version
Switch (-o|-O ver).. If not set, it will contain nulls (LOW-VALUES).

PROGRAM-TYPE is ‘H’ if the current program was called via a hotkey, ‘C’ if the current program was called
from within a hotkey program, or ‘N’ if the current program is a normal program.

FILLER will always contain zeros (00). (Formerly MAX-LEVELS, the maximum configured number of CALL
levels allowed. This item is obsolete.)

CURRENT-LEVEL shows the current number of active and inactive programs in this run-unit. If greater than
99, then only 99 is shown.

LARGE-PID shows a 10 character pid number on those systems that support larger pid ranges, otherwise
LARGE-PID matches PID

SCREEN-COLUMNS-MIN, SCREEN-COLUMNS-MAX is the minimum and maximum values for a terminal
that supports compressed mode.

SYS-NODENAME is a 16 character name of the current computer.
.
ICOBOL sets batch job (`B' in CONSOLE-TYPE) when it detects that the standard input is set to the null device.
An ACCEPT will generate an immediate end-of-file. All programs started with the IC_DETACH will be considered
as batch jobs. CGICOBOL programs are considered as batch jobs.

The runtime system uses the rules for a MOVE statement to transfer data into the environment structure. If the
identifier is smaller than the data, data is truncated on the right. If the identifier is larger, the data is left-justified and
the identifier is padded with spaces.

(10) ESCAPE KEY contains a two-digit (PIC 99) code generated by the key that terminated the last Format 3
(ACCEPT identifier-1) or Format 4 (ACCEPT screen-name) ACCEPT statement in the program. It should be
queried immediately after the ACCEPT you wish to test.

301

Interactive COBOL Language Reference & Developer’s Guide - Part One

The ESCAPE KEY will return a zero if a valid ACCEPT has not been done since the program was started via
either a CALL PROGRAM or CALL.

The following table shows the default ESCAPE KEY codes for a Data General D2xx compatible terminal.

Key Key
alone

Key +
SHIFT

Key +
CTRL

Key +
SHIFT+CTRL

 CR 00 00 00 00

 NEWLINE 00 00 00 00

 ESC 01 01 01 01

 F1 02 10 18 26

 F2 03 11 19 27

 F3 04 12 20 28

 F4 05 13 21 29

 F5 06 14 22 30

 F6 07 15 23 31

 F7 08 16 24 32

 F8 09 17 25 33

 F9 34 41 48 55

 F10 35 42 49 56

 F11 36 43 50 57

 F12 37 44 51 58

 F13 38 45 52 59

 F14 39 46 53 60

 F15 40 47 54 61

 C1 62 66 62 66

 C2 63 67 63 67

 C3 64 68 64 68

 C4 65 69 65 69

 Down-arrow 00 77 00 00

 Up-arrow n/a 70 n/a 70

 Right-arrow n/a 71 n/a 71

 Left-arrow n/a 72 n/a 72

 CMD-Print 73 74 73 74

 HOME n/a 75 n/a 75

TABLE 19. Function Key Escape Codes

Escape key codes are configurable in the terminal description files (.tdi) on a terminal type basis. See the
Installing and Configuring manuals for complete details.

(11) EXCEPTION STATUS, without the WITH ERROR IN phrase, contains a five-digit (PIC 9(5)) code, for
the most recent I/O operation. This includes all I/O operations: file I/O (which also set File Status), plus ACCEPT,
DISPLAY, CALL and CALL PROGRAM. The returned Exception Status value can be used with the
IC_MSG_TEXT builtin to get the error message text for the particular error.

Remember: to retrieve the correct status, the ACCEPT FROM EXCEPTION STATUS must be issued
prior to any further I/O or CALL operation, including screen I/O operations.

APPENDICES F (ANSI) and G (VXCOBOL), starting on pages 867 and ? respectively, show all possible
Exception Status values with their meaning, along with any Linux or Windows error that will generate that Exception
Status.

If a fatal I/O error is encountered and the program terminates, the current Exception Status is displayed right
after the COBOL PC as E=nnn.

(12) EXCEPTION STATUS with the WITH ERROR IN phrase returns the operating system error that caused
the exception, if such was the case. The program’s definition of identifier-5 should be PIC 9(5).

302

PROCEDURE DIVISION (ACCEPT (system))

(13) LINE NUMBER contains a five-digit number of the console number (n of @CONn) on which this
program is running. Its PICTURE is 9(5). The ON VIRTUAL TERMINAL clause, available for VXCOBOL, is for
documentation purposes only and is therefore ignored.

(14) USER NAME contains the current system user name (if available) of the user currently running this
program. Up to 15 characters are returned; i.e., its PICTURE is X(15). By default, the user name is returned in
lower-case. A runtime switch (-U) may be specified to convert the case of the user name that is returned by
ACCEPT FROM USER NAME. The name may be changed by the IC_SET_USERNAME builtin, which is
discussed in this document beginning on page 592.

303

Interactive COBOL Language Reference & Developer’s Guide - Part One

304

PROCEDURE DIVISION (ADD)

E.3. ADD

E.3.1 Function

The ADD statement causes two or more numeric operands to be summed and the result to be stored.

E.3.2 General Format

Format 1:

ADD TO { identifier-2 [ROUNDED] }...

[ON SIZE ERROR imperative-statement-1]
[NOT ON SIZE ERROR imperative-statement-2]
[END-ADD]

Format 2:

ADD GIVING { identifier-3 [ROUNDED] }...

[ON SIZE ERROR imperative-statement-1]
[NOT ON SIZE ERROR imperative-statement-2]
[END-ADD]

Format 3:

ADD identifier-1 TO identifier-2 [ROUNDED]

[ON SIZE ERROR imperative-statement-1]
[NOT ON SIZE ERROR imperative-statement-2]
[END-ADD]

E.3.3 Syntax Rules

(1) In Formats 1 and 2, each identifier must refer to an elementary numeric item, except that in Format 2 each
identifier following the word GIVING must refer to either an elementary numeric item or an elementary numeric
edited item. In Format 3, each identifier must refer to a group item.

(2) Each literal must be a numeric literal.

(3) The composite of operands must not contain more than 18 digits.

a. In Format 1, the composite of operands is determined by using all of the operands in a given statement.

b. In Format 2, the composite of operands is determined by using all of the operands in a given statement,
excluding the data items that follow the word GIVING.

c. In Format 3, the composite of operands is determined separately for each pair of corresponding data
items.

(4) CORR is an abbreviation for CORRESPONDING.

305

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.3.4 General Rules

(1) If Format 1 is used, the values of the operands preceding the word TO are added together and the sum is
stored in a temporary data item. The value in this temporary data item is added to the value of the data item
referenced by identifier-2, with the result stored into the data item referenced by identifier-2. This process is
repeated for each successive occurrence of identifier-2, in the left-to-right order in which identifier-2 is specified.

(2) If Format 2 is used, the values of the operands preceding the word GIVING are added together, then the
sum is stored as the new content of each data item referenced by identifier-3.

(3) If Format 3 is used, data items in identifier-1 are added to and stored in corresponding data items in
identifier-2.

(4) The compiler insures that enough places are carried, so as not to lose any significant digits during execution.

(5) Additional rules and explanations relative to this statement are given under the appropriate paragraphs. (See
Scope of Statements, page 260; The ROUNDED Phrase, page 253; The ON SIZE ERROR Phrase, page 254; The
Arithmetic Statements, page 256; Overlapping Operands, page 256; Multiple Results in Arithmetic Statements, page
256; and The CORRESPONDING Phrase, page 254.)

306

PROCEDURE DIVISION (CALL)

E.4. CALL

E.4.1 Function

The CALL statement causes control to be transferred from one object program to another, within the run unit or to an
external executable program as defined by a particular ICOBOL operating system version.

To see how ICOBOL processes the program name see the External Filename description in the Developer’s Guide
section on page 791.

E.4.2 General Format

Format 1:

CALL

[ON EXCEPTION imperative-statement-1]
[NOT ON EXCEPTION imperative-statement-2]
[END-CALL]

Format 2:

CALL

[ON OVERFLOW imperative-statement-1]
[END-CALL]

E.4.3 Syntax Rules

(1) Literal must be a nonnumeric literal.

(2) Identifier-1 must be defined as an alphanumeric data item such that its value can be a program-name.

(3) Each of the operands (identifier-2) in the USING phrase must have been defined as a data item in the File
Section, Working-Storage Section, or Linkage Section.

E.4.4 General Rules

(1) Literal or the content of the data item referenced by identifier-1 must contain the name of the called
program. The program in which the CALL statement appears is the calling program.

(2) If, when a CALL statement is executed, the program specified by the CALL statement is made available for
execution, control is transferred to the called program. After control is returned from the called program, the ON
OVERFLOW or ON EXCEPTION phrase, if specified is ignored and control is transferred to the end of the CALL
statement or, if the NOT ON EXCEPTION phrase is specified, to imperative-statement-2. If control is transferred to
imperative-statement-2, execution continues according to the rules for each statement specified in
imperative-statement-2. If a procedure branching or conditional statement which causes explicit transfer of control
is executed, control is transferred in accordance with the rules for that statement; otherwise, upon completion of the
execution of imperative-statement-2, control is transferred to the end of the CALL statement.

307

Interactive COBOL Language Reference & Developer’s Guide - Part One

(3) If it is determined, when a CALL statement is executed, that the program specified by the CALL statement
cannot be made available for execution at that time the appropriate Exception Status is set and one of the two actions
listed below will occur.

a. If the ON OVERFLOW or ON EXCEPTION phrase is specified in the CALL statement, control is
transferred to imperative-statement-1. Execution then continues according to the rules for each statement specified
in imperative-statement-1. If a procedure branching or conditional statement which causes explicit transfer of
control is executed, control is transferred in accordance with the rules for that statement; otherwise, upon completion
of the execution of imperative-statement-1, control is transferred to the end of the CALL statement and the NOT ON
EXCEPTION phrase, if specified, is ignored.

b. If the ON OVERFLOW or ON EXCEPTION phrase is not specified in the CALL statement, the NOT
ON EXCEPTION phrase, if specified, is ignored, and control is transferred to the end of the CALL statement.

(4) If the called program does not possess the initial attribute, the called program is in its initial state the first
time it is called within a run unit and the first time it is called after a CANCEL to the called program. On all other
entries into the called program, the state of the program remains unchanged from its state when last exited.

If the called program possesses the initial attribute it is placed into its initial state every time the called
program is called within a run unit.

(5) Files associated with a called program's internal file connectors are not in the open mode when the program
is in an initial state.

On all other entries into the called program, the states and positioning of all such files is the same as when
the called program was last exited.

External file connectors always maintain their state across a CALL.

(6) The USING phrase is included in the CALL statement only if there is a USING phrase in the Procedure
Division header of the called program, in which case the number of operands in each USING phrase must be
identical. If the program being called is other than a COBOL program, the use of the USING phrase is defined by
the program being called. For example, builtins define the expected operands.

(7) The sequence of appearance of the data-names in the USING phrase of the CALL statement and in the
corresponding USING phrase in the called program's Procedure Division header determines the correspondence
between the data-names used by the calling and called programs. This correspondence is positional and not by name
equivalence; the first data-name in one USING phrase corresponds to the first data-name in the other, the second to
the second, etc.

(8) The values of the parameters referenced in the USING phrase of the CALL statement are made available to
the called program at the time the CALL statement is executed.

(9) Both the BY CONTENT and BY REFERENCE phrases are transitive across the parameters which follow
them until another BY CONTENT or BY REFERENCE phrase is encountered. If neither the BY CONTENT nor
BY REFERENCE phrase is specified prior to the first parameter, the BY REFERENCE phrase is assumed.

(10) For a parameter that is described either explicitly or implicitly as BY REFERENCE, the object program
operates as if the corresponding data item in the called program occupies the same storage area as the data item in
the calling program. The description of the data item in the called program must describe the same number of
character positions as described by the description of the corresponding data item in the calling program.

(11) For a parameter that is described as BY CONTENT, the object program operates as if the storage area in
the calling program is copied to a storage area reserved in the LINKAGE Section of the called program, by the
USING phrase in the Procedure Division header, for the corresponding item in the USING phrase of the CALL. The
storage area of the calling program remains unchanged when the EXIT PROGRAM statement is executed in the
called program. The description of the data item in the called program must describe the same number of character

308

PROCEDURE DIVISION (CALL)

positions as described by the description of the corresponding data item in the calling program. See Values of
Parameters on page 60 for more information.

(12) Called programs may contain CALL statements. However, a called program must not execute a CALL
statement that directly or indirectly calls the calling program. If a CALL statement is executed within the range of a
declarative, that CALL statement cannot directly or indirectly reference any called program in which control has
been transferred and which has not completed execution.

(13) The maximum number of parameters that may be specified in a USING phrase is 32.

(14) The CALL statement cannot pass switches to a called program. Switches are the same for the entire run
unit.

(15) A few of the more-common error conditions and their exception status codes are:

Exception
Status Code Error Condition

83 The file does not have the correct revision

203 Program not found

207 Program is already active

209 Parameter count or parameter size mismatch

213 Program file cannot be loaded.

TABLE 20. Common Error Conditions for a CALL Statement

(16) The END-CALL phrase delimits the scope of the CALL statement.

(17) CALL can be used to execute user-written C subroutines that have been bound into the currently executing
runtime by using the ICOBOL Link Kit. These user-written are bound in dynamically using icbltn.so (Linux) or
icbltn.dll (Windows). See the readlink.txt file in the ICOBOL link_kit subdirectory for details.

(18) CALL can be used to execute operating system executable programs.

E.4.5 Calling Operating System Executables

(1) The name of the executable file literal-1 or the contents of identifier-1 must begin with the special character
vertical bar (“|”) which indicates that the name following is an executable file and should be passed to the operating
system to be executed with the given arguments identifier-2 and then return to ICOBOL when finished.

(2) If the program specified cannot be executed, the Exception Status is set and the ON EXCEPTION clause, if
specified, will be performed. Otherwise, the returned error code is placed into Exception Status, but the ON
EXCEPTION clause is not executed.

(3) By using the CALL to an operating system executable, other copies of ICOBOL or ICOBOL utilities can
be started from within a COBOL program. These other processes will get console numbers from the range of
consoles that have been enabled with no device name specified; thus, you will never have another ICOBOL runtime
running with the same console number.

(4) Multiple arguments can be passed but the contents of the data items are never modified by the operating
system executables.

309

Interactive COBOL Language Reference & Developer’s Guide - Part One

 MOVE "-s" TO ARGUMENT.
 CALL "|sh" USING ARGUMENT.

 MOVE "-c" TO ARGUMENT1.
 MOVE "ls -l" TO ARGUMENT2.
 CALL "|sh" USING ARGUMENT1, ARGUMENT2.

 MOVE "-l" TO ARGUMENT.
 CALL "|ls" USING ARGUMENT.

 CALL "|c:\winnt\system32\cmd.exe".

 MOVE “/C DIR” TO ARGUMENT.
 CALL "|c:\winnt\system32\cmd.exe" USING ARGUMENT.

Linux examples

EXAMPLE: To call the Bourne shell you could use the following:

EXAMPLE 17. CALL the Bourne shell from a COBOL program (Linux)

The above example code starts the sh program with the initial argument "-s", which tells the shell to use stdin
and stdout for its input and output. When the shell is terminated, control returns to ICOBOL, with the exit code
being stored into Exception Status.

EXAMPLE: To call the shell and have it execute a single "ls" command and return, use the following:

EXAMPLE 18. CALL the shell, have it execute “ls” and return (Linux)

EXAMPLE: To call the ls command directly and return, use the following:

EXAMPLE 19. CALL the “ls” command directly and return (Linux)

Windows examples

EXAMPLE: To call the Windows command processor.

EXAMPLE 20. CALL the command processor (Windows)

EXAMPLE: To call the Windows command processor and have it executed the DIR command:.

EXAMPLE 21. CALL the command processor and execute the DIR command (Windows)

310

PROCEDURE DIVISION (CALL)

 MOVE “/p printfile.pdf” TO ARGUMENT.
 CALL "|c:\program files\adobe\reader 8\acrod32.exe" USING ARGUMENT.

EXAMPLE: To call the Acrobat Reader to print a particular .pdf file on the default printer:

EXAMPLE 22. CALL Acrobat Reader and print a file (Windows)

311

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.5. CALL PROGRAM

E.5.1 Function

The CALL PROGRAM statement begins a new run unit with another COBOL program or it performs a system
function as defined by a particular ICOBOL operating system version. CALL PROGRAM is an extension to ANSI
COBOL. Also see the table, CALL and CALL PROGRAM Compared, at the end of this description.

To see how ICOBOL processes the program name see the External Filename description in the Developer’s Guide
section on page 791.

E.5.2 General Format

CALL PROGRAM [USING { identifier-2 }...]

[ON EXCEPTION imperative-statement-1]
[NOT ON EXCEPTION imperative-statement-2]
[END-CALL]

E.5.3 Syntax Rules

(1) Literal must be a nonnumeric literal.

(2) Identifier-1 must be defined as an alphanumeric data item such that its value can be a program-name.

(3) In addition to the program-name, literal or identifier-1 can include program switches, each a nonnumeric
literal. For example:

CALL PROGRAM "REPORT/M/WEEKLY/QUARTERLY".

(4) Each of the operands in the USING phrase must have been defined as a data item in the File Section,
Working-Storage Section, or Linkage Section.

E.5.4 General Rules

(1) Literal or the content of the data item referenced by identifier-1 is the name of the called program and
possibly program switches. The program in which the CALL PROGRAM statement appears is the calling program.
Literal or the content of the data item referenced by identifier-1 must contain the program-name of the program to be
called or the system call to be executed.

(2) If, when a CALL PROGRAM statement is executed, the program specified by the statement is a COBOL
program, it is made available for execution, all files in the current program are closed, and control is transferred to
the called program. The successful transfer of control to a called program is equivalent to the execution of a
STOP RUN statement within the calling program followed by the start of the called program. (You cannot return to
the original or calling program, except when doing system calls.)

(3) If, when a CALL PROGRAM statement is executed, the program specified by the CALL PROGRAM
statement is a system call, it is executed in accordance with the specifications for that system call. A system call is
defined to be any program name starting with the `#' symbol. Valid system calls for a particular operating system
and their function can be found in this manual in APPENDIX M beginning on page 907. If the specified system call
returns to the program, and the NOT ON EXCEPTION phrase is specified control is transferred to
imperative-statement-2; otherwise, control is transferred to the end of the CALL PROGRAM statement.

312

PROCEDURE DIVISION (CALL PROGRAM)

(4) If it is determined, when a CALL PROGRAM statement is executed, that the program specified by the
CALL PROGRAM statement cannot be made available for execution at that time, the exception status is set to the
appropriate value and one of the two actions listed below will occur.

a. If the ON EXCEPTION phrase is specified in the CALL PROGRAM statement, control is transferred to
imperative-statement-1. Execution then continues according to the rules for each statement specified in
imperative-statement-1. If a procedure branching or conditional statement which causes explicit transfer of control
is executed, control is transferred in accordance with the rules for that statement; otherwise, upon completion of the
execution of imperative-statement-1, control is transferred to the end of the CALL PROGRAM statement and the
NOT ON EXCEPTION phrase, if specified, is ignored.

b. If the ON EXCEPTION phrase is not specified in the CALL PROGRAM statement, control is
transferred to the end of the CALL PROGRAM statement and the NOT ON EXCEPTION phrase, if specified, is
ignored.

(5) A few of the more common error conditions and their exception status codes are:

Exception
Status Code Error Condition

83 The file does not have the correct revision

203 Program not found, or this is a system call and the system call
is not valid for the operating system

213 Program file could not be loaded. program

TABLE 21. Common Error Conditions for a CALL PROGRAM Statement

(6) The END-CALL phrase delimits the scope of the CALL PROGRAM statement.

(7) The USING phrase can be included in the CALL PROGRAM statement even if there is not a USING phrase
in the Procedure Division header of the called program, in which case no parameters are passed to the called
program. If the program being called is other than a COBOL program, the use of the USING phrase is defined by
the program being called.

(8) The sequence of appearance of the data-names in the USING phrase of the CALL PROGRAM statement
and in the corresponding USING phrase in the called program's Procedure Division header determines the
correspondence between the data-names used by the calling and called programs. This correspondence is positional
and not by name equivalence; the first data-name in one USING phrase corresponds to the first data-name in the
other, the second to the second, etc.

(9) The values of the parameters referenced in the USING phrase of the CALL PROGRAM statement are made
available to the called program at the time the CALL PROGRAM statement is executed.

(10) For a parameter, the object program operates as if the storage area in the calling program is copied to a
storage area reserved in the LINKAGE Section of the called program by the USING phrase in the Procedure
Division header for the corresponding item in the USING phrase of the CALL PROGRAM. The description of the
data item in the called program does not have to describe the same number of character positions as described by the
description of the corresponding data item in the calling program. If more bytes are passed than can be stored the
extra bytes are ignored. If not enough bytes are passed the resulting storage is undefined.

(11) (Switch processing) Without the ICOBOL runtime options ‘-G s’ (Strict switch processing) or ‘-N e’ (No
embedded spaces) the following default rules describe how the runtime extracts switches from the value of literal or
identifier-1:

a. The switch character is the forward slash '/'.

313

Interactive COBOL Language Reference & Developer’s Guide - Part One

b. Using ':' or '\' as pathname separators or an initial '=' or '^' removes all ambiguity; i.e., everything starting
with '/' is a switch.

c. Switches may be multiple characters.

d. Single character switches follow this special rule: All /x pairs are removed (beginning at the right and
moving left) and treated as switches except for a pair occurring as the first 2 characters. This rule is in effect for
compatibility with existing applications where program switches are a single character.

e. The first " /" (that’s a space followed by a /) (from left to right) will always end a program name and
begin program switches.

f. All processing is discontinued at the first CR, NL, FF or NUL.

g. By default, embedded spaces are allowed in literal or identifier-1.

(12) With the ‘-G s’ (Strict switch processing) runtime option, a ‘/’ in the value in literal or identifier-1 always
signals the start of a program switch.

(13) With the ‘-N e’ (No embedded spaces) runtime option, embedded spaces are not allowed in program
names, and processing of literal or identifier-1 is discontinued at the first space not preceding either a ‘/’ or spaces
preceding a ‘/’.

(14) The following table shows example values for literal or identifier-1 and how they are evaluated and
processed by the ICOBOL runtime. It shows differences between a runtime that was brought up using the ‘-G s’
option and a runtime that was brought up without that option.

DEFAULT Behavior
(without ‘-G s’)

WITH ‘-G s’
runtime option

Program Switches Program Switches

1. /x/a/b/c /x a, b, c <error>

2. /x/a/b /c /x/a/b c <error>

3. /x/a/b /c/d /e /x/a/b c, d, e <error>

4. x/a/b/c x a, b, c x a, b, c

5. xxx/a/b/c xxx a, b, c xxx a, b, c

6. x/a/b/ccc x/a/b/ccc <none> x a, b, ccc

7. aaa/bbb/c aaa/bbb c aaa bbb, c

8. aaa/bbb/ccc aaa/bbb/ccc <none> aaa bbb, ccc

9. aaa\bbb/ccc aaa/bbb ccc aaa/bbb ccc

10. aaa:bbb/ccc aaa/bbb ccc aaa/bbb ccc

11. =aaa/bbb/ccc ./aaa bbb, ccc ./aaa bbb, ccc

12. ^aaa/bbb/ccc ../aaa bbb, ccc ../aaa bbb, ccc

13. aaa/bbb /ccc aaa/bbb ccc aaa bbb, ccc

14. aaa/x<nl>/b /ccc aaa x aaa x

15. my dir/my prg /sw 1 my_dir/my prg sw my_dir my

1 - The last example shows the default behavior as far as
allowing embedded spaces. With the ‘-N e’ runtime option (no
embedded spaces), an error is returned.

TABLE 22. How Program Switches are evaluated

314

PROCEDURE DIVISION - Concepts (CALL and CALL PROGRAM Compared)

E.5.5 CALL and CALL PROGRAM Compared

This table presents a high-level view of the major differences between the CALL statement and the CALL
PROGRAM statement. Details for the CALL and CALL PROGRAM statements begin on pages 305 and 309
respectively. Also see related sections in this document: PROCEDURE DIVISION USING phrase on page 60 and
EXIT PROGRAM statement on page 365.

CALL CALL PROGRAM

A “PERFORM” equivalent. A “chain” equivalent.

Returns to the calling program. Does not return to the calling program
(except for # or ## system calls, which may
perform a task and return).

Called program runs in the same run
unit as the calling program.

Called program begins a new run unit or
performs a system call.

Cannot pass switches to the called
program.

Can pass switches to the called program.

The calling program is left in the
current state except that contents
of items in the USING phrase may
have been altered by the called
program.

All files in the calling program are closed
before control is passed to the called
program.

The state of the called program
remains unchanged from its state
when last exited unless it has the
INITIAL attribute in which case it
will have its initial state when
next called.

N/A - Called program is always in its initial
state.

CANCEL logically removes called
program from the run unit so it will
be in its initial state next time it
is called.

CANCEL is not applicable for a program called
with CALL PROGRAM.

EXIT PROGRAM marks the logical end
of a called program.

EXIT PROGRAM has no effect in a called
program.

TABLE 23. CALL and CALL PROGRAM Compared

315

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.6. CANCEL

E.6.1 Function

The CANCEL statement ensures that the next time the referenced program is called it will be in its initial state.

E.6.2 General Format

CANCEL

E.6.3 Syntax Rules

(1) Literal must be a nonnumeric literal.

(2) Identifier must be defined as an alphanumeric data item such that its value can be a program name.

E.6.4 General Rules

(1) Literal or the content of the data item referenced by identifier identifies the program to be canceled.

(2) Subsequent to the execution of an explicit or implicit CANCEL statement, the program referred to therein
ceases to have any logical relationship to the run unit in which the CANCEL statement appears. If the program
referenced by a successfully executed explicit or implicit CANCEL statement in a run unit is subsequently called in
that run unit, that program is in its initial state.

(3) A program named in a CANCEL statement in another program must be callable by that other program.

(4) A program named in the CANCEL statement must not refer directly or indirectly to any program that has
been called and has not yet executed an EXIT PROGRAM statement.

(5) A logical relationship to a canceled program is established only by execution of a subsequent CALL
statement naming that program.

(6) A called program is canceled either by being referred to as the operand of a CANCEL statement, by the
termination of the run unit of which the program is a member (STOP RUN, CALL PROGRAM, interrupt), or by
execution of an EXIT PROGRAM statement in a called program that possesses the initial attribute.

(7) No action is taken when an explicit or implicit CANCEL statement is executed naming a program that has
not been called in this run unit or has been called and is at present canceled. Control is transferred to the next
executable statement following the explicit CANCEL statement.

(8) During execution of an explicit or implicit CANCEL statement, an implicit CLOSE statement without any
optional phrases is executed for each file in the open mode that is associated with an internal file connector in the
program named in the explicit CANCEL statement. Any USE procedures associated with any of these files are not
executed.

(9) The contents of data items in external data records described by a program are not changed when that
program is cancelled.

(10) The CANCEL statement does not close external files, even those open in the subprogram. You must
explicitly close external files.

316

PROCEDURE DIVISION (CLOSE)

E.7. CLOSE

E.7.1 Function

The CLOSE statement terminates the processing of files with optional lock.

E.7.2 General Format

For sequential files: (ANSI 74 and ANSI 85)

CLOSE { file-name }...

For sequential files: (VXCOBOL)

CLOSE { file-name }...

For relative, indexed, and INFOS files:

CLOSE { file-name [WITH LOCK] }...

E.7.3 Syntax Rules

(1) The files referenced in the CLOSE statement need not all have the same organization or access.

E.7.4 General Rules

(1) A CLOSE statement may only be executed for a file in an open mode.

(2) If the LOCK phrase is specified for a file, the file cannot be reopened by the program that performed the
CLOSE WITH LOCK.

(3) The execution of the CLOSE statement causes the value of the I-O status associated with file-name to be
updated.

(4) If an optional input file is not present, no end-of-file processing is performed for the file and the file position
indicator is unchanged.

(5) Following the successful execution of a CLOSE statement the record area associated with a file-name is no
longer available. The unsuccessful execution of such a CLOSE statement leaves the availability of the record area
undefined.

(6) Following the successful execution of a CLOSE statement the file is removed from the open mode, and the
file is no longer associated with the file connector.

317

Interactive COBOL Language Reference & Developer’s Guide - Part One

(7) If more than one file-name is specified in a CLOSE statement, the result of executing this CLOSE statement
is the same as if a separate CLOSE statement had been written for each file-name in the same order as specified in
the CLOSE statement.

(8) If the CLOSE is unsuccessful, a USE procedure, if specified, is executed.

(9) The NO REWIND, REEL/UNIT, RELEASE, and FOR REMOVAL clauses are for documentation purposes
only.

(10) When the CLOSE statement is executed for a file, any modified file buffers (including any that were
modified by other users) are flushed to disk or other device by the ICOBOL system. For indexed and relative files,
the ICISAM reliability flags in the file are cleared.

(11) On a CLOSE of a character device, if a timeout value was not specified on the OPEN, the CLOSE will try
forever. If a timeout had been specified, the CLOSE will complete in that time, the line will be closed, and the
buffer reset.

(12) An implicit CLOSE is executed for all open files within a program whenever it terminates.

318

PROCEDURE DIVISION (COMMIT)

E.8. COMMIT (ISQL)

E.8.1 Function

The COMMIT statement allows the program to commit an SQL database connection or connections..

E.8.2 General Format

COMMIT [ALL]
[ON SQLERROR imperative-statement-1]
[NOT ON SQLERROR imperative-statement-2]
[END-COMMIT]

E.8.3 Syntax Rules

E.8.4 General Rules

(1) The ALL phrase specifies that all connections in the run unit will be committed. (if there are any). If not
specified only the current connection is committed.

(2) Upon completion of the COMMIT statement, the following occurs in the order specified:

a. The value of the SQLSTATE data item is updated with the status of the operation.

b. If the value of the SQLSTATE class field is “00" or “01", the statement is successful. Control is
transferred to the end of the COMMIT statement or to imperative-statement-2, if specified. In the latter case,
execution continues according to the rules for each statement specified in imperative-statement-2. If a procedure
branching or conditional statement which causes explicit transfer of control is executed, control is transferred in
accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-2,
control is transferred to the end of the COMMIT statement.

c. If the value of the SQLSTATE class field is not “00" or “01", the statement is unsuccessful. The
statement container is deallocated and no statement container of the specified name will exist in the current program.
Control is transferred to the end of the COMMIT statement or to imperative-statement-1, if specified. In the latter
case, execution continues according to the rules for each statement specified in imperative-statement-1. If a
procedure branching or conditional statement which causes explicit transfer of control is executed, control is
transferred in accordance with the rules for the statement; otherwise, upon completion of the execution of
imperative-statement-1, control is transferred to the end of the COMMIT statement.

(3) The END-COMMIT phrase delimits the scope of the COMMIT statement.

(4) More on SQLSTATE can be found on page 139.

319

Interactive COBOL Language Reference & Developer’s Guide - Part One

320

PROCEDURE DIVISION (COMPUTE)

E.9. COMPUTE

E.9.1 Function

The COMPUTE statement assigns to one or more data items the value of an arithmetic expression.

E.9.2 General Format

COMPUTE { identifier-1 [ROUNDED] }... = arithmetic-expression
[ON SIZE ERROR imperative-statement-1]
[NOT ON SIZE ERROR imperative-statement-2]
[END-COMPUTE]

E.9.3 Syntax Rules

(1) Identifier-1 must reference either an elementary numeric item or an elementary numeric edited item.

(2) (ISQL) Identifier-1 may also be a date-time or interval elementary data item subject to the general rules for
permissible combinations of operands.

E.9.4 General Rules

(1) An arithmetic-expression consisting of a single identifier or literal provides a method of setting the value of
the data item reference by identifier-1 equal to the literal or the value of the data item reference by the single
identifier.

(2) If more than one identifier is specified for the result of the operation, the value of the arithmetic expression
is developed, and then is stored as the new value of each of the data items referenced by identifier-1.

(3) The COMPUTE statement allows the user to combine arithmetic operations without the restrictions on
composite of operands and/or receiving data items imposed by the arithmetic statements ADD, SUBTRACT,
MULTIPLY, and DIVIDE.

(4) (ISQL) The COMPUTE statement can be used with date-time and interval operands. The category of the
data-item referenced by identifier-1 must match the result category of arithmetic-expression. The rules for an
arithmetic expression involving date-time and interval items are covered under Arithmetic Expressions, beginning on
page 238.

(5) Additional rules and explanations to this statement are given under the appropriate paragraphs. (See
Arithmetic Expressions, page 238; Scope of Statements, page 260; The ROUNDED phrase, page 253; The ON SIZE
ERROR Phrase, page 254; The Arithmetic Statements, page 256; Overlapping Operands, page 256; and Multiple
Results in Arithmetic Statements, page 256.)

321

Interactive COBOL Language Reference & Developer’s Guide - Part One

322

PROCEDURE DIVISION (CONNECT)

E.10. CONNECT (ISQL)

E.10.1 Function

The CONNECT statement allows the program to establish a connection to an SQL database. Other SQL statements
that occur in the program operate in the context of the currently active connection.

E.10.2 General Format

[ON SQLERROR imperative-statement-1]
[NOT ON SQLERROR imperative-statement-2]
[END-CONNECT]

E.10.3 Syntax Rules

(1) Literal-1, literal-2, literal-3, and literal-4 must specify a nonnumeric literal and may not specify a figurative
constant.

(2) Identifier-1, identifier-2, identifier-3, and identifier-4 must specify an alphanumeric data item.

(3) Literal-2 or the value represented by identifier-2 may not specify the value “default” (case-insensitive),
which is reserved as the name for the connection established by specifying the DEFAULT phrase.

E.10.4 General Rules

(1) The DEFAULT phrase specifies that a system default value is to be used for the connection string, user
name, and password. This default value is selected from the environment variables ICSQLDSN, ICSQLUSER, and
ICSQLPWD. If ICSQLDSN is not present, a data-set name of “default” is used. If ICSQLUSER is not present, the
current login name is used (the same value returned by ACCEPT FROM USER NAME). If ICSQLPWD is not
present, a null string is used. The connection will have the name “default”.

(2) Literal-1 or the content of the data item represented by identifier-1 specifies the connection string that
supplies the information necessary to connect to the database. Usually it specifies a data-set name (DSN).

(3) Literal-2 or the content of the data item represented by identifier-2 in the AS phrase specifies a name for the
connection. The name can be used to identify the connection in a DISCONNECT or SET CONNECTION
statement. The value is not case-sensitive. If the AS phrase is not supplied, the content of the connection string is
used as the connection name.

(4) Literal-3 or the content of the data item represented by identifier-3 in the USER phrase specifies a user
name for the connection. If the USER phrase is not specified, the system will use the current user login name.

(5) Literal-4 or the content of the data item represented by identifier-4 in the USER phrase specifies a password
for the connection. If this optional field is not specified, the system will use a null string.

(6) It is an error if the run unit already has a connection with the same name, which includes the name “default”
for a connection made by using the DEFAULT phrase.

(7) Connections are kept on a run unit basis, i.e., the scope of the connection name is the entire run unit, not the
program containing the CONNECT statement.

323

Interactive COBOL Language Reference & Developer’s Guide - Part One

(8) All connections in a run unit are implicitly disconnected when the run unit terminates, in a manner
equivalent to the execution of a DISCONNECT ALL statement.
.

(9) Upon a successful connection, the currently active connection (if any) is made dormant, and the new
connection is made the currently active connection.

(10) Upon completion of the CONNECT statement, the following occurs in the order specified:

a. The value of the SQLSTATE data item is updated with the status of the operation.

b. If the value of the SQLSTATE class field is “00" or “01", the statement is successful. Control is
transferred to the end of the CONNECT statement or to imperative-statement-2, if specified. In the latter case,
execution continues according to the rules for each statement specified in imperative-statement-2. If a procedure
branching or conditional statement which causes explicit transfer of control is executed, control is transferred in
accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-2,
control is transferred to the end of the CONNECT statement.

c. If the value of the SQLSTATE class field is not “00" or “01", the statement is unsuccessful. The
statement container is deallocated and no statement container of the specified name will exist in the current program.
Control is transferred to the end of the CONNECT statement or to imperative-statement-1, if specified. In the latter
case, execution continues according to the rules for each statement specified in imperative-statement-1. If a
procedure branching or conditional statement which causes explicit transfer of control is executed, control is
transferred in accordance with the rules for the statement; otherwise, upon completion of the execution of
imperative-statement-1, control is transferred to the end of the CONNECT statement.

(11) The END-CONNECT phrase delimits the scope of the CONNECT statement.

(12) More on SQLSTATE can be found on page 139.

(13) CONNECT takes a DSN by default.

Under Windows, this DSN is defined in the ODBC Administrator in the User DSN or System DSN panels.

Under Linux, this DSN is defined in the .odbc.ini file in the user's home directory for User DSN and the
odbc.ini file for System DSN files. More on ODBC under Linux can be found in the unixODBC documentation.

At this time only a UserDSN or a SystemDSN can be specified. FileDSN's are not supported.

Starting in 4.50 a remote DSN can be specified.

A remote DSN is a connection string that begins with the @ character. The runtime will look for a remote
ISQL server prefix, which has the following format:

@[icnet:]//<host>[:<port>]/<connection string>

This prefix always uses forward slashes for both Windows and Linux. The host can either be a dotted IP
address or valid dns hostname. The optional port can be specified if icnetd on the host is using a non-standard port.

The <connection string> is the same string that would be used if the application where running on <host>
instead of remotely.

Normal icnetd login conventions apply to making the connection to <host>. Also, the
ICNETUSESHEARTBEAT environment variable is supported for icsqls.

324

PROCEDURE DIVISION (CONNECT)

(14) To help debug ODBC connections enable Tracing to the ODBC Driver.

Under Windows, this is done in the ODBC Administrator under the Tracing panel where the actual log file
and Starting and Stopping tracing is performed.

Under Linux, this is done in the odbcinst.ini file by adding:

[ODBC]
Trace = Yes
Trace File = filename

Generally tracing should not be enabled as it is VERY expensive in cpu and disk resources.

(15) A sample program that provides a Screen Interface to the ISQL statements is provided in the examples
subdirectory of icobol as isqltest.sr

(16) In addition, the ICODBC Driver can be used to test with ICISAM files if needed.

(17) Under Windows, odbc32.dll is loaded to allow the ISQL statements to communicate with ODBC. Under
Linux, libodbc.so is loaded to allow the ISQL statements to communicate with the unixODBC module.

325

Interactive COBOL Language Reference & Developer’s Guide - Part One

326

PROCEDURE DIVISION (CONTINUE)

E.11. CONTINUE

E.11.1 Function

The CONTINUE statement is a no operation (or “no op”) statement. It indicates that no executable statement is
present.

E.11.2 General Format

CONTINUE

E.11.3 Syntax Rules

(1) The CONTINUE statement may be used anywhere a conditional statement or an imperative-statement may
be used.

E.11.4 General Rules

(1) The CONTINUE statement has no effect on the execution of the program.

327

Interactive COBOL Language Reference & Developer’s Guide - Part One

328

PROCEDURE DIVISION (DEALLOCATE)

E.12. DEALLOCATE (ISQL)

E.12.1 Function

The DEALLOCATE statement allows the program to deallocate a statement container that was allocated by a
PREPARE statement once it is no longer needed.

E.12.2 General Format

DEALLOCATE PREPARE

[ON SQLERROR imperative-statement-1]
[NOT ON SQLERROR imperative-statement-2]
[END-CONNECT]

E.12.3 Syntax Rules

(1) Literal-1 must specify a nonnumeric literal and may not specify a figurative constant.

(2) Identifier-1 must specify an alphanumeric data item.

(3) Literal-1 or the value represented by identifier-1 may not exceed 30 characters in length.

E.12.4 General Rules

(1) Literal-1 or the content of the data item represented by identifier-1 specifies the name of a statement
container to be deallocated in the current program. Container names can be at most 30 characters long.

(2) If a statement container with the specified name is not found in the current program, the SQLSTATE class
field is set to “01".

(3) If a statement container with the specified name is found in the current program, it is deallocated and a
statement container with the specified name will no longer exist in the current program, the SQLSTATE class field is
set to “00".

(4) Upon completion of the DEALLOCATE statement, the following occurs in the order specified:

a. The value of the SQLSTATE data item is updated with the status of the operation.

b. If the value of the SQLSTATE class field is “00" or “01", the statement is successful. Control is
transferred to the end of the DEALLOCATE statement or to imperative-statement-2, if specified. In the latter case,
execution continues according to the rules for each statement specified in imperative-statement-2. If a procedure
branching or conditional statement which causes explicit transfer of control is executed, control is transferred in
accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-2,
control is transferred to the end of the DEALLOCATE statement.

c. If the value of the SQLSTATE class field is not “00" or “01", the statement is unsuccessful. Control is
transferred to the end of the DEALLOCATE statement or to imperative-statement-1, if specified. In the latter case,
execution continues according to the rules for each statement specified in imperative-statement-1. If a procedure
branching or conditional statement which causes explicit transfer of control is executed, control is transferred in
accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-1,
control is transferred to the end of the DEALLOCATE statement.

(5) The END-DEALLOCATE phrase delimits the scope of the DEALLOCATE statement.

329

Interactive COBOL Language Reference & Developer’s Guide - Part One

330

PROCEDURE DIVISION (DEFINE SUB-INDEX)

E.13. DEFINE SUB-INDEX (VXCOBOL)

E.13.1 Function

The DEFINE SUB-INDEX statement creates a subindex in an INFOS file and associates with it a specified index
entry in that file.

E.13.2 General Format

DEFINE SUB-INDEX file-name

FROM identifier-2
[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-DEFINE]

DEFINE SUB-INDEX file-name

[INDEX NODE SIZE IS integer-1]
[ALLOW DUPLICATES]
[ALLOW SUB-INDEX]

d [KEY COMPRESSION]
[MAXIMUM KEY LENGTH IS integer-2]
[PARTIAL RECORD LENGTH IS integer-3]
[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-DEFINE]

331

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 PACKET.
 03 FILLER PIC XX.
 03 NODE-SIZE PIC 9(4) COMP.
 03 FILLER PIC X.
 03 MAX-KEYLEN PIC 9(2) COMP.
 03 FILLER PIC X.
 03 PARTIAL-REC-LEN PIC 9(2) COMP.
 03 FILLER PIC XX.
 03 FLAGS PIC 9(4) COMP.
 03 FILLER PIC X(4).

E.13.3 Syntax Rules

(1) File-name is a filename that specifies an INFOS file opened for OUTPUT or I/O and selected for ALLOW
SUB-INDEX.

(2) Identifier-1 is an alphanumeric data item that specifies a record key associated with file-name.

(3) Identifier-2 is an alphanumeric data item that contains data in the form of an AOS INFOS (16-bit) sub-index
definition packet and that is defined in Working-Storage.

(4) Integer-3 is an integer or integer literal data item that specifies the maximum partial record length for the
sub-index.

(5) Integer-2 is an integer or integer literal data item that specifies the maximum key length for a sub-index.

(6) Integer-1 is an integer or integer data item that specifies the size of a sub-index node.

E.13.4 General Rules

(1) When using the FROM option, the packet specified should be the AOS INFOS packet, not the 32-bit
INFOS II packet. This packet is 16 bytes long with the following format:

FLAGS values are: 2048 allow duplicates, 16384 Disallow sub-index.

(2) The location of the entry defined is determined according to that specified in the position phrase, the relative
option phrase, and/or the KEY series phrase. The specification can be implicit if the program uses the defaults or
explicit if the KEY or path is specified fully.

(3) FIX POSITION causes the record pointer to move from the current position to the position specified in this
statement. RETAIN position causes the record position to remain at the position it was on before the execution of
this statement. RETAIN is the default.

(4) The relative motion option without the KEY series phrase allows access to the index file relative to that
file's current record position.

(5) Using the KEY series phrase without the relative motion option causes the key path specified to begin with
the top index in the hierarchy and follow a downward motion.

(6) If the KEY series phrase is specified, each key, identifier-1, must be declared in the SELECT statement for
file-name. If the relative motion option and KEY series phrase at both specified only UP, DOWN, and STATIC are
allowed. The relative motion option is processed first, and the key path is used. If both are omitted, STATIC is the
default.

(7) Transfer of control following the successful or unsuccessful execution of the DEFINE SUB-INDEX
operation depends on the presence or absence of the optional INVALID KEY and NOT INVALID KEY phrases in
the DEFINE SUB-INDEX statement.

332

PROCEDURE DIVISION (DEFINE SUB-INDEX)

(8) The PARTIAL RECORD clause must be specified to allow partial records to be stored in the sub-index.
For INFOS II, the length of partial records in the sub-index is established. For U/FOS, any non-zero length says to
allow partial records, the specified length is disregarded.

(9) The ALLOW SUB-INDEX clause must be specified to allow subordinate sub-indexing for the specified
sub-index.

(10) The DUPLICATES clause must be specified to allow for the creation of duplicate keys for the sub-index
being created.

(11) If not specified, the KEY LENGTH defaults to 255.

(12) If not specified, the INDEX NODE SIZE defaults to the system default. (This value is ignored by U/FOS.)

333

Interactive COBOL Language Reference & Developer’s Guide - Part One

334

PROCEDURE DIVISION (DELETE)

E. 14. DELETE

E.14.1 Function

The DELETE statement logically removes a record from a mass storage file for relative, indexed, and INFOS files.

E.14.2 General Format (ANSI 74 and ANSI 85)

DELETE file-name RECORD

[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-DELETE]

E.14.3 General Format (VXCOBOL)

Relative:

DELETE file-name RECORD
[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-DELETE]

Indexed:

DELETE file-name RECORD

[KEY IS identifier-1]
[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-DELETE]

INFOS:

DELETE file-name

[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-DELETE]

335

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.14.4 Syntax Rules

(1) The INVALID KEY and the NOT INVALID KEY phrases must not be specified for a DELETE statement
which references a file which is in sequential access mode.

(2) The INVALID KEY phrase must be specified for a DELETE statement which references a file which is not
in sequential access mode and for which an applicable USE AFTER STANDARD EXCEPTION procedure is not
specified.

(3) The PHYSICAL designation applies to version 7 or greater ICISAM files.

For VXCOBOL.

(4) Identifier-1 must be the RECORD KEY as defined in the SELECT.

(5) The key series specifier may not be present for files in SEQUENTIAL ACCESS mode.

E.14.5 General Rules (ANSI 74 and ANSI 85)

(1) The file referenced by file-name must be an indexed or relative file and must be open in the I-O mode at the
time of the execution of this statement.

(2) For files in the sequential access mode, the last input-output statement executed for file-name prior to the
execution of the DELETE statement must have been a successfully executed READ statement. The file system
removes from the file the record that was accessed by that READ statement.

(3) For a relative file in random or dynamic access mode, the file system removes from the file that record
identified by the content of the relative key data item associated with file-name. If the file does not contain the
record specified by the key, the invalid key condition exists.

(4) For an indexed file in random or dynamic access mode, the file system removes from the file the record
identified by the content of the primary record key data item associated with file-name. If the file does not contain
the record specified by the key, the invalid key condition exists.

(5) After the successful execution of a DELETE statement, the identified record has been removed from the file
and can no longer be accessed, although the record may be restored by executing the UNDELETE statement if the
removal was a logical deletion.

(6) The execution of a DELETE statement does not affect the content of the record area.

(7) The file position indicator is not affected by the execution of a DELETE statement.

(8) The execution of the DELETE statement causes the value of the I-O status associated with file-name to be
updated.

(9) Transfer of control following the successful or unsuccessful execution of the DELETE operation depends on
the presence or absence of the optional INVALID KEY and NOT INVALID KEY phrases in the DELETE
statement.

(10) The END-DELETE phrase delimits the scope of the DELETE statement.

(11) If LOGICAL is specified, the record identified by the RECORD KEY or RELATIVE KEY is marked as
being deleted in the file. It is not physically removed, but will not be accessible unless it is subsequently undeleted.

336

PROCEDURE DIVISION (DELETE)

If PHYSICAL is specified, the space in the data file used by the record identified by the RECORD KEY or
RELATIVE KEY is made available for reuse. It is no longer accessible to the program. Its space will be reused
when needed to add another record to the file.

If neither LOGICAL nor PHYSICAL is specified, the delete will be either logical or physical based on the status
of the file's "delete-is-physical" attribute. This attribute bit is set at file creation time and is a permanent attribute of
the file. (It is specified in a COBOL program using the DELETE IS clause of the file description entry (SELECT)).

E.14.6 General Rules (VXCOBOL)

(1) The file referenced by file-name must be a relative, indexed, or INFOS file and must be open in the I-O
mode at the time of the execution of this statement.

(2) For files in the sequential access mode, the last input-output statement executed for file-name prior to the
execution of the DELETE statement must have been a successfully executed READ statement. The file system
removes from the file the record that was accessed by that READ statement.

(3) The execution of a DELETE statement does not affect the content of the record area.

(4) The file position indicator is not affected by the execution of a DELETE statement, for indexed and relative
files.

(5) The execution of the DELETE statement causes the value of the I-O status associated with file-name to be
updated.

(6) Transfer of control following the successful or unsuccessful execution of the DELETE operation depends on
the presence or absence of the optional INVALID KEY and NOT INVALID KEY phrases in the DELETE
statement.

(7) The END-DELETE phrase delimits the scope of the DELETE statement.

For relative files:

(8) For a relative file in random or dynamic access mode, the file system removes the record identified by the
content of the relative-key data-item associated with file-name. If the files does not contain the record specified by
the key, the invalid key condition exists.

(9) Records in relative files are removed on the basis of the “delete-is-physical” attribute set in the file's header.
Files created by VXCOBOL programs will normally have this bit set for purging records (physical deletes).

(10) After the successful execution of a DELETE statement, the identified record has been removed from the
file and can no longer be accessed or restored.

For indexed files:

(11) For an indexed file in random or dynamic access mode, the file system logically or physically removes
from the file the record identified by the content of the primary key data-item associated with file-name. If the files
does not contain the record specified by the key, the invalid key condition exists.

(12) If PHYSICAL is specified, the data record is purged from the file. After the successful execution of a
DELETE statement with the PHYSICAL clause, the identified record has been removed from the file and can no
longer be accessed or restored.

(13) If LOGICAL GLOBAL is specified, the data record is logically deleted from the file. After the successful
execution of a DELETE statement with the LOGICAL GLOBAL clause, the identified record may still be accessed.
The record may be restored by executing the UNDELETE statement.

337

Interactive COBOL Language Reference & Developer’s Guide - Part One

(14) If LOGICAL LOCAL is specified, it is ignored.

(15) If LOGICAL LOCAL GLOBAL is specified, it is equivalent to LOGICAL GLOBAL.

(16) If no type of deletion is specified, PHYSICAL is the default.

For INFOS files:

(17) The occurrence number is used.

(18) FEEDBACK is not used and is not updated.

(19) KEY LENGTH is unaffected.

(20) The record to DELETE is determined according to what is specified in the relative option phrase and/or
the KEY series phrase. The specification can be implicit if the program uses the defaults or explicit if the KEY or
path is fully specified.

(21) The relative motion option without the KEY series phrase allows access to the index file relative to that
file's current record position.

(22) Using the KEY series phrase without the relative motion option cause the key path specified to begin with
the top index in the hierarchy and follow a downward motion.

(23) If the KEY series phrase is specified, each key, identifier-1, must be declared in the SELECT statement for
file-name. If the relative motion option and KEY series phrase at both specified only UP, DOWN, and STATIC are
allowed. The relative motion option is processed first and the key path is used.

(24) If both the relative option and the KEY series phrase are omitted the file is accessed sequentially if the file
access mode is sequential. If the access mode is not sequential the first key named in the SELECT clause is used.

(25) If LOGICAL LOCAL is specified, the key (and any partial record associated with that key) is logically
deleted. Whenever the record or key is accessed through this index a FILE STATUS 96 will be returned.

(26) If LOGICAL GLOBAL is specified, the data record is logically deleted. Whenever the record is accessed
through any index a FILE STATUS 96 will be returned. The index entry including the partial record and any
subindex can still be accessed without receiving a FILE STATUS 96.

(27) If LOGICAL LOCAL GLOBAL is specified, the key (and any partial data record associated with that key)
and the data record is logically deleted.

(28) If PHYSICAL is specified, the key (and any partial data record associated with that key) is deleted and the
data record's use count is decremented. If the data record's use count is decremented to zero, then the data record
itself is deleted such that it is no longer in the file and there is no inversion in the file pointing to it.

(29) If no type of deletion is specified, PHYSICAL is the default.

(30) If you want to know whether a record has been deleted, use the RETRIEVE statement.

(31) A FILE STATUS 02 is returned when a successful physical deletion of a record with a duplicate key is
performed.

(32) A DELETE statement does not change the current position of the record pointer unless it is a PHYSICAL
deletion and the pointer's current position is at the deleted record. If this is the case, the record pointer points to the
record immediately before the deleted record.

338

PROCEDURE DIVISION (DELETE)

(33) If DUPLICATES was specified in the SELECT clause then the occurrence number should be set to the
desired value for the key that should be deleted.

339

Interactive COBOL Language Reference & Developer’s Guide - Part One

340

PROCEDURE DIVISION (DELETE FILE)

E.15. DELETE FILE

E.15.1 Function

The DELETE FILE statement physically removes a file from the file system. DELETE FILE is an extension to
ANSI COBOL. For VXCOBOL, it is equivalent to EXPUNGE.

To see how ICOBOL processes the filename see the External Filename description in the Developer’s Guide section
on page 791.

E.15.2 General Format

DELETE FILE { file-name }...

E.15.3 General Rules

(1) The file referenced by file-name must be a disk file, you must have appropriate permissions, and the file
must not be open anywhere in the ICOBOL system at the time of the execution of this statement. If the file does not
exist, no error is given.

(2) For a relative, indexed, or INFOS file, all parts of that file are removed from the file system.

(3) For VXCOBOL: for an INFOS II file, the indexed file and the database file specified in the SELECT
statement are deleted. If the name of the database file was not specified with an ASSIGN DATA clause, a .DB file
with the same name as that of the indexed file is deleted. For a U/FOS file, the database specified in the SELECT is
deleted, i.e., name.udb.

(4) After the successful execution of a DELETE FILE statement, the identified file has been physically removed
from the file system and can no longer be accessed.

(5) The execution of the DELETE FILE statement causes the value of the I-O status associated with file-name
to be updated.

(6) For systems supporting Linux symbolic links, DELETE FILE will delete the symbolic link, not the
resolution file.

(7) On Linux systems, files cannot be individually delete-protected. To make a file delete-protected on Linux,
you must remove write (w) permission to the directory in which the file resides. If a directory has no write access,
you cannot create, modify, or delete files in that directory. On Windows systems, the read-only attribute will protect
the file from deletion.

(8) For ANSI 74 and ANSI 85, If the specified file is a sequential file, ICOBOL will scan the Printer Control
file and if there is an entry there that points to the file being deleted, the entry in the Printer Control file will be
removed.

(9) For VXCOBOL, if file-name is a sort/merge file, it is ignored.

341

Interactive COBOL Language Reference & Developer’s Guide - Part One

342

PROCEDURE DIVISION (DISCONNECT)

E.16. DISCONNECT (ISQL)

E.16.1 Function

The DISCONNECT statement allows the program to disconnect from an SQL database connection.

E.16.2 General Format

[ON SQLERROR imperative-statement-1]
[NOT ON SQLERROR imperative-statement-2]
[END-DISCONNECT]

E.16.3 Syntax Rules

(1) Literal-1 must specify a nonnumeric literal and may not specify a figurative constant.

(2) Identifier-1 must specify an alphanumeric data item.

E.16.4 General Rules

(1) The DEFAULT phrase specifies that the default connection (which has the name “default”) is to be
disconnected. It is an error if there is no default connection either active or dormant. If the default connection is the
current connection, it is replaced as the current connection by the most recently used previous connection.

(2) The CURRENT phrase specifies that the currently active connection is to be disconnected. The most
recently used previous connect becomes the current connection. It is an error if there is no current connection.

(3) The ALL phrase specifies that all connections in the run unit will be disconnected (if there are any).

(4) The value of literal-1 or the content of the data item represented by identifier-1 specifies a specific, named
connection. If the value “default” is specified, it is the same as having specified the DEFAULT phrase. If the
specified connection is the current connection, it is replaced as the current connection by the most recently used
previous connection.

(5) Connections are kept on a run unit basis, i.e., the scope of the connection name is the entire run unit, not just
the program containing the DISCONNECT statement. If a specified connection does not exist, it is an error and
SQLSTATE will be set to “08003", which is “Connection does not exist”.

(6) All connections in a run unit are implicitly disconnected when the run unit terminates in a manner equivalent
to the execution of a DISCONNECT ALL statement.

(7) Any statement containers associated with a connection that is being disconnected are implicitly deallocated
before the connection is disconnected.
.

(8) Upon completion of the DISCONNECT statement, the following occurs in the order specified:

a. The value of the SQLSTATE data item is updated with the status of the operation.

343

Interactive COBOL Language Reference & Developer’s Guide - Part One

b. If the value of the SQLSTATE class field is “00" or “01", the statement is successful. Control is
transferred to the end of the DISCONNECT statement or to imperative-statement-2, if specified. In the latter case,
execution continues according to the rules for each statement specified in imperative-statement-2. If a procedure
branching or conditional statement which causes explicit transfer of control is executed, control is transferred in
accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-2,
control is transferred to the end of the DISCONNECT statement.

c. If the value of the SQLSTATE class field is not “00" or “01", the statement is unsuccessful. The
statement container is deallocated and no statement container of the specified name will exist in the current program.
Control is transferred to the end of the DISCONNECT statement or to imperative-statement-1, if specified. In the
latter case, execution continues according to the rules for each statement specified in imperative-statement-1. If a
procedure branching or conditional statement which causes explicit transfer of control is executed, control is
transferred in accordance with the rules for the statement; otherwise, upon completion of the execution of
imperative-statement-1, control is transferred to the end of the DISCONNECT statement.

(9) The END-DISCONNECT phrase delimits the scope of the DISCONNECT statement.

(10) More on SQLSTATE can be found on page 139.

344

PROCEDURE DIVISION (DISPLAY)

E.17. DISPLAY

E.17.1 Function

The DISPLAY statement causes low volume data to be transferred to the console. Screens are an extension to ANSI
COBOL.

E.17.2 General Format

Format 1:

DISPLAY [UPON mnemonic-name] [WITH NO ADVANCING]

[END-DISPLAY]

Format 2:

DISPLAY { screen-name [AT] }...

[END-DISPLAY]

Format 3 (ANSI 74 and ANSI 85):

DISPLAY { display-clause... }...

[END-DISPLAY]

where display-clause is one of the following:

BLINK

CONTROL

CONVERT

345

Interactive COBOL Language Reference & Developer’s Guide - Part One

ERASE

LINE

SIZE

E.17.3 Syntax Rules

(1) In Format 1, you cannot use the figurative constant ALL with a DISPLAY statement.

(2) In Format 2, identifier-2, identifier-3, literal-2, and literal-3 must be unsigned integers.

(3) Screen-name may not be subscripted.

(4) The word COL is an abbreviation for the word COLUMN.

(5) END-DISPLAY is supported only for ANSI 74 and ANSI 85. It is an extension to standard COBOL.

(6) Mnemonic-name is associated with a hardware device in the SPECIAL-NAMES paragraph.

(7) In Format 3, identifier-4, identifier-5, identifier-6, identifier-8, identifier-9, identifier-10, literal-4, literal-5,
literal-6, literal-8, literal-9, and literal-10 must be unsigned elementary integer items. Identifier-7 must be a
nonnumeric data-item and literal-7 must be a nonnumeric literal.

(8) Color-name-1 and color-name-2 represent one of the predefined color names: BLACK, BLUE, GREEN,
CYAN, RED, MAGENTA, BROWN, or WHITE.

(9) In Format 3, the word POSITION is a synonym for COLUMN and the word BEEP is a synonym for BELL.

346

PROCEDURE DIVISION (DISPLAY)

E.17.4 General Rules

Format 1: (non-screen display)

(1) The DISPLAY statement causes the content of each operand to be transferred to the console device in the
order listed.

(2) If a figurative constant is specified as one of the operands, only a single occurrence of the figurative
constant is displayed.

(3) If the device is capable of receiving data of the same size as the data item being transferred, then the data
item is transferred.

(4) If a device is not capable of receiving data of the same size as the data item being transferred, then one of
the following applies:

a. If the size of the data item being transferred exceeds the size of the data that the device is capable of
receiving in a single transfer, the data beginning with the left-most character is stored aligned to the left in the
receiving device, and the remaining data is then transferred according to General Rules 4 and 5 until all the data has
been transferred.

b. If the size of the data item that the device is capable of receiving exceeds the size of the data being
transferred, the transferred data is stored aligned to the left in the receiving device.

(5) When a DISPLAY statement contains more than one operand, the size of the sending item is the sum of the
sizes associated with the operands, and the values of the operands are transferred in the sequence in which the
operands are encountered without modifying the positioning of the hardware device between the successive
operands.

(6) If the WITH NO ADVANCING phrase is specified, then the positioning of the device will not be reset to
the next line or changed in any other manner following the display of the last operand. If the device is capable of
positioning to a specific character position, it will remain positioned at the character position immediately following
the last character of the last operand displayed. If the device is not capable of positioning to a specific character
position, only the vertical position, if applicable, is affected. This may cause overprinting if the device supports
overprinting.

(7) If the WITH NO ADVANCING phrase is NOT specified, then after the last operand has been transferred to
the device, the positioning of the device will be reset to the left-most position of the next line of the device.

(8) If vertical positioning is not applicable on the device, the operating system will ignore the vertical
positioning specified or implied.

(9) For VXCOBOL: If the data to be transferred has USAGE COMPUTATIONAL or USAGE
COMPUTATIONAL-3, ICOBOL moves the data to a temporary data-item defined as USAGE DISPLAY, SIGN
LEADING SEPARATE with the same PICTURE. The temporary item is then transferred.

(10) For ANSI 74 and ANSI 85, integer or numeric functions are displayed as if they were defined with
USAGE DISPLAY, SIGN LEADING SEPARATE.

(11) The UPON clause is for documentation only except in the one case where mnemonic-name refers to
“@AUDIT”. If it refers to “@AUDIT” and auditing is enabled, then the DISPLAY will be sent to the audit log. If
auditing is not enabled, nothing is done. Thus, in the procedure division a:

 DISPLAY foo1 foo2 UPON mnemonic-1.

Will send the data in foo1 and foo2 to the audit log.

347

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 ANY-CHANGE-SCREEN.
 05 LINE 23 COL 60 “ANY CHANGE?”.
 05 LINE 23 COL 75 PIC X TO ANY-CHANGE-ANSWER.

ANY-CHANGE-1.
 DISPLAY ANY-CHANGE-SCREEN.
 ACCEPT ANY-CHANGE-SCREEN.

ANY-CHANGE-2.
 DISPLAY ANY-CHANGE-SCREEN AT LINE 5 COLUMN 30.
 ACCEPT ANY-CHANGE-SCREEN AT LINE 5 COLUMN 30.

This facility is especially useful when debugging ThinClients.

(If this statement is executed with a pre-3.13 runtime the DISPLAY will come to the screen.)

Format 2: (screen display)

(12) Format 2 assumes that the device is capable of random positioning.

(13) DISPLAY screen-name is equivalent to DISPLAY screen-name AT LINE 0 COLUMN 0.

(14) If the LINE or COLUMN variable in the SCREEN SECTION has a value of zero (0), ICOBOL treats the
value as one (1).

(15) Variable Origin: The LINE phrase and COLUMN phrase in DISPLAY and ACCEPT statements allow
the entire screen description referenced by screen-name to be moved to a different starting position on the user's
display device. This capability is called variable origin. All screen descriptions assume that the origin is at line 1
and column 1 on the user's display device. The value specified in the DISPLAY or ACCEPT’s LINE phrase, if
present, is treated as a relative offset to be added to all line positions in the screen. Similarly, the value of the
COLUMN phrase, if specified, is treated as a relative offset to be added to all column positions in the screen. If any
line or column position becomes larger than that supported by the current screen, the screen will wrap at its limits,
and the new (wrapped) values will in turn be offset again by the variable origin.

For example, consider the code fragments:

The following discussion describes how to determine the origin point for each of the two DISPLAY and ACCEPT
pairs in the code fragments above. Assume the display device has 24 lines and 80 columns.

a. Remember, all screen descriptions assume an origin point of line 1, column 1. This screen has a
positioning definition of line 23, column 60, and the first screen DISPLAY statement contains no positioning (line or
column) clauses. Therefore, the origin point for the first DISPLAY is line 23, column 60.

b. For the second screen DISPLAY statement, which contains the positioning clauses AT LINE 5
COLUMN 30, the offset position will be line 28, column 90. (We added the line and column variable-positioning
values in the DISPLAY statement to the origin point established in the previous step.)

 c. Then, we subtract the line and column size of the display device, to find the wrap values: line 4, column
10. This becomes the new origin point.

d. Finally, add the line and column positioning values which in turn will be offset to line 9, column 40.
Therefore, the second screen DISPLAY will begin at line 9, column 40.

e. Determining the origin point for the input field is similar. See the table, Variable Origin for DISPLAY
and ACCEPT, on page 290 in the discussion of the ACCEPT statement.

348

PROCEDURE DIVISION (DISPLAY)

(16) If variable origin is used for a DISPLAY operation on a screen-name, the same variable origin
specification should be used for the corresponding ACCEPT statement of the screen-name in order to have the
operation to be correct.

(17) If screen-name specifies a group item, the group item and all subordinate group, literal, input-output,
output, and update fields are processed in the order in which they appear in the source definition of the screen
description.

(18) The basic operation of the DISPLAY statement is described by the following steps. The discussion
assumes that screen-name represents a group item in the screen description that has several subordinate literal,
output, input-output, and/or update fields. The case where screen-name specifies a single screen-data item is just a
simple subset of the description below.

a. The system moves the data items corresponding to all output, input-output, and update fields (either
specified by or subordinate to screen-name) to the screen-data item. The moves take place according to the rules for
the MOVE statement.

b. The system moves underscores to all input fields (either specified by or subordinate to screen-name).

c. The screen management system processes each field in the order in which it was defined in the source.

d. The various clauses of the screen field are processed in the following order:

BACKGROUND-COLOR & FOREGROUND-COLOR
BLANK SCREEN
COLUMN and LINE positioning
BLANK LINE/ERASE EOL, ERASE EOS, ERASE LINE
BELL
display screen-literal or screen-data with appropriate attributes

e. The screen-data or screen-literal value is displayed with the display attributes set by implied attributes or
the explicit use of attribute control keywords in the screen description entry.

f. The cursor is left positioned at the character position following the last character of the last field or literal
displayed according to the preceding steps.

Format 3: (data-item display with screen control)

(19) The DISPLAY statement causes the content of each operand to be transferred to the console device in the
order listed.

(20) Format 3 assumes that the device is capable of random positioning.

(21) The BACKGROUND-COLOR and FOREGROUND-COLOR phrases determine the background and
foreground colors used during the processing of identifier-1 or literal-1. The color is identified by an integer value
from 0 to 7 specified for literal-5 or literal-8 or as the contents of identifier-5 or identifier-8. It may also be
specified by use of color-name-1 or color-name-2. The color names with their integer values are BLACK=0,
BLUE=1, GREEN=2, CYAN=3, RED=4, MAGENTA=5, BROWN=6, WHITE=7. BACKGROUND is a synonym
for BACKGROUND-COLOR and FOREGROUND is a synonym for FOREGROUND-COLOR.

(22) The BELL phrase causes the bell (or beep) signal to sound as each identifier-1 or literal-1 is processed.

(23) BLINK causes the data displayed for the field to be displayed in a blinking mode.

(24) The COLUMN and LINE phrases are used to position identifier-1 or literal-1 on the screen based on the
line and leftmost character position. The top line is line 1 and each succeeding line has a value one larger than the

349

Interactive COBOL Language Reference & Developer’s Guide - Part One

previous line. The leftmost character of a line is column 1 and the column value increases by one for each
succeeding character on the line. The line number is specified by literal-9 or the contents of identifier-9 and should
be between 1 and 128. The column number is specified by literal-6 or the contents of identifier-9.

The line and column positions are determined as follows:

(a) If the COLUMN phrase is omitted, column 1 is assumed for the first identifier-1 or literal-1 if a UNIT
phrase has been specified for the same identifier-1 or literal-1. Otherwise the column position is set to zero.

(b) If the LINE phrase is omitted or the line position is zero the line position is set as follows: If an ERASE or
ERASE SCREEN phrase is specified for the same identifier-1 or literal-1, then line 1 is assumed. If the column
position is not zero, the line position is the current line plus one. If the column position is zero, the line position
is set to the current line.

(c) If the column position is equal to zero, it is set to the current line.

At runtime, values outside the allowable ranges are wrapped.

(25) The CONTROL phrase is used to dynamically specify options to be used or overridden. Identifier-7 or
literal-7 are used to hold an options list. This list consists of a series of keywords separated by commas. The
keywords may be specified in any order, but are processed from left to right as they appear in the string. While
processing the list, lowercase characters are considered equivalent to the corresponding uppercase character and
blanks or unprintable characters are ignored.

The following keywords impact execution of the DISPLAY statement:
BEEP, BLINK, CONVERT, ERASE, ERASE EOL, ERASE EOS, ERASE LINE, ERASE SCREEN, REVERSE,
HIGH, LOW, NO BEEP, NO BLINK, NO CONVERT, NO ERASE, NO REVERSE, NO UNDERLINE, and
UNDERLINE.

Each of the keywords has the same meaning as when statically coded plus the negative versions (NO xxx) to allow
suppression of the of the option.

(26) The CONVERT phrase is used to control output conversion. If identifier-1 or literal-1 is numeric or
numeric edited and the CONVERT phrase is specified, its value is converted from its internal form a displayable
form such that a leading separate sign is provided for negative values, an explicit decimal point is added for non-
integers, leading zeros are removed and the remaining digits are left-justified. If the SIZE clause adjusts the width of
the field, spaces will fill any unused character positions to the right of the value or the converted values will be
truncated if the field size is too small.

If the CONVERT phrase is not specified or if identifier-1 or literal-1 is not numeric, then identifier-1 or literal-1
will be treated as an alphanumeric item of its internal size and moved to the display field according to the rules for a
alphanumeric to alphanumeric edited MOVE.

(27) The ERASE clause is used to control erasure of portions of the screen prior to displaying identifier-1 or
literal-1. ERASE SCREEN and ERASE with no additional modifiers erases the entire screen and positions the
cursor to line 1 column 1. ERASE LINE erases the current line from column 1 to the end of the line without
changing the cursor position. ERASE EOL erase the screen starting at the cursor position to the end of the line. The
cursor is not affected. ERASE EOS erase the screen starting at the cursor position and continuing to the end of the
screen. The cursor position is not changed.

(28) The HIGH, HIGHLIGHT, BOLD, and BRIGHT options cause identifier-1 or literal-1 to be displayed at
high intensity. The LOW, LOWLIGHT, and DIM options cause identifier-1 or literal-1 to be displayed at low
intensity.

(29) The REVERSE, REVERSED, and REVERSE-VIDEO options cause identifier-1 or literal-1 to be
displayed in reverse video mode. If not specified, data is displayed in normal mode.

350

PROCEDURE DIVISION (DISPLAY)

(30) The SIZE clause controls the size of the screen input field. If the SIZE clause is present and literal-10 or
the contents of identifier-10 is not zero, the size of the screen field is determined by the value of literal-10 or
identifier-10. Otherwise, the size of the screen field is determined by description of identifier-1 or literal-1.

When identifier-1 is numeric and output conversion(CONVERT) is specified or implied, the size is the number of
digits in identifier-1's PICTURE plus 1 if its is signed plus 1 if it is not an integer.

If literal-1 is a figurative constant, the constant will be repeated up to the size specified by identifier-10 or literal-10.

(31) The UNDERLINE and UNDERLINED options cause identifier-1 or literal-1 to be displayed in underlined
mode.

(32) The UNIT clause is for documentation only and is ignored except for its impact on the COLUMN clause
as previously described.

NOTES:

(1) ICOBOL treats all DISPLAY statements as if they are going to a DG terminal. (ICOBOL also treats all
WRITE statements for ASSIGN TO PRINTER or ASSIGN TO DISPLAY files that are opened on the current
console as if they are going to a DG terminal.) It does this to optimize characters sent to the terminal and to keep
track of the state of the screen. To send binary data transparently to the terminal, an ASSIGN TO DISK "@CON"
should be used in conjunction with a WRITE statement. This will insure that ICOBOL will not interpret the
characters as screen display.

(2) The special characters the ICOBOL display module understands are the Print Pass Through ON and OFF
codes, Read Model-ID, Compress mode ON and OFF, and display attributes like dim, blink, roll, reverse, etc. All
tab characters will display as a space when not in binary mode. Other non-printable characters are sent to the screen
as is, but the cursor is not moved.

(3) Neither a non-screen DISPLAY without the NO ADVANCING clause nor a screen DISPLAY statement
should be executed while the terminal has Print Pass Through ON.

351

Interactive COBOL Language Reference & Developer’s Guide - Part One

352

PROCEDURE DIVISION (DIVIDE)

E.18. DIVIDE

E.18.1 Function

The DIVIDE statement divides one numeric data item into others and sets the values of data items equal to the
quotient and remainder.

E.18.2 General Format

Format 1:

DIVIDE INTO { identifier-2 [ROUNDED] }...

[ON SIZE ERROR imperative-statement-1]
[NOT ON SIZE ERROR imperative-statement-2]
[END-DIVIDE]

Format 2:

DIVIDE GIVING { identifier-3 [ROUNDED] }...

[ON SIZE ERROR imperative-statement-1]
[NOT ON SIZE ERROR imperative-statement-2]
[END-DIVIDE]

Format 3:

DIVIDE GIVING { identifier-3 [ROUNDED] }...

[ON SIZE ERROR imperative-statement-1]
[NOT ON SIZE ERROR imperative-statement-2]
[END-DIVIDE]

Format 4:

DIVIDE GIVING identifier-3 [ROUNDED]

REMAINDER identifier-4
[ON SIZE ERROR imperative-statement-1]
[NOT ON SIZE ERROR imperative-statement-2]
[END-DIVIDE]

Format 5:

DIVIDE GIVING identifier-3 [ROUNDED]

REMAINDER identifier-4
[ON SIZE ERROR imperative-statement-1]
[NOT ON SIZE ERROR imperative-statement-2
[END-DIVIDE]

353

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.18.3 Syntax Rules

(1) Each identifier must refer to an elementary numeric item, except that any identifier associated with the
GIVING or REMAINDER phrase must refer to either an elementary numeric item or an elementary numeric edited
item.

(2) Each literal must be a numeric literal.

(3) The composite of operands, which is the hypothetical data item resulting from the superimposition of all
receiving data items (except the REMAINDER data item) of a given statement aligned on their decimal points, must
not contain more than 18 digits.

E.18.4 General Rules

(1) When Format 1 is used, literal-1 or the value of the data item referenced by identifier-1 is divided into the
value of the data item referenced by identifier-2. The value of the dividend (the value of the data item referenced by
identifier-2) is replaced by this quotient.

(2) When Format 2 is used, literal-1 or the value of the data item referenced by identifier-1 is divided into
literal-2 or the value of the data item referenced by identifier-2 and the result is stored in each data item referenced
by identifier-3.

(3) When Format 3 is used, literal-1 or the value of the data item referenced by identifier-1 is divided by
literal-2 or the value of the data item referenced by identifier-2 and the result is stored in each data item referenced
by identifier-3.

(4) When Format 4 is used, literal-1 or the value of the data item referenced by identifier-1 is divided into
literal-2 or the value of the data item referenced by identifier-2 and the result is stored in the data item referenced by
identifier-3. The remainder is then calculated and the result is stored in the data item referenced by identifier-4. If
identifier-4 is subscripted, the subscript is evaluated immediately before the remainder is stored in the data item
referenced by identifier-4.

(5) When Format 5 is used, literal-1 or the value of the data item referenced by identifier-1 is divided by
literal-2 or the value of the data item referenced by identifier-2 and the division continues as specified for Format 4
above.

(6) Formats 4 and 5 are used when a remainder from the division operation is desired, namely identifier-4. The
remainder in COBOL is defined as the result of subtracting the product of the quotient (identifier-3) and the divisor
from the dividend. If identifier-3 is defined as a numeric edited item, the quotient used to calculate the remainder is
an intermediate field which contains the unedited quotient. If ROUNDED is specified, the quotient used to calculate
the remainder is an intermediate field which contains the quotient of the DIVIDE statement, truncated rather than
rounded. This intermediate field is defined as a numeric field which contains the same number of digits, the same
decimal point location, and the same presence or absence of a sign as the quotient (identifier-3).

(7) In Formats 4 and 5, the accuracy of the REMAINDER data item (identifier-4) is defined by the calculation
described above. Appropriate decimal alignment and truncation (not rounding) will be performed for the value of
the data item referenced by identifier-4, as needed.

(8) When the ON SIZE ERROR phrase is used in Formats 4 and 5, the following rules pertain:

a. If the size error occurs on the quotient, no remainder calculation is meaningful. Thus, the contents of the
data items referenced by both identifier-3 and identifier-4 will remain unchanged.

b. If the size error occurs in the remainder, the content of the data item referenced by identifier-4 remains
unchanged. However, as with other instances of multiple results of arithmetic statements, the user will have to do his
own analysis to recognize which situation has actually occurred.

354

PROCEDURE DIVISION (DIVIDE)

(9) Additional rules and explanations relative to this statement are given under the appropriate paragraphs. (See
Scope of Statements, page 260; The ROUNDED Phrase, page 253; The ON SIZE ERROR Phrase, page 254; The
Arithmetic Statements, page 256; Overlapping Operands, page 256; and Multiple Results in Arithmetic Statements,
page 256.

355

Interactive COBOL Language Reference & Developer’s Guide - Part One

356

PROCEDURE DIVISION (EVALUATE)

E.19. EVALUATE (ANSI 74 and ANSI 85)

E.19.1 Function

The EVALUATE statement describes a multi-branch, multi-join structure. It may cause multiple conditions to be
evaluated. The subsequent action of the runtime element depends on the results of these evaluations.

E.19.2 General format

EVALUATE selection-subject [ALSO selection-subject]...
{ { WHEN selection-object [ALSO selection-object]... }... imperative-statement-1 }...
 [WHEN OTHER imperative-statement-2]
[END-EVALUATE]

where

selection-subject is:

selection-object is:

range-expression is:

indicator-value is:

E.19.3 Syntax rules

(1) The words THROUGH and THRU are equivalent.

(2) The number of selection objects within each set of selection objects shall be equal to the number of
selection subjects.

(3) The two operands in a range-expression shall be of the same class and shall not be of class pointer.

(4) Each selection object within a set of selection objects shall correspond to the selection subject having the
same ordinal position within the set of selection subjects according to the following rules:

a. Identifiers, literals, or expressions appearing within a selection object shall be valid operands for
comparison to the corresponding operand in the set of selection subjects in accordance with the rules for Relation
conditions, on page 241.

357

Interactive COBOL Language Reference & Developer’s Guide - Part One

b. Condition-2 or the words TRUE or FALSE appearing as a selection object shall correspond to
condition-1 or the words TRUE or FALSE in the set of selection subjects.

c. The word ANY may correspond to a selection subject of any type.

d. (ISQL) Date-time and interval operands are permitted subject to the rules for Relation Conditions, page
241, and Arithmetic Expressions, page 238.

e. (ISQL) Indicator-value appearing as a selection object shall correspond to identifier-1 as a selection
subject, where identifier-1 has usage INDICATOR.

(5) The permissible combinations of selection subject and selection object operands are indicated in the
following table, Combination of operands in the EVALUATE statement.

Selection object

Selection subject

Identifier Literal Arithmetic
expression

Condition TRUE or
FALSE

 [NOT] identifier Y Y Y

 [NOT] literal Y Y

 [NOT] arithmetic-expression Y Y Y

 [NOT] range-expression Y Y Y

 [NOT] Indicator-value Y*

 Condition Y Y

 TRUE or FALSE Y Y

 ANY Y Y Y Y Y

 The letter 'Y' indicates a permissible combination.
 A space indicates an invalid combination.
 * indicates restrictions apply

TABLE 24. Combination of operands in the EVALUATE statement

E.19.4 General rules

 (1) At the beginning of the execution of the EVALUATE statement, each selection subject is evaluated and
assigned a value, a range of values, or a truth value as follows:

a. Any selection subject specified by identifier-1 is assigned the value and class of the data item referenced
by the identifier.

b. Any selection subject specified by literal-1 is assigned the value and class of the specified literal.

c. Any selection subject specified by arithmetic-expression-1 is assigned a numeric value according to the
rules for evaluating an arithmetic expression.

d. Any selection subject specified by condition-1 is assigned a truth value according to the rules for
evaluating conditional expressions.

358

PROCEDURE DIVISION (EVALUATE)

e. Any selection subject specified by the words TRUE or FALSE is assigned a truth value. The truth value
'true' is assigned to those items specified with the word TRUE, and the truth value 'false' is assigned to those items
specified with the word FALSE.

(2) The execution of the EVALUATE statement proceeds by processing each WHEN phrase from left to right
in the following manner:

a. Each selection object within the set of selection objects for each WHEN phrase is paired with the
selection subject having the same ordinal position within the set of selection subjects. The result of the analysis of
this set of selection subjects and objects is either true or false as follows:

1. If the selection object is the word ANY, the result is true.

2. If the selection object is condition-2, the selection subject is either TRUE or FALSE. If the
truth value of the selection subject and selection object match, the result of the analysis is true.
If they do not match, the result is false.

3. If the selection object is either TRUE or FALSE, the selection subject is condition-1. If the
truth value of the selection subject and selection object match, the result of the analysis is true.
If they do not match, the result is false.

4. If the selection object is a range-expression, the pair is considered to be a conditional
expression of one of the following forms:

when "NOT" is not specified in the selection object;

selection-subject >= left-part AND selection-subject <= right-part

when "NOT" is specified in the selection object

selection-subject < left-part OR selection-subject > right-part

where left-part is identifier-3, literal-3, or arithmetic-expression-3 and right-part is identifier-4,
literal-4, or arithmetic-expression-4. The result of the analysis is the truth value of the resulting
conditional expression.

5. If the selection object is identifier-2, literal-2, or arithmetic-expression-2, the pair is considered to
be a conditional expression of the following form:

selection-subject [NOT] = selection-object

where "NOT" is present if it is present in the selection object. The result of the analysis is the truth
value of the resulting conditional expression.

6. (ISQL) If the selection object is indicator-value, the pair is considered to be an indicator condition
of the following form:

Identifier-1 IS [NOT] indicator-value

b. If the result of the analysis is true for every pair in a WHEN phrase, that WHEN phrase satisfies the set
of selection subjects and no more WHEN phrases are analyzed.

c. If the result of the analysis is false for any pair in a WHEN phrase, no more pairs in that WHEN phrase
are evaluated and the WHEN phrase does not match the set of selection subjects.

359

Interactive COBOL Language Reference & Developer’s Guide - Part One

d. This procedure is repeated for subsequent WHEN phrases, in the order of their appearance in the source
element, until either a WHEN phrase satisfying the set of selection subjects is selected or until all sets of selection
objects are exhausted.

(3) The execution of the EVALUATE statement then proceeds as follows:

a. If a WHEN phrase is selected, execution continues with the first imperative-statement-1 following the
selected WHEN phrase.

b. If no WHEN phrase is selected and a WHEN OTHER phrase is specified, execution continues with
imperative-statement-2.

c. The execution of the EVALUATE statement is terminated when execution reaches the end of
imperative-statement-1 of the selected WHEN phrase or the end of imperative-statement-2, or when no WHEN
phrase is selected and no WHEN OTHER phrase is specified.

E.19.5 Example

The following code demonstrates the EVALUATE statement:

EVALUATE YEAR-CODE ALSO LETTER-GRADE
 WHEN 1 THRU 2 ALSO “A” THRU “C”
 PERFORM PROC-1
 WHEN 3 ALSO “A” THRU “B”
 PERFORM PROC-2
 WHEN 4 ALSO ANY
 PERFORM PROC-3
 WHEN OTHER
 PERFORM PROC-4
END-EVALUATE.

EXAMPLE 23. EVALUATE

In this example, if YEAR-CODE is 1 or 2 and LETTER-GRADE is A, B or C, PROC-1 is performed. If
YEAR-CODE is 3 and LETTER-GRADE is A or B, PROC-2 is performed. If YEAR-CODE is 4, PROC-3 is
performed regardless of LETTER-GRADE. Any other combination of YEAR-CODE and LETTER-GRADE will
cause the execution of PROC-4.

360

PROCEDURE DIVISION (EXECUTE)

E.20. EXECUTE (ISQL)

E.20.1 Function

The EXECUTE statement provides the ability to execute an SQL statement using a statement that has been prepared
using the PREPARE statement.

E.20.2 General Format

EXECUTE [INTO { identifier-2 [INDICATOR identifier-3] } ...]

[USING { [INDICATOR identifier-5] } ...]

[ON SQLERROR imperative-statement-1]
[NOT ON SQLERROR imperative-statement-2]
[END-EXECUTE]

E.20.3 Syntax Rules

(1) Literal-1 must specify a nonnumeric literal and must not specify a figurative constant.

(2) Identifier-1 must specify an alphanumeric data item.

(3) Literal-1 or the content of the data item referenced by identifier-1 must not exceed 30 characters in length.

(4) Identifier-3 and identifier-5 must identify data items with usage INDICATOR.

E.20.4 General Rules

(1) Used to execute an SQL statement that was previously prepared by means of a PREPARE statement. See
the PREPARE statement, page 424.

(2) Literal-1 or the content of the data item represented by identifier-1 specifies the name of a statement
container at runtime. The statement container must hold the result of a previously executed PREPARE statement for
the currently active connection. Container names can be at most 30 characters long.

(3) If there is no currently active connection, it is an error and SQLSTATE will be set to “HY010", which is
“Function sequence error”.

(4) If the name of the statement container cannot be found in the context of the currently active connection, it is
an error and SQLSTATE will be set to “26501", which is “The statement identifier does not exist”.

(5) If the INTO clause is specified, the data items specified by identifier-2 will receive the first row of the result
set of the executed statement. If any identifier-2 has an associated INDICATOR variable, identifier-3, it will be set
in conjunction with the setting of the value of identifier-2. The first identifier-2 will be set to the first column in the
row, the second identifier-2 will be set to the second column in the row, etc. If there are more columns in the row
than specified identifier-2's then SQLSTATE will be set to “01503". If there are no rows in the result set,
SQLSTATE will be set to “02000", which is “No data was affected by the operation”. If there are additional rows in
the result set, they can be fetched with the FETCH statement.

(6) If the INTO clause is not specified, and the EXECUTE statement is successful, the results can be fetched
with the FETCH statement.

361

Interactive COBOL Language Reference & Developer’s Guide - Part One

(7) If there is no associated indicator variable for a null-able column that is null, SQLSTATE will be set to
“22002", which is “Indicator variable required but not supplied”.

(8) When the prepared statement uses dynamic parameter specifiers, the USING clause must be specified, and
the values of literal-2 or the data items specified by identifier-4 are used in the order specified to satisfy the binding
of values to dynamic parameter specifiers. The literals or data items should be of an appropriate class and category
for their usage in the SQL statement and any associated INDICATOR variable, specified by identifier-5, should be
set before the EXECUTE statement is executed.

(9) If there is no currently active connection at the time the EXECUTE statement is executed, it is an error and
SQLSTATE will be set to “HY010", which is “Function sequence error”.

(10) Upon completion of the EXECUTE statement, the following occurs in the order specified:

a. The value of the SQLSTATE data item updated with the status of the operation.

b. If the value of the SQLSTATE class field is “00" or “01", the statement is successful. Control is
transferred to the end of the EXECUTE statement or to imperative-statement-2, if specified. In the latter case,
execution continues according to the rules for each statement specified in imperative-statement-2. If a procedure
branching or conditional statement which causes explicit transfer of control is executed, control is transferred in
accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-2,
control is transferred to the end of the EXECUTE statement.

c. If the value of the SQLSTATE class field is not “00" or “01", the statement is unsuccessful. Control is
transferred to the end of the EXECUTE statement or to imperative-statement-1, if specified. In the latter case,
execution continues according to the rules for each statement specified in imperative-statement-1. If a procedure
branching or conditional statement which causes explicit transfer of control is executed, control is transferred in
accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-1,
control is transferred to the end of the EXECUTE statement.

(11) The END-EXECUTE phrase delimits the scope of the EXECUTE statement.

(12) More on SQLSTATE can be found on page 139.

362

PROCEDURE DIVISION (EXECUTE IMMEDIATE)

E.21. EXECUTE IMMEDIATE (ISQL)

E.21.1 Function

The EXECUTE IMMEDIATE statement provides the ability to execute an SQL statement by directly preparing and
executing the statement as a single operation. No result set is allowed. No parameter markers are allowed.

E.21.2 General Format

EXECUTE IMMEDIATE

[ON SQLERROR imperative-statement-1]
[NOT ON SQLERROR imperative-statement-2]
[END-EXECUTE]

E.21.3 Syntax Rules

(1) Literal-1 must specify a nonnumeric literal and must not specify a figurative constant.

(2) Identifier-1 must specify an alphanumeric data item.

E.21.4 General Rules

(1) Used to both prepare and execute a basic dynamic SQL statement. It cannot be used with parameter
markers. Use the PREPARE and EXECUTE statements for that.

(2) Literal-1 or the content of the data item represented by identifier-1 specifies the text of the SQL statement
that is to be prepared for execution. The text of the SQL statement may not contain references to COBOL data
items, nor may it contain any use of the dynamic parameter specifier.

(3) The set of SQL statements that may be specified for preparation and execution is limited to the following:

• DELETE
• INSERT
• UPDATE

(4) If there is no currently active connection at the time the EXECUTE IMMEDIATE statement is executed, it

is an error and SQLSTATE will be set to “HY010", which is “Function sequence error”.

(5) Upon completion of the EXECUTE IMMEDIATE statement, the following occurs in the order specified:

a. The value of the SQLSTATE data item updated with the status of the operation.

b. If the value of the SQLSTATE class field is “00" or “01", the statement is successful. Control is
transferred to the end of the EXECUTE IMMEDIATE statement or to imperative-statement-2, if specified. In the
latter case, execution continues according to the rules for each statement specified in imperative-statement-2. If a
procedure branching or conditional statement which causes explicit transfer of control is executed, control is
transferred in accordance with the rules for the statement; otherwise, upon completion of the execution of
imperative-statement-2, control is transferred to the end of the EXECUTE IMMEDIATE statement.

c. If the value of the SQLSTATE class field is not “00" or “01", the statement is unsuccessful. Control is
transferred to the end of the EXECUTE IMMEDIATE statement or to imperative-statement-1, if specified. In the
latter case, execution continues according to the rules for each statement specified in imperative-statement-1. If a
procedure branching or conditional statement which causes explicit transfer of control is executed, control is

363

Interactive COBOL Language Reference & Developer’s Guide - Part One

transferred in accordance with the rules for the statement; otherwise, upon completion of the execution of
imperative-statement-1, control is transferred to the end of the EXECUTE IMMEDIATE statement.

(6) The END-EXECUTE phrase delimits the scope of the EXECUTE IMMEDIATE statement.

(7) More on SQLSTATE can be found on page 139.

NOTE: If the same SQL statement is to be executed more than once, it is more efficient to use the PREPARE and
EXECUTE statements rather than the EXECUTE IMMEDIATE statement.

364

PROCEDURE DIVISION (EXIT)

E.22. EXIT

E.22.1 Function

The EXIT statement provides a common end point for a series of procedures.

E.22.2 General Format

EXIT

E.22.3 Syntax Rules

(1) The EXIT statement must appear only in a sentence by itself and comprise the only sentence in the
paragraph.

E.22.4 General Rules

(1) An EXIT statement serves only to enable the user to assign a procedure-name to a given point in a program.
Such an EXIT statement has no other effect on the compilation or execution of the program.

365

Interactive COBOL Language Reference & Developer’s Guide - Part One

366

PROCEDURE DIVISION (EXIT PROGRAM)

E.23. EXIT PROGRAM

E.23.1 Function

The EXIT PROGRAM statement marks the logical end of a called program.

E.23.2 General Format

EXIT PROGRAM

E.23.3 Syntax Rules

(1) If an EXIT PROGRAM statement appears in a consecutive sequence of imperative statements within a
sentence, it must appear as the last statement in that sequence.

E.23.4 General Rules

(1) If the EXIT PROGRAM statement is executed in a program which is not under the control of a calling
program, the EXIT PROGRAM statement causes execution of the program to continue with the next executable
statement.

(2) The execution of an EXIT PROGRAM statement in a called program which does not possess the initial
attribute causes execution to continue with the next executable statement following the CALL statement in the
calling program. The program state of the calling program is not altered and is identical to that which existed at the
time it executed the CALL statement except that the contents of data items and the contents of data files shared
between the calling and called program may have been changed. The program state of the called program is not
altered except that the ends of the ranges of all PERFORM statements executed by that called program are
considered to have been reached.

(3) The storage areas associated with all items in the USING phrase of the Procedure Division header of the
called program are copied to the associated storage areas, in the USING phrase, of the calling program.

(4) Besides the actions specified in general rule 2, the execution of an EXIT PROGRAM statement in a called
program which possesses the initial attribute is equivalent to also executing a CANCEL statement referencing that
program.

367

Interactive COBOL Language Reference & Developer’s Guide - Part One

368

PROCEDURE DIVISION (EXPUNGE)

E.24. EXPUNGE (VXCOBOL)

E.24.1 Function

The EXPUNGE statement physically removes a file from the file system. EXPUNGE is an extension to ANSI
COBOL. It is equivalent to DELETE FILE.

E.24.2 General Format

EXPUNGE { file-name }...

E.24.3 General Rules

(1) The file referenced by file-name must be a disk file, you must have appropriate permissions, and the file
must not be open at the time of the execution of this statement. If the files does not exist, no error is given.

(2) For a relative, indexed, or INFOS file all parts of that file are removed from the file system.

(3) For an INFOS II file the indexed file and the database file specified in the SELECT statement are deleted.
If the name of the database file was not specified with an ASSIGN DATA clause, a .DB file with the same name as
that of the indexed file is deleted. For a U/FOS file, the database specified in the SELECT is deleted, i.e. name.udb.

(4) After the successful execution of an EXPUNGE statement, the identified file has been physically removed
from the file system and can no longer be accessed.

(5) The execution of the EXPUNGE statement causes the value of the I-O status associated with file-name to be
updated.

(6) For systems supporting Linux symbolic links, DELETE FILE will delete the symbolic link, not the
resolution file.

(7) On Linux, files cannot be individually delete-protected. To make a file delete-protected on Linux, you must
remove write (w) permission to the directory in which the file resides. If a directory has no write access, you cannot
create, modify or delete files in that directory. On Windows, the read-only attribute will protect the file from
deletion.

(8) For ANSI 74 and ANSI 85, If the specified file is a sequential file, ICOBOL will scan the Printer Control
file and if there is an entry there that points to the file being deleted, the entry in the Printer Control file will be
removed.

(9) If file-name is a sort/merge file, it is ignored.

369

Interactive COBOL Language Reference & Developer’s Guide - Part One

370

PROCEDURE DIVISION (EXPUNGE SUB-INDEX)

E.25. EXPUNGE SUB-INDEX (VXCOBOL)

E.25.1 Function

The EXPUNGE SUB-INDEX statement deletes or unlinks a subindex from a specified key.

E.25.2 General Format

EXPUNGE SUB-INDEX file-name

[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-EXPUNGE]]

E.25.3 Syntax Rules

(1) File-name is a filename that specifies an INFOS file opened for OUTPUT or I/O and selected for ALLOW
SUB-INDEX.

(2) Identifier-1 is an alphanumeric data item that specifies a record key associated with file-name.

E.25.4 General Rules

(1) ICOBOL decrements the use count of the subindex associated with the specified key. If the use count of
the subindex goes to zero, the subindex is unlinked from the key and physically deleted. If the use count of the
subindex remains one or more, the subindex is simply unlinked.

(2) If the position phrase is omitted, RETAIN POSITION is the default.

(3) If the relative option and the KEY series phrase are omitted, the default is the first key in the SELECT
clause.

(4) The occurrence number is not updated.

(5) FEEDBACK is not used and is not updated.

(6) KEY LENGTH is unaffected.

(7) The subindex to remove is determined according to what is specified in the relative option phrase and/or the
KEY series phrase.

(8) FIX POSITION causes the record pointer to move from the current position to the position specified in this
statement. RETAIN POSITION causes the record position to remain at the position it was on before the execution
of this statement. RETAIN is the default.

371

Interactive COBOL Language Reference & Developer’s Guide - Part One

(9) The relative motion option without the KEY series phrase allows access to the index file relative to that
file's current record position.

(10) Using the KEY series phrase without the relative motion option causes the key path specified to begin with
the top index in the hierarchy and follow a downward motion.

(11) If the KEY series phrase is specified, each key, identifier-1, must be declared in the SELECT statement for
file-name. If the relative motion option and KEY series phrase at both specified only UP, DOWN, and STATIC are
allowed. The relative motion option is processed first and the key path is used. If both are omitted, STATIC is the
default.

(12) Transfer of control following the successful or unsuccessful execution of the EXPUNGE SUB-INDEX
operation depends on the presence or absence of the optional INVALID KEY and NOT INVALID KEY phrases in
the EXPUNGE SUB-INDEX statement.

(13) INVALID KEY clauses on I/O statements are ONLY invoked when an Invalid Key error, as determined by
a File Status of 2x where x can be any character 0 - 9 or A - Z, is generated. All other error conditions will cause the
associated USE procedure, if present, as defined in the DECLARATIVES section to be executed. (See The Invalid
Key Condition, page 278, for more a more comprehensive discussion.)

372

PROCEDURE DIVISION (FETCH)

E.26. FETCH (ISQL)

E.26.1 Function

The FETCH statement provides the ability to fetch the next row from a result set. FETCH works using a
forward-only-cursor.

E.26.2 General Format

FETCH NEXT FOR INTO { identifier-2 [INDICATOR identifier-3] } ...

[ON SQLERROR imperative-statement-1]
[NOT ON SQLERROR imperative-statement-2]
[END-FETCH]

E.26.3 Syntax Rules

(1) Literal-1 must specify a nonnumeric literal and must not specify a figurative constant.

(2) Identifier-1 must specify an alphanumeric data item.

(3) Identifier-3 must identify a data item with usage INDICATOR.

E.26.4 General Rules

(1) Literal-1 or the content of the data item represented by identifier-1 specifies the name of a statement
container at runtime. The statement container must hold the result of a previously executed EXECUTE,
GET COLUMNS, or GET TABLES statement for the currently active connection. Container names can be at most
30 characters long.

(2) If there is no currently active connection or the previously executed EXECUTE, GET COLUMNS, or
GET TABLES statement was not successful, it is an error and SQLSTATE will be set to “HY010", which is
“Function sequence error”.

(3) If the name of the statement container cannot be found in the context of the currently active connection, it is
an error and SQLSTATE will be set to “26501", which is “The statement identifier does not exist”.

(4) If there is no next row, the SQLSTATE will be set to “02000", which is “No data was affected by the
operation”. If there were no rows at all in the result set, SQLSTATE will be set to “24000", which is “Invalid cursor
state”.

(5) The data items specified by identifier-2 will receive the results of the fetched row. If any identifier-2 has an
associated INDICATOR variable, identifier-3, it will be set in conjunction with the setting of the value of
identifier-2. The first identifier-2 will be set to the first column in the row, the second identifier-2 will be set to the
second column in the row, etc. If there are more columns in the row than specified identifier-2's then SQLSTATE
will be set to “01503".

(6) If there is no associated indicator variable for a null-able column that is null, SQLSTATE will be set to
“22002", which is “Indicator variable required but not supplied”.

(7) Upon completion of the FETCH statement, the following occurs in the order specified:

a. The value of the SQLSTATE data item updated with the status of the operation.

373

Interactive COBOL Language Reference & Developer’s Guide - Part One

b. If the value of the SQLSTATE class field is “00" or “01", the statement is successful. Control is
transferred to the end of the FETCH statement or to imperative-statement-2, if specified. In the latter case,
execution continues according to the rules for each statement specified in imperative-statement-2. If a procedure
branching or conditional statement which causes explicit transfer of control is executed, control is transferred in
accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-2,
control is transferred to the end of the FETCH statement.

c. If the value of the SQLSTATE class field is not “00" or “01", the statement is unsuccessful. Control is
transferred to the end of the FETCH statement or to imperative-statement-1, if specified. In the latter case,
execution continues according to the rules for each statement specified in imperative-statement-1. If a procedure
branching or conditional statement which causes explicit transfer of control is executed, control is transferred in
accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-1,
control is transferred to the end of the FETCH statement.

(8) The END-FETCH phrase delimits the scope of the FETCH statement.

(9) More on SQLSTATE can be found on page 139.

374

PROCEDURE DIVISION (GET COLUMNS)

E.27. GET COLUMNS (ISQL) (Added in 4.50)

E.27.1 Function

The GET COLUMNS statement allows the program to query the current database connection for column information
and associate those results with a SQL statement container. The GET COLUMNS statement allows for four
qualifying phrases that can be used to limit the result set that is returned, although for many databases the
CATALOG and SCHEMA phrases are effectively not used.

The result set is returned with a specific set of columns in a specific order with specific data types as shown in the
table at the end of this section.

E.27.2 General Format

[ON SQLERROR imperative-statement-1]
[NOT ON SQLERROR imperative-statement-2]
[END-GET]

E.27.3 Syntax Rules

(1) Literal-1 through Literal-5 must specify a non-numeric literal and must not specify a figurative constant.

(2) Identifier-1 must specify an alphanumeric data item .

(3) Identifier-2 through Identifier-5 must specify an alphanumeric data item or an alphanumeric-valued function.

E.27.4 General Rules

(1) The CATALOG, SCHEMA, TABLE, and COLUMN phrases may be specified in any order, but each phrase
must be specified at most once. For clarity, the order specified in the syntax is the preferred order since it reflects
the hierarchical relationship of the qualifiers.

(2) Literal-1 or the content of the data item represented by identifier-1 specifies the name of a statement
container at runtime. Container names can be at most 30 characters long.

(3) If there is no currently active connection it is an error and SQLSTATE will be set to “HY010”, which is
“Function sequence error”.

(4) Literal-2 or the content of the data item represented by identifier-2 specifies a search string used to limit the
result set to only those entries with a catalog name that matches the specified string. If this phrase is omitted, the
runtime will supply a null.

(5) Literal-3 or the content of the data item represented by identifier-3 specifies a search string used to limit the
result set to only those entries with a schema name that matches the specified string. If this phrase is omitted, the

375

Interactive COBOL Language Reference & Developer’s Guide - Part One

runtime will supply the a null.

(6) Literal-4 or the content of the data item represented by identifier-4 specifies a search string used to limit the
result set to only those entries with a table name that matches the specified string. If this phrase is omitted, the
runtime will supply a null.

(7) Literal-5 or the content of the data item represented by identifier-5 specifies a search string used to limit the
result set to only those entries with a column name that matches the specified string. If this phrase is omitted, the
runtime will supply the a null.

(8) The SQL search characters are ‘%’ (which acts like the ‘*’ character in filename wildcards) and ‘_’ (which
acts like the ‘?’ character in filename wildcards). Note that this can come into play when trying to use the results of
GET TABLES to filter GET COLUMNS using the TABLE phrase. Since table names may contain underscores, the
table name will need to have escapes added (using the Intrinsic SQL-ADD-ESCAPES).

(9) Upon completion of the GET COLUMNS statement, the following occurs in the order specified:

a. If the GET COLUMNS was successful, control is transferred to the end of the GET COLUMNS
statement or to imperative-statement-2, if specified. In the latter case, execution continues according to the rules for
each statement specified in imperative-statement-2. If a procedure branching or conditional statement which causes
explicit transfer of control is executed, control is transferred in accordance with the rules for the statement;
otherwise, upon completion of the execution of imperative-statement-2, control is transferred to the end of the GET
COLUMNS statement.

b. If the GET COLUMNS is unsuccessful, control is transferred to the end of the GET COLUMNS
statement or to imperative-statement-1, if specified. In the latter case, execution continues according to the rules for
each statement specified in imperative-statement-1. If a procedure branching or conditional statement which causes
explicit transfer of control is executed, control is transferred in accordance with the rules for the statement;
otherwise, upon completion of the execution of imperative-statement-1, control is transferred to the end of the GET
COLUMNS statement.

(16) The END-GET phrase delimits the scope of the GET COLUMNS statement.

(17) More on SQLSTATE can be found on page 139.

(18) The result set is described in the table below.

Column name
Column

number
Data type Comments

TABLE_CAT 1 Varchar

Catalog name; NULL if not applicable to the data source. If a driver supports
catalogs for some tables but not for others, such as when the driver retrieves data
from different DBMSs, it returns an empty string ("") for those tables that do not
have catalogs.

TABLE_SCHEM 2 Varchar

Schema name; NULL if not applicable to the data source. If a driver supports
schemas for some tables but not for others, such as when the driver retrieves
data from different DBMSs, it returns an empty string ("") for those tables that
do not have schemas.

TABLE_NAME 3
Varchar
not NULL

Table name.

COLUMN_NAME 4
Varchar
not NULL

Column name. The driver returns an empty string for a column that does not
have a name.

DATA_TYPE 5
Smallint
not NULL

SQL data type. This can be an ODBC SQL data type or a driver-specific SQL
data type. For datetime and interval data types, this column returns the concise
data type (such as SQL_TYPE_DATE or

376

PROCEDURE DIVISION (GET COLUMNS)

SQL_INTERVAL_YEAR_TO_MONTH, instead of the nonconcise data type
such as SQL_DATETIME or SQL_INTERVAL).

TYPE_NAME 6
Varchar
not NULL

Data source–dependent data type name; for example, "CHAR", "VARCHAR",
"MONEY", "LONG VARBINAR", or "CHAR () FOR BIT DATA".

COLUMN_SIZE 7 Integer

If DATA_TYPE is SQL_CHAR or SQL_VARCHAR, this column contains the
maximum length in characters of the column. For datetime data types, this is the
total number of characters required to display the value when it is converted to
characters. For numeric data types, this is either the total number of digits or the
total number of bits allowed in the column, according to the
NUM_PREC_RADIX column. For interval data types, this is the number of
characters in the character representation of the interval literal (as defined by the
interval leading precision).

BUFFER_LENGTH 8 Integer
The length in bytes of data transferred DURING A Fetch operation. Relevant
only to the ODBC layers

DECIMAL_DIGITS 9 Smallint

The total number of significant digits to the right of the decimal point. For
TIME and TIMESTAMP data, this column contains the number of digits in the
fractional seconds component. For the other data types, this is the decimal digits
of the column on the data source. For interval data types that contain a time
component, this column contains the number of digits to the right of the decimal
point (fractional seconds). For interval data types that do not contain a time
component, this column is 0. NULL is returned for data types where
DECIMAL_DIGITS is not applicable.

NUM_PREC_RADIX 10 Smallint

For numeric data types, either 10 or 2. If it is 10, the values in COLUMN_SIZE
and DECIMAL_DIGITS give the number of decimal digits allowed for the
column. For example, a DECIMAL(12,5) column would return a
NUM_PREC_RADIX of 10, a COLUMN_SIZE of 12, and a
DECIMAL_DIGITS of 5; a FLOAT column could return a
NUM_PREC_RADIX of 10, a COLUMN_SIZE of 15, and a
DECIMAL_DIGITS of NULL.

If it is 2, the values in COLUMN_SIZE and DECIMAL_DIGITS give the
number of bits allowed in the column. For example, a FLOAT column could
return a RADIX of 2, a COLUMN_SIZE of 53, and a DECIMAL_DIGITS of
NULL.

NULL is returned for data types where NUM_PREC_RADIX is not applicable.

NULLABLE 11
Smallint
not NULL

SQL_NO_NULLS (0) if the column could not include NULL values.

SQL_NULLABLE (1) if the column accepts NULL values.

SQL_NULLABLE_UNKNOWN (2) if it is not known whether the column
accepts NULL values.

The value returned for this column differs from the value returned for the
IS_NULLABLE column. The NULLABLE column indicates with certainty that
a column can accept NULLs, but cannot indicate with certainty that a column
does not accept NULLs. The IS_NULLABLE column indicates with certainty
that a column cannot accept NULLs, but cannot indicate with certainty that a
column accepts NULLs.

REMARKS 12 Varchar A description of the column.

COLUMN_DEF 13 Varchar

The default value of the column. The value in this column should be interpreted
as a string if it is enclosed in quotation marks.

If NULL was specified as the default value, this column is the word NULL, not
enclosed in quotation marks. If the default value cannot be represented without
truncation, this column contains TRUNCATED, without enclosing single
quotation marks. If no default value was specified, this column is NULL.

The value of COLUMN_DEF can be used in generating a new column
definition, except when it contains the value TRUNCATED.

SQL_DATA_TYPE 14 Smallint SQL data type, as it appears in the SQL_DESC_TYPE record field in the IRD.

377

Interactive COBOL Language Reference & Developer’s Guide - Part One

not NULL

This can be an ODBC SQL data type or a driver-specific SQL data type. This
column is the same as the DATA_TYPE column, except for datetime and
interval data types. This column returns the nonconcise data type (such as
SQL_DATETIME or SQL_INTERVAL), instead of the concise data type (such
as SQL_TYPE_DATE or SQL_INTERVAL_YEAR_TO_MONTH) for datetime
and interval data types. If this column returns SQL_DATETIME or
SQL_INTERVAL, the specific data type can be determined from the
SQL_DATETIME_SUB column. Only relevant to the ODBC layer.

SQL_DATETIME_SUB 15 Smallint
The subtype code for datetime and interval data types. For other data types, this
column returns a NULL. Relevant only to the ODBC layer.

CHAR_OCTET_LENGTH 16 Integer
The maximum length in bytes of a character or binary data type column. For all
other data types, this column returns a NULL.

ORDINAL_POSITION 17
Integer
not NULL

The ordinal position of the column in the table. The first column in the table is
number 1.

IS_NULLABLE 18 Varchar

"NO" if the column does not include NULLs.

"YES" if the column could include NULLs.

This column returns a zero-length string if nullability is unknown.

ISO rules are followed to determine nullability. An ISO SQL–compliant DBMS
cannot return an empty string.

The value returned for this column differs from the value returned for the
NULLABLE column. (See the description of the NULLABLE column.)

Additional columns beyond column 18 (IS_NULLABLE) can be defined by the driver. An application should gain
access to driver-specific columns by counting down from the end of the result set instead of specifying an explicit
ordinal position.

378

PROCEDURE DIVISION (GET DIAGNOSTICS)

E.28. GET DIAGNOSTICS (ISQL)

E.28.1 Function

The GET DIAGNOSTICS statement allows the program to retrieve information from the diagnostics area of the
SQL database connection. There are two formats to this statement. The first retrieves information relating to the
overall execution of the immediately preceding SQL statement (not counting GET DIAGNOSTICS statements
themselves). The second format is used to gain more specific information regarding some particular exception.

E.28.2 General Format

Format 1:

[ON EXCEPTION imperative-statement-1]
[NOT ON EXCEPTION imperative-statement-2]
[END-GET]

Format 2:

[ON EXCEPTION imperative-statement-1]
[NOT ON EXCEPTION imperative-statement-2]
[END-GET]

E.28.3 Syntax Rules

Format 1:

(1) Identifier-1 must specify an integer data item without any p-scaling with the COLUMN COUNT,
ROW COUNT or NUMBER phrase.

(2) Identifier-1 must specify an alphanumeric data item with the COMMAND FUNCTION or
DYNAMIC FUNCTION phrase.

Format 2:

(3) Identifier-2/Literal-1 must specify an integer value.

(4) Identifier-3 must specify an integer data item without any p-scaling with the NATIVE ERROR or
MESSAGE LENGTH phrase.

(5) Identifier-3 must specify an alphanumeric data item with the SQLSTATE or MESSAGE TEXT phrase.

379

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.28.4 General Rules

(1) All assignment operations are carried out in the order specified in the source text.

(2) It is permissable to specify a given assignment phrase more than once.

(3) The GET DIAGNOSTICS statement itself does not effect the diagnostics information stored in the system.

(4) The diagnostics information is valid until the next ISQL statement is executed.

(5) Other than the requirement that the first diagnostic record corresponds to the SQLSTATE returned by an
ISQL statement, the diagnostic records are not in any particular order. However, since they are added as they are
encountered, they will generally follow the pattern that diagnostics pertaining to statement preparation (such as
binding parameters) will occur before the diagnostics for the main operation, which will precede diagnostics from
returning results.

Format 1:

(6) COLUMN COUNT returns the number of columns in the result set of an EXECUTE, GET TABLES, or
GET COLUMNS (ISQL) statement. It does not necessarily return a meaningful value for any other statement.

(7) ROW COUNT returns the number of rows affected by an INSERT, UPDATE, or DELETE (ISQL)
statement. It does not necessarily return a meaningful value for any other statement.

(8) NUMBER returns the number of diagnostic messages that are available in the diagnostics area. Format 2
can be used to retrieve each individual message.

(9) COMMAND FUNCTION returns a string that specifies the ISQL statement that was executed.

(10) DYNAMIC FUNCTION returns a string for EXECUTE or EXECUTE IMMEDIATE that specifies the
dynamic SQL statement that was executed (e.g., SELECT). For all other statements, it will return an empty string.

Format 2:

(11) The exception number specifier in identifier-2|literal-1 must be greater than zero and less than or equal to
the number of exceptions as would be returned into identifier by a “GET DIAGNOSTICS identifier = NUMBER”
statement.

(12) A non-success SQLSTATE returned by an ISQL statement corresponds to the value returned by
GET DIAGNOSTICS EXCEPTION 1 id = SQLSTATE. I.E., SQLSTATE returns the SQLSTATE corresponding
to the diagnostic record.

(13) NATIVE ERROR returns the numeric error code that may have orginiated in the driver, the driver
manager, or the runtime system. It is usually not useful to the logic of the application but may provide additional
diagnostic information.

(14) MESSAGE TEXT returns a diagnostic message that gives information about the error. It provides useful
information as to the specific problem encountered.

(15) MESSAGE LENGTH returns the length of the text message returned in MESSAGE TEXT. This is
usually not needed.

380

PROCEDURE DIVISION (GET DIAGNOSTICS)

All Formats:
.

(16) Upon completion of the GET DIAGNOSTICS statement, the following occurs in the order specified:

a. If the GET DIAGNOSTICS was successful, control is transferred to the end of the GET DIAGNOSTICS
statement or to imperative-statement-2, if specified. In the latter case, execution continues according to the rules for
each statement specified in imperative-statement-2. If a procedure branching or conditional statement which causes
explicit transfer of control is executed, control is transferred in accordance with the rules for the statement;
otherwise, upon completion of the execution of imperative-statement-2, control is transferred to the end of the GET
DIAGNOSTICS statement.

b. If the GET DIAGNOSTICS is unsuccessful, control is transferred to the end of the GET
DIAGNOSTICS statement or to imperative-statement-1, if specified. In the latter case, execution continues
according to the rules for each statement specified in imperative-statement-1. If a procedure branching or
conditional statement which causes explicit transfer of control is executed, control is transferred in accordance with
the rules for the statement; otherwise, upon completion of the execution of imperative-statement-1, control is
transferred to the end of the GET DIAGNOSTICS statement.

(17) The END-GET phrase delimits the scope of the GET DIAGNOSTICS statement.

(18) More on SQLSTATE can be found on page 139.

381

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.29. GET TABLES (ISQL) (Added in 4.50)

E.29.1 Function

The GET TABLES statement allows the program to query the current database connection for table information and
associate those results with a SQL statement container. The GET TABLES statement allows for four qualifying
phrases that can be used to limit the result set that is returned, although for many databases the CATALOG and
SCHEMA phrases are effectively not used.

The result set is returned with a specific set of columns in a specific order with specific data types as shown in the
table at the end of this section.

E.29.2 General Format

[ON SQLERROR imperative-statement-1]
[NOT ON SQLERROR imperative-statement-2]
[END-GET]

E.29.3 Syntax Rules

(1) Literal-1 through Literal-5 must specify a non-numeric literal and must not specify a figurative constant.

(2) Identifier-1 must specify an alphanumeric data item .

(3) Identifier-2 through Identifier-5 must specify an alphanumeric data item or an alphanumeric-valued function.

E.29.4 General Rules

(1) The CATALOG, SCHEMA, TABLE, and TYPE phrases may be specified in any order, but each phrase
must be specified at most once. For clarity, the order specified in the syntax is the preferred order since it reflects
the hierarchical relationship of the qualifiers.

(2) Literal-1 or the content of the data item represented by identifier-1 specifies the name of a statement
container at runtime. Container names can be at most 30 characters long.

(3) If there is no currently active connection it is an error and SQLSTATE will be set to “HY010”, which is
“Function sequence error”.

(4) Literal-2 or the content of the data item represented by identifier-2 specifies a search string used to limit the
result set to only those entries with a catalog name that matches the specified string. If this phrase is omitted, the
runtime will supply a null.

(5) Literal-3 or the content of the data item represented by identifier-3 specifies a search string used to limit the
result set to only those entries with a schema name that matches the specified string. If this phrase is omitted, the
runtime will supply a null.

382

PROCEDURE DIVISION (GET COLUMNS)

(6) Literal-4 or the content of the data item represented by identifier-4 specifies a search string used to limit the
result set to only those entries with a table name that matches the specified string. If this phrase is omitted, the
runtime will supply a null.

(7) Literal-5 or the content of the data item represented by identifier-5 specifies a search string used to limit the
result set to only those entries with a table type that matches the specified string. If this phrase is omitted, the
runtime will supply a null. If this phrase is supplied and a non-empty value is supplied, it must contain a list of
comma separated values for the types of interest. Each value in the list may be enclosed in single quotation marks.
The types should be specified using uppercase letters.

(8) The SQL search characters are ‘%’ (which acts like the ‘*’ character in filename wildcards) and ‘_’ (which
acts like the ‘?’ character in filename wildcards). Note that this can come into play when trying to use the results of
GET TABLES to filter GET COLUMNS using the TABLE phrase. Since table names may contain underscores, the
table name will need to have escapes added (using the Intrinsic SQL-ADD-ESCAPES).

(9) Upon completion of the GET TABLES statement, the following occurs in the order specified:

a. If the GET TABLES was successful, control is transferred to the end of the GET TABLES statement or
to imperative-statement-2, if specified. In the latter case, execution continues according to the rules for each
statement specified in imperative-statement-2. If a procedure branching or conditional statement which causes
explicit transfer of control is executed, control is transferred in accordance with the rules for the statement;
otherwise, upon completion of the execution of imperative-statement-2, control is transferred to the end of the GET
TABLES statement.

b. If the GET TABLES is unsuccessful, control is transferred to the end of the GET TABLES statement or
to imperative-statement-1, if specified. In the latter case, execution continues according to the rules for each
statement specified in imperative-statement-1. If a procedure branching or conditional statement which causes
explicit transfer of control is executed, control is transferred in accordance with the rules for the statement;
otherwise, upon completion of the execution of imperative-statement-1, control is transferred to the end of the GET
TABLES statement.

(16) The END-GET phrase delimits the scope of the GET TABLES statement.

(17) More on SQLSTATE can be found on page 139.

(18) The result set is described in the table below.

Column name
Column
number

Data
type

Comments

TABLE_CAT 1 Varchar

Catalog name; NULL if not applicable to the data source. If a driver supports catalogs
for some tables but not for others, such as when the driver retrieves data from
different DBMSs, it returns an empty string ("") for those tables that do not have
catalogs.

TABLE_SCHEM 2 Varchar

Schema name; NULL if not applicable to the data source. If a driver supports schemas
for some tables but not for others, such as when the driver retrieves data from
different DBMSs, it returns an empty string ("") for those tables that do not have
schemas.

TABLE_NAME 3 Varchar Table name.

TABLE_TYPE 4 Varchar

Table type name; one of the following: "TABLE", "VIEW", "SYSTEM TABLE",
"GLOBAL TEMPORARY", "LOCAL TEMPORARY", "ALIAS", "SYNONYM", or a
data source–specific type name.

The meanings of "ALIAS" and "SYNONYM" are driver-specific.

REMARKS 5 Varchar A description of the table.

383

Interactive COBOL Language Reference & Developer’s Guide - Part One

Additional columns beyond column 5 (REMARKS) can be defined by the driver. An application should gain access
to driver-specific columns by counting down from the end of the result set instead of specifying an explicit ordinal
position.

384

PROCEDURE DIVISION (GO TO)

E.30. GO TO

E.30.1 Function

The GO TO statement causes control to be transferred from one part of the Procedure Division to another.

E.30.2 General Format

Format 1:

GO TO procedure-name-1

Format 2:

GO TO { procedure-name-1 }... DEPENDING ON identifier

E.30.3 Syntax Rules

(1) Identifier must reference a numeric elementary data item which is an integer.

(2) If a GO TO statement represented by Format 1 appears in a consecutive sequence of imperative statements
within a sentence, it must appear as the last statement in that sequence.

(3) A GO TO cannot transfer control between:

a. A procedure-name in a Declarative section from a nondeclarative section.

b. A procedure-name in a nondeclarative section from a Declaratives section.

c. A Declaratives section from another Declaratives section.

d. The above conditions are treated as errors for ANSI 74 and ANSI 85, but may be converted to warnings
with the -G g compiler switch. VXCOBOL treats these conditions as warnings.

(4) No more than 254 procedure-name-1 entries may be specified.

E.30.4 General Rules

(1) When a GO TO statement represented by Format 1 is executed, control is transferred to procedure-name-1.

(2) When a GO TO statement represented by Format 2 is executed, control is transferred to procedure-name-1,
etc., depending on the value of identifier being 1, 2, ... , n. If the value of identifier is anything other than the
positive or unsigned integers 1, 2, ... , n, (where n is the number of procedure-name-1's specified), then no transfer
occurs and control passes to the next statement in the normal sequence for execution.

385

Interactive COBOL Language Reference & Developer’s Guide - Part One

386

PROCEDURE DIVISION (GOBACK)

E.31. GOBACK

E.31.1 Function

The GOBACK statement marks the logical end of a called program.

The GOBACK statement is equivalent to the sequence:

EXIT PROGRAM.
STOP RUN.

E.31.2 General Format

GOBACK

E.31.3 Syntax Rules

(1) If a GOBACK statement appears in a consecutive sequence of imperative statements within a sentence, it
must appear as the last statement in that sequence.

E.31.4 General Rules

(1) If the GOBACK statement is executed in a program which is not under the control of a calling program, the
GOBACK statement causes execution of the program to act as if a STOP RUN statement had been performed.

(2) The execution of an GOBACK statement in a called program which does not possess the initial attribute
causes execution to continue with the next executable statement following the CALL statement in the calling
program. The program state of the calling program is not altered and is identical to that which existed at the time it
executed the CALL statement except that the contents of data items and the contents of data files shared between the
calling and called program may have been changed. The program state of the called program is not altered except
that the ends of the ranges of all PERFORM statements executed by that called program are considered to have been
reached.

(3) The storage areas associated with all items in the USING phrase of the Procedure Division header of the
called program are copied to the associated storage areas, in the USING phrase, of the calling program.

(4) Besides the actions specified in general rule 2, the execution of a GOBACK statement in a called program
which possesses the initial attribute is equivalent to also executing a CANCEL statement referencing that program.

387

Interactive COBOL Language Reference & Developer’s Guide - Part One

388

PROCEDURE DIVISION (IF)

E.32. IF

E.32.1 Function

The IF statement causes a condition to be evaluated. The subsequent action of the object program depends on
whether the value of the condition is true or false.

E.32.2 General Format

IF condition THEN

E.32.3 Syntax Rules

(1) Statement-1 and statement-2 represent either an imperative statement or a conditional statement optionally
preceded by an imperative statement. A further description of the rules governing statement-1 and statement-2 is
given elsewhere.

(2) The ELSE NEXT SENTENCE phrase may be omitted if it immediately precedes to the terminal period of
the sentence.

(3) If the END-IF phrase is specified, the NEXT SENTENCE phrase must not be specified.

E.32.4 General Rules

(1) The scope of the IF statement may be terminated by any of the following:

a. An END-IF phrase at the same level of nesting.

b. A separator period.

c. If nested, by an ELSE phrase associated with an IF statement at a higher level of nesting.

(2) When an IF statement is executed, the following transfers of control occur:

a. If the condition is true and statement-1 is specified, control is transferred to the first statement of
statement-1 and execution continues according to the rules for each statement specified in statement-1. If a
procedure branching or conditional statement is executed which causes an explicit transfer of control, control is
explicitly transferred in accordance with the rules of that statement. Upon completion of the execution of
statement-1, the ELSE phrase, if specified, is ignored and control passes to the end of the IF statement.

b. If the condition is true and the NEXT SENTENCE phrase is specified instead of statement-1, the ELSE
phrase, if specified, is ignored and control passes to the next executable sentence.

c. If the condition is false and statement-2 is specified, statement-1 or its surrogate NEXT SENTENCE is
ignored, control is transferred to the first statement of statement-2, and execution continues according to the rules for
each statement specified in statement-2. If a procedure branching or conditional statement is executed which causes
an explicit transfer of control, control is explicitly transferred in accordance with the rules of that statement. Upon
completion of the execution of statement-2, control passes to the end of the IF statement.

d. If the condition is false and the ELSE phrase is not specified, statement-1 is ignored and control passes
to the end of the IF statement.

389

Interactive COBOL Language Reference & Developer’s Guide - Part One

e. If the condition is false and the ELSE NEXT SENTENCE phrase is specified, statement-1 is ignored and
control passes to the next executable sentence.

(3) Statement-1 and/or statement-2 may contain an IF statement. In this case, the IF statement is said to be
nested. More detailed rules on nesting are given in the appropriate paragraph. (See Scope of Statements, page 260.)

IF statements within IF statements may be considered as paired IF and ELSE combinations, proceeding
from left to right. Thus, any ELSE or END-IF encountered is considered to apply to the immediately preceding IF
that has not been already paired with an ELSE or END-IF.

390

PROCEDURE DIVISION (INITIALIZE)

E.33. INITIALIZE (ANSI 74 and ANSI 85)

E.33.1 Function

The INITIALIZE statement provides the ability to set selected data items to specified values.

E.33.2 General Format

INITIALIZE { identifier-1 }... [WITH FILLER] [TO VALUE]

[THEN REPLACING { category-name DATA BY }...]

[THEN TO DEFAULT]

where category-name is:

(ISQL) The following category-name selections are added:

E.33.3 Syntax rules

(1) Identifier-1 must be a valid receiving operand of a MOVE statement, or an item with usage POINTER or
INDICATOR.

(2) For each POINTER or INDICATOR phrase used as the category-name stated in the REPLACING phrase,
identifier-2 shall be specified, and a SET statement with identifier-2 as the sending operand and an item of the
specified category as the receiving item shall be valid..

(3) For each other category-name stated in the REPLACING phrase, a MOVE statement with identifier-2 or
literal-1 as sending operand and an item of the category specified by category-name as receiving operand must be
valid.

(4) An index data item may not appear as an operand of an INITIALIZE statement.

(5) The data description entry for the data item referenced by identifier-1 shall not contain a RENAMES clause.

(6) The same category shall not be repeated in a REPLACING phrase.

391

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.33.4 General rules

(1) The data item referenced by identifier-1 represents the receiving item.

(2) If the REPLACING phrase is specified, literal-1 and the data item referenced by identifier-2 represent the
sending item.

(3) The keywords in category-names correspond to a category of data as specified in B.3 Concept of Classes of
Data on page 124. If ALL is specified in the VALUE phrase, it is as if all of the categories listed in category-names
were specified.

(4) Whether identifier-1 references an elementary item or a group item, the effect of the execution of the
INITIALIZE statement is as though a series of implicit MOVE or SET statements, each of which has an elementary
data item as its receiving operand.

If the receiving operand is usage POINTER or INDICATOR, the implicit statement is

SET receiving-operand TO sending-operand

Otherwise, the implicit statement is

MOVE sending-operand TO receiving-operand

were executed, where the sending-operand is as defined in General Rule 6 and the receiving-operand is as defined in
General Rule 5.

(5) The receiving-operand in each implicit MOVE or SET statement is determined by applying the following
steps in order:

a. First, the following data items are excluded as receiving-operands:

1. Any identifiers that are not valid receiving operands of a MOVE statement, except items of usage
POINTER or INDICATOR.

2. If the FILLER phrase is not specified, elementary data items with an explicit or implicit FILLER
clause.

3. Any elementary data item subordinate to identifier-1 whose data description entry contains a
REDEFINES or RENAMES clause or is subordinate to a data item whose data description entry
contains a REDEFINES clause. However, identifier-1 may itself have a REDEFINES clause or be
subordinate to a data item with a REDEFINES clause.

4. Any elementary data item with USAGE INDEX.

b. Second, an elementary data item is a possible receiving item if:

1. It is explicitly referenced by identifier-1; or

2. It is contained within the group data item referenced by identifier-1. If the elementary data item is a
table element, each occurrence of the elementary data item is a possible receiving-operand.

c. Finally, each possible receiving-operand is a receiving-operand if at least one of the following is true:

1. The VALUE phrase is specified, a data-item format or table format VALUE clause is specified in
the data description entry of the elementary data item, and the category of the data item is one of
the categories specified or implied in the VALUE phrase; or

392

PROCEDURE DIVISION (INITIALIZE)

2. The REPLACING phrase is specified and the category of the elementary data item is one of the
categories specified in the REPLACING phrase; or

3. The DEFAULT phrase is specified; or

4. Neither the REPLACING phrase nor the VALUE phrase is specified.

(6) The sending-operand in each implicit MOVE or SET statement is determined as follows:

a. If the data item qualifies as a receiving-operand because of the VALUE phrase:
1. If the receiving-operand is usage POINTER, the sending-operand is the predefined address item

NULL

2. If the receiving-operand is usage INDICATOR, the sending-operand is the predefined indicator
value NULL

3. Otherwise, the sending-operand is determined by the literal in the VALUE clause specified in the
data description entry of the data item. If the data item is a table element, the literal in the VALUE
clause that corresponds to the occurrence being initialized determines the sending-operand. The
actual sending-operand is a literal that, when moved to the receiving-operand with a MOVE
statement, produces the same result as the initial value of the data item as produced by the
application of the VALUE clause.

b. If the data item does not qualify as a receiving-operand because of the VALUE phrase, but does qualify
because of the REPLACING phrase, the sending-operand is the literal-1 or identifier-2 associated with the category
specified in the REPLACING phrase.

c. If the data item does not qualify in accordance with general rules 6a and 6b, the sending-operand is an
implied figurative constant or predefined item.

The figurative sending operand used depends on the category of the receiving operand as follows:

Receiving operand Figurative constant or predefined item
Alphabetic Alphanumeric SPACES
Alphanumeric Alphanumeric SPACES
(ISQL) Character Varying “” (the null string)
Alphanumeric-edited Alphanumeric SPACES
Numeric ZEROES
Numeric-edited ZEROES
(ISQL) Date DATE “0000-01-01"
(ISQL) Time TIME “00:00:00"
(ISQL) Timestamp TIMESTAMP “0000-01-01 00:00:00"
Year-to-month ZEROES
Day-to-time ZEROES
Pointer NULL
(ISQL) Indicator NULL

(7) The order of execution of these implicit MOVE or SET statements is the order, left to right, of the
appearance of each identifier-1 in the INITIALIZE statement. Within this sequence, whenever identifier-1 references
a group data item, affected elementary data items are initialized in the sequence of their definition within the group
data item. If a fixed-length table is being initialized, all occurrences are initialized. If variable-length table is being
initialized, the number of occurrences initialized is the number of occurrences specified by the value of the data item
referenced in the DEPENDING phrase.

(8) If identifier-1 occupies the same storage area as identifier-2, the result of the execution of this statement is
undefined, even if they are defined by the same data description entry. (See page 256, Overlapping Operands.)

393

Interactive COBOL Language Reference & Developer’s Guide - Part One

394

PROCEDURE DIVISION (INSPECT)

E.34. INSPECT

E.34.1 Function

The INSPECT statement provides the ability to tally or replace occurrences of single characters or groups of
characters in a data item.

E.34.2 General Format

Format 1:

INSPECT identifier-1 TALLYING

Format 2:

INSPECT identifier-1 REPLACING

Format 3:

INSPECT identifier-1 TALLYING

 REPLACING

395

Interactive COBOL Language Reference & Developer’s Guide - Part One

Format 4: (ANSI 74 and ANSI 85)

INSPECT identifier-1 CONVERTING

[]...

E.34.3 Syntax Rules

All Formats:

(1) Identifier-1 must reference either a group item or any category of elementary item described, implicitly or
explicitly, as USAGE IS DISPLAY.

(2) Identifier-3, ... , identifier-n must reference an elementary item described, implicitly or explicitly, as
USAGE IS DISPLAY.

(3) Each literal must be a nonnumeric literal and must not be a figurative constant that begins with the word
ALL. If literal-1, literal-2, or literal-4 is a figurative constant, it refers to an implicit one character data item.

(4) No more than one BEFORE phrase and one AFTER phrase can be specified for any one ALL, LEADING,
CHARACTERS, FIRST, or CONVERTING phrase.

Format 1 and 3:

(5) Identifier-2 must reference an elementary numeric data item.

Format 2 and 3:

(6) The size of literal-3 or the data item referenced by identifier-5 must be equal to the size of literal-1 or the
data item referenced by identifier-3. When a figurative constant is used as literal-3, the size of the figurative
constant is equal to the size of literal-1 or the size of the data item referenced by identifier-3.

(7) When the CHARACTERS phrase is used, literal-2, literal-3, or the size of the data item referenced by
identifier-4, identifier-5 must be one character in length.

Format 4:

(8) The size of literal-5 or the data item referenced by identifier-7 must be equal to the size of literal-4 or the
data item referenced by identifier-6. When a figurative constant is used as literal-5, the size of the figurative constant
is equal to the size of literal-4 or the size of the data item referenced by identifier-6.

(9) The same character must not appear more than once either in literal-4 or in the data item referenced by
identifier-6.

E.34.4 General Rules

All Formats:

(1) Inspection (which includes the comparison cycle, the establishment of boundaries for the BEFORE or
AFTER phrase, and the mechanism for tallying and/or replacing) begins at the left-most character position of the
data item referenced by identifier-1, regardless of its class, and proceeds from left to right to the right-most character
position as described in General Rules 5 and 6.

396

PROCEDURE DIVISION (INSPECT)

(2) For use in the INSPECT statement, the content of the data item referenced by identifier-1, identifier-3,
identifier-4, identifier-5, identifier-6, or identifier-7 will be treated as follows:

a. If any of identifier-1, identifier-3, identifier-4, identifier-5, identifier-6 or identifier-7 reference an
alphabetic or alphanumeric data item, the INSPECT statement treats the contents of each such identifier as a
character-string.

b. If any of identifier-1, identifier-3, identifier-4, identifier-5, identifier-6 or identifier-7 reference
alphanumeric edited, numeric edited, or unsigned numeric data items, the data item is inspected as though it had been
redefined as alphanumeric (see General Rule 2a) and the INSPECT statement had been written to reference the
redefined data item.

c. If any of identifier-1, identifier-3, identifier-4, identifier-5, identifier-6 or identifier-7 reference a signed
numeric data item, the data item is inspected as though it had been moved to an unsigned numeric data item with
length equal to the length of the signed item excluding any separate sign position, and then the rules in General Rule
2b had been applied. (See The MOVE Statement, page 406.) If identifier-1 is a signed numeric item, the original
value of the sign is retained upon completion of the INSPECT statement.

d. (ISQL) If identifier-1 references a data item with usage CHARACTER VARYING, the length of the data
item is evaluated only once at the beginning of the execution of the INSPECT statement. If the length evaluates to
zero, there is no error and no inspection takes place. If any other identifier references a zero-length data item at the
execution of the INSPECT statement, it is an error and no inspection takes place.

(3) In General Rules 5 through 17, all references to literal-1, literal-2, literal-3, literal-4 or literal-5 apply
equally to the content of the data item referenced by identifier-3, identifier-4, identifier-5, identifier-6 or identifier-7
respectively.

(4) Subscripting associated with any identifier is evaluated only once as the first operation in the execution of
the INSPECT statement.

Format 1 and 2:

(5) During inspection of the content of the data item referenced by identifier-1, each properly matched
occurrence of literal-1 is tallied (Format 1) or replaced by literal-3 (Format 2).

(6) The comparison operation to determine the occurrence of literal-1 to be tallied or to be replaced, occurs as
follows:

a. The operands of the TALLYING or REPLACING phrase are considered in the order they are specified
in the INSPECT statement from left to right. The first literal-1 is compared to an equal number of contiguous
characters, starting with the left-most character position in the data item referenced by identifier-1. Literal-1
matches that portion of the content of the data item referenced by identifier-1 if they are equal, character for
character and:

1) If neither LEADING nor FIRST is specified; or

2) If the LEADING adjective applies to literal-1 and literal-1 is a leading occurrence as defined in
General Rules 10 and 13; or

3) If the FIRST adjective applies to literal-1 and literal-1 is the first occurrence as defined in General
Rule 13.

b. If no match occurs in the comparison of the first literal-1, the comparison is repeated with each
successive literal-1, if any, until either a match is found or there is no next successive literal-1. When there is no
next successive literal-1, the character position in the data item referenced by identifier-1 immediately to the right of
the left-most character position considered in the last comparison cycle is considered as the left-most character
position, and the comparison cycle begins again with the first literal-1.

397

Interactive COBOL Language Reference & Developer’s Guide - Part One

c. Whenever a match occurs, tallying or replacing takes place as described in General Rules 10 and 13.
The character position in the data item referenced by identifier-1 immediately to the right of the right-most character
position that participated in the match is now considered to be the left-most character position of the data item
referenced by identifier-1, and the comparison cycle starts again with the first literal-1.

d. The comparison operation continues until the right-most character position of the data item referenced
by identifier-1 has participated in a match or has been considered as the left-most character position. When this
occurs, inspection is terminated.

e. If the CHARACTERS phrase is specified, an implied one character operand participates in the cycle
described in paragraphs 6a through 6d above as if it had been specified by literal-1, except that no comparison to the
content of the data item referenced by identifier-1 takes place. This implied character is considered always to match
the left-most character of the content of the data item referenced by identifier-1 participating in the current
comparison cycle.

(7) The comparison operation defined in General Rule 6 is restricted by the BEFORE and AFTER phrase as
follows:

a. If neither the BEFORE nor AFTER phrase is specified, literal-1 or the implied operand of the
CHARACTERS phrase participates in the comparison operation as described in General Rule 6. Literal-1 or the
implied operand of the CHARACTERS phrase is first eligible to participate in matching at the left-most character
position of identifier-1.

b. If the BEFORE phrase is specified, the associated literal-1 or the implied operand of the
CHARACTERS phrase participates only in those comparison cycles which involve that portion of the content of the
data item referenced by identifier-1 from its left-most character position up to, but not including, the first occurrence
of literal-2 within the content of the data item referenced by identifier-1. The position of this first occurrence is
determined before the first cycle of the comparison operation described in General Rule 6 is begun. If, on any
comparison cycle, literal-1 or the implied operand of the CHARACTERS phrase is not eligible to participate, it is
considered not to match the content of the data item referenced by identifier-1. If there is no occurrence of literal-2
within the content of the data item referenced by identifier-1, its associated literal-1 or the implied operand of the
CHARACTERS phrase participates in the comparison operation as though the BEFORE phrase had not been
specified.

c. If the AFTER phrase is specified, the associated literal-1 or the implied operand of the CHARACTERS
phrase participate only in those comparison cycles which involve that portion of the content of the data item
referenced by identifier-1 from the character position immediately to the right of the right-most character position of
the first occurrence of literal-2 within the content of the data item referenced by identifier-1 to the right-most
character position of the data item referenced by identifier-1. This is the character position at which literal-1 or the
implied operand of the CHARACTERS phrase is first eligible to participate in matching. The position of this first
occurrence is determined before the first cycle of the comparison operation described in General Rule 6 is begun. If,
on any comparison cycle, literal-1 or the implied operand of the CHARACTERS phrase is not eligible to participate,
it is considered not to match the content of the data item referenced by identifier-1. If there is no occurrence of
literal-2 within the content of the data item referenced by identifier-1, its associated literal-1 or the implied operand
of the CHARACTERS phrase is never eligible to participate in the comparison operation.

Format 1:

(8) The required words ALL and LEADING are adjectives that apply to each succeeding literal-1 until the next
adjective appears.

(9) For ANSI 85 and VXCOBOL, the content of the data item referenced by identifier-2 is not initialized to
zero at the beginning of the execution of the INSPECT statement. For ANSI 74, the tally counter (identifier-2) is set
to zero at the beginning of the INSPECT statement. This is non-standard behavior and we recommend that you
insert a “MOVE ZERO TO identifier-2" statement prior to the INSPECT TALLYING when using ANSI 74.

398

PROCEDURE DIVISION (INSPECT)

(10) The rules for tallying are as follows:

a. If the ALL phrase is specified, the content of the data item referenced by identifier-2 is incremented by
one for each occurrence of literal-1 matched within the content of the data item referenced by identifier-1.

b. If the LEADING phrase is specified, the content of the data item referenced by identifier-2 is
incremented by one for the first and each subsequent contiguous occurrence of literal-1 matched within the content
of the data item referenced by identifier-1, provided that the left-most such occurrence is at the point where
comparison began in the first comparison cycle in which literal-1 was eligible to participate.

c. If the CHARACTERS phrase is specified, the content of the data item referenced by identifier-2 is
incremented by one for each character matched, in the sense of General Rule 6e, within the content of the data item
referenced by identifier-1.

(11) If identifier-1, identifier-3, or identifier-4 occupies the same storage area as identifier-2, the result of the
execution of this statement is undefined, even if they are defined by the same data description entry.

Format 2:

(12) The required words ALL, LEADING, and FIRST are adjectives that apply to each succeeding BY phrase
until the next adjective appears.

(13) The rules for replacement are as follows:

a. When the CHARACTERS phrase is specified, each character matched, in the sense of General Rule 6e,
in the content of the data item referenced by identifier-1 is replaced by literal-3.

b. When the adjective ALL is specified, each occurrence of literal-1 matched in the content of the data item
referenced by identifier-1 is replaced by literal-3.

c. When the adjective LEADING is specified, the first and each successive contiguous occurrence of
literal-1 matched in the content of the data item referenced by identifier-1 is replaced by literal-3, provided that the
left-most occurrence is at the point where comparison began in the first comparison cycle in which literal-1 was
eligible to participate.

d. When the adjective FIRST is specified, the left-most occurrence of literal-1 matched within the content
of the data item referenced by identifier-1 is replaced by literal-3. This rule applies to each successive specification
of the FIRST phrase regardless of the value of literal-1.

(14) If identifier-3, identifier-4, or identifier-5 occupies the same storage area as identifier-1, the result of the
execution of this statement is undefined, even if they are defined by the same data description entry.

Format 3:

(15) A Format 3 INSPECT statement is interpreted and executed as though two successive INSPECT
statements specifying the same identifier-1 had been written with one statement being a Format 1 statement with
TALLYING phrases identical to those specified in the Format 3 statement, and the other statement being a Format 2
statement with REPLACING phrases identical to those specified in the Format 3 statement. The General Rules
given for matching and counting apply to the Format 1 statement and the general rules given for matching and
replacing apply to the Format 2 statement. Subscripting associated with any identifier in the Format 2 statement is
evaluated only once before executing the Format 1 statement.

Format 4:

(16) A Format 4 INSPECT statement is interpreted and executed as though a Format 2 INSPECT statement
specifying the same identifier-1 has been written with a series of ALL phrases, one for each character of literal-4.
The effect is as if each of these ALL phrases referenced, as literal-1, a single character of literal-4 and referenced, as

399

Interactive COBOL Language Reference & Developer’s Guide - Part One

INSPECT ITEM TALLYING
CNTO FOR ALL "AB", ALL “D”
CNT1 FOR ALL "BC"
CNT2 FOR LEADING "EF"
CNT3 FOR LEADING "B"
CNT4 FOR CHARACTERS;

INSPECT ITEM REPLACING
ALL "AB" BY "XY", "D" BY "X"
ALL "BC" BY "VW"
LEADING "EF" BY "TU"
LEADING "B" BY "S"
FIRST "G" BY "R"
FIRST "G" BY "P"
CHARACTERS BY "Z".

INSPECT ITEM TALLYING
CNTO FOR CHARACTERS
CNT1 FOR ALL "A";

INSPECT ITEM REPLACING
CHARACTERS BY "Z"

ALL "A" BY "X".

literal-3, the corresponding single character of literal-5. Correspondence between the characters of literal-4 and the
characters of literal-5 is by ordinal position within the data item.

(17) If identifier-4, identifier-6, or identifier-7 occupies the same storage area as identifier-1, the result of the
execution of this statement is undefined, even if they are defined by the same data description entry.

E.34.5 Examples

In each of the following examples of the INSPECT statement, CNTn is assumed to be zero immediately prior to
execution of the statement. The results shown for each example, except the last, are the result of executing the two
successive INSPECT statements shown above them.

EXAMPLE 24. INSPECT TALLYING, REPLACING

EXAMPLE 24. Source

Initial Value of
ITEM

CNT0 CNT1 CNT2 CNT3 CNT4 Final Value of
ITEM

EFABDBCGABEFGG 3 1 1 0 5 TUXYXVWRXTZZPZ

BABABC 2 0 0 1 1 SXYXYZ

BBBC 0 1 0 2 0 SSVW

EXAMPLE 24. Results

EXAMPLE 25. INSPECT TALLYING, REPLACING

EXAMPLE 25. source code

Initial Value of ITEM CNT0 CNT1 Final Value of ITEM

BBB 3 0 ZZZ

ABA 3 0 ZZZ

EXAMPLE 25. results

400

PROCEDURE DIVISION (INSPECT)

INSPECT ITEM TALLYING
CNTO FOR ALL "AB" BEFORE "BC"
CNT1 FOR LEADING "B" AFTER "D"
CNT2 FOR CHARACTERS AFTER "A" BEFORE “C”;

INSPECT ITEM REPLACING
ALL "AB" BY "XY" BEFORE "BC"
LEADING "B" BY "W" AFTER "D"
FIRST "E" BY "V" AFTER "D"
CHARACTERS BY "Z" AFTER "A" BEFORE “C”.

INSPECT ITEM TALLYING
CNTO FOR ALL "AB" AFTER "BA" BEFORE "BC";

INSPECT ITEM REPLACING

ALL "AB" BY "XY" AFTER "BA" BEFORE "BC".

INSPECT ITEM CONVERTING
“ABCD” TO “XYZX” AFTER QUOTE BEFORE “#”.

EXAMPLE 26. INSPECT TALLYING, REPLACING

EXAMPLE 26. source code

Initial Value of ITEM CNT0 CNT1 CNT2 Final Value of ITEM

BBEABDABABBCABEE 3 0 2 BBEXYZXYXYZCABVE

ADDDDC 0 0 4 AZZZZC

ADDDDA 0 0 5 AZZZZZ

CDDDDC 0 0 0 CDDDDC

BDBBBDB 0 3 0 BDWWWDB

EXAMPLE 26. results

EXAMPLE 27. INSPECT TALLYING, REPLACING

EXAMPLE 27. source code

Initial Value of ITEM CNT0 Final Value of ITEM

ABABABABC 1 ABABXYABC

EXAMPLE 27. results

EXAMPLE 28. INSPECT CONVERTING

EXAMPLE 28. source code

Initial Value of ITEM Final Value of ITEM

AC”AEBDFBCD#AB”D AC”XEYXFYZX#AB”D

EXAMPLE 28. results

401

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.35. LINK SUB-INDEX (VXCOBOL)

E.35.1 Function

The LINK SUB-INDEX statement links a subindex to another index entry so that the subindex can be shared.

E.35.2 General Format

LINK SUB-INDEX file-name

 SOURCE

DESTINATION

[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-LINK]

E.35.3 Syntax Rules

(1) File-name is a filename that specifies an INFOS file opened for OUTPUT or I/O and selected for ALLOW
SUB-INDEX.

(2) Identifier-1 is an alphanumeric data item that specifies a record key associated with file-name.

E.35.4 General Rules

(1) If the relative option and the KEY series phrase are omitted, the default is the first key in the SELECT
clause.

(2) The occurrence number is not updated.

(3) FEEDBACK is not updated.

(4) KEY LENGTH is unaffected.

(5) The subindex to link is determined according to what is specified in the relative option phrase and/or the
KEY series phrase in the SOURCE phrase. The link information is then transferred to the index entry specified by

402

PROCEDURE DIVISION (LINK SUB-INDEX)

the position phrase, the relative options phrase, and the KEY series phrase in the DESTINATION phrase. The
DESTINATION key must not already have a subindex defined.

(6) The position phrase can only be specified in the DESTINATION phrase. FIX POSITION causes the record
pointer to move from the current position to the position specified in this statement. RETAIN position causes the
record position to remain at the position it was on before the execution of this statement. RETAIN is the default.

(7) The relative motion option without the KEY series phrase allows access to the index file relative to that
file's current record position.

(8) Using the KEY series phrase without the relative motion option causes the key path specified to begin with
the top index in the hierarchy and follow a downward motion.

(9) If the KEY series phrase is specified, each key, identifier-1, must be declared in the SELECT statement for
file-name. If the relative motion option and KEY series phrase at both specified only UP, DOWN, and STATIC are
allowed. The relative motion option is processed first and the key path is used.

(10) Transfer of control following the successful or unsuccessful execution of the LINK SUB-INDEX operation
depends on the presence or absence of the optional INVALID KEY and NOT INVALID KEY phrases in the LINK
SUB-INDEX statement.

(11) INVALID KEY clauses on I/O statements are ONLY invoked when an Invalid Key error, as determined by
a File Status of 2x where x can be any character 0 - 9 or A - Z, is generated. All other error conditions will cause the
associated USE procedure, if present, as defined in the DECLARATIVES section to be executed. (See The Invalid
Key Condition, page 278, for more a more comprehensive discussion.)

403

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.36. MERGE

E.36.1 Function

The MERGE statement combines two or more identically-sequenced files on a set of specified keys, and during the
process makes records available, in merged order, to an output procedure or to an output file.

E.36.2 General Format (ANSI 74 and ANSI 85)

MERGE file-name-1 { ON KEY { data-name-1 }... }...

[COLLATING SEQUENCE IS alphabet-name]d
USING file-name-2 { file-name-3 }...

E.36.3 General Format (VXCOBOL)

MERGE file-name-1 { ON KEY { data-name-1 }... }...

[COLLATING SEQUENCE IS]

USING file-name-2 { file-name-3 }...

E.36.4 Syntax Rules

(1) A MERGE statement may appear anywhere in the Procedure Division except in the declaratives portion.

(2) File-name-1 must be described in a sort-merge file description entry in the Data Division.

(3) If the file referenced by file-name-1 contains variable length records, the size of the records contained in the
files referenced by file-name-2 and file-name-3 must not be less than the smallest record nor greater than the largest
record described for file-name-1. If the file referenced by file-name-1 contains fixed length records, the sizes of the
records contained in the file referenced by file-name-2 and file-name-3 must not be greater than the largest record
described for file-name-1.

(4) Data-name-1 is a key data-name. Key data-names are subject to the following rules:

a. The data items identified by key data-names must be described in records associated with file-name-1.

b. Key data-names may be qualified.

c. Key data-names may not be described as USAGE POINTER.

d. The data items identified by key data-names must not be group items that contain variable occurrence
data items.

404

PROCEDURE DIVISION (MERGE)

e. If file-name-1 has more than one record description, the data items identified by key data-names need be
described in only one record description. The same character positions referenced by a key data-name in one record
description entry are taken as the key in all records of the file.

f. None of the data items identified by key data-names can be described by an entry that either contains an
OCCURS clause or is subordinate to an entry that contains an OCCURS clause.

g. If a file referenced by file-name-1 contains variable length records, all the data items identified by key
data-names must be contained within the first x characters positions of the record, where x equals the minimum
record size specified for the file referenced by file-name-1.

(5) File-name-2, file-name-3, and file-name-4 must be described in a file description entry, not a sort-merge
description entry, in the Data Division.

(6) File-names must not be repeated within the MERGE statement.

(7) No pair of file-names in a MERGE statement may be specified in the same SAME AREA, SAME SORT
AREA, or SAME SORT-MERGE AREA clause. The only file-names in a MERGE statement that can be specified
in the SAME RECORD AREA clause are those associated with the GIVING phrase.

(8) The words THRU and THROUGH are equivalent.

(9) File-name-4 is subject to the following rules:

a. If file-name-4 references an indexed file, the first specification of data-name-1 and the data item
referenced by that data-name-1 must occupy the same character positions in its record as the data item associated
with the prime record key for that file. For ANSI 74 and ANSI 85, the first specification of data-name-1 must be
associated with the ASCENDING phrase if file-name-4 has a primary record key described explicitly or implicitly as
VALUES ARE ASCENDING. If the key is described as VALUES ARE DESCENDING, data-name-1 must be
associated with the DESCENDING phrase. For VXCOBOL, the first specification of data-name-1 must be
associated with the ASCENDING phrase.

b. For VXCOBOL, if file-name-4 references an INFOS file, it must not allow subindexing and the first
specification of data-name-1 must be associated with an ASCENDING phrase. The data-item referenced by
data-name-1 must occupy the same character positions in its record as the data item associated with the first
RECORD KEY in the select for file-name-4, i.e., the RECORD KEY and sort key must be internal to the record.

(10) If the GIVING phrase is specified and the file referenced by file-name-4 contains variable length records,
the size of the records contained in the file referenced by file-name-1 must not be less that the smallest record nor
greater that the largest record described for file-name-4. If the file referenced by file-name-4 contains fixed length
records, the size of the records contained in the file referenced by file-name-1 must not be greater that the largest
record described for file-name-4.

(11) For VXCOBOL, if file-name-2 or file-name-3 references INFOS files, they must not allow subindexing.

(12) Alphabet-name shall reference an alphabet defined in the SPECIAL-NAMES paragraph which defines an
alphanumeric collating sequence.

(13) If file-name-2 or file-name-3 references an indexed, INFOS, or relative file, its access mode shall be
sequential or dynamic.

E.36.5 General Rules

(1) The MERGE statement merges all records contained on the file referenced by file-name-2 and file-name-3.

405

Interactive COBOL Language Reference & Developer’s Guide - Part One

(2) If the file referenced by file-name-1 contains only fixed length records, any record in the file referenced by
file-name-2 or file-name-3 containing fewer character positions that fixed length is space filled on the right
beginning with the first character position after the last character in the record when that record is released to the file
referenced by file-name-1.

(3) The data-names following the word KEY are listed from left to right in the MERGE statement in order of
decreasing significance without regard to how they are divided into KEY phrases. The leftmost data-name is the
major key, the next data-name is the next most significant key, etc.

a. When the ASCENDING phrase is specified, the merged sequence will be from the lowest value of the
contents of the data items identified by the key data-names to the highest value, according to the rules for comparison
of operands in a relation condition.

b. When the DESCENDING phrase is specified, the merged sequence will be from the highest value of the
contents of the data items identified by the key data-names to the lowest value, according to the rules for comparison
of operands in a relation condition (see Relation Condition, starting on page 305).

(4) When, according to the rules for the comparison of operands in a relation condition, the contents of all key
data items of one data record are equal to the corresponding key data items of one or more other data records, the
order of return of these records:

a. Follows the order of the associated input files as specified in the MERGE statement.

b. Is such that all records associated with one input file are returned prior to the return of records from
another input file.

(5) The collating sequence that applies to the comparison of the nonnumeric key data items specified is
determined at the beginning of the execution of the MERGE statement in the following order of precedence:

a. First, the collating sequence established by the COLLATING SEQUENCE phrase, if specified, in that
MERGE statement.

b. Second, the collating sequence established as the program collating sequence. In ICOBOL, this is
always ASCII since the program collating sequence is ignored.

(6) The results of the merge operation are undefined unless the records in the files referenced by file-name-2
and file-name-3 are ordered as described in the ASCENDING or DESCENDING KEY phrases associated with the
MERGE statement.

(7) All the records in the files referenced by file-name-2 and file-name-3 are transferred to the file referenced by
file-name-1. At the start of the execution of the MERGE statement, the files referenced by file-name-2 and
file-name-3 must not be in the open mode. For each of the files referenced by file-name-2 and file-name-3 the
execution of the MERGE statement causes the following actions to be taken:

a. The processing of the file is initiated. The initiation is performed as if an OPEN statement with the
INPUT phrase had been executed. If an output procedure is specified, this initiation is performed before control
passes to the output procedure.

b. The logical records are obtained and released to the merge operation. Each record is obtained as if a
READ statement with the NEXT and the AT END phrases had been executed.

c. The processing of the file is terminated. The termination is performed as if a CLOSE statement without
optional phrases had been executed. If an output procedure passes the last statement in the output procedure.

These implicit functions are performed such that any associated USE AFTER STANDARD EXCEPTION
procedures are executed.

406

PROCEDURE DIVISION (MERGE)

(8) The output procedure may consist of any procedure needed to select, modify, or copy records that are made
available one at a time by the RETURN statement in merged order from the file referenced by file-name-1. The
range includes all statements that are executed as the result of a transfer of control by CALL, EXIT, GO TO, and
PERFORM statements in the range of the output procedure, as well as all statements in declarative procedures that
are executed as a result of the execution of statements in the range of the output procedure. The range of the output
procedure must not cause the execution on any MERGE, RELEASE, or SORT statement. See page 260, 312,
Explicit and Implicit specifications.

(9) If an output procedure is specified, control passes to it during execution of the MERGE statement. The
compiler inserts a return mechanism at the end of the last statement in the output procedure. When control passes
the last statement in the output procedure, the return mechanism provides for termination of the merge, and then
passes control to the next executable statement after the MERGE statement. Before entering the output procedure,
the merge procedure reaches a point at which it can select the next record in merged order when requested. The
RETURN statements in the output procedure are the requests for the next record.

(10) During the execution of the output procedure, no statement may be executed manipulating the file
referenced by or accessing the record area associated with file-name-2 or file-name-3. During the execution of any
USE AFTER STANDARD EXCEPTION procedure implicitly invoked while executing the MERGE statement, no
statement may be executed manipulating the file referenced by, or accessing the record area associated with,
file-name-2, file-name-3, or file-name-4.

(11) If the GIVING phrase is specified, all the merged records are written on the file referenced by file-name-4
as the implied output procedure for the MERGE statement. At the start of execution of the MERGE statement, the
file referenced by file-name-4 must not be in the open mode. For each of the files referenced by file-name-4, the
execution of the MERGE statement causes the following actions to be taken:

a. The processing of the file is initiated. The initiation is performed as if an OPEN statement with the
OUTPUT phrase had been executed.

b. The merged logical records are returned and written onto the file. Each record is written as if a WRITE
statement without any optional phrases had been executed. If the file referenced by file-name-4 is described with
variable length records, the size of any record written to file-name-4 is the size of that record when it was read from
file-name-1 , regardless of the content of the data-item referenced by the DEPENDING ON phrase of either a
RECORD IS VARYING or an OCCURS clause specified in the file description entry for file-name-4.

For a relative file, the relative key date for the first record returned contains the value '1'; for the second
record returned, the value '2', etc. After execution of the MERGE statement, the content of the relative key data item
indicates the last record returned to the file.

c. The processing of the file is terminated. The termination is performed as if a CLOSE statement without
optional phrases had been executed.

These implicit functions are performed such that any associated USE AFTER STANDARD EXCEPTION
procedures are executed; however, the execution of such a USE procedure must not cause the execution of any
statement manipulating the file referenced by, or accessing the record area associated with, file-name-4. On the first
attempt to write beyond the externally defined boundaries of the file, any USE AFTER STANDARD EXCEPTION
procedure specified for that file is executed; if control is returned from that USE procedure or if no USE procedure is
specified, the processing of the file is terminated as in paragraph 11c above.

(12) If the file referenced by file-name-4 contains only fixed length records, any record in the file referenced by
file-name-1 containing fewer character positions that fixed length is space filled on the right beginning with the first
character position after the last character in the record when that record is returned to the file referenced by
file-name-4.

407

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.37. MOVE

E.37.1 Function

The MOVE statement transfers data, in accordance with the rules of editing, to one or more data areas.

E.37.2 General Format

MOVE TO { identifier-2 }...

MOVE identifier-1 TO identifier-2

E.37.3 Syntax Rules

(1) Literal or the data item referenced by identifier-1 represents the sending area. The data item referenced by
identifier-2 represents the receiving area.

(2) CORR is an abbreviation for CORRESPONDING.

(3) When the CORRESPONDING phrase is used, all identifiers must be group items and may not be referenced
modified.

(4) Neither an index data item nor Pointer data item may appear as an operand of a MOVE statement.

E.37.4 General Rules

(1) If the CORRESPONDING phrase is used, selected items within identifier-1 are moved to selected items
within identifier-2, according to the rules specified under the appropriate paragraph. The results are the same as if
the user had referred to each pair of corresponding identifiers in separate MOVE statements.

(2) Literal or the content of the data item referenced by identifier-1 is moved to the data item referenced by
each identifier-2 in the order in which it is specified. The rules referring to identifier-2 also apply to the other
receiving areas. Any length evaluation or subscripting associated with identifier-2 is evaluated immediately before
the data is moved to the respective data item.

If identifier-1 has varying length (ISQL), is reference modified, subscripted, or is a function-identifier, the
current length, reference modifier, subscript, or function-identifier is evaluated only once, immediately before data is
moved to the first of the receiving operands.

The evaluation of the length of identifier-1 or identifier-2 may be affected by the DEPENDING ON phrase
of the OCCURS clause.

(3) Any move in which the receiving operand is an elementary item and the sending operand is either a literal or
an elementary item is an elementary move. Every elementary item belongs to one of the following categories:
numeric, alphabetic, numeric edited, alphanumeric edited, (ISQL) date, time, timestamp, year-to-month, or day-to-
time. Numeric literals belong to the category numeric; nonnumeric literals belong to the category alphanumeric;
(ISQL) date-time and interval literals belong to their respective categories. The figurative constant ZERO (ZEROS,
ZEROES), when moved to a numeric or numeric edited item, belongs to the category numeric. In all other cases, it
belongs to the category alphanumeric. The figurative constant SPACE (SPACES) belongs to the category
alphabetic. All other figurative constants belong to the category alphanumeric.

The following rules apply to an elementary move between these categories:

408

PROCEDURE DIVISION (MOVE)

a. The figurative constant SPACE, a numeric edited, an alphanumeric edited, or alphabetic data item must
not be moved to a numeric, numeric edited, (ISQL) date-time, or interval data item.

b. A numeric literal, the figurative constant ZERO, a numeric data item, or a numeric edited data item must
not be moved to an alphabetic, (ISQL) date-time, or interval data item.

c. A non-integer numeric literal or a non-integer numeric data item must not be moved to an alphanumeric
or alphanumeric edited data item.

d. (ISQL) A date-time or interval literal or data item must not be moved to a data item with a category that
differs from the category of the literal or data item.

e. (ISQL) An alphanumeric item must not be moved to a date-time or interval data-item.

f. All other elementary moves are legal and are performed according to the rules given in General Rule 4.

(4) Any necessary conversion of data from one form of internal representation to another takes place during
legal elementary moves, along with any editing specified for the receiving data item:

a. When an alphanumeric edited or alphanumeric item is a receiving item, alignment and any necessary
space filling takes place as previously defined.

1) If the sending operand is described as being signed numeric, the operational sign is not moved; if the
operational sign occupies a separate character position, that character is not moved and the size of the sending
operand is considered to be one less than its actual size in terms of standard data format characters.

2) If the sending operand is numeric edited, no de-editing takes place.

3) If the usage of the sending operand is different from that of the receiving operand, conversion of the
sending operand to the internal representation of the receiving operand takes place.

4) If the sending operand is numeric and contains the PICTURE symbol `P', all digit positions specified
with this symbol are considered to have the value zero and are counted in the size of the sending operand.

b. When a numeric or numeric edited item is the receiving item, alignment by decimal point and any
necessary zero filling takes place as previously defined except where zeros are replaced because of editing
requirements.

1) When a signed numeric item is the receiving item, the sign of the sending operand is placed in the
receiving item. Conversion of the representation of the sign takes place as necessary. If the sending operand is
unsigned, a positive sign is generated for the receiving item.

2) When an unsigned numeric item is the receiving item, the absolute value of the sending operand is
moved and no operational sign is generated for the receiving item.

3) When the sending operand is described as being alphanumeric, data is moved as if the sending
operand were described as an unsigned numeric integer.

c. When a receiving field is described as alphabetic, justification and any necessary space filling takes
place as previously defined.

d. (ISQL) When the sending and receiving items are of category date, time or timestamp, each sub-field is
treated as a simple numeric to numeric move, with any applicable alignment, zero padding, or truncation of
fractional digits.

e. (ISQL) When the sending and receiving items are of category year-month or day-time, the value of the
sending operand is normalized and any alignment, padding with zero fields, or truncation takes place as previously
described.

409

Interactive COBOL Language Reference & Developer’s Guide - Part One

(5) Any move that is not an elementary move is treated exactly as if it were an alphanumeric to alphanumeric
elementary move, except that there is no conversion of data from one form of internal representation to another. In
such a move, the receiving area will be filled without consideration for the individual elementary or group items
contained within either the sending or receiving area, except as noted in the OCCURS clause.

(6) The following table summarizes the legality of the various types of MOVE statements. ‘Yes’ means the
move is legal; ‘No’ means it is not legal. The General Rule reference (after the slash) indicates the rule that prohibits
the move or that describes the behavior of a legal move.

CATEGORY OF
SENDING
OPERAND

CATEGORY OF RECEIVING DATA ITEM

ALPHABETIC ALPHANUMERIC
EDITED

ALPHANUMERIC

NUMERIC INTEGER
NUMERIC

NONINTEGER
NUMERIC EDITED

DATE TIME TIMESTAMP YEAR-
TO-
MONTH

DAY-TO-
TIME

ALPHABETIC Yes/4c Yes/4a No/3a No/3a No/3a No/3a No/3a No/3a

ALPHANUMERIC Yes/4c Yes/4a Yes/4b No/3e No/3e No/3e No/3e No/3e

ALPHANUMERIC
EDITED

Yes/4c Yes/4a No/3a No/3a No/3a No/3a No/3a No/3a

NUMERIC
INTEGER

No/3b Yes/4a Yes/4b No/3b No/3b No/3b No/3b No/3b

NUMERIC
NONINTEGER

No/3b No/3c Yes/4b No/3b No/3b No/3b No/3b No/3b

NUMERIC EDITED No/3b Yes/4a No/3a No/3b No/3b No/3b No/3b No/3b

DATE No/3d No/3d No/3d Yes/4d No/3d No/3d No/3d No/3d

TIME No/3d No/3d No/3d No/3d Yes/4d No/3d No/3d No/3d

TIMESTAMP No/3d No/3d No/3d No/3d No/3d Yes/4d No/3d No/3d

YEAR-TO-MONTH No/3d No/3d No/3d No/3d No/3d No/3d Yes/4e No/3d

DAY-TO-TIME No/3d No/3d No/3d No/3d No/3d No/3d No/3d Yes/4e

TABLE 25. Legality of Types of MOVE Statements

410

PROCEDURE DIVISION (MULTIPLY)

E.38. MULTIPLY

E.38.1 Function

The MULTIPLY statement causes numeric data items to be multiplied and sets the values of data items equal to the
results.

E.38.2 General Format

Format 1:

MULTIPLY BY { identifier-2 [ROUNDED] }...

[ON SIZE ERROR imperative-statement-1]
[NOT ON SIZE ERROR imperative-statement-2]
[END-MULTIPLY]

Format 2:

MULTIPLY GIVING { identifier-3 [ROUNDED] }...

[ON SIZE ERROR imperative-statement-1]
[NOT ON SIZE ERROR imperative-statement-2]
[END-MULTIPLY]

E.38.3 Syntax Rules

(1) Each identifier must refer to a numeric elementary item, except that in Format 2 the identifier following the
word GIVING must refer to either an elementary numeric item or an elementary numeric edited item.

(2) Each literal must be a numeric literal.

(3) The composite of operands, which is the hypothetical data item resulting from the superimposition of all
receiving data items of a given statement aligned on their decimal points, must not contain more than 18 digits.

E.38.4 General Rules

(1) When Format 1 is used, literal-1 or the value of the data item referenced by identifier-1 is stored in a
temporary data item. The value in this temporary data item is multiplied by the value of the data item referenced by
identifier-2. The value of the multiplier (the value of the data item referenced by identifier-2) is replaced by this
product; similarly, the temporary data item is multiplied by each successive occurrence of identifier-2 in the left-to-
right order in which identifier-2 is specified.

(2) When Format 2 is used, literal-1 or the value of the data item referenced by identifier-1 is multiplied by
literal-2 or the value of the data item referenced by identifier-2 and the result is stored in the data items referenced
by identifier-3.

(3) Additional rules and explanations relative to this statement are given under the appropriate paragraphs, (See
Scope of Statements, page 260; The ROUNDED Phrase, page 253; The ON SIZE ERROR Phrase, page 254; The
Arithmetic Statements, page 256; Overlapping Operands, page 256; and Multiple Results in Arithmetic Statements,
page 256.)

411

Interactive COBOL Language Reference & Developer’s Guide - Part One

412

PROCEDURE DIVISION (OPEN)

E.39. OPEN

E.39.1 Function

The OPEN statement initiates the processing of files.

E.39.2 General Format (ANSI 74 and ANSI 85)

For sequential files:

OPEN [EXCLUSIVE]

For relative and indexed files:

OPEN [EXCLUSIVE]

E.39.3 General Format (VXCOBOL)

OPEN [EXCLUSIVE]

E.39.4 Syntax Rules

(1) The files referenced in the OPEN statement need not all have the same organization or access.

(2) For ANSI 74, the EXTEND phrase must only be used for sequential files.

(3) For ANSI 85, the EXTEND phrase must only be used for files in the sequential access mode.

(4) For VXCOBOL, the EXTEND phrase must only be used for sequential files, INFOS files, or files in
sequential access mode.

(5) The WITH NO REWIND, REVERSED, WITH VERIFY, ONLY, and EXCLUDE clauses are for
documentation purposes only.

(6) Filename may not be a sort/merge file.

413

Interactive COBOL Language Reference & Developer’s Guide - Part One

(7) The EXTEND phrase must only be used for files for which the LINAGE clause has not been specified.

E.39.5 General Rules

(1) The successful execution of an OPEN statement determines the availability of the file and results in the file
being in an open mode. The successful execution of an OPEN statement associates the file with the filename through
the file connector.

Once the filename is processed the OPEN statement checks to see if the given file is physically present and is
recognized by the input-output control system. and follows the rules as outlined in the following table.

The three tables below show the results of opening available and unavailable files for ANSI 74, ANSI 85, and
VXCOBOL.

File is Available File is Unavailable

INPUT Normal open Open is unsuccessful

I-O Normal open For sequential, Open is
unsuccessful

 For relative and indexed,
Open causes the file to be
created, NOT ANSI STANDARD

OUTPUT For sequential, Normal
open; the file con-
tains no records

 For relative and in-
dexed, Normal open,
NOT ANSI STANDARD

 Open causes the file to be
created

EXTEND
 (sequential only)

 Normal open Open causes the file to be
created

TABLE 26. Availability of a File (ANSI 74)

File is Available File is Unavailable

INPUT Normal open Open is unsuccessful

INPUT
(optional)

 Normal open Normal open; the first READ
causes the at end or
invalid key condition

I-O Normal open Open is unsuccessful

I-O
(optional)

 Normal open Open causes the file to be
created

OUTPUT Normal open; the file
contains no records

 Open causes the file to be
created

EXTEND Normal open Open is unsuccessful

EXTEND
(optional)

 Normal open Open causes the file to be
created

TABLE 27. Availability of a File (ANSI 85)

414

PROCEDURE DIVISION (OPEN)

File is Available File is Unavailable

INPUT Normal open Open is unsuccessful

INPUT
(optional)

 Normal open Normal open; the first READ
causes the at end or
invalid key condition

INPUT SEQUENTIAL
(INFOS)

 Normal open Open is unsuccessful

I-O Normal open Open is unsuccessful

OUTPUT For ICISAM and INFOS,
files-Open is
unsuccessful

 For others-Open is
unsuccessful unless
compiled with the
ANSI switch (-G a)
in which case Open
is successful to an
empty file

 Open causes the file to be
created

OUTPUT INDEX
(INFOS)

 Open is unsuccessful Open causes the file to be
created

EXTEND Normal open Open is unsuccessful

TABLE 28. Availability of a File (VXCOBOL)

(2) The successful execution of an OPEN statement makes the associated record area available to the program.

(3) When a file is not in an open mode, no statement may be executed which references the file, either explicitly
or implicitly, except for a MERGE statement with the USING or GIVING phrase, an OPEN statement, or a SORT
statement with the USING or GIVING phrase..

(4) An OPEN statement must be successfully executed prior to the execution of any of the permissible
input-output statements. In the Permissible Statements table below, `X' at an intersection indicates that the specified
statement may be used with the open mode given at the top of the column.

File Access
Mode Statement

OPEN MODE

Input Output I-O Extend

 Sequential READ X X

 WRITE X X

 REWRITE X X

 START X

 DELETE X

 UNDELETE X

 Random READ X X

 WRITE X X

 REWRITE X

 START

 DELETE X

 UNDELETE X

 Dynamic READ X X

 WRITE X X

 REWRITE X

 START X X

 DELETE X

 UNDELETE X

 All (VXCOBOL:)

 DEFINE SUB-INDEX X X

 EXPUNGE SUB-INDEX X X

 LINK SUB-INDEX X X

 RETRIEVE X X

TABLE 29. Permissible Statements

(5) A file may be opened with the INPUT, OUTPUT, EXTEND, and I-O phrases in the same run unit.
Following the initial execution of an OPEN statement for a file, each subsequent OPEN statement execution for that
same file must be preceded by the execution of a CLOSE statement, without the LOCK phrase, for that file.

(6) Execution of the OPEN statement does not obtain or release the first data record.

415

Interactive COBOL Language Reference & Developer’s Guide - Part One

(7) If during the execution of an OPEN statement a file attribute conflict condition occurs, the execution of the
OPEN statement is unsuccessful.

(8) If a file opened with the INPUT phrase is an optional file which is not present, the OPEN statement sets the
file position indicator to indicate that an optional input file is not present.

(9) When files are opened with the INPUT or I-O phrase, the file position indicator is set to the first record for
sequential files, 1 for relative files, and to the first record using the primary key for indexed files.

(10) When the EXTEND phrase is specified, the OPEN statement positions the file immediately after the last
logical record for that file. The last logical record for a sequential file is the last record written in the file. The last
logical record for a relative file is the currently existing record with the highest relative record number. The last
logical record for an indexed file is the currently existing record with the highest primary key.

(11) The OPEN statement with the I-O phrase must reference a file that supports the input and output
operations that are permitted for a file when opened in the I-O mode. The execution of the OPEN statement with the
I-O phrase places the referenced file in the open mode for both input and output operations.

(12) For ANSI 74, for a file that is unavailable, the successful execution of an OPEN statement with an
EXTEND or I-O phrase creates the file. This creation takes place as if the following statements were executed in the
order shown:

OPEN OUTPUT file-name.
CLOSE file-name.

These statements are followed by execution of the OPEN statement specified in the source program.

The successful execution of an OPEN statement with the OUTPUT phrase creates the file. After the
successful creation of a file, that file contains no data records.

(13) For ANSI 85, for an optional file that is unavailable, the successful execution of an OPEN statement with
an EXTEND or I-O phrase creates the file. This creation takes place as if the following statements were executed in
the order shown:

OPEN OUTPUT file-name.
CLOSE file-name.

These statements are followed by execution of the OPEN statement specified in the source program.

The successful execution of an OPEN statement with the OUTPUT phrase creates the file. After the
successful creation of a file, that file contains no data records.

OPTIONAL is specified in the File Control SELECT clause.

(14) For VXCOBOL, for a file that is unavailable, the execution of an OPEN statement with an EXTEND or
I-O phrase is unsuccessful.

(15) The execution of the OPEN statement causes the value of the I-O status (and, for VXCOBOL, the INFOS
status) associated with filename to be updated.

(16) If more than one filename is specified in an OPEN statement, the result of executing this OPEN statement
is the same as if a separate OPEN statement had been written for each file-name in the same order as specified in the
OPEN statement.

(17) The minimum and maximum record sizes for a file are established at the time the file is created and must
not subsequently be changed.

416

PROCEDURE DIVISION (OPEN)

(18) The EXCLUSIVE phrase is an extension to ANSI COBOL that specifies that for each file in the OPEN
statement, the current program is the only program that will be allowed to open the file, and the program can have
the file open on a single file connector. If any other ICOBOL program already has the file open, the OPEN
statement will fail. On some systems, the open will fail if any other program on the system (not just COBOL
programs) has the file open.

For VXCOBOL:

(19) Opening an INFOS file will automatically perform a DOWN motion positioning the file position indicator
before the first key in the top level index (U/FOS positions the file position indicator above the top level index.) if
the access mode is sequential or dynamic. The downward motion is not done if the access mode is RANDOM.

(20) OPEN INPUT SEQUENTIAL could improve the performance of sequential reads thru INFOS II indexes,
however the SEQUENTIAL phrase is ignored when using U/FOS files.

(21) OPEN OUTPUT INDEX is used to create an additional index for an INFOS file. (The additional index is
frequently referred to as an inversion of the file.) The index named by the ASSIGN INDEX clause of the SELECT
must not exist and the database named by the ASSIGN DATA clause (or implied) must exist.

(22) INFOS files can be created with the OPEN OUTPUT phrase, but it is recommended that they be created
with an external utility. U/FOS files cab be created with the ufos_create utility. This utility provides more complete
access to the options available for the file.

NOTES:

(1) Files opened for OUTPUT, EXTEND, or I-O must not have the Read-Only attribute set, else the OPEN
fails with a File Status 92.

(2) On Linux, for OPEN OUTPUT to a sequential file that already exists, the file is opened with the Linux
truncate option, which sets the filesize to 0. This is equivalent to the COBOL behavior of deleting and recreating the
file. This method is used to properly maintain Linux hard links to the name.

(3) ICOBOL supports Indexed and Relative versions 7 and 8. An OPEN of a file that exists will automatically
adjust for the version of the file. An OPEN of a new file will create file version 8. A particular version can be
specified under programmer control by using the "v=7|8" option in an extended disk open.

(4) On Linux, for systems supporting symbolic links, OPEN will always open the resolution file.

(5) For ANSI 74 and ANSI 85, OPEN with ASSIGN TO PRINTER or PRINTER-1 including a filename with
the Printer Control utility enabled in the configuration file (.cfi) will place the file in the printer control file to be
printed if the given queue was enabled. If the given filename is a simple name (i.e., no path specifier), the file will
be created in the printer control directory. ASSIGN TO PRINTER will place the file in the queue directed to
@PCQ0 and ASSIGN TO PRINTER-1 will place the file in the queue directed to @PCQ1. If the appropriate PCQ
has the AUTO option enabled, then when the file is closed by the COBOL program the file will automatically start
printing using the default options specified for that PCQ.

The printer control file has a limit of 48 to 1024 files before subsequent OPENs will fail with a File Status 99 if
a new file is to be added to the print queue.

(6) OPEN EXTEND does not imply EXCLUSIVE. If EXCLUSIVE access is desired, it should be explicitly
specified on the OPEN statement.

417

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.40. PERFORM

E.40.1 Function

The PERFORM statement is used to transfer control explicitly to one or more procedures and to return control
implicitly whenever execution of the specified procedure is complete. The PERFORM statement is also used to
control execution of one or more imperative statements which are within the scope of that PERFORM statement.

E.40.2 General Format (ANSI 74 and ANSI 85)

Format 1: Unconditional PERFORM
Out-of-line

PERFORM procedure-name-1 [procedure-name-2]

In-line

PERFORM imperative-statement-1 END-PERFORM

Format 2: Iterative PERFORM
Out-of-line

PERFORM procedure-name-1 [

In-line

PERFORM TIMES imperative-statement-1

END-PERFORM

Format 3: Conditional PERFORM
Out-of-line

PERFORM procedure-name-1 [procedure-name-2]

[WITH TEST] UNTIL condition-1

In-line

PERFORM [WITH TEST] UNTIL condition-1 imperative-statement-1 END-PERFORM

418

PROCEDURE DIVISION (PERFORM)

Format 4: Variable PERFORM
Out-of-line

PERFORM procedure-name-1 []

VARYING

 UNTIL condition-1

[AFTER

UNTIL condition-2]...

In-line

PERFORM [WITH TEST

UNTIL condition-1

imperative-statement-1 END-PERFORM

E.40.3.General Formats (VXCOBOL)

Format 1: Unconditional PERFORM

PERFORM procedure-name-1 [procedure-name-2]

[END-PERFORM]

Format 2: Iterative PERFORM

PERFORM procedure-name-1 [

[END-PERFORM]

Format 3: Conditional PERFORM

PERFORM procedure-name-1 [procedure-name-2] UNTIL condition-1

[END-PERFORM]

419

Interactive COBOL Language Reference & Developer’s Guide - Part One

Format 4: Variable PERFORM

PERFORM procedure-name-1 [procedure-name-2]

VARYING

UNTIL condition-1

[AFTER

UNTIL condition-2]...

[END-PERFORM]

E.40.4 Syntax Rules

(1) Each identifier represents a numeric elementary item described in the Data Division. In Format 2,
identifier-1 must be described as a numeric integer.

(2) If neither the TEST BEFORE nor TEST AFTER phrase is specified, the TEST BEFORE is assumed. For
VXCOBOL, TEST BEFORE is always assumed.

(3) Each literal represents a numeric literal.

(4) The words THROUGH and THRU are equivalent.

(5) If an index-name is specified in the VARYING or AFTER phrase, then:

a. The identifier in the associated FROM and BY phrases must reference an integer data item.

b. The literal in the associated FROM phrase must be a positive integer.

c. The literal in the associated BY phrase must be a nonzero integer.

(6) If an index-name is specified in the FROM phrase, then:

a. The identifier in the associated VARYING or AFTER phrase must reference an integer data item.

b. The identifier in the associated BY phrase must reference an integer data item.

c. The literal in the associated BY phrase must be an integer.

(7) Literal in the BY phrase must not be zero.

(8) Condition-1, condition-2, ... , may be any conditional expression.

(9) Where procedure-name-1 and procedure-name-2 are both specified and either is the name of a procedure in
the declaratives portion of the Procedure Division, both must be procedure-names in the same declarative section.

(10) Six AFTER phrases are permitted in Format 4 of the out-of-line PERFORM statement.

(11) For VXCOBOL, the END-PERFORM is for documentation purposes only.

420

PROCEDURE DIVISION (PERFORM)

E.40.5 General Rules

(1) When procedure-name-1 is specified, the PERFORM statement is referred to as an out-of-line PERFORM
statement; when procedure-name-1 is omitted, the PERFORM statement is referred to as an in-line PERFORM
statement. In-line PERFORM statements are not supported for VXCOBOL.

(2) The data items referenced by identifier-4 and identifier-7 must not have a zero value.

(3) If an index-name is specified in the VARYING or AFTER phrase, and an identifier is specified in the
associated FROM phrase, the data item referenced by the identifier must have a positive value.

(4) The statements contained within the range of procedure-name-1 (through procedure-name-2 if specified)
for an out-of-line PERFORM statement or contained within the PERFORM statement itself for an in-line PERFORM
statement are referred to as the specified set of statements.

(5) The END-PERFORM phrase delimits the scope of the in-line PERFORM statement.

(6) An in-line PERFORM statement functions according to the following general rules for an otherwise
identical out-of-line PERFORM statement, with the exception that the statements contained within the in-line
PERFORM statement are executed in place of the statements contained within the range of procedure-name-1
(through procedure-name-2 if specified). Unless specially qualified by the word in-line or out-of-line, all the general
rules which apply to the out-of-line PERFORM statement also apply to the in-line PERFORM statement.

(7) When the PERFORM statement is executed, control is transferred to the first statement of the specified set
of statements (except as indicated in general rules 10b, 10c, and 10d). This transfer of control occurs only once for
each execution of a PERFORM statement. For those cases where a transfer of control to the specified set of
statements does take place, an implicit transfer of control to the end of the PERFORM statement is established as
follows:

a. If procedure-name-1 is a paragraph-name and procedure-name-2 is not specified, the return is after the
last statement of procedure-name-1.

b. If procedure-name-1 is a section-name and procedure-name-2 is not specified, the return is after the last
statement of the last paragraph in procedure-name-1.

c. If procedure-name-2 is specified and it is a paragraph-name, the return is after the last statement of the
paragraph.

d. If procedure-name-2 is specified and it is a section-name, the return is after the last statement of the last
paragraph in the section.

e. If an in-line PERFORM statement is specified, an execution of the PERFORM statement is completed
after the last statement contained within it has been executed.

(8) There is no necessary relationship between procedure-name-1 and procedure-name-2 except that a
consecutive sequence of operations is to be executed beginning at the procedure named procedure-name-1 and
ending with the execution of the procedure named procedure-name-2. In particular, GO TO and PERFORM
statements may occur between procedure-name-1 and the end of procedure-name-2. If there are two or more logical
paths to the return point, then procedure-name-2 may be the name of a paragraph consisting of the EXIT statement,
to which all of these paths must lead.

(9) If control passes to the specified set of statements by means other than a PERFORM statement, control will
pass through the last statement of the set to the next executable statement as if no PERFORM statement referenced
the set.

421

Interactive COBOL Language Reference & Developer’s Guide - Part One

(10) The PERFORM statements operate as follows:

a. Format 1 is the basic PERFORM statement. The specified set of statements referenced by this type of
PERFORM statement is executed once and then control passes to the end of the PERFORM statement.

b. Format 2 is the PERFORM ... TIMES. The specified set of statements is performed the number of times
specified by integer-1 or by the initial value of the data item referenced by identifier-1 for that execution. If at the
time of the execution of a PERFORM statement, the value of the data item referenced by identifier-1 is equal to zero
or is negative, control passes to the end of the PERFORM statement. Following the execution of the specified set of
statements the specified number of times, control is transferred to the end of the PERFORM statement.

During execution of the PERFORM statement, reference to identifier-1 cannot alter the number of
times the specified set of statements is to be executed from that which was indicated by the initial value of the data
item referenced by identifier-1.

See Appendix A, Implementation Limits on page 857, for the maximum number ICOBOL currently
supports for an interative PERFORM (i.e., PERFORM n TIMES) and for the maximum number of active
PERFORMs.

c. Format 3 is the PERFORM ... UNTIL. The specified set of statements is performed until the condition
specified by the UNTIL phrase is true. When the condition is true, control is transferred to the end of the
PERFORM statement. If the condition is true when the PERFORM statement is entered, and test TEST BEFORE
phrase is specified or implied no transfer to procedure-name-1 takes place, and control is passed to the end of the
PERFORM statement. If the TEST AFTER phrase is specified, the PERFORM statement functions as if the TEST
BEFORE phrase was specified except that the condition is tested after the specified set of statements has been
executed. Any subscripting associated with the operands specified in condition-1 is evaluated each time the
condition is tested.

d. Format 4 is the PERFORM ... VARYING. This variation of the PERFORM statement is used to
augment the values referenced by one or more identifiers or index-names in an orderly fashion during the execution
of a PERFORM statement. In the following discussion, every reference to identifier as the object of the VARYING,
AFTER, and FROM (current value) phrases also refers to index-names. If index-name-1 or index-name-3 is
specified, the value of the associated index at the beginning of the PERFORM statement must be set to an occurrence
number of an element in the table. If index-name-2 or index-name-4 is specified, the value of the data item
referenced by identifier-2 or identifier-5 at the beginning of the PERFORM statement must be equal to an
occurrence number of an element in a table associated with index-name-2 or index-name-4. Subsequent augmenta-
tion, as described below, of index-name-1 or index-name-3 must not result in the associated index being set to a
value outside the range of the table associated with index-name-1 or index-name-3; except that, at the completion of
the PERFORM statement, the index associated with index-name-1 may contain a value that is outside the range of
the associated table by one increment or decrement value. If identifier-2 or identifier-5 is subscripted, the subscripts
are evaluated each time the content of the data item referenced by the identifier is set or augmented. If identifier-3,
identifier-4, identifier-6, or identifier-7 is subscripted, the subscripts are evaluated each time the content of the data
item referenced by the identifier is used in a setting or augmenting operation. Any subscripting associated with the
operands specified in condition-1 or condition-2 is evaluated each time the condition is tested.

Representation of the actions of several types of Format 4 PERFORM statements are given in figures 5 and
6 on the following pages.

1) If the TEST BEFORE phrase is specified or implied:

When the data item referenced by one identifier is varied, the content of the data item referenced by identifier-2
is set to literal-1 or the current value of the data item referenced by identifier-3 at the point of initial execution of the
PERFORM statement; then, if the condition of the UNTIL phrase is false, the specified set of statements is executed
once. The value of the data item referenced by identifier-2 is augmented by the specified increment or decrement
value (literal-2 or the value of the data item referenced by identifier-4) and condition-1 is evaluated again. The
cycle continues until this condition is true, at which point control is transferred to the end of the PERFORM

422

PROCEDURE DIVISION (PERFORM)

statement. If condition-1 is true at the beginning of execution of the PERFORM statement, control is transferred to
the end of the PERFORM statement.

FIGURE 5. PERFORM [TEST BEFORE] VARYING with one condition

When the data items referenced by two identifiers are varied, the content of the data item referenced by
identifier-2 is set to literal-1 or the current value of the data item referenced by identifier-3 and then the content of
the data item referenced by identifier-5 is set to literal-3 or the current value of the data item referenced by
identifier-6. After the contents of the data items referenced by the identifiers have been set, condition-1 is evaluated;
if true, control is transferred to the end of the PERFORM statement; if false, condition-2 is evaluated. If condition-2
is false, the specified set of statements is executed once, then the content of the data item referenced by identifier-5 is
augmented by literal-4 or the content of the data item referenced by identifier-7 and condition-2 is evaluated again.
This cycle of evaluation and augmentation continues until this condition is true. When condition-2 is true, the
content of the data item referenced by identifier-2 is augmented by literal-2 or the content of the data item referenced
by identifier-4, the content of the data item referenced by identifier-5 is set to literal-3 or the current value of the
data item referenced by identifier-6, and condition-1 is reevaluated. The PERFORM statement is completed if
condition-1 is true; if not, the cycle continues until condition-1 is true.

423

Interactive COBOL Language Reference & Developer’s Guide - Part One

FIGURE 6. PERFORM [TEST BEFORE] VARYING with two conditions

At the termination of the PERFORM statement, the data item referenced by identifier-5 contains
literal-3 or the current value of the data item referenced by identifier-6. The data item referenced by identifier-2
contains a value that exceeds the last used setting by one increment or decrement value, unless condition-1 was true
when the PERFORM statement was entered, in which case, the data item referenced by identifier-2 contains literal-1
or the current value of the data item referenced by identifier-3.

2) For ANSI 74 and ANSI 85, if the TEST AFTER phrase is specified:

 When the data item referenced by one identifier is varied, the content of the data item referenced by
identifier-2 is set to literal-1 or the current value of the data item referenced by identifier-3 at the point of execution
of the PERFORM statement; then the specified set of statements is executed and condition-1 of the UNTIL phrase is
tested. If the condition is false, the value of the data item referenced by identifier-2 is augmented by the specified
increment or decrement value (literal-2 or the value of the data item referenced by identifier-4) and the specified set
of statements is executed again. The cycle continues until condition-1 is tested and found to be true, at which point
control is transferred to the end of the PERFORM statement.

When the data item referenced by two identifiers are varied, the content of the data item referenced by
identifier-2 is set to literal-1 or the current value of the data item referenced by identifier-3, then the content of the
data item referenced by identifier-5 is set to literal-3 or the current value of the data item referenced by identifier-6
and the specified set of statements is executed. Condition-2 is then evaluated; if false, the content of the data item
referenced by identifier-5 is augmented by literal-4 or the content of the data item referenced by identifier-7 and the
specified set of statements is again executed. The cycle continues until condition-2 is again evaluated and found to
be true, at which time condition-1 is evaluated. If the condition is false, the value of the data item referenced by
identifier-2 is augmented by the specified increment or decrement value (literal-2 or the value of the data item
referenced by identifier-4), the content of the data item referenced by identifier-5 is set to literal-3 or the current
value of the data item referenced by identifier-6 and the specified set of statements is executed again. The cycle

424

PROCEDURE DIVISION (PERFORM)

continues until condition-1 is tested and found to be true, at which point control is transferred to the end of the
PERFORM statement.

After the completion of the PERFORM statement, each data item varied by an AFTER or VARYING
phrase contains the same value it contained at the end of the most recent execution of the specified set of statements.

During the execution of the specified set of statements associated with the PERFORM statement, any
change to the VARYING variable (the data item referenced by identifier-2 and index-name-1), the BY variable (the
data item referenced by identifier-4), the AFTER variable (the data item referenced by identifier-5 and
index-name-3), or the FROM variable (the data item referenced by identifier-3 and index-name-2) will be taken into
consideration and will affect the operation of the PERFORM statement.

When the data items referenced by two identifiers are varied, the data item referenced by identifier-5 goes
through a complete cycle (FROM, BY, UNTIL) each time the content of the data item referenced by identifier-2 is
varied. When the contents of three or more data items referenced by identifiers varied, the mechanism is the same as
for two identifiers except that the data item being varied by each AFTER phrase goes through a complete cycle each
time the data item being varied by the preceding AFTER phrase is augmented.

(11) The range of a PERFORM statement consists logically of all those statements that are executed as a result
of executing the PERFORM statement through execution of the implicit transfer of control to the end of the
PERFORM statement. The range includes all statements that are executed as the result of a transfer of control by
CALL, EXIT, GO TO, and PERFORM statements in the range of the PERFORM statement, as well as all statements
in declarative procedures that are executed as a result of the execution of statements in the range of the PERFORM
statement. The statements in the range of a PERFORM statement need not appear consecutively in the source
program.

(12) Statements executed as the result of a transfer of control caused by executing an EXIT PROGRAM
statement are not considered to be part of the range of the PERFORM statement when:

a. That EXIT PROGRAM statement is specified in the same program in which the PERFORM statement is
specified, and

b. The EXIT PROGRAM statement is within the range of the PERFORM statement.

(13) Statements in other programs in the run unit may only be obeyed as a result of executing a PERFORM
statement, if the range of that PERFORM statement includes CALL and EXIT PROGRAM statements.

(14) If the range of a PERFORM statement includes another PERFORM statement, the sequence of procedures
associated with the included PERFORM must itself either be totally included in, or totally excluded from, the logical
sequence referred to by the first PERFORM. Thus, an active PERFORM statement, whose execution point begins
within the range of another active PERFORM statement, must not allow control to pass to the exit of the other active
PERFORM statement; furthermore, two or more such active PERFORM statements may not have a common exit.
See the following illustrations for examples of legal PERFORM constructs:

FIGURE 7. Valid PERFORM constructs

425

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.41. PREPARE (ISQL)

E.41.1 Function

The PREPARE statement prepares an SQL statement for subsequent execution by the EXECUTE statement.

E.41.2 General Format

PREPARE

[ON SQLERROR imperative-statement-1]
[NOT ON SQLERROR imperative-statement-2]
[END-PREPARE]

E.41.3 Syntax Rules

(1) Literal-1 and literal-2 must specify a nonnumeric literal and may not specify a figurative constant.

(2) Identifier-1 and identifier-2 must specify an alphanumeric data item.

(3) Literal-1 or the value represented by identifier-1 may not exceed 30 characters in length.

E.41.4 General Rules

(1) Literal-1 or the content of the data item represented by identifier-1 specifies the name of a statement
container at runtime. The statement container holds the result of the statement preparation process that is performed
when the PREPARE statement is executed. The content of the statement container is subsequently used by an
EXECUTE statement to perform the SQL operation. Container names can be at most 30 characters long.

(2) Literal-2 or the content of the data item represented by identifier-2 specifies the text of the SQL statement
that is to be prepared for execution.

(3) Statement containers are considered to be local to the currently active connection, regardless of the program
containing the PREPARE statement that allocates them. Therefore a statement can be prepared in one program and
executed in a separate program.

(4) The following SQL statements may be specified as part of literal-2 or the content of the data item
represented by identifier-2:

• CREATE TABLE and CREATE INDEX
• DECLARE CURSOR
• DELETE
• DROP TABLE and DROP INDEX
• SELECT
• INSERT
• UPDATE

Additional information on the syntax for these supported statements can be found in the chapter on the ICODBC
Driver found on page 813.

(5) If there is no currently active connection in the run unit, the execution of the PREPARE statement will result
in an error with a SQLSTATE of “HY010", which is a “Function sequence error”.

426

PROCEDURE DIVISION (PREPARE)

(6) If a statement container by the specified name already exists in the currently active connection at the time
the PREPARE statement is executed, the existing content of the statement container is discarded and the container is
reused for the execution of this PREPARE statement.

(7) If a statement container by the specified name does not already exist in the currently active connection at the
time the PREPARE statement is executed, a new statement container with the given name is allocated for the
currently active connection.

(8) Upon completion of the PREPARE statement, the following occurs in the order specified:

a. The value of the SQLSTATE data item is updated with the status of the operation.

b. If the value of the SQLSTATE class field is “00" or “01", the statement is successful. Control is
transferred to the end of the PREPARE statement or to imperative-statement-2, if specified. In the latter case,
execution continues according to the rules for each statement specified in imperative-statement-2. If a procedure
branching or conditional statement which causes explicit transfer of control is executed, control is transferred in
accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-2,
control is transferred to the end of the PREPARE statement.

c. If the value of the SQLSTATE class field is not “00" or “01", the statement is unsuccessful. The
statement container is deallocated and no statement container of the specified name will exist in the current program.
Control is transferred to the end of the PREPARE statement or to imperative-statement-1, if specified. In the latter
case, execution continues according to the rules for each statement specified in imperative-statement-1. If a
procedure branching or conditional statement which causes explicit transfer of control is executed, control is
transferred in accordance with the rules for the statement; otherwise, upon completion of the execution of
imperative-statement-1, control is transferred to the end of the PREPARE statement.

(9) The END-PREPARE phrase delimits the scope of the PREPARE statement.

(10) More on SQLSTATE can be found on page 139.

427

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.42. READ (ANSI 74 and ANSI 85)

E.42.1 Function

For sequential access, the READ statement makes available the next logical record from a file. For random access,
the READ statement makes available a specified record from a mass storage file. LOCK and IGNORE LOCK are
extensions to ANSI COBOL. TIME-OUT is an extension to ANSI COBOL.

E.42.2 General Format

Format 1:

For sequential files:

READ file-name [NEXT] RECORD [INTO identifier-1] [TIME-OUT AFTER]

[AT END imperative-statement-1]
[NOT AT END imperative-statement-2]
[END-READ]

For indexed and relative files:

READ file-name

[INTO identifier-1]
[AT END imperative-statement-1]
[NOT AT END imperative-statement-2]
[END-READ]

Format 2:

For relative files:

READ file-name RECORD

[INTO identifier-1]
[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-READ]

For indexed files:

READ file-name RECORD

[INTO identifier-1] [KEY IS key-name]
[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-READ]

428

PROCEDURE DIVISION (ANSI 74 and ANSI 85 READ)

E.42.3 Syntax Rules

(1) The storage area associated with identifier-1 and the record area associated with file-name must not be the
same storage area.

(2) Format 1 must be used for all files in sequential access mode.

(3) Identifier-2 may represent any elementary numeric data item. Literal-1 may be any numeric literal.

(4) In Format 1, the NEXT or PREVIOUS phrase must be specified for files in dynamic access mode when
records are to be retrieved sequentially.

(5) Format 2 is used for indexed and relative files in random access mode or for files in dynamic access mode
when records are to be retrieved randomly.

(6) The INVALID KEY phrase or the AT END phrase must be specified, if no applicable USE AFTER
STANDARD EXCEPTION procedure is specified for file-name.

For indexed files:

(7) The KEY IS phrase of the READ statement must reference a key-name (id-1 in the formats of the RECORD
KEY or ALTERNATE RECORD KEY) associated with file-name.

(8) Key-name may be qualified if id-1 is a simple data item. Key-name may be qualified by the filename if it is
a composite data item.

E.42.4 General Rules

(1) The file referenced by file-name must be open in the input or I-O mode at the time this statement is
executed.

(2) In format 1, if neither the NEXT phrase nor the PREVIOUS phrase is specified, then NEXT is implied for
files in sequential access mode.

(3) The execution of the READ statement causes the value of the I-O status associated with file-name to be
updated.

(4) The setting of the file position indicator at the start of the execution of a Format 1 READ statement is used
in determining the record to be made available according to the following rules. Comparisons for records in
sequential files relate to the record number. Comparisons for records in relative files relate to the relative key
number. Comparisons for records in indexed files relate to the value of the current key of reference. For indexed
files, the comparisons are made according to the collating sequence of the file.

a. If the file position indicator indicates that no valid next record has been established, execution of the
READ statement is unsuccessful.

b. If the file position indicator was established by a previous OPEN or START statement, the first existing
record that is selected is either:

1. If NEXT is specified or implied, the first existing record in the file whose record number or key
value is greater than or equal to the file position indicator, or

2. If PREVIOUS is specified, the first existing record in the file whose record number or key value is
less than or equal to the file position indicator.

429

Interactive COBOL Language Reference & Developer’s Guide - Part One

NOTE: For OPEN, this means that you normally get the first record in the file for sequential or relative and
normally get an at end condition for indexed.

c. If the file position indicator was established by a previous READ statement and the file is sequential or
relative, or an indexed file whose current key of reference does not allow duplicates, the first existing record in the
file whose record number (or relative record number) or key value is greater than the file position indicator if NEXT
is specified or implied or is less than the file position indicator if PREVIOUS is specified is selected.

d. For indexed files, if the file position indicator was established by a previous READ statement, and the
current key of reference does allow duplicates, the record that is selected is one of the following:

1. If NEXT is specified or implied, the first record in the file whose key value is either equal to the file
position indicator and whose logical position within the set of duplicates is immediately after the record that was
made available by that previous READ statement, or whose key value is greater that the file position indicator.

2. If PREVIOUS is specified, the first record in the file whose key value is either equal to the file
position indicator and whose logical position within the set of duplicates is immediately prior to the record that was
made available by that previous READ statement, or whose key value is less than the file position indicator.

If a record is found which satisfies the above rules, it is made available in the record area associated with
file-name, unless the RELATIVE KEY phrase is specified for file-name and the number of significant digits in the
relative record number of the selected record is larger than the size of the relative key data item, in which case, the
file position indicator is set to indicate this condition and execution proceeds as specified in General Rule 10.

If no record is found which satisfies the above rules, the file position indicator is set to indicate that no next
logical record exists and execution proceeds as specified in General Rule 9.

If a record is made available, the file position indicator is set to the record number of the record made
available.

(5) Regardless of the method used to overlap access time with processing time, the concept of the READ
statement is unchanged; a record is available to the object program prior to the execution of imperative-statement-2,
if specified, or prior to the execution of any statement following the READ statement, if imperative-statement-2 is
not specified.

(6) When the logical records of a file are described with more than one record description, these records
automatically share the same record area in storage; this is equivalent to an implicit redefinition of the area. The
contents of any data items which lie beyond the range of the current data record ate undefined at the completion of
the execution of the READ statement.

(7) The INTO phrase may be specified in a READ statement:

a. If only one record description is subordinate to the file description entry, or

b. If all record-names associated with file-name and the data item referenced by identifier-1 describe a
group item or an elementary alphanumeric item.

(8) The result of the execution of a READ statement with the INTO phrase is equivalent to the application of
the following rules in the order specified:

a. The execution of the same READ statement without the INTO phrase.

b. The current record is moved from the record area to the area specified by identifier-1 according to the
rules for the MOVE statement without the CORRESPONDING phrase. The size of the current record is specified in
the RECORD clause. If the file description entry contains a RECORD IS VARYING clause, the implied move is a
group move. The implied MOVE statement does not occur if the execution of the READ statement was
unsuccessful. Any subscripting associated with identifier-1 is evaluated after the record has been read and

430

PROCEDURE DIVISION (ANSI 74 and ANSI 85 READ)

immediately before it is moved to the data item. The record is available in both the record area and the data item
referenced by identifier-1.

(9) For ANSI 85, if at the time of execution of a format 2 READ statement, the file position indicator indicates
that an optional input file is not present, the invalid key condition exists and execution of the READ statement is
unsuccessful.

(10) For a Format 1 READ statement, if the file position indicator indicates that no next logical record exists, or
that the number of significant digits in the relative record number is larger that the size of the relative key data item,
the following occurs in the order specified:

a. A value, derived from the setting of the file position indicator, is placed into the I-O status associated
with file-name to indicate the at end condition.

b. If the AT END phrase is specified in the statement causing the condition, control is transferred to
imperative-statement-1 in the AT END phrase. Any USE AFTER STANDARD EXCEPTION procedure associated
with file-name is not executed.

c. If the AT END phrase is not specified, a USE AFTER STANDARD EXCEPTION procedure must be
associated with this file-name, and that procedure is executed. Return from that procedure is to the next executable
statement following the end of the READ statement.

When the at end condition occurs, execution of the READ statement is unsuccessful.

(11) If neither an at end nor an invalid key condition occurs during the execution of a READ statement, the AT
END phrase or INVALID KEY phrase is ignored, if specified, and the following actions occur:

a. The file position indicator is set and the I-O status associated with file-name is updated.

b. If an exception condition which is not an at end or invalid key condition exists, control is transferred
according to rules of the USE statement following the execution of any USE AFTER STANDARD EXCEPTION
procedure applicable to file-name.

c. If no exception condition exists, the record is made available in the record area and any implicit move
resulting from the presence of an INTO phrase is executed. Control is transferred to the end of the READ statement
or to imperative-statement-2, if specified. In the latter case, execution continues according to the rules for each
statement specified in imperative-statement-2. If a procedure branching or conditional statement which causes
explicit transfer of control is executed, control is transferred in accordance with the rules for the statement;
otherwise, upon completion of the execution of imperative-statement-2, control is transferred to the end of the
READ statement.

(12) Following the unsuccessful execution of a READ statement, the content of the associated record area is
undefined, and the file position indicator is set to indicate that no valid next record has been established. If the
READ statement is unsuccessful due to the end-of-file condition or because the record which would have been
returned is locked, the file position indicator remains unchanged. In these cases, the program can loop for the
condition to be released.

(13) If the number of character positions in the record that is read is less than the minimum size specified by the
record description entries for file-name, the portion of the record area which is to the right of the last valid character
read is undefined. If the number of character positions in the record that is read is greater than the maximum
specified by the record description entries for file-name, the record is truncated on the right to the maximum size. In
either of these cases, the READ statement is successful and an I-O status is set, indicating that a record length
conflict has occurred.

For relative files:

(14) For a relative file for which dynamic access mode is specified, a Format 1 READ statement with the
NEXT phrase specified causes the next logical record to be retrieved from that file.

431

Interactive COBOL Language Reference & Developer’s Guide - Part One

(15) For a relative file, if the RELATIVE KEY phrase is specified for file-name, the execution of a Format 1
READ statement moves the relative record number of the record made available to the relative key data item
according to the rules for the MOVE statement.

(16) For a relative file, execution of a Format 2 READ statement sets the file position indicator to the value
contained in the data item referenced by the RELATIVE KEY phrase for the file, and the record whose relative
record number equals the file position indicator is made available in the record area associated with file-name. If the
file does not contain such a record, the invalid key condition exists and execution of the READ statement is
unsuccessful.

For indexed files:

(17) For an indexed file for which dynamic access mode is specified, a Format 1 READ statement with the
NEXT phrase specified causes the next logical record to be retrieved from that file.

(18) For an indexed file being sequentially accessed, records having the same duplicate value in an alternate
record key which is the key of reference are made available in the same order in which they are released by
execution of WRITE statements, or by execution of REWRITE statements which create such duplicate values.

(19) For an indexed file, if the KEY phrase is specified in a Format 2 READ statement, key-name is established
as the key of reference for this retrieval. If the dynamic access mode is specified, this key of reference is also used
for retrievals by any subsequent executions of Format 1 READ statements for the file until a different key of
reference is established for the file.

(20) For an indexed file, if the KEY phrase is not specified in a Format 2 READ statement, the primary record
key is established as the key of reference for this statement. If the dynamic access mode is specified, this key of
reference is also used for retrievals by any subsequent execution of Format 1 READ statements for the file until a
different key of reference is established for the file.

(21) For an indexed file, execution of a Format 2 READ statement sets the file position indicator to the value in
the key of reference. If the RECORD KEY or ALTERNATE RECORD KEY clause of the file control entry
includes the OCCURS phrase, the file position indicator is set to the value in the first occurrence. Similarly, if the
clause contains the ALSO phrase, the value of the root key (id-2 in the format for the RECORD KEY and
ALTERNATE RECORD clauses) is used to set the file position indicator. This value is compared with the value
contained in the corresponding data item of the stored records in the file until the first record having an equal value is
found. In the case of an alternate key with duplicate values, the first record found is the first record of a sequence of
duplicates which was released to the file system. The record so found is made available in the record area associated
with file-name. If no record can be so identified, the invalid key condition exists and execution of the READ
statement is unsuccessful.

For relative and indexed files:

(22) If the LOCK phrase is specified, the system attempts to lock the record for the exclusive use of the
currently executing program. If the lock operation and the read operation are successful, the record may not be read,
deleted, or rewritten by another user, with one exception: a READ statement executed on a file open in the INPUT
mode or a READ with the IGNORE LOCK clause will ignore the lock and the record can be read.

(23) If IGNORE LOCK is specified, READ will successfully read the data from a locked record. (This behaves
similarly to reading locked records in a file open for INPUT.)

(24) If the record cannot be locked, either because it is already locked by another user or because of system
limitations on the number of locks, the I-O status is set to indicate the lock violation and the READ statement is
unsuccessful.

(25) If the conditions in General Rule 22 cause the READ statement to be unsuccessful, the current record
position is not modified, rather than being set as specified in General Rule 12.

432

PROCEDURE DIVISION (ANSI 74 and ANSI 85 READ)

(26) A record lock can be removed by the successful execution of an UNLOCK or CLOSE statement for the
file.

(27) The END-READ phrase delimits the scope of the READ statement.

For sequential files:

(28) The TIME-OUT phrase enables a local timeout for the particular READ statement. The file specified must
be capable of timing out, generally a serial line. The timeout specifies the amount of time, in seconds, that the
runtime will wait for individual keystrokes (characters). If the time expires, the READ terminates with an I-O status
of 9T and an exception status of 76. Valid timeout values are:

<= 0 or >= 65535 No timeout (Wait forever)
65534 Timeout immediately
> 6300 Set to 6300 seconds
1-6300 Set to n seconds

(29) If the timeout value specified by identifier-2 or literal-1 is not an integer, its value is rounded to the nearest
tenth of a second.

(30) When using timeouts, ICOBOL handles them in the following order for READ statements:

aa) If a local timeout was specified by the TIME-OUT clause then it is used, otherwise,

b) If a timeout was set on the OPEN with the extended open option for timeout, then it is used; otherwise,

c) The default timeout for this particular device class is used.

NOTE: Extended open options are discussed in the Developer’s Guide section beginning on page 796.

(31) When performing data-sensitive reads on files whose file control entry has one of the clauses ASSIGN TO
KEYBOARD, ORGANIZATION IS LINE SEQUENTIAL, or RECORD DELIMITER IS DATA-SENSITIVE then
the characters null <000>, carriage-return <015>, newline <012>, form-feed <014>, or the carriage-return newline
pair <015><012) are used to terminate the read.

If the ASSIGN TO KEYBOARD phrase is used, the terminator (one or two bytes) is included in the record if there is
sufficient room and it will be included in the length of the record.

If the RECORD DELIMITER IS DATA-SENSITIVE phrase is used the delimiter is NOT placed into the record
area. The DELIMITER INTO phrase can be used to capture the one or two byte delimiter. The size of the delimiter
is NOT included in the length of the record. In this case an "empty" data-sensitive record will have a length of zero
(0) which will return a file status of "04" since the smallest VARYING RECORD size is 1. It is suggested using the
DEPENDING on phrase to return the actual record length and then use the length to determine whether the "04" was
caused by an empty record or a record that is too long.

433

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.43. READ (VXCOBOL)

E.43.1 Function

For sequential access, the READ statement makes available the next logical record from a file. For random access,
the READ statement makes available a specified record from a mass storage file.

E.43.2 General Format

Format 1: Sequential Access Mode

For sequential files:

READ file-name [NEXT] RECORD
[INTO identifier-1]
[AT END imperative-statement-1]
[NOT AT END imperative-statement-2]
[END-READ]

For relative and indexed files:

READ file-name [MANDATORY]

[INTO identifier-1]
[AT END imperative-statement-1]
[NOT AT END imperative-statement-2]
[END-READ]

For INFOS files:

READ file-name [MANDATORY]

[INTO identifier-1]
[AT END imperative-statement-1]
[NOT AT END imperative-statement-2]
[END-READ]

Format 2:

For relative files:

READ file-name RECORD [WAIT] [INTO identifier-1]

[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-READ]

434

PROCEDURE DIVISION (VXCOBOL READ)

For indexed files:

READ file-name RECORD

[INTO identifier-1] [KEY IS data-name]
[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-READ]

For INFOS files:

READ file-name [MANDATORY]

[INTO identifier-1]

[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-READ]

E.43.3 Syntax Rules

(1) The storage area associated with identifier-1 and the record area associated with file-name must not be the
same storage area.

(2) Format 1 must be used for all files in sequential access mode.

(3) In Format 1, the NEXT or BACKWARD phrase must be specified for files in dynamic access mode when
records are to be retrieved sequentially.

(4) Format 2 is used for indexed, relative, and INFOS files in random access mode or for files in dynamic
access mode when records are to be retrieved randomly.

(5) The INVALID KEY phrase or the AT END phrase must be specified if no applicable USE AFTER
STANDARD EXCEPTION procedure is specified for file-name.

For indexed files:

(6) Data-name must be the name of a data item specified as a record key associated with file-name.

(7) Data-name may be qualified.

E.43.4 General Rules

(1) The file referenced by file-name must be open in the input or I-O mode at the time this statement is
executed.

(2) In Format 1, if neither the NEXT phrase nor the BACKWARD phrase is specified, then NEXT is implied for
files in sequential access mode.

435

Interactive COBOL Language Reference & Developer’s Guide - Part One

(3) The execution of the READ statement causes the value of the I-O status and INFOS status associated with
file-name to be updated.

(4) The setting of the file position indicator at the start of the execution of a Format 1 READ statement is used
in determining the record to be made available according to the following rules. Comparisons for records in
sequential files relate to the record number. Comparisons for records in relative files relate to the relative key
number. Comparisons for records in indexed or INFOS files relate to the value of the current key of reference. For
indexed or INFOS files, the comparisons are made according to the collating sequence of the file.

a. If the file position indicator indicates that no valid next record as been established, execution of the
READ statement is unsuccessful.

b. If the file position indicator was established by a previous OPEN or START statement, the first existing
record that is selected is either:

1. If NEXT is specified or implied, the first existing record in the file whose record number or key
value is greater than or equal to the file position indicator, or

2. If BACKWARD is specified, the first existing record in the file whose record number or key value
is less than or equal to the file position indicator.

NOTE: For OPEN, this means that you normally get the first record in the file for sequential or relative and normally
get an at end condition for indexed.

c. If the file position indicator was established by a previous READ statement and the file is sequential or
relative, an indexed, of INFOS file whose current key of reference does not allow duplicates, the first existing record
in the file whose record number (or relative record number) or key value is greater than the file position indicator if
NEXT is specified or implied or is less than the file position indicator if BACKWARD is specified is selected.

d. For indexed files or INFOS, if the file position indicator was established by a previous READ statement,
and the current key of reference does allow duplicates, the record that is selected is one of the following:

1. If NEXT is specified or implied, the first record in the file whose key value is either equal to the file
position indicator and whose logical position within the set of duplicates is immediately after the record that was
made available by that previous READ statement, or whose key value is greater that the file position indicator.

2. If BACKWARD is specified, the first record in the file whose key value is either equal to the file
position indicator and whose logical position within the set of duplicates is immediately prior to the record that was
made available by that previous READ statement, or whose key value is less than the file position indicator.

If a record is found which satisfies the above rules, it is made available in the record area associated with
file-name, unless the RELATIVE KEY phrase is specified for file-name and the number of significant digits in the
relative record number of the selected record is larger than the size of the relative key data item, in which case, the
file position indicator is set to indicate this condition and execution proceeds as specified in General Rule 9.

If no record is found which satisfies the above rules, the file position indicator is set to indicate that no next
logical record exists and execution proceeds as specified in General Rule 9.

If a record is made available, the file position indicator is set to the record number of the record made
available.

(5) Regardless of the method used to overlap access time with processing time, the concept of the READ
statement is unchanged; a record is available to the object program prior to the execution of imperative-statement-2,
if specified, or prior to the execution of any statement following the READ statement, if imperative-statement-2 is
not specified.

436

PROCEDURE DIVISION (VXCOBOL READ)

(6) When the logical records of a file are described with more than one record description, these records
automatically share the same record area in storage; this is equivalent to an implicit redefinition of the area. The
contents of any data items which lie beyond the range of the current data record are undefined at the completion of
the execution of the READ statement.

(7) The INTO phrase may be specified in a READ statement:

a. If only one record description is subordinate to the file description entry, or

b. If all record-names associated with file-name and the data item that is referenced by identifier-1 describe
a group item or an elementary alphanumeric item.

(8) The result of the execution of a READ statement with the INTO phrase is equivalent to the application of
the following rules in the order specified:

a. The execution of the same READ statement without the INTO phrase.

b. The current record is moved from the record area to the area specified by identifier-1 according to the
rules for the MOVE statement without the CORRESPONDING phrase. The size of the current record is specified in
the RECORD LENGTH clause. The implied MOVE statement does not occur if the execution of the READ
statement was unsuccessful. Any subscripting associated with identifier-1 is evaluated after the record has been read
and immediately before it is moved to the data item. The record is available in both the record area and the data item
referenced by identifier-1.

(9) For a Format 1 READ statement, if the file position indicator indicates that no next logical record exists, or
that the number of significant digits in the relative record number is larger that the size of the relative key data item,
the following occurs in the order specified:

a. A value, derived from the setting of the file position indicator, is placed into the I-O status and INFOS
status associated with file-name to indicate the at end condition.

b. If the AT END phrase is specified in the statement causing the condition, control is transferred to
imperative-statement-1 in the AT END phrase. Any USE AFTER STANDARD EXCEPTION procedure associated
with file-name is not executed.

c. If the AT END phrase is not specified, a USE AFTER STANDARD EXCEPTION procedure must be
associated with this file-name, and that procedure is executed. Return from that procedure is to the next executable
statement following the end of the READ statement.

When the at end condition occurs, execution of the READ statement is unsuccessful.

(10) If neither an at end nor an invalid key condition occurs during the execution of a READ statement, the AT
END phrase or INVALID KEY phrase is ignored, if specified, and the following things happen:

a. The file position indicator is set and the I-O status and INFOS status associated with file-name is
updated.

b. If an exception condition which is not an at end or invalid key condition exists, control is transferred
according to rules of the USE statement following the execution of any USE AFTER STANDARD EXCEPTION
procedure applicable to file-name. If there is no applicable USE statement and the I-O status is 96, any implicit
move resulting from the presence of the INTO phrase is executed.

c. If no exception condition exists, the record is made available in the record area and any implicit move
resulting from the presence of an INTO phrase is executed. Control is transferred to the end of the READ statement
or to imperative-statement-2, if specified. In the latter case, execution continues according to the rules for each
statement specified in imperative-statement-2. If a procedure branching or conditional statement which causes
explicit transfer of control is executed, control is transferred in accordance with the rules for the statement;

437

Interactive COBOL Language Reference & Developer’s Guide - Part One

otherwise, upon completion of the execution of imperative-statement-2, control is transferred to the end of the
READ statement.

(11) Following the unsuccessful execution of a READ statement, the content of the associated record area is
undefined and the file position indicator is set to indicate that no valid next record has been established. If the
READ statement is unsuccessful due to the end-of-file condition or because the record which would have been
returned is locked, the file position indicator remains unchanged.

(12) If the number of character positions in the record that is read is less than the minimum size specified by the
record description entries for file-name, the portion of the record area which is to the right of the last valid character
read is undefined. If the number of character positions in the record that is read is greater than the maximum
specified by the record description entries for file-name, the record is truncated on the right to the maximum size. In
either of these cases, the READ statement is successful and an I-O status is set, to indicate that a record length
conflict has occurred.

(13) The END-READ phrase delimits the scope of the READ statement.

For relative files:

(14) For a relative file for which dynamic access mode is specified, a Format 1 READ statement with the
NEXT phrase specified causes the next logical record to be retrieved from that file.

(15) For a relative file, if the RELATIVE KEY phrase is specified for file-name, the execution of a Format 1
READ statement moves the relative record number of the record made available to the relative key data item
according to the rules for the MOVE statement.

(16) For a relative file, execution of a Format 2 READ statement sets the file position indicator to the value
contained in the data item referenced by the RELATIVE KEY phrase for the file, and the record whose relative
record number equals the file position indicator is made available in the record area associated with file-name. If the
file does not contain such a record, the invalid key condition exists and execution of the READ statement is
unsuccessful.

For indexed and INFOS files:

(17) For an indexed file for which dynamic access mode is specified, a Format 1 READ statement with the
NEXT phrase specified causes the next logical record to be retrieved from that file.

(18) For an indexed file being sequentially accessed, records having the same duplicate value in an alternate
record key which is the key of reference are made available in the same order in which they are released by
execution of WRITE statements, or by execution of REWRITE statements which create such duplicate values.

(19) For an indexed file, if the KEY phrase is specified in a Format 2 READ statement, data-name is
established as the key of reference for this retrieval. If the dynamic access mode is specified, this key of reference is
also used for retrievals by any subsequent executions of Format 1 READ statements for the file until a different key
of reference is established for the file.

(20) For an indexed file, if the KEY phrase is not specified in a Format 2 READ statement, the primary record
key is established as the key of reference for this statement. If the dynamic access mode is specified, this key of
reference is also used for retrievals by any subsequent execution of Format 1 READ statements for the file until a
different key of reference is established for the file.

(21) For an indexed file, execution of a Format 2 READ statement sets the file position indicator to the value in
the key of reference. This value is compared with the value contained in the corresponding data item of the stored
records in the file until the first record having an equal value is found. In the case of an alternate key with duplicate
values, the first record found is the first record of a sequence of duplicates which was released to the file system.
The record so found is made available in the record area associated with file-name. If no record can be so identified,
the invalid key condition exists and execution of the READ statement is unsuccessful.

438

PROCEDURE DIVISION (VXCOBOL READ)

For relative, indexed, and INFOS files:

(22) If the LOCK phrase is specified, the system attempts to lock the record for the exclusive use of the
currently executing program. If the lock operation and the read operation are successful, the record may not be read,
deleted, or rewritten by another user, with two exceptions: a READ statement executed on a file open in the INPUT
mode or a read with the MANDATORY clause will ignore the lock, and the record can be read.

(23) If the record cannot be locked, either because it is already locked by another user or because of system
limitations on the number of locks, the I-O status is set to indicate the lock violation and the READ statement is
unsuccessful.

(24) If the conditions in General Rule 21 cause the READ statement to be unsuccessful, the current record
position is not modified, rather than being set as specified in General Rule 11.

(25) A record lock can be removed by the successful execution of an UNLOCK or CLOSE statement for the
file, or by execution of an i/o statement with the UNLOCK clause.

(26) If the UNLOCK phrase is specified, the system attempts to unlock the record after completion of the
READ. The record then becomes accessible to any user if it had in fact been locked.

For INFOS files:

(27) If a file is opened for input and the MANDATORY keyword is used, the program will read a record even
if the record is locked.

(28) If the position phrase is omitted, FIX POSITION is the default.

(29) If the relative option and the KEY series phrase are omitted in random or dynamic access mode, the default
is the first key in the SELECT clause; in sequential access mode the default is READ NEXT.

(30) For an INFOS file being sequentially accessed, records having the same duplicate value in a record key are
made available in the same order in which they are released by execution of WRITE statements or by execution of
REWRITE statements that create duplicate values.

(31) For an INFOS file being randomly accessed, records having the same duplicate value in a key allowing
duplicates are made available as follows:

a. If the OCCURRENCE clause was specified for the key and contains a non-zero value and a key with the
specified value and specified occurrence number exists, then that record will be returned.

b. If no OCCURRENCE clause was specified for the key or if the value of the occurrence data-item is zero,
then the record associated with the first key of the specified value, if any, is returned.

(32) If a FEEDBACK data-item was specified for the file, its value is updated by execution of a successful
READ.

(33) If a RECORD LENGTH data-item was specified for the file, it will be updated with the length of the
record read.

(34) KEY LENGTH is used.

(35) The location of the entry defined is determined according to that specified in the position phrase, the
relative option phrase, and/or the KEY series phrase. The specification can be implicit if the program uses the
defaults or explicit if the KEY or path is specified fully.

439

Interactive COBOL Language Reference & Developer’s Guide - Part One

(36) FIX POSITION causes the record pointer to move from the current position to the position specified in this
statement. RETAIN position causes the record position to remain at the position it was on before the execution of
this statement. RETAIN is the default.

(37) The relative motion option without the KEY series phrase allows access to the index file relative to that
file's current record position.

(38) Using the KEY series phrase without the relative motion option cause the key path specified to begin with
the top index in the hierarchy and follow a downward motion.

(39) If the KEY series phrase is specified, each key, data-name, must be included in the RECORD KEY clause
of the SELECT statement for file-name. If the relative motion option and KEY series phrase at both specified only
UP, DOWN, and STATIC are allowed. The relative motion option is processed first and the key path is used. If
both are omitted, STATIC is the default.

(40) If SUPPRESS DATA RECORD is specified, all locks on the data record are ignored, and the data record
associated with the referenced index entry is not read into the file's record area.

(41) If SUPPRESS PARTIAL RECORD is specified, all locks on the partial record are ignored and the partial
data record associated with the index entry is not retrieved.

For sequential files:

(42) When using timeouts, ICOBOL handles them in the following order for READ statements:

a. If a timeout was set on the OPEN with the extended open option for timeout, then it is used,

b. The default timeout for the particular device class is used.

If a timeout occurs, the I-O status is set to 9T with an exception status of 76.

(43) When performing data-sensitive reads on files whose file control entry has the clause ASSIGN TO
KEYBOARD or whose file description entry specifies RECORDING MODE IS DATA-SENSITIVE the characters
null <000>, carriage-return <015>, newline <012>, and form-feed <014> are used to terminate the read. The
terminator is placed into the record if there is sufficient room. If the record area is too small, the maximum amount
of data is stored in the record and file status 99 (exception status 40) is returned.

440

PROCEDURE DIVISION (RELEASE)

E.44. RELEASE

E.44.1 Function

The RELEASE statement transfers records to the initial phrase of a sort operation.

E.44.2 General Format

RELEASE record-name [FROM identifier]

E.44.3 Syntax Rules

(1) Record-name must be the name of a logical record in a sort-merge file description, and it may be qualified.

(2) A RELEASE statement may be used only within the range of an input procedure associated with a SORT
statement for the file-name whose sort-merge file description entry contains record-name.

(3) Record-name and identifier must not refer to the same storage.

(4) If identifier is a function identifier, it shall reference an alphanumeric function.

E.44.4 General Rules

(1) The execution of a Release statement causes the record named by record-name to be released to the initial
phrase of a sort operation.

(2) The logical record released by the execution of the RELEASE statement is no longer available in the record
area unless the sort-merge file-name associated with record-name is specified in a SAME RECORD AREA clause.
The logical record is also available to the program as a record of other files referenced in the same SAME RECORD
AREA clause as the associated output file, as well as the file associated with record-name.

(3) The result of the execution of a RELEASE statement with the FROM phrase is equivalent to the execution
of the following statements in the order specified:

a. The statement:

MOVE identifier TO record-name

according to the rules specified for the MOVE statement.

b. The same RELEASE statement without the FROM phrase.

(4) After the execution of the RELEASE statement is complete, the information in the area referenced by
identifier is available, even though the information in the area referenced by record-name is not available except as
specified by the SAME RECORD AREA clause.

441

Interactive COBOL Language Reference & Developer’s Guide - Part One

442

PROCEDURE DIVISION (RETRIEVE)

E.45. RETRIEVE (VXCOBOL)

E.45.1 Function

The RETRIEVE statement obtains information about an INFOS file.

E.45.2 General Format

 RETRIEVE file-name

[INTO identifier-2]
[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-RETRIEVE]

E.45.3 Syntax Rules

(1) File-name is a filename that specifies an INFOS file opened for OUTPUT or I/O and selected for ALLOW
SUB-INDEX.

(2) Identifier-1 is an alphanumeric data item that specifies a record key associated with file-name.

(3) Identifier-2 is any data item specifying a destination that receives record, key, or index status information.

E.45.4 General Rules

(1) If the relative option and the KEY series phrase are omitted, the default is STATIC.

(2) The occurrence number is not used and is not updated.

(3) FEEDBACK is not used and is not updated.

(4) KEY LENGTH is used.

(5) The location from which to retrieve information is determined according to what is specified in the relative
option phrase and/or the KEY series phrase.

(6) FIX POSITION causes the record pointer to move from the current position to the position specified in this
statement. RETAIN position causes the record position to remain at the position it was on before the execution of
this statement. If the position phrase is omitted, RETRIEVE KEY and RETRIEVE HIGH KEY default to FIX
POSITION and RETRIEVE STATUS and RETRIEVE SUBINDEX default to RETAIN.

(7) The relative motion option without the KEY series phrase allows access to the index file relative to that
file's current record position.

443

Interactive COBOL Language Reference & Developer’s Guide - Part One

(8) Using the KEY series phrase without the relative motion option cause the key path specified to begin with
the top index in the hierarchy and follow a downward motion.

(9) If the KEY series phrase is specified, each key, identifier-1, must be declared in the SELECT statement for
file-name. If the relative motion option and KEY series phrase at both specified only UP, DOWN, and STATIC are
allowed. The relative motion option is processed first and the key path is used. If both are omitted, STATIC is the
default.

(10) Transfer of control following the successful or unsuccessful execution of the RETRIEVE operation
depends on the presence or absence of the optional INVALID KEY and NOT INVALID KEY phrases in the
RETRIEVE statement.

(11) INVALID KEY clauses on I/O statements are ONLY invoked when an Invalid Key error, as determined by
a File Status of 2x where x can be any character 0 - 9 or A - Z, is generated. All other error conditions will cause the
associated USE procedure, if present, as defined in the DECLARATIVES section to be executed. (See The Invalid
Key Condition, page 278, for more a more comprehensive discussion.).

(12) If STATUS is specified, identifier-2 is interpreted as a 4-character data item. ICOBOL will store either a
"1" or "0" in each byte as follows:

Character 1: "1" if partial record for target key is logically deleted.
Character 2: "1" if target key is a duplicate.
Character 3: always "0"
Character 4: "1" if data record for target key is logically deleted.

(13) If KEY is specified, ICOBOL moves the value of the target key to identifier-2. If HIGH KEY is specified,
ICOBOL moves the value of the highest key present in the subindex associated with the target key to identifier-2. In
either case, the following also occur:

a. The key length of the retrieved key is returned to the KEY LENGTH data-item associated with the last
key in the key series phrase or the first key in the SELECT statement if there is no key series phrase. If no KEY
LENGTH data item exits, the length is not accessible.

b. If the key is a duplicate, the occurrence number of the retrieved key is returned to the OCCURRENCE
data-item associated with the last key in the key series phrase or the first key in the SELECT statement if there is no
key series phrase. If the retrieved key is not a duplicate, a zero is returned to the OCCURRENCE data-item. If no
OCCURRENCE data-item exists, the occurrence number is not accessible.

(14) If SUB-INDEX is specified, ICOBOL returns a 16-byte data item to identifier-2. This 16-byte item is the
16-bit AOS INFOS subindex definition packet. It has the following format:

01 PACKET.
03 FILLER PIC XX.
03 NODE-SIZE PIC 9(4) COMP.
03 FILLER PIC X.
03 MAX-KEYLEN PIC 9(2) COMP.
03 FILLER PIC X.
03 PARTIAL-REC-LEN PIC 9(2) COMP.
03 FILLER PIC XX.
03 FLAGS PIC 9(4) COMP.
03 FILLER PIC X(4).

FLAGS values are: 2048 allow duplicates, 16384 Disallow subindex.

Under U/FOS, the partial record length will be either zero (no partial records) or 255 (partial records
allowed). Under INFOS II, the actual length was returned.

444

PROCEDURE DIVISION (RETURN)

E.46. RETURN

E.46.1 Function

The RETURN statement obtains either sorted records from the final phrase of a sort operation or merged records
during a merge operation.

E.46.2 General Format

RETURN file-name RECORD [INTO identifier]
AT END imperative-statement-1
[NOT AT END imperative-statement-2]
[END-RETURN]

E.46.3 Syntax Rules

(1) The storage area associated with identifier and the record area associated with file-name must not be the
same storage area.

(2) File-name must be described by a sort-merge file description entry in the Data Division.

(3) A RETURN statement may only be used within the range of an output procedure associated with a SORT or
MERGE statement for file-name.

E.46.4 General Rules

(1) When the logical records in a file are described with more than one record description, these records
automatically share the same storage area; this is equivalent to an implicit redefinition of the area. The contents of
any data items which lie beyond the range of the current data record are undefined at the completion of the execution
of the RETURN statement.

(2) The execution of the RETURN statement causes the next existing record in the file referenced by file-name,
as determined by the keys listed in the SORT or MERGE statement, to be made available in the record area
associated with file-name. If no next logical record exists in the file referenced by file-name, the at end conditions
exists and control is transferred to imperative-statement-1 of the AT END phrase. Execution continues according to
the rules for each statement specified in imperative-statement-1. If a procedure branching or conditional statement
which causes explicit transfer of control is executed, control is transferred according to the rules for that statement;
otherwise, upon completion of the execution of imperative-statement-1, control is transferred to the end of the
RETURN statement and the NOT AT END phrase is ignored, if specified. When the at end condition occurs,
execution of the RETURN statement is unsuccessful and the contents of the record area associated with file-name are
undefined. After the execution of imperative-statement-1 in the AT END phrase, no RETURN statement may be
executed as part of the current output procedure.

(3) If an at end condition does not occur during the execution of a RETURN statement, then after the record is
made available and after executing any implicit move resulting from the presence of an INTO phrase, control is
transferred to imperative-statement-2, if specified; otherwise, control is transferred to the end of the RETURN
statement.

(4) The END-RETURN phrase delimits the scope of the RETURN statement. (See page 260, Scope of
Statements.)

445

Interactive COBOL Language Reference & Developer’s Guide - Part One

(5) The INTO phrase may be specified in a RETURN statement:

a. If only one record description is subordinate to the sort-merge file description entry, or

b. If all record-names associated with file-name and the data items referenced by identifier describe a group
item or an elementary alphanumeric item.

(6) The result of the execution of a RETURN statement with the INTO phrase is equivalent to the application of
the following rules in the order specified:

a. The execution of the same RETURN statement without the INTO phrase.

b. The current record is moved from the record area to the area specified by identifier according to the
rules for the MOVE statement without the CORRESPONDING phrase. The size of the current record is determined
by rules specified for the RECORD clause. If the file description entry contains a RECORD IS VARYING clause,
the implied move is a group move. The implied MOVE statement does not occur if the execution of the RETURN
statement was unsuccessful. Any subscript or reference modification associated with identifier is evaluated after the
record has been read and immediately before it is moved to the data item. The record is available in both the record
area and the data item referenced by identifier.

446

PROCEDURE DIVISION (REWRITE)

E.47. REWRITE

E.47.1 Function

The REWRITE statement logically replaces a record existing in a mass storage file. IMMEDIATE is an extension to
ANSI COBOL.

E.47.2 General Format

Sequential Files:

REWRITE record-name [IMMEDIATE] [FROM identifier]
[END-REWRITE]

Relative and Indexed Files: (ANSI 74 and ANSI 85)

REWRITE record-name [IMMEDIATE] [FROM identifier]
[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-REWRITE]

Relative and Indexed: (VXCOBOL)

REWRITE record-name [IMMEDIATE] [FROM identifier] [KEY IS identifier-2]
[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-REWRITE]

INFOS: (VXCOBOL)

REWRITE [INVERTED] record-name [IMMEDIATE]

[SUPPRESS [PARTIAL RECORD] [DATA RECORD]]

[FROM]

[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-REWRITE]

447

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.47.3 Syntax Rules

(1) Record-name and identifier must not refer to the same storage area.

(2) Record-name is the name of a logical record in the File Section of the Data Division and may be qualified.

(3) The INVALID KEY and NOT INVALID KEY phrases must not be specified for a REWRITE statement
which references a relative, indexed, or INFOS file in sequential access mode.

(4) The INVALID KEY phrase must be specified in the REWRITE statement for relative, indexed, or INFOS
files in the random or dynamic access mode, and for which an appropriate USE AFTER STANDARD EXCEPTION
procedure is not specified.

(5) For VXCOBOL, for an indexed file, identifier-2 must reference the RECORD KEY data-item for the file.

E.47.4 General Rules

(1) The file referenced by the file-name associated with record-name must be a mass storage file and must be
open in the I-O mode at the time of execution of this statement.

(2) For files in the sequential access mode, the last input-output statement executed for the associated file prior
to the execution of the REWRITE statement must have been a successfully executed READ statement. The file
system logically replaces the record that was accessed by the READ statement.

(3) The logical record released by a successful execution of the REWRITE statement is no longer available in
the record area unless the file-name associated with record-name is specified in a SAME RECORD AREA clause.
The logical record is also available to the program as a record of other files referenced in the same SAME RECORD
AREA clause as the associated output file, as well as the file associated with record-name.

(4) The result of the execution of a REWRITE statement with the FROM phrase is equivalent to the execution
of the following statements in the order specified:

a. The statement:

MOVE identifier TO record-name

according to the rules specified for the MOVE statement.

b. The same REWRITE statement without the FROM phrase.

(5) After the execution of the REWRITE statement is complete, the information in the area referenced by
identifier is available, even though the information in the area referenced by record-name is not available except as
specified by the SAME RECORD AREA clause.

(6) The file position indicator is not affected by the execution of a REWRITE statement.

(7) The execution of the REWRITE statement causes the value of the I-O status (and for VXCOBOL, the
INFOS status) of the file-name associated with record-name to be updated.

(8) The execution of the REWRITE statement releases a logical record to the operating system.

(9) For ANSI 74 and ANSI 85, when using indexed or relative files, the number of character positions in the
record referenced by record-name must not be larger than the largest or smaller than the smallest number of
character positions allowed by the RECORD IS VARYING clause associated with the file-name associated with
record-name. For VXCOBOL, when using indexed, relative, or INFOS files with RECORDING MODE IS

448

PROCEDURE DIVISION (REWRITE)

VARIABLE, the number of character positions in the record referenced by record-name must not be larger than or
smaller than the maximum and minimum record lengths established for the file.

In either of these cases the execution of the REWRITE statement is unsuccessful, the updating operation does
not take place, the contents of the record area are unaffected and the I-O status of the file associated with
record-name is set to a value indicating the cause of the condition.

(10) Transfer of control following the successful or unsuccessful execution of the REWRITE operation depends
on the presence or absence of the optional INVALID KEY and NOT INVALID KEY phrases in the REWRITE
statement.

(11) The END-REWRITE phrase delimits the scope of the REWRITE statement.

(12) For sequential, relative, and indexed files, the IMMEDIATE option causes the REWRITE to immediately
flush the new information to disk. Normally this information could be held in internal buffers before being flushed
to disk. This option increases file security at the expense of performance. For INFOS files the IMMEDIATE option
is ignored.

For relative files:

(13) For a relative file, for a file accessed in either random or dynamic access mode, the file system logically
replaces the record specified by the content of the relative key data of the file-name associated with record-name. If
the file does not contain the record specified by the key, the invalid key condition exists. When the invalid key
condition is recognized, the execution of the REWRITE statement is unsuccessful, the updating operation does not
take place, the contents of the record area are unaffected and the I-O status of the file-name associated with
record-name is set to a value indicating the cause of the condition.

For sequential files:

(14) If the number of character positions specified in the record referenced by record-name is not equal to the
number of character positions in the record being replaced, the execution of the REWRITE statement is
unsuccessful, the updating operation does not take place, the content of the record area is unaffected and the I-O
status of the file associated with record-name is set to a value indicating the cause of the condition.

For indexed files:

(15) For a file in the sequential access mode, the record to be replaced is specified by the value of the primary
record key. When the REWRITE statement is executed, the value of the primary record key of the record to be
replaced must be equal to the value of the primary record key of the last record read from this file.

(16) For a file in the random or dynamic access mode, the record to be replaced is specified by the primary
record key.

(17) Execution of the REWRITE statement for a record which has an alternate key occurs as follows:

a. When the value of a specific alternate record key is not changed, the order of retrieval when that key is
the key of reference remains unchanged.

b. When the value of a specific alternate record key is changed, the subsequent order of retrieval of that
record may be changed when that specific alternate record key is the key of reference. When duplicate key values
are permitted, the record is logically positioned last within the set of duplicate records containing the same alternate
record key value as the one that was placed in the record.

(18) The invalid key condition exists under the following circumstances:

a. When the file is open in the sequential access mode, and the value of the primary record key of the
record to be replaced is not equal to the value of the primary record key of the last record read from the file, or

449

Interactive COBOL Language Reference & Developer’s Guide - Part One

b. When the file is open in the dynamic or random access mode, and the value of the primary record key of
the record to be replaced is not equal to the value of the primary record key of any record existing in the file, or

c. When the value of an alternate record key of the record to be replaced, for which duplicates are not
allowed, equals the value of the corresponding data item of a record already existing in the file.

(19) When the invalid key condition is recognized, the execution of the REWRITE statement is unsuccessful
and the I-O status (and for VXCOBOL, the INFOS status) of the filename associated with record-name is set to a
value indicating the cause of the condition.

For INFOS files:

(20) If the position phrase is omitted, RETAIN POSITION is the default.

(21) If the relative option and the KEY series phrase are omitted, the default is the first key in the SELECT
clause.

(22) FEEDBACK is used if you specify INVERTED. REWRITE updates the FEEDBACK data item.

(23) KEY LENGTH is unused.

(24) If INVERTED is not specified, a record is written in a location that is determined according to what is
specified in the relative option phrase and/or the KEY series phrase. The specification can be implicit if the
program uses the defaults or explicit if the KEY or path is fully specified. If INVERTED is specified, the
REWRITE statement does not write a data record but links an existing data record to an index entry with no data
record. A FEEDBACK data-item must have been specified. It contains the record location REWRITE INVERTED
links to the index entry.

(25) FIX POSITION causes the record pointer to move from the current position to the position specified in this
statement. RETAIN position causes the record position to remain at the position it was on before the execution of
this statement. RETAIN is the default.

(26) The relative motion option without the KEY series phrase allows access to the index file relative to that
file's current record position.

(27) Using the KEY series phrase without the relative motion option cause the key path specified to begin with
the top index in the hierarchy and follow a downward motion.

(28) If the KEY series phrase is specified, each key, identifier-2, must be declared in the SELECT statement for
file-name. If the relative motion option and KEY series phrase at both specified only UP, DOWN, and STATIC are
allowed. The relative motion option is processed first and the key path is used. If both are omitted, STATIC is the
default.

(29) If DUPLICATE and OCCURRENCE IS was specified in this file's SELECT clause, and the occurrence
number is not equal to zero, REWRITE uses the occurrence number to determine which record to rewrite. Zero
indicates that the key is not a duplicate.

(30) If SUPPRESS DATA RECORD is specified, all locks on the data record are ignored and the data record
associated with the index entry is not output.

(31) If SUPPRESS PARTIAL RECORD is specified, the partial data record associated with the index entry is
not output.

450

PROCEDURE DIVISION (ROLLBACK)

E.48. ROLLBACK (ISQL)

E.48.1 Function

The ROLLBACK statement allows the program to rollback an SQL database connection or connections..

E.48.2 General Format

ROLLBACK [ALL]
[ON SQLERROR imperative-statement-1]
[NOT ON SQLERROR imperative-statement-2]
[END-ROLLBACK]

E.48.3 Syntax Rules

E.48.4 General Rules

(1) The ALL phrase specifies that all connections in the run unit will be rolled back. (if there are any). If not
specified, only the current connection is rolled back.

(2) Upon completion of the ROLLBACK statement, the following occurs in the order specified:

a. The value of the SQLSTATE data item is updated with the status of the operation.

b. If the value of the SQLSTATE class field is “00" or “01", the statement is successful. Control is
transferred to the end of the ROLLBACK statement or to imperative-statement-2, if specified. In the latter case,
execution continues according to the rules for each statement specified in imperative-statement-2. If a procedure
branching or conditional statement which causes explicit transfer of control is executed, control is transferred in
accordance with the rules for the statement; otherwise, upon completion of the execution of imperative-statement-2,
control is transferred to the end of the ROLLBACK statement.

c. If the value of the SQLSTATE class field is not “00" or “01", the statement is unsuccessful. The
statement container is deallocated and no statement container of the specified name will exist in the current program.
Control is transferred to the end of the ROLLBACK statement or to imperative-statement-1, if specified. In the
latter case, execution continues according to the rules for each statement specified in imperative-statement-1. If a
procedure branching or conditional statement which causes explicit transfer of control is executed, control is
transferred in accordance with the rules for the statement; otherwise, upon completion of the execution of
imperative-statement-1, control is transferred to the end of the ROLLBACK statement.

(3) The END-ROLLBACK phrase delimits the scope of the ROLLBACK statement.

(4) More on SQLSTATE can be found on page 139.

451

Interactive COBOL Language Reference & Developer’s Guide - Part One

452

PROCEDURE DIVISION (SEARCH)

E.49. SEARCH

E.49.1 Function

The SEARCH statement is used to search a table for a table element that satisfies the specified condition and to
adjust the value of the associated index to indicate that table element.

E.49.2 General Format

Format 1:

SEARCH identifier-1 [AT END imperative-statement-1]

[END-SEARCH]

Format 2:

SEARCH ALL identifier-1 [AT END imperative-statement-1]

[END-SEARCH]

E.49.3 Syntax Rules

(1) For VXCOBOL, format 1 may include an optional keyword ALL immediately after the keyword SEARCH
unless the -G h compiler switch is used. In that case the use of the keyword ALL must conform to format 2 and all
the supporting rules which follow.

(2) In both formats 1 and 2, identifier-1 must not be subscripted, but its description must contain an OCCURS
clause including an INDEXED BY phrase. The description of identifier-1 in Format 2 must also contain the KEY IS
phrase in its OCCURS clause.

(3) Identifier-2 must reference a data item described as USAGE IS INDEX or numeric elementary data item
without any positions to the right of the decimal point. Identifier-2 may not be subscripted by the first (or only)
index-name specified in the INDEXED BY phrase in the OCCURS clause associated with identifier-1.

(4) In Format 1, condition-1 may be any conditional expression.

(5) In Format 2, all referenced condition-names must be defined as having only a single value. The data-name
associated with a condition-name must appear in the KEY IS phrase in the OCCURS clause referenced by
identifier-1. Each data-name-1, data-name-2 may be qualified. Each data-name-1, data-name-2 must be
subscripted by the first index-name associated with identifier-1 along with other subscripts as required, and must be
referenced in the KEY IS phrase in the OCCURS clause referenced by identifier-1. Identifier-3, identifier-4, or
identifiers specified in arithmetic-expression-1, arithmetic-expression-2 must not be referenced in the KEY IS

453

Interactive COBOL Language Reference & Developer’s Guide - Part One

phrase in the OCCURS clause referenced by identifier-1 or be subscripted by the first index-name associated with
identifier-1.

In Format 2, when a data-name in the KEY IS phrase in the OCCURS clause referenced by identifier-1 is
referenced, or when a condition-name associated with a data-name in the KEY IS phrase in the OCCURS clause
referenced by identifier-1 is referenced, all preceding data-names in the KEY IS phrase in the OCCURS clause
referenced by identifier-1 or their associated condition-names must also be referenced.

(6) If the END-SEARCH phrase is specified, the NEXT SENTENCE phrase must not be specified.

E.49.4 General Rules

(1) The scope of a SEARCH statement may be terminated by any of the following:

a. An END-SEARCH phrase at the same level of nesting.

b. A separator period.

c. An ELSE or END-IF phrase associated with a previous IF statement.

(2) If Format 1 of the SEARCH statement is used, a serial type of search operation takes place, starting with the
current index setting.

a. If, at the start of execution of the SEARCH statement, the index-name associated with identifier-1
contains a value that corresponds to an occurrence number that is greater than the highest permissible occurrence
number for identifier-1, the search is terminated immediately. The number of occurrences of identifier-1, the last of
which is the highest permissible, is discussed in the OCCURS clause. Then, if the AT END phrase is specified,
imperative-statement-1 is executed; if the AT END phrase is not specified, control passes to the end of the SEARCH
statement.

b. If, at the start of execution of the SEARCH statement, the index-name associated with identifier-1
contains a value that corresponds to an occurrence number that is not greater than the highest permissible occurrence
number for identifier-1 (the number of occurrences of identifier-1, the last of which is the highest permissible, is
discussed in the OCCURS clause), the SEARCH statement operates by evaluating the conditions in the order that
they are written, making use of the index settings, wherever specified, to determine the occurrence of those items to
be tested. If none of the conditions is satisfied, the index-name for identifier-1 is incremented to obtain reference to
the next occurrence. The process is then repeated using the new index-name settings unless the new value of the
index-name settings for identifier-1 corresponds to a table element outside the permissible range of occurrence
values, in which case the search terminates as indicated in 2a above. If one of the conditions is satisfied upon its
evaluation, the search terminates immediately, and control passes to the imperative statement associated with that
condition, if present, or if the NEXT SENTENCE phrase is associated with that condition, to the next executable
sentence; the index-name remains set at the occurrence which caused the condition to be satisfied.

(3) In a Format 2 SEARCH statement, the results of the SEARCH ALL operation are predictable only when:

a. The data in the table is ordered in the same manner as described in the KEY IS phrase of the OCCURS
clause referenced by identifier-1, and

b. The contents of the key(s) referenced in the WHEN phrase are sufficient to identify a unique table
element.

(4) If Format 2 of the SEARCH statement is used, a nonserial type of search operation may take place; the
initial setting of the index-name for identifier-1 is ignored and its setting is varied during the search operation to
conduct a binary search, with the restriction that at no time is it set to a value that exceeds the value which
corresponds to the last element of the table, or that is less than the value that corresponds to the first element of the
table. The length of the table is discussed in the OCCURS clause. If any of the conditions specified in the WHEN

454

PROCEDURE DIVISION (SEARCH)

phrase cannot be satisfied for any setting of the index within the permitted range, control is passed to
imperative-statement-1 of the AT END phrase, when specified, or to the end of the SEARCH statement when this
phrase is not specified; in either case, the final setting of the index is not predictable. If all the conditions can be
satisfied, the index indicates an occurrence that allows the conditions to be satisfied, and control passes to
imperative-statement-2, if specified, or to the next executable sentence if the NEXT SENTENCE phrase is specified.

(5) After execution of imperative-statement-1 or imperative-statement-2, that does not terminate with a GO TO
statement, control passes to the end of the SEARCH statement.

(6) In Format 2, the index-name that is used for the search operation is the first (or only) index-name specified
in the INDEXED BY phrase in the OCCURS clause associated with identifier-1. Any other index-names for
identifier-1 remain unchanged.

(7) In Format 1, if the VARYING phrase is not used, the index-name that is used for the search operation is the
first (or only) index-name specified in the INDEXED BY phrase in the OCCURS clause associated with identifier-1.
Any other index-names for identifier-1 remain unchanged.

(8) In Format 1, if the VARYING index-name-1 phrase is specified, and if index-name-1 appears in the
INDEXED BY phrase in the OCCURS clause referenced by identifier-1, that index-name is used for this search. If
this is not the case or if the VARYING identifier-2 phrase is specified, the first (or only) index-name given in the IN-
DEXED BY phrase in the OCCURS clause referenced by identifier-1 is used for the search. In addition, the
following operations will occur:

a. If the VARYING index-name-1 phrase is used, and if index-name-1 appears in the INDEXED BY
phrase in the OCCURS clause referenced by another table entry, the occurrence number represented by
index-name-1 is incremented by the same amount as, and at the same time as, the occurrence number represented by
the index-name associated with identifier-1 is incremented.

b. If the VARYING identifier-2 phrase is specified, and identifier-2 is an index data item, then the data
item referenced by identifier-2 is incremented by the same amount as, and at the same time as, the index associated
with identifier-1 is incremented. If identifier-2 is not an index data item, the data item referenced by identifier-2 is
incremented by the value one at the same time as the index referenced by the index-name associated with identifier-1
is terminated.

(9) The END-SEARCH phrase delimits the scope of the SEARCH statement.

(10) A representation of the action of a Format 1 SEARCH statement containing two WHEN phrases is shown
in the figure that follows. This figure is not intended to indicate the underlying implementation.

455

Interactive COBOL Language Reference & Developer’s Guide - Part One

FIGURE 8. Format 1 SEARCH statement having two WHEN phrases

456

PROCEDURE DIVISION (ANSI 74 and ANSI 85 SET)

E.50. SET (ANSI 74 and ANSI 85)

E.50.1 Function

The SET statement establishes reference points for table handling operations by setting indices associated with table
elements. It also sets the values of condition names, mnemonic names, and pointer data items; and, (ISQL) the value
of an indicator data item or the current database connection.

E.50.2 General Format

Format 1:

SET

Format 2:

SET { index-name-3 }...

Format 3:

SET { { mnemonic-name-1 }... TO }...

Format 4:

SET { condition-name-1 }... TO TRUE

Format 5:

SET { identifier-4 }... TO

Format 6: (ISQL)

SET { identifier-7 }... TO

E.50.3 Syntax Rules

(1) All references to index-name-1, identifier-1, and index-name-3 apply equally to all recursions thereof.

(2) Identifier-1 and identifier-2 must each reference an index data item or an elementary item described as an
integer.

(3) Identifier-3 must reference an elementary numeric integer.

(4) Integer-1 and integer-2 may be signed. Integer-1 must be positive.

(5) Mnemonic-name-1 must be associated with an external switch, the status of which can be altered.

(6) Condition-name-1 must be associated with a conditional variable.

457

Interactive COBOL Language Reference & Developer’s Guide - Part One

Note: Rule 2 is not currently enforced by ICOBOL.

(7) Every occurrence of identifier-4 and identifier-6 must reference a data item described as USAGE IS
POINTER.

(8) Identifier-5 may reference any data item defined in the Data Division.

(9) (ISQL) Every occurrence of identifier-7 and identifier-8 must reference a data item described as USAGE IS
INDICATOR.

E.50.4 General Rules

Format 1 and 2:

(1) Index-names are associated with a given table by being specified in the INDEXED BY phrase of the
OCCURS clause for that table.

(2) If index-name-1 is specified, the value of the index after the execution of the SET statement must
correspond to an occurrence number of an element in the table associated with index-name-1. The value of the index
associated with an index-name after the execution of a PERFORM statement may be set to an occurrence number
that is outside the range of its associated table.

If index-name-2 is specified, the value of the index before the execution of the SET statement must
correspond to an occurrence number of an element in the table associated with index-name-1.

If index-name-3 is specified, the value of the index both before and after the execution of the SET statement
must correspond to an occurrence number of an element in the table associated with index-name-3.

(3) In Format 1, the following action occurs:

a. Index-name-1 is set to a value causing it to refer to the table element that corresponds in occurrence
number to the table element referenced by index-name-2, identifier-2, or integer-1. If identifier-2 references an
index data item, or if index-name-2 is related to the same table as index-name-1, no conversion takes place.

b. If identifier-1 references an index data item, it may be set equal to either the content of index-name-2 or
identifier-2 where identifier-2 also references an index data item; no conversion takes place in either case.

c. If identifier-1 does not reference an index data item, it may be set only to an occurrence number that
corresponds to the value of index-name-2. Neither identifier-2 nor integer-1 can be used in this case.

d. The process is repeated for each recurrence of index-name-1 or identifier-1, if specified. Each time, the
value of index-name-2 or the data item referenced by identifier-2 is used as it was at the beginning of the execution
of the statement. Any subscripting associated with identifier-1 is evaluated immediately before the value of the
respective data item is changed.

(4) In Format 2, the content of index-name-3 is incremented (UP BY) or decremented (DOWN BY) by a value
that corresponds to the number of occurrences represented by the value of integer-2 or the data item referenced by
identifier-3; thereafter, the process is repeated for each recurrence of index-name-3. For each repetition the value of
the data item referenced by identifier-3 is used as it was at the beginning of the execution of the statement.

(5) Data in the following table represents the validity of various operand combinations in Format 1 of the SET
statement. The general rule reference (after the slash) indicates the applicable general rule.

458

PROCEDURE DIVISION (ANSI 74 and ANSI 85 SET)

SENDING ITEM
RECEIVING DATA ITEM

INTEGER
DATA ITEM

INDEX INDEX
DATA ITEM

 Integer literal No/3c Valid/3a No/3b

 Integer data item No/3c Valid/3a No/3b

 Index Valid/3c Valid/3a Valid/3b*

 Index data item No/3c Valid/3a* Valid/3b*

TABLE 30. Validity of Operand Combinations in Format 1 SET Statements

* No conversion takes place

Format 3:

(6) The status of each external switch associated with the specified mnemonic-name-1 is modified such that the
truth value resultant from evaluation of a condition-name associated with that switch will reflect an on status if the
ON phrase is specified, or an off status if the OFF phrase is specified. See the Switch-Status condition on page 246

Format 4:

(7) The literal in the VALUE clause associated with condition-name-1 is placed in the conditional variable
according to the rules of the VALUE clause, see The VALUE Clause on page 202). If more than one literal is
specified in the VALUE clause, the conditional variable is set to the value of the first literal that appears in the
VALUE clause.

(8) If multiple condition-names are specified, the results are the same as if a separate SET statement had been
written for each condition-name-1 in the same order as specified in the SET statement.

Format 5:

(9) The address specified by the TO phrase is moved into identifier-4. This address will be valid until the
program terminates or returns control to the calling program.

(10) The address specified by the TO phrase is the address contained in identifier-6, the address of identifier-5,
or if NULL is specified, an address which points to no data-item.

Format 6:

(11) The value of the indicator specified by the TO phrase is moved into identifier-7.

459

Interactive COBOL Language Reference & Developer’s Guide - Part One

460

PROCEDURE DIVISION (VXCOBOL SET)

Note: Rule 2 is not currently enforced by ICOBOL.

E.51. SET (VXCOBOL)

E.52.1 Function

Sets one or more data items equal to another data item, or adds an operand to or subtracts an operand from one or
more operands.

E.52.2 General Format

Format 1:

SET

Format 2:

SET ...

E.51.3 Syntax Rules

(1) All references to index-name-1, identifier-1, index-name-3, and identifier-4 apply equally to all recursions
thereof.

(2) Identifier-3 and identifier-4 must reference numeric data-items.

(3) Literal-2 must be a numeric literal.

E.51.4 General Rules

Format 1 and 2:

(1) Index-names are associated with a given table by being specified in the INDEXED BY phrase of the
OCCURS clause for that table.

(2) If index-name-1 is specified, the value of the index after the execution of the SET statement must
correspond to an occurrence number of an element in the table associated with index-name-l. The value of the index
associated with an index-name after the execution of a PERFORM statement may be set to an occurrence number
that is outside the range of its associated table.

If index-name-2 is specified, the value of the index before the execution of the SET statement must
correspond to an occurrence number of an element in the table associated with index-name-1.

If index-name-3 is specified, the value of the index both before and after the execution of the SET statement
must correspond to an occurrence number of an element in the table associated with index-name-3.

461

Interactive COBOL Language Reference & Developer’s Guide - Part One

(3) In Format 1, the following action occurs:

a. Index-name-1 or identifier-1 is set to a value equal to the content of index-name-2 or identifier-2 or to
the value specified by literal-1.

b. The value is set using the MOVE rules. Format 1 of the SET statement is equivalent to:

MOVE

c. The process is repeated for each recurrence of index-name-1 or identifier-1. Each time, the value of
index-name-2 or identifier-2 is used as it was at the beginning of the statement. Any subscripting associated with
identifier-1 is evaluated immediately before the value of the respective data-item is changed.

(4) In format 2, the following action occurs:

a. A SET UP statement adds the contents of identifier-3 or the value of literal-2 to index-name-3 or
identifier-4 and stores it back in index-name-3 or identifier-4, respectively, according to MOVE rules. The SET UP
statement is equivalent to:

ADD

b. A SET DOWN statement subtracts the contents of identifier-3 or the value of literal-2 from
index-name-3 or identifier-4 and stores it back in index-name-3 or identifier-4, respectively, according to MOVE
rules. The SET DOWN statement is equivalent to:

SUBTRACT

c. The process is repeated for each recurrence of index-name-3 or identifier-4. Each time, the value of
identifier-3 is used as it was at the beginning of the statement. Any subscripting associated with identifier-4 is
evaluated immediately before the value of the respective data-item is changed.

NOTE: The VXCOBOL implementation of the SET statement differs substantially from ANSI COBOL.
ANSI COBOL uses SET to establish reference points for table handling operations by setting indices
associated with table elements. As such, identifier-1 and identifier-2 must reference index data items
or elementary integer items. Identifier-3 must be an elementary numeric integer. Literal-1 must be a
positive integer, and literal-2 must be an integer.

462

PROCEDURE DIVISION (SET CONNECTION)

E.52. SET CONNECTION (ISQL)

E.52.1 Function

Set the currently active SQL database connection.

E.52.2 General Format

[ON SQLERROR imperative-statement-1]
[NOT ON SQLERROR imperative-statement-2]
[END-SET]

E.52.3 Syntax Rules

(1) Literal-1 must be an alphanumeric literal and may not specify a figurative constant.

(2) Identifier-1 must be an alphanumeric data item.

E.52.4 General Rules

(1) If the DEFAULT phrase is used, it specifies that the default connection (which has the name “default”) is to
be made the currently active connection.

(2) The value of literal-1 or the content of the data item represented by identifier-1 specifies the name of the
connection that is to be made the currently active connection.

(3) Connections are kept on a run unit basis, i.e., the scope of the connection name is the entire run unit, not just
the program containing the SET CONNECTION statement. If the specified connection does not exist, it is an error
and SQLSTATE will be set to “08003", which is “Connection does not exist”.

(4) If there is a currently active connection and it differs from the connection specified by the SET
CONNECTION statement, it is made the most recent dormant connection.

(5) Upon completion of the SET CONNECTION statement, the following occurs in the order specified:

a. The value of the SQLSTATE data item is updated with the status of the operation.

b. If the value of the SQLSTATE class field is “00", the statement is successful. Control is transferred to
the end of the SET CONNECTION statement or to imperative-statement-2, if specified. In the latter case, execution
continues according to the rules for each statement specified in imperative-statement-2. If a procedure branching or
conditional statement which causes explicit transfer of control is executed, control is transferred in accordance with
the rules for the statement; otherwise, upon completion of the execution of imperative-statement-2, control is
transferred to the end of the SET CONNECTION statement.

c. If the value of the SQLSTATE class field is not “00", the statement is unsuccessful. The statement
container is deallocated and no statement container of the specified name will exist in the current program. Control
is transferred to the end of the SET CONNECTION statement or to imperative-statement-1, if specified. In the latter
case, execution continues according to the rules for each statement specified in imperative-statement-1. If a
procedure branching or conditional statement which causes explicit transfer of control is executed, control is
transferred in accordance with the rules for the statement; otherwise, upon completion of the execution of
imperative-statement-1, control is transferred to the end of the SET CONNECTION statement.

463

Interactive COBOL Language Reference & Developer’s Guide - Part One

(6) The END-SET phrase delimits the scope of the SET CONNECTION statement.

(7) More on SQLSTATE can be found on page 139.

464

PROCEDURE DIVISION (SORT)

E.53. SORT

E.53.1 Function

The SORT statement creates a sort file by executing an input procedure or by transferring records from another file,
sorts the records in the sort file on a set of specified keys; and in the final phrase of the sort operation, makes
available each record from the sort file, in sorted order, to an output procedure or to an output file.

E.53.2 General Format (ANSI 74 and ANSI 85)

SORT file-name-1 { ON KEY { data-name-1 }... }...

[WITH DUPLICATES IN ORDER]
[COLLATING SEQUENCE IS alphabet-name]

E.53.3 General Format (VXCOBOL)

SORT file-name-1

d [literal [CREATE MAXIMUM RECORDS] [SAVE]]

[ON KEY [data-name-1]...]...

[WITH DUPLICATES IN ORDER]

[COLLATING SEQUENCE IS]

465

Interactive COBOL Language Reference & Developer’s Guide - Part One

E.53.4 Syntax Rules

(1) A SORT statement may appear anywhere in the Procedure Division except in the declaratives portion.

(2) File-name-1 must be described in a sort-merge file description entry in the Data Division.

(3) If the USING phrase is specified and the file referenced by file-name-1 contains variable length records, the
size of the records contained in the files referenced by file-name-2 must not be less than the smallest record nor
greater than the largest record described for file-name-1. If the file referenced by file-name-1 contains fixed length
records, the sizes of the records contained in the file referenced by file-name-2 must not be greater than the largest
record described for file-name-1.

(4) Data-name-1 is a key data-name. Key data-names are subject to the following rules:

a. The data items identified by key data-names must be described in records associated with file-name-1.

b. Key data-names may be qualified.

c. Key data-names may not be described as USAGE POINTER.

d. The data items identified by key data-names must not be group items that contain variable occurrence
data items.

e. If file-name-1 has more than one record description, the data items identified by key data-names need be
described in only one record description. The same character positions referenced by a key data-name in one record
description entry are taken as the key in all records of the file.

f. None of the data items identified by key data-names can be described by an entry that either contains an
OCCURS clause or is subordinate to an entry that contains an OCCURS clause.

g. If a file referenced by file-name-1 contains variable length records, all the data items identified by key
data-names must be contained within the first x characters positions of the record, where x equals the minimum
record size specified for the file referenced by file-name-1.

h. For VXCOBOL, if no data-name-1 is specified the entire record is used as the key.

(5) The words THRU and THROUGH are equivalent.

(6) File-name-2 and file-name-3 must be described in a file description entry, not a sort-merge description
entry, in the Data Division.

(7) No pair of file-names in a SORT statement may be specified in the same SAME SORT AREA or SAME
SORT-MERGE AREA clause. File-names associated with the GIVING phrase may not be specified in the same
SAME clause.

(8) If file-name-3 is specified it is subject to the following rules:

a. If file-name-3 references an indexed file, the first specification of data-name-1 and the data item
referenced by that data-name-1 must occupy the same character positions in its record as the data item associated
with the prime record key for that file. For ANSI 74 and ANSI 85, the first specification of data-name-1 must be
associated with the ASCENDING phrase if file-name-3 has a primary record key described explicitly or implicitly as
VALUES ARE ASCENDING. If the key is described as VALUES ARE DESCENDING, data-name-1 must be
associated with the DESCENDING phrase. For VXCOBOL, the first specification of data-name-1 must be
associated with the ASCENDING phrase.

b. For VXCOBOL, If file-name-3 references an INFOS file, it must not allow subindexing, and the first
specification of data-name-1 must be associated with an ASCENDING phrase. The data-item referenced by

466

PROCEDURE DIVISION (SORT)

data-name-1 must occupy the same character positions in its record as the data item associated with the first
RECORD KEY in the SELECT for file-name-3, i.e., the RECORD KEY and sort key must be internal to the record.

(9) For VXCOBOL, if file-name-2 references an INFOS file, it must not all subindexing.

(10) If the GIVING phrase is specified and the file referenced by file-name-3 contains variable length records,
the size of the records contained in the file referenced by file-name-1 must not be less that the smallest record nor
greater that the largest record described for file-name-3. If the file referenced by file-name-3 contains fixed length
records, the size of the records contained in the file referenced by file-name-1 must not be greater that the largest
record described for file-name-3.

(11) Alphabet-name shall reference an alphabet defined in the SPECIAL-NAMES paragraph which defines an
alphanumeric collating sequence.

(12) For VXCOBOL, the CREATE clause is for documentation purposes only.

(13) If file-name-2 references an indexed, relative, or INFOS file its access mode shall be sequential or
dynamic.

(14) For VXCOBOL, if the ASCENDING or DESCENDING clause is not specified then ASCENDING is
assumed, and the entire record is used as the key.

E.53.5 General Rules

(1) If the file referenced by file-name-1 contains only fixed length records, any record in the file referenced by
file-name-2 containing fewer character positions that fixed length is space filled on the right beginning with the first
character position after the last character in the record when that record is released to the file referenced by
file-name-1.

(2) The data-names following the word KEY are listed from left to right in the SORT statement in order of
decreasing significance without regard to how they are divided into KEY phrases. The leftmost data-name is the
major key, the next data-name is the next most significant key, etc.

a. When the ASCENDING phrase is specified, the sorted sequence will be from the lowest value of the
contents of the data items identified by the key data-names to the highest value, according to the rules for comparison
of operands in a relation condition.

b. When the DESCENDING phrase is specified, the sorted sequence will be from the highest value of the
contents of the data items identified by the key data-names to the lowest value, according to the rules for comparison
of operands in a relation condition.

(3) If the DUPLICATES phrase is specified and the contents of all the key data items associated with one data
record are equal to the contents of the corresponding key data items associated with one or more other data records,
then the order of return of these records is:

a. The order of the associated input files as specified in the SORT statement. Within a given input file the
order is that in which the records are accessed from that file.

b. The order in which these records are released by an input procedure, when an input procedure is
specified.

(4) If the DUPLICATES phrase is not specified and the contents of all the key data items associated with one
data record are equal to the contents of the corresponding key data items associated with one or more data records,
then the order of return of these records is undefined.

467

Interactive COBOL Language Reference & Developer’s Guide - Part One

(5) The collating sequence that applies to the comparison of the nonnumeric key data items specified is
determined at the beginning of the execution of the SORT statement in the following order of precedence:

a. First, the collating sequence established by the COLLATING SEQUENCE phrase, if specified, in the
SORT statement.

b. Second, the collating sequence established as the program collating sequence. In ICOBOL this is
always ASCII since the program collating sequence is ignored.

(6) The execution of a SORT statement consists of three distinct phases as follows:

a. Records are made available to the file referenced by file-name-1. This is achieved either by the
execution of RELEASE statements in the input procedure or by the implicit execution of READ statements for
file-name-2. When this phrase commences, the file referenced by file-name-2 must not be in the open mode. When
this phrase terminates, the file referenced by file-name-2 is not in the open mode.

b. The file referenced by file-name-1 is sequenced. No processing of the files referenced by file-name-2
and file-name-3 takes places during this phase.

c. The records of the file referenced by file-name-1 are made available in sorted order. The sorted records
are either written to the file referenced by file-name-3 or, by execution of a RETURN statement, are made available
for processing by the output procedure. When this phase commences, the file referenced by file-name-3 must not be
in the open mode. When this phase terminates, the file referenced by file-name-3 is not in the open mode.

(7) The input procedure may consist of any procedure needed to select, modify, or copy the records that are
made available one at a time by the RELEASE statement to the file referenced by file-name-1. The range includes
all statements that are executed as the result of a transfer of control by CALL, EXIT, GO TO, and PERFORM
statements in the range of the input procedure, as well as all statements in declarative procedures that are executed as
a result of the execution of statements in the range of the input procedure. The range of the input procedure must not
cause the execution of any MERGE, RETURN, or SORT statement.

(8) If an input procedure is specified, control is passed to the input procedure before the file referenced by
file-name-1 is sequenced by the SORT statement. The compiler inserts a return mechanism at the end of the last
statement in the input procedure and when control passes the last statement in the input procedure, the records that
have been released to the file referenced by file-name-1 are sorted.

(9) If the USING phrase is specified, all the records in the file(s) referenced by file-name-2 are transferred to
the file referenced by file-name-1. For each of the files referenced by file-name-2 the execution of the SORT
statement causes the following actions to be taken:

a. The processing of the file is initiated. The initiation is performed as if an OPEN statement with the
INPUT phrase had been executed.

b. The logical records are obtained and released to the sort operation. Each record is obtained as if a
READ statement with the NEXT and the AT END phrases had been executed. When the at end condition exists for
file-name-1, the processing for that file connector is terminated. If the file referenced by file-name-1 is described
with variable-length records, the size of any record released to file-name-1 is the size of that record when it was read
from file-name-2, regardless of the content of the data item referenced by the DEPENDING ON phrase of either a
RECORD IS VARYING clause or an OCCURS clause specified in the sort-merge file description entry for
file-name-1. If the size of the record read from the file referenced by file-name-2 is larger than the largest record
allowed in the file description entry for file-name-1 or is smaller than the smallest record allowed in the file
description entry for file-name-1, an exception condition exists and the execution of the SORT statement is
terminated.

For a relative file, the content of the relative key data items is undefined after the execution of the
SORT statement if file-name-2 is not referenced in the GIVING phrase.

468

PROCEDURE DIVISION (SORT)

c. The processing of the file is terminated. The termination is performed as if a CLOSE statement without
optional phrases had been executed. This termination is performed before the file referenced by file-name-1 is
sequenced by the SORT statement.

These implicit functions are performed such that any associated USE AFTER STANDARD EXCEPTION
procedures are executed; however, the execution of such a USE procedure must not cause the execution of any
statement manipulating the file referenced by, or accessing the record area associated with, file-name-2.

(10) The output procedure may consist of any procedure needed to select, modify, or copy records that are
made available one at a time by the RETURN statement in sorted order from the file referenced by file-name-1. The
range includes all statements that are executed as the result of a transfer of control by CALL, EXIT, GO TO, and
PERFORM statements in the range of the output procedure, as well as all statements in declarative procedures that
are executed as a result of the execution of statements in the range of the output procedure. The range of the output
procedure must not cause the execution on any MERGE, RELEASE, or SORT statement. See page 260, 312,
Explicit and Implicit specifications.

(11) If an output procedure is specified, control passes to it after the file referenced by file-name-1 has been
sequenced by the SORT statement. The compiler inserts a return mechanism at the end of the last statement in the
output procedure. When control passes the last statement in the output procedure, the return mechanism provides for
termination of the merge, and then passes control to the next executable statement after the SORT statement. Before
entering the output procedure, the sort procedure reaches a point at which it can select the next record in sorted order
when requested. The RETURN statements in the output procedure are the requests for the next record.

(12) If the GIVING phrase is specified, all the sorted records are written on the file referenced by file-name-3
as the implied output procedure for the SORT statement. For each of the files referenced by file-name-3, the
execution of the SORT statement causes the following actions to be taken:

a. The processing of the file is initiated. The initiation is performed as if an OPEN statement with the
OUTPUT phrase had been executed. This initiation is performed after the execution of any input procedure.

b. The sorted logical records are returned and written onto the file. Each record is written as if a WRITE
statement without any optional phrases had been executed. If the file referenced by file-name-3 is described with
variable length records, the size of any record written to file-name-3 is the size of that record when it was read from
file-name-1, regardless of the content of the data item referenced by the DEPENDING ON phrase of either a
RECORD IS VARYING clause or an OCCURS clause specified in the file description entry for file-name-3.

For a relative file, the relative key date for the first record returned contains the value '1'; for the second
record returned, the value '2', etc. After execution of the SORT statement, the content of the relative key data item
indicates the last record returned to the file.

c. The processing of the file is terminated. The termination is performed as if a CLOSE statement without
optional phrases had been executed.

These implicit functions are performed such that any associated USE AFTER STANDARD EXCEPTION
procedures are executed; however, the execution of such a USE procedure must not cause the execution of any
statement manipulating the file referenced by, or accessing the record area associated with, file-name-3. On the first
attempt to write beyond the externally defined boundaries of the file, any USE AFTER STANDARD EXCEPTION
procedure specified for that file is executed; if control is returned from that USE procedure or if no USE procedure is
specified, the processing of the file is terminated as in paragraph 12c above.

(13) If the file referenced by file-name-3 contains only fixed length records, any record in the file referenced by
file-name-1 containing fewer character positions that fixed length is space filled on the right beginning with the first
character position after the last character in the record when that record is returned to the file referenced by
file-name-3.

(14) The environment entry ICTMPDIR is used for temporary files.

469

Interactive COBOL Language Reference & Developer’s Guide - Part One

(15) An ACCEPT FROM EXCEPTION should be done after this operation to ensure no errors.

470

PROCEDURE DIVISION (ANSI 74 and ANSI 85 START)

E.54. START

E.54.1 Function

The START statement provides a basis for logical positioning within a relative, indexed, or INFOS file, or for a
fixed sequential file for subsequent sequential retrieval of records.

E.54.2 General Format

Format 1: (Relative or Indexed)

ANSI 74 and ANSI 85:

START file-name

[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-START]

VXCOBOL

START file-name

[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-START]

Format 2: (Relative or Indexed)

ANSI 74 and ANSI 85

START file-name [KEY IS key-name]

[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-START]

471

Interactive COBOL Language Reference & Developer’s Guide - Part One

Format 3: (Sequential)

ANSI 74 and ANSI 85

START file-name [END-START]

VXCOBOL

START file-name RECORD] [END-START]

E.54.3 Syntax Rules

(1) File-name must be the name of a file with a sequential or dynamic access.

(2) Key-name may be qualified if id-1 is a simple data item. Key-name may be qualified by the filename if it is
a composite data item.

(3) The INVALID KEY phrase must be specified if no applicable USE AFTER STANDARD EXCEPTION
procedure is specified for file-name.

For relative files:

(4) Key-name, if specified, must be the data item specified in the RELATIVE KEY phrase in the ACCESS
MODE clause of the associated file control entry.

For indexed and INFOS Files:

(5) If the KEY IS phrase is specified, key-name must reference

a. A key associated with file-name (in id-1 in the formats of the RECORD KEY or ALTERNATE
RECORD KEY).

b. Any data-item of category alphanumeric whose leftmost character position within a record of the file
corresponds to the leftmost character position of a record key or the root segment of a record key and whose length is
not greater than the length of that key or root segment.

(6) In the case where multiple alternate keys start at the same position, ICOBOL matches it up with the first key
whose size is larger than key-name. NOT ANSI STANDARD.

For sequential files:

(7) Identifier-1, identifier-2, integer-1 and integer-2 must be integers that are greater than or equal to zero.

(8) If RECORD is specified, the file description entry for file-name may not contain the RECORD IS
VARYING or RECORDING MODE IS VARIABLE clause. The file control entry must explicitly or implicitly be
ASSIGN TO DISK.

(9) If RECORD is specified, identifier-2 or integer-2 must be less than or equal to the maximum record size.

(10) For VXCOBOL, the file description entry associated with file-name must have the RECORDING MODE
IS FIXED.

472

PROCEDURE DIVISION (ANSI 74 and ANSI 85 START)

E.54.4 General Rules

(1) The file referenced by file-name must be open in the input or I-O mode at the time that the START
statement is executed. (See The OPEN Statement, page 411.)

(2) For Format 1, if the KEY phrase is not specified, the relational operator `IS EQUAL TO' is implied.

(3) The execution of the START statement does not alter the content of the record area.

(4) The execution of the START statement causes the value of the I-O status associated with file-name to be
updated.

(5) Transfer of control following the successful or unsuccessful execution of the START operation depends on
the presence or absence of the optional INVALID KEY and NOT INVALID KEY phrases in the START statement.

(6) Following the unsuccessful execution of a START statement, the file position indicator is set to indicate that
no valid next record has been established.

(7) The END-START phrase delimits the scope of the START statement.

For relative files:

(8) The type of comparison specified by the relational operator in the KEY phrase occurs between a key
associated with a record in the file referenced by file-name and a data item as specified in general rule 8. Numeric
comparison rules apply. (See Comparison of Numeric Operands, page 242.)

a. The file position indicator is set to the relative record number of the first logical record in the file whose
key satisfies the comparison.

b. If the comparison is not satisfied by any record in the file, the invalid key condition exists and the
execution of the START statement is unsuccessful.

(9) The comparison described in general rule 8 uses the data item referenced by the RELATIVE KEY phrase of
the ACCESS MODE clause associated with file-name.

For indexed files:

(10) The type of comparison specified by the relational operator in the KEY phrase occurs between a key
associated with a record in the file referenced by file-name-1 and a data item as specified in general rules 12 and 13.
The comparison is made on the ascending key of reference according to the collating sequence of the file. If the
operands are of unequal size, comparison proceeds as though the longer one was truncated on the right such that its
length is equal to that of the shorter. All other nonnumeric comparison rules apply. (See Comparison of
Nonnumeric Operands, page 242.)

a. The file position indicator is set to the value of the key of reference in the first logical record whose key
satisfies the comparison.

b. If the comparison is not satisfied by any record in the file, the invalid key condition exists and the
execution of the START statement is unsuccessful,

(11) A key of reference is established as follows:

a. If the KEY phrase is not specified, the primary record key specified for file-name becomes the key of
reference.

b. If the KEY phrase is specified, and data-name is specified as a record key for file-name, that record key
becomes the key of reference.

473

Interactive COBOL Language Reference & Developer’s Guide - Part One

c. If the KEY phrase is specified, and data-name is not specified as a record key for file-name, the record
key whose left-most character position corresponds to the left-most character position of the data item specified by
data-name, becomes the key of reference.

d. In the case where multiple alternate keys start at the same position ICOBOL matches it up with the first
key whose size is larger than data-name. NOT ANSI STANDARD.

This key of reference is used to establish the ordering of records for the purpose of this START statement, see
general rule 10; and, if the execution of the START statement is successful, the key of reference is also used for
subsequent sequential READ statements. (See The READ Statement, page 424, 426, 432.)

(12) If the KEY phrase is specified, the comparison described in general rule 5 uses:

a. The data-item specified by key-name, if the RECORD KEY or ALTERNATE RECORD KEY clause of
the file control entry for file-name does not include the equal sign (=).

b. The composite key specified by key-name, if the RECORD KEY or ALTERNATE RECORD KEY
clause of the file control entry for file-name includes the PLUS phrase.

c. The first occurrence of the data-item or composite key specified by key-name if the ALTERNATE
RECORD KEY clause of the file control entry for file-name includes the OCCURS phrase.

d. The root key of key_name if the ALTERNATE RECORD KEY clause of the file control entry for
file-name includes the ALSO phrase. (Ths is id-2 in the ALTERNATE RECORD KEY format.)

(13) If the KEY phrase is not specified, the comparison described in general rule 5 uses the data item or
composite key referenced in the RECORD KEY clause associated with file-name.

(14) The keyword FIRST is used to position to the first record in the file for the key of reference.

(15) The keyword LAST is used to position to the last record in the file for the key of reference.

For sequential files:

(16) If the RECORD phrase is specified. The file position indicator will be positioned to the character position
computed by:

 (record length * record number) + character offset

where record length is the fixed length of the records associated with file-name, record number is integer-1 or the
contents of identifier-1, and character offset is integer-2 or the contents of identifier-2. If the CHARACTER phrase
is omitted, integer-2 is assumed to be zero.

(17) If the CHARACTER phrase is specified without the RECORD phrase, positioning occurs as in general rule
16 where integer-1 is assumed to be zero.

(18) The first record in the file is assumed to be record zero, the second record is record 1. Etc. Thus to
position to the Nth record, integer-1 or identifier-1 should be set to N-1.

(19) The AFTER LAST phrase set the file position indicator following the last character of the file (i.e. end-of-
file), This is equivalent to the position immediately after an OPEN EXTEND.

(20) The FIRST CHARACTER phrase set the file position indicator to the first character of the file. This is
equivalent to the position immediately after an OPEN INPUT. The FIRST CHARACTER phrase is equivalent to
CHARACTER 0.

474

PROCEDURE DIVISION (ANSI 74 and ANSI 85 START)

For INFOS Files:

(21) The type of of comparison specified by the relational operator in the KEY phrase occurs between a key
associated with a record in the file referenced by file-name-1 and a data item as specified in general rules 22 and 23.
The comparison is made on the ascending key of reference according to the collating sequence of the file. If the
operands are of unequal size, comparison proceeds as though the longer one was truncated on the right such that its
length is equal to that of the shorter. All other nonnumeric comparison rules apply. (See Comparison of
Nonnumeric Operands, page 242.)

a. The file position indicator is set to the value of the key of reference in the first logical record whose key
satisfies the comparison.

b. If the comparison is not satisfied by any record in the file, the invalid key condition exists and the
execution of the START statement is unsuccessful,

(22) If the KEY phrase is not specified, the comparison described in general rule 5 uses the first data-item
referenced in the RECORD KEY clause associated with file-name.

(23) If the KEY phrase is specified, the key refers to the file's top level. If you have specified DUPLICATES
and the OCCURRENCE options in the file's SELECT clause, and the occurrence number is not zero, then START
uses the occurrence number to refer to the key.

(24) After a START statement, ICOBOL treats a READ NEXT as a READ STATIC.

(25) The FEEDBACK data-item is not updated by a START.

475

Interactive COBOL Language Reference & Developer’s Guide - Part One

476

PROCEDURE DIVISION (STOP)

 NOTE:
Using an extended open option to set timeout on your console does NOT
affect an ACCEPT or STOP statement. Extended open options are discussed
in the Interactive COBOL Developer’s Guide Section.

IC_SET_TIMEOUT is discussed in this document beginning on page 590, 591.

E.55. STOP

E.55.1 Function

The STOP statement causes a permanent or temporary suspension of the execution of the run unit. The literal
variation of the STOP statement is an obsolete element in Standard COBOL because it is to be deleted from the next
revision of Standard COBOL.

E.55.2 General Format

STOP

E.55.3 Syntax Rules

(1) Literal must not be a figurative constant that begins with the word ALL.

(2) If a STOP RUN statement appears in a consecutive sequence of imperative statements within a sentence, it
must appear as the last statement in that sequence.

(3) If literal is numeric, then it must be an unsigned integer.

E.55.4 General Rules

(1) If the RUN phrase is specified, execution of the run unit ceases and control is transferred to the operating
system. If the optional literal is specified, it is displayed before the run unit ceases.

(2) During the execution of a STOP RUN statement, an implicit CLOSE statement without any optional phrases
is executed for each file that is in the open mode in the run unit. Any USE procedures associated with any of these
files are not executed.

(3) A STOP RUN literal will cause a value to be returned as the exit code from ICRUN. If literal is numeric,
and 10 < literal < 255, then the integer portion of literal is returned; otherwise, the value 10 is returned. Exit codes
0 through 9 are reserved for the standard exit codes of the runtime system.

(4) If STOP literal is specified, the execution of the run unit is suspended and literal is communicated to the
operator. Continuation of the execution of the run unit begins with the next executable statement when a newline has
been entered or a STOP RUN is executed if an ESCAPE is entered.

(5) When using timeouts, ICOBOL handles them in the following order:

a. If a timeout had been set with the IC_SET_TIMEOUT builtin, then it is used; otherwise,

b. The global timeout as set with ICTIMEOUT will be used. The default case for global timeout is to wait
forever.

477

Interactive COBOL Language Reference & Developer’s Guide - Part One

478

PROCEDURE DIVISION (STRING)

E.56. STRING

E.56.1 Function

The STRING statement provides juxtaposition of the partial or complete contents of one or more data items into a
single data item.

E.56.2 General Format

STRING { }... INTO identifier-3

[WITH POINTER identifier-4]
[ON OVERFLOW imperative-statement-1]
[NOT ON OVERFLOW imperative-statement-2]
[END-STRING]

E.56.3 Syntax Rules

(1) Literal-1 or literal-2 must not be a figurative constant that begins with the word ALL.

(2) All literals must be described as nonnumeric literals, and all identifiers, except identifier-4, must be
described implicitly or explicitly as USAGE IS DISPLAY.

(3) Identifier-3 must not be reference modified.

(4) Identifier-3 must not represent an edited data item and must not be described with the JUSTIFIED clause.

(5) Identifier-4 must be described as an elementary numeric integer data item of sufficient size to contain a
value equal to 1 plus the size of the data item referenced by identifier-3. The symbol `P' may not be used in the
PICTURE character-string of identifier-4.

(6) Where identifier-1 or identifier-2 is an elementary numeric data item, it must be described as an integer
without the symbol `P' in its PICTURE character-string.

(7) Identifier-1 may not be a function identifier.

E.56.4 General Rules

(1) Identifier-1 or literal-1 represents the sending item. Identifier-3 represents the receiving item.

(2) Literal-2 or the content of the data item referenced by identifier-2 indicates the character(s) delimiting the
move. If the SIZE phrase is used, the content of the complete data item defined by identifier-1 or literal-1 is moved.
When a figurative constant is used as the delimiter, it is a single character nonnumeric literal.

(3) When a figurative constant is specified as literal-1 or literal-2, it refers to an implicit one character data
item whose usage is DISPLAY.

(4) When the STRING statement is executed, the transfer of data is governed by the following rules:

a. Those characters from literal-1 or from the content of the data item referenced by identifier-1 are
transferred to the data item referenced by identifier-3 in accordance with the rules for alphanumeric to alphanumeric
moves, except that no space filling will be provided.

479

Interactive COBOL Language Reference & Developer’s Guide - Part One

b. If the DELIMITED phrase is specified without the SIZE phrase, the content of the data item referenced
by identifier-1, or the value of literal-1, is transferred to the receiving data item in the sequence specified in the
STRING statement beginning with the left-most character and continuing from left to right until the end of the
sending data item is reached or the end of the receiving data item is reached or until the character(s) specified by
literal-2, or by the content of the data item referenced by identifier-2, are encountered. The character(s) specified by
literal-2 or by the data item referenced by identifier-2 are not transferred.

c. If the DELIMITED phrase is specified with the SIZE phrase, the entire content of literal-1, or the
content of the data item referenced by identifier-1, is transferred, in the sequence specified in the STRING statement,
to the data item referenced by identifier-3 until all data has been transferred or the end of the data item referenced by
identifier-3 has been reached.

This behavior is repeated until all occurrences of literal-1 or data items referenced by identifier-1 have been
processed.

(5) If the POINTER phrase is specified, the data item referenced by identifier-4 must be set to an initial value
greater than zero prior to the execution of the STRING statement.

(6) If the POINTER phrase is not specified, the following general rules apply as if the user had specified
identifier-4 referencing a data item with an initial value of 1.

(7) When characters are transferred to the data item referenced by identifier-3, the moves behave as though the
characters were moved one at a time from the source into the character positions of the data item referenced by
identifier-3 designated by the value of the data item referenced by identifier-1 (provided the value of the data item
referenced by identifier-4 does not exceed the length of the data item referenced by identifier-3), and then the data
item referenced by identifier-4 was increased by one prior to the move of the next character or prior to the end of
execution of the STRING statement. The value of the data item referenced by identifier-4 is changed during
execution of the STRING statement only by the behavior specified above.

(8) At the end of execution of the STRING statement, only the portion of the data item referenced by
identifier-3 that was referenced during the execution of the STRING statement is changed. All other portions of the
data item referenced by identifier-3 will contain data that was present before this execution of the STRING
statement.

(9) Before each move of a character to the data item referenced by identifier-3, if the value associated with the
data item referenced by identifier-4 is either less than one or exceeds the number of character positions in the data
item referenced by identifier-3, no (further) data is transferred to the data item referenced by identifier-3, and the
NOT ON OVERFLOW phrase, if specified, is ignored, and control is transferred to the end of the STRING
statement or, if the ON OVERFLOW phrase is specified, to imperative-statement-1. If control is transferred to
imperative-statement-1, execution continues according to the rules for each statement specified in
imperative-statement-1. If a procedure branching or conditional statement which causes explicit transfer of control
is executed, control is transferred in accordance with the rules for that statement; otherwise, upon completion of the
execution of imperative-statement-1, control is transferred to the end of the STRING statement.

(10) If, at the time of execution of a STRING statement with the NOT ON OVERFLOW phrase, the conditions
described in General Rule 9 are not encountered, after completion of the transfer of data according to the other
general rules, the ON OVERFLOW phrase, if specified, is ignored and control is transferred to the end of the
STRING statement or, if the NOT ON OVERFLOW phrase is specified to imperative-statement-2. If a procedure
branching or conditional statement which causes explicit transfer of control is executed, control is transferred in
accordance with the rules for that statement; otherwise, upon completion of the execution of imperative-statement-2,
control is transferred to the end of the STRING statement.

(11) If identifier-1 or identifier-2 occupies the same storage area as identifier-3, or identifier-4, or if identifier-3
and identifier-4 occupy the same storage area, the result of the execution of this statement is undefined, even if they
are defined by the same data description entry.

(12) The END-STRING phrase delimits the scope of the STRING statement.

480

PROCEDURE DIVISION (SUBTRACT)

E.57. SUBTRACT

E.57.1 Function

The SUBTRACT statement is used to subtract one, or the sum of two or more, numeric data items from an item, and
set the value of an item equal to the results.

E.57.2 General Format

Format 1:

SUBTRACT FROM { identifier-2 [ROUNDED] }...

[ON SIZE ERROR imperative-statement-1]
[NOT ON SIZE ERROR imperative-statement-2]
[END-SUBTRACT]

Format 2:

SUBTRACT GIVING { identifier-3 [ROUNDED] }...

[ON SIZE ERROR imperative-statement-1]
[NOT ON SIZE ERROR imperative-statement-2]
[END-SUBTRACT]

Format 3:

SUBTRACT identifier-1 FROM identifier-2 [ROUNDED]

[ON SIZE ERROR imperative-statement-1]
[NOT ON SIZE ERROR imperative-statement-2]
[END-SUBTRACT]

E.57.3 Syntax Rules

(1) Each identifier must refer to a numeric elementary item except that:

a. In Format 2, each identifier following the word GIVING must refer to either an elementary numeric item
or an elementary numeric edited item.

b. In Format 3, each identifier must refer to a group item.

(2) Each literal must be a numeric literal.

(3) The composite of operands must not contain more than 18 digits.

a. In Format 1, the composite of operands is determined by using all of the operands in a given statement.

b. In Format 2, the composite of operands is determined by using all of the operands in a given statement
excluding the data item that follows the word GIVING.

c. In Format 3, the composite of operands is determined separately for each pair of corresponding data
items.

481

Interactive COBOL Language Reference & Developer’s Guide - Part One

(4) CORR is an abbreviation for CORRESPONDING.

E.57.4 General Rules

(1) When Format 1 is used, the values of the operands preceding the word FROM are added together and the
sum is stored in a temporary data item. The value in this temporary data item is subtracted from the value of the data
item referenced by identifier-2, storing the result into the data item referenced by identifier-2, and repeating this
process for each successive occurrence of identifier-2 in the left-to-right order in which identifier-2 is specified.

(2) In Format 2, all literals and the values of the data items referenced by the identifiers preceding the word
FROM are added together, the sum is subtracted from literal-2 or the value of the data item referenced by
identifier-2, and the result of the subtraction is stored as the new content of each data item referenced by identifier-3.

(3) If Format 3 is used, data items in identifier-1 are subtracted from and stored into corresponding data items
in identifier-2.

(4) The compiler insures enough places are carried so as not to lose significant digits during execution.

(5) Additional rules and explanations relative to this statement are given under the appropriate paragraphs. (See
Scope of Statements, page 260; The ROUNDED Phrase, page 253; The ON SIZE ERROR Phrase, page 254; The
Arithmetic Statements, page 256; Overlapping Operands, page 256; Multiple Results in Arithmetic Statements, page
256, and The CORRESPONDING Phrase, page 254.)

482

PROCEDURE DIVISION (ANSI 74 and ANSI 85 UNDELETE)

E.58. UNDELETE (ANSI 74 and ANSI 85)

E.58.1 Function

The UNDELETE statement restores a logically deleted record to a relative or indexed file. UNDELETE is an
extension to ANSI COBOL.

E.58.2 General Format

UNDELETE file-name RECORD
[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-UNDELETE]

E.58.3 Syntax Rules

(1) File-name must be the name of a file with dynamic or random access.

(2) The INVALID KEY phrase must be specified for an UNDELETE statement which references a file for
which an applicable USE AFTER STANDARD EXCEPTION procedure is not specified.

E.58.4 General Rules

(1) The file referenced by file-name must be a mass storage file and must be open in the I-O mode at the time
the UNDELETE statement is executed.

(2) For a relative file, the file system logically restores to the file that record identified by the content of the
relative key data item associated with file-name. If the file does not contain the logically deleted record specified by
the key, the invalid key condition exists.

(2) For an indexed file, the file system logically restores to the file that record identified by the content of the
RECORD KEY data item associated with the file-name. If the file does not contain the logically deleted record
specified by the key, the invalid key condition exists.

(3) After the successful execution of an UNDELETE statement, the identified record has been logically restored
to the file and can now be accessed.

(4) The execution of a UNDELETE statement does not affect the content of the record area.

(5) The file position indicator is not affected by the execution of a UNDELETE statement.

(6) The execution of the UNDELETE statement causes the value of the I-O status associated with file-name to
be updated.

(7) Transfer of control following the successful or unsuccessful execution of the UNDELETE operation
depends on the presence or absence of the optional INVALID KEY and NOT INVALID KEY phrases in the
UNDELETE statement.

483

Interactive COBOL Language Reference & Developer’s Guide - Part One

484

PROCEDURE DIVISION (VXCOBOL UNDELETE)

E.59. UNDELETE (VXCOBOL)

E.59.1 Function

The UNDELETE statement restores a logically deleted record to an indexed or INFOS file. UNDELETE is an
extension to ANSI COBOL.

E.59.2 General Format

For indexed files:

UNDELETE file-name RECORD [KEY IS identifier-1]

[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-UNDELETE]

For INFOS files:

 UNDELETE file-name

[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-UNDELETE]

E.59.3 Syntax Rules

(1) File-name must be the name of a file with dynamic or random access.

(2) The INVALID KEY phrase must be specified for an UNDELETE statement which references a file for
which an applicable USE AFTER STANDARD EXCEPTION procedure is not specified.

(3) Identifier-1 must be the data-name specified as the RECORD KEY for the SELECT clause for file-name.

E.59.4 General Rules

(1) The file referenced by file-name must be a mass storage file and must be open in the I-O mode at the time
the UNDELETE statement is executed.

(2) The execution of a UNDELETE statement does not affect the content of the record area.

(3) The execution of the UNDELETE statement causes the value of the I-O status associated with file-name to
be updated.

485

Interactive COBOL Language Reference & Developer’s Guide - Part One

(4) Transfer of control following the successful or unsuccessful execution of the UNDELETE operation
depends on the presence or absence of the optional INVALID KEY and NOT INVALID KEY phrases in the
UNDELETE statement.

For indexed files:

(5) For an indexed file, the file system logically restores to the file that record identified by the content of the
RECORD KEY data-item associated with the file-name. If the file does not contain the logically deleted record
specified by the key, the invalid key condition exists.

(6) After the successful execution of an UNDELETE LOGICAL GLOBAL the data record identified has been
logically restored to the file.

(7) If LOCAL is specified, it is ignored. If LOCAL GLOBAL is specified, it is treated as GLOBAL.

(8) If no type of restoration is specified, LOGICAL GLOBAL is assumed.

(9) The file position indicator is not affected by the execution of a UNDELETE statement.

For INFOS files:

(10) If the relative option and the KEY series phrase are omitted, the default is STATIC.

(11) The occurrence number is used.

(12) FEEDBACK is not used and is not updated.

(13) KEY LENGTH is used.

(14) The record to UNDELETE is determined according to what is specified in the relative option phrase
and/or the KEY series phrase. The specification can be implicit if the program uses the defaults or explicit if the
KEY or path is fully specified.

(15) FIX POSITION causes the record pointer to move from the current position to the position specified in this
statement. RETAIN position causes the record position to remain at the position it was on before the execution of
this statement. RETAIN is the default.

(16) The relative motion option without the KEY series phrase allows access to the index file relative to that
file's current record position.

(17) Using the KEY series phrase without the relative motion option cause the key path specified to begin with
the top index in the hierarchy and follow a downward motion.

(18) If the KEY series phrase is specified, each key, identifier-2, must be declared in the SELECT statement for
file-name. If the relative motion option and KEY series phrase at both specified only UP, DOWN, and STATIC are
allowed. The relative motion option is processed first and the key path is used. If both are omitted, STATIC is the
default.

(19) If LOGICAL LOCAL is specified, the key and partial record are logically restored.

(20) If LOGICAL GLOBAL is specified, the data record is logically restored.

(21) If LOGICAL LOCAL GLOBAL is specified, the key, partial record, and the data record are logically
restored.

(22) If no type of restoration is specified, LOGICAL LOCAL GLOBAL is the default.

486

PROCEDURE DIVISION (UNLOCK)

E.60. UNLOCK

E.60.1 Function

The UNLOCK statement unlocks all records that have been locked by the program on a specified file connector.
UNLOCK is an extension to ANSI COBOL.

E.60.2 General Format

UNLOCK file-name

E.60.3 Syntax Rules

(1) File-name must be the name of a file with random or dynamic access.

E.60.4 General Rules

(1) The file referenced by file-name must be a mass storage file and must be open in the input or I-O mode at
the time of the execution of this statement.

(2) After the successful execution of an UNLOCK statement, all records that were locked in the file specified
by file-name by this program are now released.

(3) The execution of a UNLOCK statement does not affect the content of the record area.

(4) The file position indicator is not affected by the execution of an UNLOCK statement.

(5) If no records are locked no error is detected and the UNLOCK is successful.

(6) The execution of the UNLOCK statement causes the value of the I-O status associated with file-name to be
updated.

487

Interactive COBOL Language Reference & Developer’s Guide - Part One

488

PROCEDURE DIVISION (UNSTRING)

E.61. UNSTRING

E.61.1 Function

The UNSTRING statement causes contiguous data in a sending field to be separated and placed into multiple
receiving fields.

E.61.2 General Format

UNSTRING identifier-1 [DELIMITED BY [ALL]]...]

INTO { identifier-4
[DELIMITER IN identifier-5]
[COUNT IN identifier-6] }...

[WITH POINTER identifier-7]
[TALLYING IN identifier-8]
[ON OVERFLOW imperative-statement-1]
[NOT ON OVERFLOW imperative-statement-2]
[END-UNSTRING]

E.61.3 Syntax Rules

(1) Literal-1 and literal-2 must be nonnumeric literals and neither can be a figurative constant that begins with
the word ALL.

(2) Identifier-1, identifier-2, identifier-3, and identifier-5 must reference data items described, implicitly or
explicitly, as category alphanumeric.

(3) Identifier-4 may be described as either the category alphabetic, alphanumeric, or numeric (except that the
symbol `P' may not be used in the PICTURE character-string), and must be described implicitly or explicitly, as
USAGE IS DISPLAY.

(4) Identifier-6 and identifier-8 must reference integer data items (except that the symbol `P' may not be used in
the PICTURE character-string).

(5) Identifier-7 must be described as an elementary numeric integer data item of sufficient size to contain a
value equal to 1 plus the size of the data item referenced by identifier-1. The symbol `P' may not be used in the
PICTURE character-string of identifier-7.

(6) The DELIMITER IN phrase and the COUNT IN phrase may be specified only if the DELIMITED BY
phrase is specified.

(7) Identifier-1 must not be reference modified.

E.61.4 General Rules

(1) All references to identifier-2 and literal-1 apply equally to identifier-3 and literal-2, respectively, and all
recursions thereof.

(2) The data item referenced by identifier-1 represents the sending area.

(3) The data item referenced by identifier-4 represents the data receiving area. The data item referenced by
identifier-5 represents the receiving area for delimiters.

(4) Literal-1 or the data item referenced by identifier-2 specifies a delimiter.

489

Interactive COBOL Language Reference & Developer’s Guide - Part One

(5) The data item referenced by identifier-6 represents the count of the number of characters within the data
item referenced by identifier-1 isolated by the delimiters for the move to the data item referenced by identifier-4.
This value does not include a count of the delimiter character(s).

(6) The data item referenced by identifier-7 contains a value that indicates a relative character position within
the area referenced by identifier-1.

(7) The data item referenced by identifier-8 is a counter which is incremented by 1 for each occurrence of the
data item referenced by identifier-4 accessed during the UNSTRING operation.

(8) When a figurative constant is used as the delimiter, it stands for a single character nonnumeric literal.

When the ALL phrase is specified, one occurrence or two or more contiguous occurrences of literal-1
(figurative constant or not) or the content of the data item referenced by identifier-2 are treated as if they were only
one occurrence, and one occurrence of literal-1 or the data item referenced by identifier-2 is moved to the receiving
data item according to the rules in General Rule 13d.

(9) When any examination encounters two contiguous delimiters, the current receiving area is space filled if it is
described as alphabetic or alphanumeric, or zero filled if it is described as numeric.

(10) Literal-1 or the content of the data item referenced by identifier-2 can contain any character in the
computer's character set.

(11) Each literal-1 or the data item referenced by identifier-2 represents one delimiter. When a delimiter
contains two or more characters, all of the characters must be present in contiguous positions of the sending item,
and in the order given, to be recognized as a delimiter.

(12) When two or more delimiters are specified in the DELIMITED BY phrase, an OR condition exists
between them. Each delimiter is compared to the sending field. If a match occurs, the character(s) in the sending
field is considered to be a single delimiter. No character(s) in the sending field can be considered a part of more than
one delimiter.

Each delimiter is applied to the sending field in the sequence specified in the UNSTRING statement.

(13) When the UNSTRING statement is initiated, the current receiving area is the data item referenced by
identifier-4. Data is transferred from the data item referenced by identifier-1 to the data item referenced by
identifier-4 according to the following rules:

a. If the POINTER phrase is specified, the string of characters referenced by identifier-1 is examined
beginning with the relative character position indicated by the content of the data item referenced by identifier-7. If
the POINTER phrase is not specified, the string of characters is examined beginning with the left-most character
position.

b. If the DELIMITED BY phrase is specified, the examination proceeds left to right until either a delimiter
specified by literal-1 or the value of the data item referenced by identifier-2 is encountered. (See General Rule 11.)
If the DELIMITED BY phrase is not specified, the number of characters examined is equal to the size of the current
receiving area. However, if the sign of the receiving item is defined as occupying a separate character position, the
number of characters examined is one less than the size of the current receiving area.

If the end of the data item referenced by identifier-1 is encountered before the delimiting condition
is met, the examination terminates with the last character examined.

c. The characters thus examined (excluding the delimiting character(s), if any) are treated as an elementary
alphanumeric data item, and are moved into the current receiving area according to the rules for the MOVE
statement.

d. If the DELIMITER IN phrase is specified the delimiting character(s) are treated as an elementary
alphanumeric data item and are moved into the data item referenced by identifier-5 according to the rules for the

490

PROCEDURE DIVISION (UNSTRING)

MOVE statement. If the delimiting condition is the end of the data item referenced by identifier-1, then the data item
referenced by identifier-5 is space filled.

e. If the COUNT IN phrase is specified, a value equal to the number of characters thus examined
(excluding the delimiter character(s), if any) is moved into the area referenced by identifier-6 according to the rules
for an elementary move.

f. If the DELIMITED BY phrase is specified the string of characters is further examined beginning with the
first character to the right of the delimiter. If the DELIMITED BY phrase is not specified the string of characters is
further examined beginning with the character to the right of the last character transferred.

g. After data is transferred to the data item referenced by identifier-4, the current receiving area is the data
item referenced by the next recurrence of identifier-4. The behavior described in paragraphs 13b through 13f is
repeated until either all the characters are exhausted in the data item referenced by identifier-1, or until there are no
more receiving areas.

(14) The initialization of the contents of the data items associated with the POINTER phrase or the TALLYING
phrase is the responsibility of the user.

(15) The content of the data item referenced by identifier-7 will be incremented by one for each character
examined in the data item referenced by identifier-1. When the execution of an UNSTRING statement with a
POINTER phrase is completed, the content of the data item referenced by identifier-7 will contain a value equal to
the initial value plus the number of characters examined in the data item referenced by identifier-1.

(16) When the execution of an UNSTRING statement with a TALLYING phrase is completed, the content of
the data item referenced by identifier-8 contains a value equal to its value at the beginning of the execution of the
statement plus a value equal to the number of identifier-4 receiving data items accessed during execution of the
statement.

(17) Either of the following situations causes an overflow condition:

a. An UNSTRING is initiated, and the value in the data item referenced by identifier-7 is less than 1 or
greater than the size of the data item referenced by identifier-1.

b. If, during execution of an UNSTRING statement, all receiving areas have been acted upon, and the data
item referenced by identifier-1 contains characters that have not been examined.

(18) When an overflow condition exists, the UNSTRING operation is terminated, the NOT ON OVERFLOW
phrase, if specified, is ignored and control is transferred to the end of the UNSTRING statement or, if the ON
OVERFLOW phrase is specified, to imperative-statement-1. If control is transferred to imperative-statement-1,
execution continues according to the rules for each statement specified in imperative-statement-1. If a procedure
branching or conditional statement which causes explicit transfer of control is executed, control is transferred in
accordance with the rules for that statement; otherwise, upon completion of the execution of imperative-statement-1,
control is transferred to the end of the UNSTRING statement.

(19) If, at the time of execution of an UNSTRING statement, the conditions described in General Rule 17 are
not encountered, after completion of the transfer of data according to the other general rules, the ON OVERFLOW
phrase, if specified, is ignored and control is transferred to the end of the UNSTRING statement or, if the NOT ON
OVERFLOW phrase is specified to imperative-statement-2. If control is transferred to imperative-statement-2,
execution continues according to the rules for each statement specified in imperative-statement-2. If a procedure
branching or conditional statement which causes explicit transfer of control is executed, control is transferred in
accordance with the rules for that statement; otherwise, upon completion of the execution of imperative-statement-2,
control is transferred to the end of the UNSTRING statement.

(20) If identifier-1, identifier-2, or identifier-3, occupies the same storage area as identifier-4, identifier-5,
identifier-6, identifier-7, or identifier-8, or if identifier-4, identifier-5, or identifier-6, occupies the same storage area
as identifier-7 or identifier-8, or if identifier-7 and identifier-8 occupy the same storage area, the result of the
execution of this statement is undefined, even if they are defined by the same data description entry.

491

Interactive COBOL Language Reference & Developer’s Guide - Part One

(21) The END-UNSTRING phrase delimits the scope of the UNSTRING statement.

492

PROCEDURE DIVISION (USE)

E.62. USE

E.62.1 Function

The USE statement specifies procedures for input-output error handling that are in addition to the standard
procedures provided by the input-output control system.

E.62.2 General Format

USE AFTER STANDARD PROCEDURE ON

E.62.3 Syntax Rules

(1) A USE statement, when present, must immediately follow a section header in the declaratives portion of the
Procedure Division and must appear in a sentence by itself. The remainder of the section must consist of zero, one,
or more procedural paragraphs that define the procedures to be used.

(2) The USE statement is never executed; it merely defines the conditions calling for the execution of the USE
procedures.

(3) Appearance of file-name in a USE statement must not cause the simultaneous request for execution of more
than one USE procedure.

(4) The words ERROR and EXCEPTION are synonymous and may be used interchangeably.

(5) The files implicitly or explicitly referenced in the USE statement need not all have the same organization or
access.

(6) The INPUT, OUTPUT, I-O, or EXTEND phrases may each be specified only once in the declaratives
portion of a given Procedure Division.

E.62.4 General Rules

(1) A declarative is invoked when any of the conditions described in the USE statement which prefaces the
declarative occurs while the program is being executed.

(2) Within a declarative procedure, there must be no reference to any nondeclarative procedures.

(3) Procedure-names associated with a USE statement may be referenced in a different declarative section or in
a nondeclarative procedure only with a PERFORM statement. (A GO TO statement may be used if the -G g
compiler switch is used, but this is not recommended.)

(4) When file-name is specified explicitly, no other USE statement applies to file-name.

(5) The procedures associated with a USE statement are executed by the input-output control system after
completion of the standard input-output exception routine upon the unsuccessful execution of an input-output
operation unless an AT END or INVALID KEY phrase takes precedence. The rules concerning when the
procedures are executed are as follows:

493

Interactive COBOL Language Reference & Developer’s Guide - Part One

a. If file-name is specified, the associated procedure is executed when the condition described in the USE
statement occurs.

b. If INPUT is specified, the associated procedure is executed when the condition described in the USE
statement occurs for any file open in the input mode or in the process of being opened in the input mode, except
those files referenced by file-name in another USE statement specifying the same condition.

c. If OUTPUT is specified, the associated procedure is executed when the condition described in the USE
statement occurs for any file open in the output mode or in the process of being opened in the output mode, except
those files referenced by file-name in another USE statement specifying the same condition.

d. If I-O is specified, the associated procedure is executed when the condition described in the USE
statement occurs for any file open in the I-O mode or in the process of being opened in the I-O mode, except those
files referenced by file-name in another USE statement specifying the same condition.

e. If EXTEND is specified, the associated procedure is executed when the condition described in the USE
statement occurs for any file open in the extend mode or in the process of being opened in the extend mode, except
those files referenced by file-name in another USE statement specifying the same condition.

(6) After execution of the USE procedure, control is transferred to the invoking routine in the input-output
control system and the input-output control system returns control to the next executable statement following the
input-output statement whose execution caused the exception.

(7) Within a USE procedure, there must not be the execution of any statement that would cause the execution of
a USE procedure that had previously been invoked and had not yet returned control to the invoking routine.

E.62.5 Example

The following example illustrates how USE statements define the conditions under which a declarative
procedure is to be executed. The first USE statement says to execute that declarative procedure for any I-O error
encountered with the file PATIENT-FILE. The other four are for any file except PATIENT-FILE, because
PATIENT-FILE is named in another USE statement.

494

PROCEDURE DIVISION (USE)

DECLARATIVES.
PATIENT-ERROR SECTION. USE AFTER ERROR PROCEDURE ON PATIENT-FILE.
**
*** Any I-O error on PATIENT-FILE.
**
PROCESS-PATIENT-FILE-ERROR.

IF PATIENT-FILE-STATUS = OPEN-ERROR
MOVE PATIENT-FILE-STATUS TO FILE-ERROR-STATUS,
MOVE "PATIENTFILE" TO FILE-ERROR-NAME,
MOVE "PATIENT FILE MAINTENANCE" TO PROGRAM-NAME,
DISPLAY FILE-ACCESS-ERROR-SCREEN,
STOP RUN.

INPUT-ERROR-FILE SECTION. USE AFTER ERROR PROCEDURE ON INPUT.

*** Any INPUT error for any file except PATIENT-FILE.

PROCESS-INPUT-ERROR.
 ACCEPT DECL-EXCEPT-CODE FROM EXCEPTION STATUS.
 PERFORM DISPLAY-ERROR-SCREEN.
 STOP RUN.

OUTPUT-ERROR-FILE SECTION. USE AFTER ERROR PROCEDURE ON OUTPUT.
**
*** Any OUTPUT error for any file except PATIENT-FILE.
**
PROCESS-OUTPUT-ERROR.
 MOVE 5 TO SCR-LINE.
 MOVE 10 TO SCR-COL.
 MOVE 15 TO SCR-HEIGHT.
 MOVE 60 TO SCR-WIDTH.
 MOVE "DECLARE ERROR" TO SCR-LABEL.
 CALL "SD_NEW_WINDOW" USING SCR-LINE, SCR-COL, SCR-HEIGHT,
 SCR-WIDTH, SCR-LABEL.
 DISPLAY ERROR-SCREEN.
 ACCEPT CLRSCR.
 CALL "SD_REMOVE_WINDOW".

INPUT-OUTPUT-FILE SECTION. USE AFTER ERROR PROCEDURE ON I-O.
**
*** Any OUTPUT error for any file except PATIENT-FILE.
**
PROCESS-IO-ERROR.
 ACCEPT DECL-EXCEPT-CODE FROM EXCEPTION STATUS.
 PERFORM DISPLAY-ERROR-SCREEN.
 STOP RUN.

EXTEND-FILE SECTION. USE AFTER ERROR PROCEDURE ON EXTEND.
**
*** Any OUTPUT error for any file except PATIENT-FILE.
**
 ACCEPT DECL-EXCEPT-CODE FROM EXCEPTION STATUS.
 DISPLAY "Please inform the database manager"
 DISPLAY " of the following error:".
 DISPLAY "Status = " DECL-EXCEPT-CODE.
 STOP RUN.

END DECLARATIVES.

EXAMPLE 29. Using Declaratives

495

Interactive COBOL Language Reference & Developer’s Guide - Part One

496

PROCEDURE DIVISION (WRITE)

E.63. WRITE

E.63.1 Function

The WRITE statement releases a logical record for an output or input-output (in random or dynamic access mode)
file. It can also be used for vertical positioning of lines within a logical page (on a sequential file). IMMEDIATE is
an extension to ANSI COBOL.

E.63.2 General Format (ANSI 74 and ANSI 85)

For sequential files:

WRITE record-name-1 [IMMEDIATE] [FROM identifier-1]

[AT imperative-statement-1]

[NOT AT imperative-statement-2]

[END-WRITE]

For relative and indexed files:

WRITE record-name-1 [IMMEDIATE] [FROM identifier-1]
[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-WRITE]

E.63.3 General Format (VXCOBOL)

For sequential files:

WRITE record-name-1 [IMMEDIATE] [FROM]

[AT imperative-statement-1]

[NOT AT imperative-statement-2]

[END-WRITE]

497

Interactive COBOL Language Reference & Developer’s Guide - Part One

For relative files:

WRITE record-name-1 [IMMEDIATE] [FROM]

[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-WRITE]

For indexed files:

WRITE record-name-1 [IMMEDIATE] [FROM] [KEY IS identifier-3]

 [INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-WRITE]

For INFOS files:

 WRITE [INVERTED] record-name-1 [IMMEDIATE]

[SUPPRESS [PARTIAL RECORD] [DATA RECORD]]

[INVALID KEY imperative-statement-1]
[NOT INVALID KEY imperative-statement-2]
[END-WRITE]

E.63.4 Syntax Rules

(1) Record-name-1 and identifier-1 must not refer to the same storage area.

(2) Record-name-1 is the name of a logical record in the File Section of the Data Division and may be qualified.

(3) Identifier-2 must reference an integer data item.

(4) Integer-1 must be positive or zero.

(5) The ADVANCING phrase may only be specified for files whose file control entry specifies ASSIGN TO
PRINTER, PRINTER-1, or DISPLAY.

(6) The phrases ADVANCING PAGE and END-OF-PAGE must not both be specified in a single WRITE
statement.

(7) If the END-OF-PAGE or the NOT END-OF-PAGE phrase is specified, the LINAGE clause must be
specified in the file description entry for the associated file.

(8) The words END-OF-PAGE and EOP are equivalent.

For VXCOBOL

(9) If mnemonic-name is specified, it must reference a line printer control channel as specified in the
SPECIAL-NAMES paragraph of the Environment Division.

498

PROCEDURE DIVISION (WRITE)

(10) For an indexed file, identifier-3 must be the RECORD KEY specified in the SELECT for file-name. For
an INFOS file, identifier-3 must be a data-name specified as a RECORD KEY in the SELECT for file-name.

E.63.5 General Rules

(1) The file referenced by the file-name associated with record-name-1 must be open in the output, I-O (for
random or dynamic access), or extend mode at the time of the execution of this statement.

(2) The logical record released by the successful execution of the WRITE statement is no longer available in the
record area unless the file-name associated with record-name-1 is specified in a SAME RECORD AREA clause.
The logical record is also available to the program as a record of other files referenced in the SAME RECORD
AREA clause as the associated output file, as well as the file associated with record-name-1.

(3) The result of the execution of a WRITE statement with the FROM phrase is equivalent to the execution of
the following statements in the order specified:

a. The statement:

MOVE identifier-1 TO record-name-1

according to the rules specified for the MOVE statement.

b. The same WRITE statement without the FROM phrase.

(4) After the execution of the WRITE statement is complete, the information in the area referenced by
identifier-1 is available, even though the information in the area referenced by record-name-1 is not available except
as specified by the SAME RECORD AREA clause.

(5) The file position indicator is not affected by the execution of a WRITE statement, except for INFOS files
with the FIX POSITION phrase.

(6) The execution of the WRITE statement causes the value of the I-O status of the file-name associated with
record-name-1 to be updated.

(7) The execution of the WRITE statement releases a logical record to the operating system.

(8) The number of character positions in the record referenced by record-name-1 must not be larger than the
largest or smaller than the smallest number of character positions allowed by the RECORD IS VARYING clause
associated with the file-name associated with record-name-1. In either of these cases the execution of the WRITE
statement is unsuccessful, the WRITE operation does not take place, the content of the record area is unaffected and
the I-O status of the file associated with record-name-1 is set to a value indicating the cause of the condition.

(9) If, during the execution of the WRITE statement with the NOT END-OF-PAGE or NOT INVALID KEY
phrase, and the end-of-page or invalid key condition does not occur, control is transferred to imperative-statement-2
at the appropriate time as follows:

a. If the execution of the WRITE statement is successful, after the record is written and after updating the
I-O status of the file-name associate with record-name-1.

b. If the execution of the WRITE statement is unsuccessful, after updating the I-O status of the file-name
associated with record-name-1, and after executing the procedure, if any, specified by a USE AFTER STANDARD
EXCEPTION PROCEDURE statement applicable to the file-name associated with file-name-1.

(10) The IMMEDIATE option causes the WRITE to immediately flush the new information to disk. Normally
this information could be held in internal buffers before being flushed to disk. This option increases file security at
the expense of performance. The IMMEDIATE option is ignored for INFOS files.

499

Interactive COBOL Language Reference & Developer’s Guide - Part One

(11) The END-WRITE phrase delimits the scope of the WRITE statement.

For sequential files:

(12) The successor relationship of a sequential file is established by the order of execution of WRITE
statements when the file is created. The relationship does not change except when records are added to the end of a
file.

(13) When a sequential file is open in the extend mode, the execution of the WRITE statement will add records
to the end of the file as though the file were open in the output mode. If there are records in the file, the first record
written after the execution of the OPEN statement with the EXTEND phrase is the successor of the last record in the
file.

(14) For a sequential file, when an attempt is made to write beyond the externally defined boundaries of a
sequential file, an exception condition exists and the contents of the record area are unaffected. The following
actions take place:

a. The value of the I-O status of the file-name associated with record-name-1 is set to a value indicating a
boundary violation. (See I-O Status, page 267.)

b. If a USE AFTER STANDARD EXCEPTION declarative is explicitly or implicitly specified for the
file-name associated with record-name-1, that declarative procedure will then be executed.

c. If a USE AFTER STANDARD EXCEPTION declarative is not explicitly or implicitly specified for the
file-name associated with record-name-1, the run unit will be terminated with a "Fatal I/O Error".

(15) For a sequential file, both the ADVANCING phrase and the END-OF-PAGE phrase allow control of the
vertical positioning of each line on a representation of a printed page. If the ADVANCING phrase is not used,
automatic advancing will be provided to act as if the user had specified AFTER ADVANCING 1 LINE. If the
ADVANCING phrase is used, advancing is provided as follows:

a. If integer-1 or the value of the data item referenced by identifier-2 is positive, the representation of the
printed page is advanced the number of lines equal to that value.

b. If the value of the data item referenced by identifier-2 is negative, the results are undefined.

c. If integer-1 or the value of the data item referenced by identifier-2 is zero, no repositioning of the
representation of the printed page is performed.

d. For VXCOBOL, if mnemonic-name is specified the representation of the printed page is advanced
according to the rules of the line printer control channel.

e. If the BEFORE phrase is used, the line is presented before the representation of the printed page is
advanced according to rules a, b, and c above.

f. If the AFTER phrase is used, the line is presented after the representation of the printed page is advanced
according to rules a, b, and c above.

g. If PAGE is specified and the LINAGE clause is specified in the associated file description entry, the
record is presented on the logical page before or after (depending on the phrase used) the device is repositioned to
the next logical page as specified in the LINAGE clause.

h. If PAGE is specified and the LINAGE clause is not specified in the associated file description entry, the
record is presented on the physical page before or after (depending on the phrase used) the device is repositioned to
the next physical page. The repositioning to the next physical page is accomplished in accordance with an
implementor-defined technique. If physical page has no meaning in conjunction with a specific device, advancing
will be provided by the implementor to act as if the user had specified BEFORE or AFTER (depending on the phrase
used) ADVANCING 1 LINE.

500

PROCEDURE DIVISION (WRITE)

(16) If the logical end of the representation of the printed page is reached during the execution of a WRITE
statement with the END-OF-PAGE phrase, imperative-statement-1 specified in the END-OF-PAGE phrase is
executed. The logical end is specified in the LINAGE clause associated with record-name-1.

(17) An end-of-page condition occurs when the execution of a given WRITE statement with the
END-OF-PAGE phrase causes printing or spacing within the footing area of a page body. This occurs when the
execution of such a WRITE statement causes the LINAGE-COUNTER to equal or exceed the value specified by
integer-2 or the data item referenced by data-name-2 of the LINKAGE clause if specified. In this case, the WRITE
statement is executed and then imperative-statement-1 in the END-OF-PAGE phrase is executed.

An automatic page overflow condition occurs when the execution of a given WRITE statement (with or
without an END-OF-PAGE phrase) cannot be fully accommodated within the current page body.

This occurs when a WRITE statement, if executed, would cause the LINAGE-COUNTER to exceed the
value specified by integer-1 or the data item referenced by data-name-1 of the LINAGE clause. In this case, the
record is presented on the logical page before or after (depending on the phrase used) the device is repositioned to
the first line that can be written on the next logical page as specified in the LINAGE clause. Imperative-statement-1
in the END-OF-PAGE phrase, if specified, is executed after the record is written and the device has been
repositioned.

A page overflow condition occurs when the execution of a given WRITE statement would cause
LINAGE-COUNTER to simultaneously exceed the value of both integer-2 or the data item referenced by
data-name-2 of the LINAGE clause and integer-1 or the data item referenced by data-name-1 of the LINAGE
clause.

(18) The runtime treats all WRITE statements for ASSIGN TO PRINTER or ASSIGN TO DISPLAY files
which are opened on the current console as if they are going to a DG terminal. See the DISPLAY statement for more
information.

(19) WRITE's to data-sensitive files generate the following kind of advancing information assuming "data"
represents the record to be written:

ANSI 74 ANSI 85

BEFORE
ADVANCIN
G

On Windows On Linux On Windows On Linux

PAGE data<cr><ff> data<ff> data<cr><ff> data<ff>

0 LINES data<cr><cr> data<cr> data data

1 LINES data<cr><lf> data<lf> data<cr><lf> data<lf>

2 LINES data<cr><lf><cr><lf> data<lf><lf> data<cr><lf><cr><lf> data<lf><lf>

AFTER
ADVANCIN
G

On Windows On Linux On Windows On Linux

PAGE <cr><ff>data<cr><cr> <ff>data<cr> <cr><ff>data <ff>data

0 LINES <cr><cr>data<cr><cr> <cr>data<cr> data data

1 LINES <cr><lf>data<cr><cr> <lf>data<cr> <cr><lf>data <lf>data

2 LINES <cr><lf><cr><lf>data<cr><cr> <lf><lf>data<cr> <cr><lf><cr><lf>data <lf><lf>data

NOTE: Newline <nl> and linefeed <lf> are equivalent

TABLE 31. ANSI 74 and ANSI 85 ADVANCING Definitions.

501

Interactive COBOL Language Reference & Developer’s Guide - Part One

VXCOBOL

BEFORE
ADVANCING

On Windows On Linux

PAGE data<cr><ff> <cr>data<ff>

0 LINES data <cr>data

1 LINES data<cr><lf> <cr>data<lf>

2 LINES data<cr><lf><cr><lf> <cr>data<lf><lf>

AFTER
ADVANCING

On Windows On Linux

PAGE <cr><ff>data <cr><ff>data

0 LINES data <cr>data

1 LINES <cr><lf>data <cr><lf>data

2 LINES <cr><lf><cr><lf>data <cr><lf><lf>data

NOTE: Newline <nl> and linefeed <lf> are equivalent

TABLE 32. VXCOBOL ADVANCING Definitions.

(20) In addition VXCOBOL supports WRITE with a CHANNEL option. The CHANNEL option causes the
following advancing information to be generated:

BEFORE
ADVANC-
ING

CHANNEL <cr>data<^R><channel-code>

AFTER
ADVANC-
ING

CHANNEL <cr><^R><channel-code>data

TABLE 33. VXCOBOL CHANNEL ADVANCING Definitions.

Channels are the values 1 through 12 generating ASCII codes of "@" through "K":

Channel ASCII code Channel ASCII code Channel ASCII code

1 @ 5 D 9 H

2 A 6 E 10 I

3 B 7 F 11 J

4 C 8 G 12 K

(21) When using timeouts, ICOBOL handles them in the following order for WRITE statements:

a. If a timeout was set on the OPEN with the extended open option for timeout, then it is used; otherwise,

b. The default timeout for this particular device class is used.

NOTE: Extended open options are discussed in the Developer’s Guide section beginning on page 796.

502

PROCEDURE DIVISION (WRITE)

For relative files:

(22) When a relative file is opened in the output mode, records may be placed into the file by one of the
following:

a. If the access mode is sequential, the WRITE statement causes a record to be released to the file system.
The first record has a relative record number of 1, and subsequent records released have relative record numbers of
2, 3, 4, If the RELATIVE KEY phrase is specified for the file-name associated with record-name-1, the relative
record number of the record being released is moved into the relative key data item by the file system during
execution of the WRITE statement according to the rules for the MOVE statement. (See The MOVE statement,
page 406.)

b. If the access mode is random or dynamic prior to the execution of the WRITE statement the value of the
relative key data item must be initialized by the program with the relative record number to be associated with the
record in the record area. That record is then released to the file system by execution of the WRITE statement.

(23) When a relative file is opened in the I-O mode and the access mode is random or dynamic records are to be
inserted in the associated file. The value of the relative key data item must be initialized by the program with the
relative record number to be associated with the record in the record area. Execution of the WRITE statement then
causes the content of the record area to be released to the file system.

(24) When a relative file is open in extend mode, records are inserted into the file. The first record released to
the file system has a relative record number one greater than the highest relative record number existing on the file.
Subsequent records released to the file system have consecutively higher relative record numbers. If the RELATIVE
KEY phrase is specified for the file-name associated with record-name-1, the relative record number of the record
being released is moved into the relative key data item during the execution of the WRITE statement according to
the rules for the MOVE statement.

(25) The invalid key condition exists under the following circumstances:

a. When the access mode is random or dynamic and the relative key data item specifies a record which
already exists in the file, or

b. When an attempt is made to write beyond the externally defined boundaries of the file, or

c. When the number of significant digits in the relative record number is larger than the size of the relative
key data item described for the file.

(26) When the invalid key condition is recognized, the execution of the WRITE statement is unsuccessful, the
content of the record area is unaffected, and the I-O status of the file-name associated with record-name-1 is set to a
value indicating the cause of the condition. Execution of the program proceeds according to the rules for an invalid
key condition.

For indexed files:

(27) Execution of a WRITE statement causes the content of the record area to be released. The file system
utilizes the contents of the record keys in such a way that subsequent access of the record may be made based upon
any of these specified record keys.

(28) The value of the primary record key must be unique within the records in the file.

(29) The data item or for a composite key, the data-items specified as the primary record key must be set by the
program to the desired value prior to the execution of the WRITE statement.

(30) If the file is open in the sequential access mode, records must be released to the file system in ascending
order of primary record key values according to the collating sequence of the file. When the file is open in the
extend mode, the first record released to the file system must have a primary record key whose value is greater than
the highest primary record key value existing in the file.

503

Interactive COBOL Language Reference & Developer’s Guide - Part One

(31) If the file is open in the random or dynamic access mode, records may be released to the file system in any
program-specified order.

(32) When the ALTERNATE RECORD KEY clause is specified in the file control entry for an indexed file, the
value of the alternate record key may be non-unique only if the DUPLICATES phrase is specified for that data item.
In this case the file system provides storage of records such that when records are accessed sequentially, the order of
retrieval of those records is the order in which they are released to the file system.

(33) The invalid key condition exists under the following circumstances:

a. When the file is open in the sequential access mode, and the file also is open in the output or extend
mode, and the value of the primary record key is not greater than the value of the primary record key of the previous
record, or

b. When the file is open in the output or I-O mode, and the value of the primary record key equals the value
of the primary record key of a record already existing in the file, or

c. When the file is open in the output, extend, or I-O mode, and the value of an alternate record key for
which duplicates are not allowed equals the value of the corresponding data item of a record already existing in the
file, or

d. When an attempt is made to write beyond the externally defined boundaries of the file.

(34) When the invalid key condition is recognized, the execution of the WRITE statement is unsuccessful, the
content of the record area is unaffected and the I-O status of the file-name associated with record-name-1 is set to a
value indicating the cause of the condition. Execution of the program proceeds according to the rules for an invalid
key condition.

For INFOS files:

(35) If the relative option and the KEY series phrase are omitted, the default is the first key in the SELECT
clause.

(36) The occurrence number is updated.

(37) FEEDBACK is used if you specify INVERTED. WRITE updates the FEEDBACK data item if
INVERTED is not specified.

(38) KEY LENGTH is unused.

(39) If INVERTED is not specified, a record is written in a location that is determined according to what is
specified in the relative option phrase and/or the KEY series phrase. The specification can be implicit if the
program uses the defaults or explicit if the KEY or path is fully specified. If INVERTED is specified, an inversion
of an existing record is written. Two keys will now point to the same data record. The FEEDBACK phrase must be
specified in the FD to use INVERTED.

(40) FIX POSITION causes the record pointer to move from the current position to the position specified in this
statement. RETAIN position causes the record position to remain at the position it was on before the execution of
this statement. RETAIN is the default.

(41) The relative motion option without the KEY series phrase allows access to the index file relative to that
file's current record position.

(42) Using the KEY series phrase without the relative motion option cause the key path specified to begin with
the top index in the hierarchy and follow a downward motion.

504

PROCEDURE DIVISION (WRITE)

(43) If the KEY series phrase is specified, each key, identifier-1, must be declared in the SELECT statement for
file-name. The relative motion option is processed first and the key path is used. If both are omitted, STATIC is the
default.

(44) If DUPLICATE and OCCURRENCE IS was specified in this file's SELECT clause, the occurrence
number is updated for the last key in the key series phrases or the first key in the SELECT if there is no key series
phrase. Zero indicates that no duplicate has occurred.

(45) If SUPPRESS DATA RECORD is specified, all locks on the data record are ignored and the data record
associated with the index entry is not output. If FEEDBACK was defined, a zero is returned.

(46) If SUPPRESS PARTIAL RECORD is specified, the partial data record associated with the index entry is
not output.

(47) If a FEEDBACK data item was declared for a file, it contains the location of the record that you just read,
wrote, or rewrote. This location is used to link a key to an existing record in a WRITE INVERTED statement. If
you intend to use the FEEDBACK data item for an inversion later in the program it must be saved in another
location and restored to the FEEDBACK data item when needed.

(48) The IMMEDIATE option is ignored for INFOS files.

(49) If LOCK is specified, this program is the only one who can access the locked record until an UNLOCK of
some form is done on that record. Closing the file automatically unlocks all locked records in the file.

505

Interactive COBOL Language Reference & Developer’s Guide - Part One

506

BUILTINS

VII. BUILTINS

A. Introduction

A.1. Overview

ICOBOL uses the CALL statement to access a set of builtins, all but four starting with the three-character sequence,
"IC_". When the CALL statement is executed, the ICOBOL runtime looks first for a user-defined subroutine, then a
builtin, and finally a callable COBOL program. All builtins, unless otherwise documented, return to the calling
program with the appropriate Exception Status. User-defined subroutines or COBOL programs should not have
names that begin with "IC_" as it could create a conflict with a builtin.

The following builtin is supported on Windows only:

IC_WINDOWS_SHELLEXECUTE

The following builtins are supported on Windows and on Linux when connected to a ThinClient client on Windows:

IC_WINDOW_TITLE
IC_WINDOWS_MSG_BOX

IC_WINDOWS_SETFONT
IC_WINDOWS_SHOW_CONSOLE

The following builtins are supported only when running as a ThinClient:

IC_CLIENT_CALLPROCESS
IC_CLIENT_DELETE_FILE
IC_CLIENT_GET_ENV
IC_CLIENT_GET_FILE

IC_CLIENT_PUT_FILE
IC_CLIENT_RESOLVE_FILE
IC_CLIENT_SET_ENV

The following builtins are supported only when running as a ThinClient client on Windows :

IC_CLIENT_SHELLEXECUTE

The following table lists the ICOBOL builtins. Following the table is a description for each supported builtin. If the
builtin provides user interaction through a menu, that interface is documented in the appropriate chapter in the
Utilities Manual.

** ?CBADDR
** ?CBBADDR
** ?CBSYS
** CLI

IC_ABORT_TERM
IC_CENTER
IC_CHANGE_DIR
IC_CHANGE_PRIV
IC_CHECK_DATA
IC_CLIENT_CALLPROCES
IC_CLIENT_DELETE_FILE
IC_CLIENT_GET_ENV
IC_CLIENT_GET_FILE
IC_CLIENT_PUT_FILE
IC_CLIENT_RESOLVE_FILE
IC_CLIENT_SET_ENV
IC_CLIENT_SHELLEXECUTE
IC_COMPRESS_OFF
IC_COMPRESS_ON
IC_CREATE_DIR
IC_CURRENT_DIR
IC_DECODE_URL
IC_DECODE_CSV
IC_DELAY

IC_DETACH_PROGRAM
IC_DIR_LIST
IC_DISABLE_HOTKEY
IC_DISABLE_INTS
IC_ENABLE_HOTKEY

IC_ENABLE_INTS
IC_ENCODE_URL
IC_ENCODE_CSV
IC_EXTRACT_STRING
IC_FULL_DATE
IC_GET_DISK_SPACE
IC_GET_ENV
IC_GET_FILE_IND
IC_GET_KEY
IC_HANGUP
IC_HEX_TO_NUM
IC_INFOS_STATUS_TEXT
IC_INSERT_STRING
IC_KILL_TERM
IC_LEFT
IC_LOGON
IC_LOWER
IC_MOVE_FILE_DATA
IC_MOVE_STRING
IC_MSG_TEXT
IC_NUM_TO_HEX
IC_PDF_PRINT
IC_PID_EXISTS
IC_PRINT_STAT
IC_QUEUE_STATUS
IC_REMOVE_DIR
IC_RENAME
IC_RESOLVE_FILE
IC_RIGHT

IC_SEND_MSG
IC_SEND_MAIL
IC_SERIAL_NUMBER
IC_SET_ENV
IC_SET_TIMEOUT
IC_SET_USERNAME
IC_SHUTDOWN
IC_SYS_INFO
IC_TERM_CTRL
IC_TERM_STAT
IC_TRIM
IC_UPPER
IC_VERSION
IC_WINDOW_TITLE
IC_WINDOWS_MSG_BOX
IC_WINDOWS_SETFONT
IC_WINDOWS_SHELLEXECUTE
IC_WINDOWS_SHOW_CONSOLE

507

Interactive COBOL Language Reference & Developer’s Guide - Part One

TABLE 34. List of BUILTINS

NOTE: The syntax descriptions of the various calls include type information. For numeric items, the traditional
picture and USAGE information is provided, but it is not strictly enforced. You may use any numeric
description in its place as long as it conforms to the tenant that of an integer was called for an integer is
provided. (This does NOT apply to numeric values with packets (records). These must be coded as
shown.) Also note that ICOBOL2 required that these parameters match.

NOTE: Builtins marked with ** are documented but no longer supported at runtime.

508

BUILTIN (?CBADDR)

B. Builtins

B.1. ?CBADDR (Added in 3.00, Removed in 5.40)

The ?CBADDR function returns the address of any word-aligned COBOL data item or structure member. If the
record or structure member is not word aligned, an error value of zero is returned as the word address.

The syntax is:

CALL "?CBADDR" USING id-1, id-2

Where
id-1

is a record-level data-item whose word address you want to know. This item is not modified.
id-2

is a data item of type PIC S9(9) USAGE IS COMP to which the address of the data item is returned.

This subroutine also works for structure members if the item is on a word boundary. If you request the word address
of a byte-aligned item, id-2 is set to zero.

Level 01 and Level 77 data items always start on a word boundary, unless the -B compiler switch was specified.

509

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.2. ?CBBADDR (Added in 3.00, Removed in 5.40)

The ?CBBADDR function returns the byte address of any COBOL data item.

The syntax is:

CALL "?CBBADDR" USING id-1, id-2

Where
id-1

is a data-item whose byte address you want to know. This item is not modified.
id-2

is a data item of type PIC S9(9) USAGE IS COMP to which the address of the data item is returned.

510

BUILTIN (?CBSYS)

B.3. ?CBSYS (Added in 3.00, Removed in 5.40)

The ?CBSYS function allows certain AOS/VS system calls to be executed. The COBOL file COBSYSID.IN
included in the release shows the system calls that can be used.

The syntax is:

CALL "?CBSYS" USING id-1, id-2, id-3, id-4, id-5

Where
id-1

is a data item of type PIC S9(4) USAGE IS COMP that holds one of the symbolic names from
COBSYSID.IN for the system call that you wish to invoke. This item is not modified.

id-2
is a data item of type PIC S9(9) USAGE IS COMP that holds both the value you pass to the system call in
AC0 and the value returned.

id-3
is a data item of type PIC S9(9) USAGE IS COMP that holds both the value you pass to the system call in
AC1 and the value returned.

id-4
is a data item of type PIC S9(9) USAGE IS COMP that holds both the value you pass to the system call in
AC2 and the value returned.

id-5
is a data item of type PIC S9(9) USAGE IS COMP to which the system returns the number of any system
error that occurs during the system call. If none occurs, id5 contains zero.

Refer to the AOS/VS, AOS/VSII, and AOS/RT32 System Call Dictionary from Data General for a full discussion of
system calls.

511

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.4. CLI (Added in 3.00, Removed in 5.40)

The CLI function allows the COBOL program to call the Bourne shell (on Linux) or the command processor defined
by the COMSPEC.environment variable (on Windows).

The syntax is:

CALL "CLI" [USING id-1 [,id-2]]

Where
id-1

is defined as PIC X(n) and has the value of a particular Bourne shell (Linux) or command processor
(Windows) command that you wish to execute and return. For VXCOBOL, n = 250. For ANSI 74 and
ANSI 85, 0 < n < 256.

id-2
is defined as PIC X(n) and receives output from the command. The contents of id-2 are either spaces or
"*Error*" depending whether the shell returns a zero or non-zero exit code. For VXCOBOL, n = 250. For
ANSI 74 and ANSI 85, 6 < n < 256.

If no arguments are specified the shell is called in interactive mode. Only when the shell is exited (entering an exit
command or Ctrl-D (Linux)) will you return to the COBOL program.

On Linux, if id-1 is specified, it may contain a shell script, or one or more shell commands separated by semicolons.
On Windows, if id-1 is specified it may contain a .BAT file name or a command.

If the shell cannot be started the Exception Status is set and the ON EXCEPTION clause, if specified, is executed. If
the shell exits with an error, the exception status is set, but the ON EXCEPTION clause is not taken, even if present.

512

BUILTIN (IC_ABORT_TERM)

B.5. IC_ABORT_TERM

The IC_ABORT_TERM builtin allows active terminals to be aborted either to facilitate a system shutdown or for
other reasons.

The IC_ABORT_TERM builtin is enabled with the Abort terminal privilege in the Program Environment configura-
tion of the configuration file (.cfi). If not enabled, the call will fail with an Exception Status 221 "This operation is
not permitted.".

On Linux, the runtime requests that ICEXEC issue a Linux SIGUSR1 to the process corresponding to the console
number selected.

On Windows, the runtime passes the request to ICEXEC.

Two modes are available.

Mode 1 (Interactive Mode)

For mode 1, the syntax is:

CALL "IC_ABORT_TERM"

Upon invocation, a terminal status window of all logged-on terminals will be displayed. You are then prompted as to
which terminal you wish to abort. Once that terminal is aborted you will see the confirmation in the status window.
Aborting a terminal will not remove it from the terminal status window but will mark the terminal as `Stopped' in the
terminal status window.

For more on IC_ABORT_TERM in mode 1 see the Abort Terminal utility in the Utilities Manual.

Mode 2 (Program Mode)

For mode 2, the syntax is:

CALL "IC_ABORT_TERM" USING term-number

Where
term-number

is a PIC 9(4) COMP that holds the terminal number to abort.

If an invalid terminal number or a terminal that is not currently active is given, an Exception Status 228 "The
terminal is not logged on" is returned. If the terminal is not enabled, Exception Status 229 "The terminal is not
configured into the system" is returned.

513

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.6. IC_CENTER (Added in 4.40)

The IC_CENTER builtin provides the ability to center text within a specified width.

The syntax is:

CALL "IC_CENTER" USING source, destination [, width]

Where
source

is a PIC X(n) and holds the string to be centered.
destination

is a PIC X(n) and returns the centered string.
width

is a PIC 9... and holds the width of the area in destination in which to center the string.

If width is not specified the defined length of the destination is used.

The content of source is trimmed of leading and trailing spaces and then padded with leading and trailing spaces so
as to center the item in the specified width. If the difference in the length of the trimmed source and the specified
width is an odd number of characters, the “extra” space is added to the right. If the length of the trimmed source is
greater than width, the trimmed item is truncated on the right.

Use of the IC_CENTER builtin requires 4.40 or greater of the runtime.

Any error will result in a non-zero exception status and the ON EXCEPTION clause, if present, to be executed.

514

BUILTIN (IC_CHANGE_DIR)

Changing the working directory does not change any paths which have been resolved at initialization time. In
particular, ICPCQDIR, ICCODEPATH, and ICDATAPATH are not resolved again.

If this builtin is used, then the directory specifiers "." and " .." as well as an empty path entry (::), should not be
included in these paths. Full pathnames should be used for all entries.

B.7. IC_CHANGE_DIR

The IC_CHANGE_DIR builtin allows the program to change the working directory.

The syntax is:

CALL "IC_CHANGE_DIR" USING name

Where
name

is a PIC X(n) and holds the new working directory name.

Any error will result in a non-zero exception status and the ON EXCEPTION clause, if present, to be executed.

515

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.8. IC_CHANGE_PRIV

The IC_CHANGE_PRIV builtin allows a program to change the privileges associated with its own console or any
other specified console. The changed privileges are only in effect while the runtime system process assigned to that
console is active. The privileges revert to those configured for the line when the runtime system is started again.

The syntax is:

CALL "IC_CHANGE_PRIV" USING operation, privileges, [term-id]

Where
operation

is a PIC X(1) data item containing a code for the operation to be performed. The values are as follows:

Value Operation

S Set the privilege(s)

C Clear the privilege(s)

privilege
is a PIC X(n) string (1 <= n <= 16) which contains the characters indicating which privileges are to be set or
cleared. These characters are as follows:

Value Privilege

A Abort terminal privilege

C Printer control management privilege

D Program debugging privilege

I System Information privilege

M Message sending privilege

O Detach/Host program privilege

P Printer control privilege

S System shutdown privilege

T Terminal status privilege

W Watch other terminals privilege

X eXclude terminal from being watched

These characters correspond to those returned by ACCEPT id FROM ENVIRONMENT. More than one of
these characters may be specified in the string. The B=Console interrupt privilege, cannot be changed with
this call.

term-id
Is a PIC 9(4) COMP item containing the console number whose privileges are to be changed. This terminal
must be logged on. If terminal number is omitted, then the program's own console number is used.

The privileges indicated in the privilege string are either added to or removed from those available to the specified
console.

If the operation code or privilege string contains any character other than those specified above, an Exception Status
13 "Invalid Data", is returned. (The codes are case insensitive, and the privileges string may include SPACES).

Exception Status 228 "The terminal is not logged on", is returned when the term-id variable does not represent a
currently active console.

Exception Status 221 "This operation is not permitted", is returned when:

516

BUILTIN (IC_CHANGE_PRIV)

(1) the watch privilege is to be set but the watch option is not present on the runtime license (NO LONGER
ISSUED),

(2) Printer control privilege or Printer control management privilege is to be set and printer control is not
enabled, or
(3) the Console Interrupt Privilege is given as an argument.

517

Interactive COBOL Language Reference & Developer’s Guide - Part One

CRC-CCITT 1021h or 4129 (base 10)
CRC-16 8005h or 32773
reverse CRC-CCITT 8408h or 33800
reverse CRC-16 A001h or 40961

CRC-32 04C11DB7h or 79764919
reverse CRC-32 EDB88320h or 3988292384

 B.9. IC_CHECK_DATA (Enhanced in 4.20)

The IC_CHECK_DATA builtin allows data to be verified via CRC, LRC (XOR), or checksum. Both 16-bit and
32-bit calculations are supported. (32-bit support added in 4.20)

The syntax is:

CALL "IC_CHECK_DATA" USING option, polynomial, length, buffer, result

Where
option

is a numeric that provides the calculation option. Valid options are:

Value Calculation Option

0 Normal CRC using the supplied polynomial

1 Reverse CRC using the supplied polynomial

2 LRC (XOR) 8-bit calculation

3 Checksum calculation

4 Calculate CRC using reflected values

5 XOR the polynomial arg with the result arg.
No calculation is done on the buffer.
(+64 is required)
(+128 for 32 bits)

6 Reflect the result arg. No calculation is done
on the buffer.
(+64 is required)
(+128 for 32 bits)

+64 Add to value to cause the passed in result
value to be used to start the calculation.
Otherwise zero is used.

+128 Add to value to cause a 32-bit algorithm to be
used. Requires polynomial and result arguments
to be 32-bit.

polynomial
is a numeric that provides the value for the CRC generator polynomial.

length
is a numeric which provides the length of data in the buffer on which to perform the calculation. This
cannot be larger than the size of the buffer. For 16-bit calculations this is limited to 65535.

buffer
is a PIC X(n) that holds the data on which the check is to be calculated.

result
is a numeric that returns the calculated value. If a +64 is added to option, the passed in result is used as the
starting value for the calculation. Otherwise a zero is used.

Thus option values 0, 1, 2, 3, 4, 5, 6, 64 (0+64) , 65 (1+64) , 66 (2+64), ... calculate 16-bit values. Polynomial and
result must both support 16-bit values.

And option values 128 (0+128), 129 (1+128), 130 (2+128), ... , 192 (0+54+128), 193 (1+64+128), 194 (2+64+128),
and ... calculate 32-bit values. Polynomial and result must both support 32-bit values.

Some common crc polynomials are:

518

BUILTIN (IC_CHECK_DATA)

The CRC-CCITT polynomial is used for XMODEM-CRC protocol.

Just note that no pre-processing or post-processing is done on the values. If that is required you must do that
yourself.

For example, calculation option 64 (0+64) would be used to calculate a 16-bit CRC-16 on a block (or file) that is
larger than the buffer by making repeated calls.

Calculation option 192 (0+64+128) would be used to calculate a 32-bit CRC-32 on a block (or file) that is larger
than the buffer by making repeated calls.

Options 5 and 6 do not use the buffer in any manner. They are provided to manipulate a result value in some form.
A 5 will XOR the polynomial with the result value. You must use a +64 to use a result value that is other than 0.
Option 6 reflects the result argument. Again a +64 must be used. A +128 must be given to support 32-bits.

519

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.10. IC_CLIENT_CALLPROCESS (Added in 4.20)

The IC_CLIENT_CALLPROCESS builtin allows a program to be executed on the remote client when running a
ThinClient (icrunrc/icrunrs). The call will not return to the COBOL program until the remote program is completed.

The syntax is:

CALL "IC_CLIENT_CALLPROCESS" USING cmd-argument [, argument]...

Where
cmd-argument

is a PIC X(n) that holds the executable program name to be executed
argument...

are PIC X(n) which provides the needed arguments

If the program cannot be found, an error is generated and the ON EXCEPTION clause, if present, is executed.

If this call is made when not running as a ThinClient an Invalid Operation will be given.

When the remote program terminates, the builtin will return to the calling COBOL program.

The exception code will be the program exit code if no ON EXCEPTION is generated.

One consideration when using this call is to call “IC_WINDOW_TITLE” to update the title-bar that a Windows
command may be in progress.

520

BUILTIN (IC_CLIENT_DELETE_FILE)

B.11. IC_CLIENT_DELETE_FILE (Added in 4.20)

The IC_CLIENT_DELETE_FILE builtin provides the ability to delete a file on the remote client when running a
ThinClient (icrunrc/icrunrs).

The syntax is:

CALL "IC_CLIENT_DELETE_FILE" USING filename

Where
filename

is a PIC X(n) and holds the filename on the remote machine. ICLINK cannot be used.

Filename is processed as an External Filename as described on page 791.

If this call is made when not running as a ThinClient an Invalid Operation will be given.

If the file does not exist on the remote client no error is returned.

If the file cannot be deleted on the remote client an Access denied error is returned.

521

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.12. IC_CLIENT_GET_ENV (Added in 4.20)

The IC_CLIENT_GET_ENV builtin allows an environment variable to be read from the remote client when running
a ThinClient (icrunrc/icrunrs).

The syntax is:

CALL "IC_CLIENT_GET_ENV" USING name-argument, return-argument

Where
name-argument

is a PIC X(n) that holds the name of the environment variable to be read
return-argument

is a PIC X(n) into which is returned the value of that argument according to the rules for MOVE.

If the environment variable cannot be found, an error is generated and the ON EXCEPTION clause, if present, is
executed.

If this call is made when not running as a ThinClient an Invalid Operation will be given.

522

BUILTIN (IC_CLIENT_GET_FILE)

B.13. IC_CLIENT_GET_FILE (Added in 4.20)

The IC_CLIENT_GET_FILE builtin provides the ability to copy a file to the server from the remote client when
running a ThinClient (icrunrc/icrunrs).

The syntax is:

CALL "IC_CLIENT_GET_FILE" USING destination, source

Where
destination

is a PIC X(n) and holds the destination filename on the local-server machine. It cannot be a directory.
ICLINK can be used.

source
is a PIC X(n) and holds the source filename to be copied from the remote machine. ICLINK cannot be

used.

The source file must exist on the remote client and be available to be opened for binary input.

Source and destination are processed as an External Filename as described on page 791.

If this call is made when not running as a ThinClient an Invalid Operation will be given.

If the file exists on the server it is overwritten.

The file creation date and time are set to when the copy is done.

523

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.14. IC_CLIENT_PUT_FILE (Added in 4.20)

The IC_CLIENT_PUT_FILE builtin provides the ability to copy a file from the server to the remote client when
running a ThinClient (icrunrc/icrunrs).

The syntax is:

CALL "IC_CLIENT_PUT_FILE" USING source, destination

Where
source

is a PIC X(n) and holds the source filename on the local-server to be copied ICLINK can be used.
destination

is a PIC X(n) and holds the destination filename on the remote. It cannot be a directory. ICLINK cannot be
used.

The source file must exist and must be available to be opened for binary input.

Source and destination are processed as an External Filename as described on page 791.

If this call is made when not running as a ThinClient an Invalid Operation will be given.

If the file exists on the remote it is overwritten.

The file modification / access date and time are set to when the copy is done.

524

BUILTIN (IC_CLIENT_RESOLVE_FILE)

B.15. IC_CLIENT_RESOLVE_FILE (Added in 4.20)

The IC_CLIENT_RESOLVE_FILE builtin resolves a filename to a full pathname from the remote client when
running a ThinClient (icrunrc/icrunrs). Templates are not allowed.

The syntax is:

CALL "IC_CLIENT_RESOLVE_FILE" USING file-argument, file-entry [,rev]

Where
file-argument

is a PIC X(n) that holds the name of the file to be resolved. The fully resolved name is returned into this
argument. If the file does not exist, the fully resolved name of where the file would be created is returned
and the ON EXCEPTION clause is executed. ICLINK cannot be used.

file-entry
is a structure as defined below that provides status information about the file. If the file does not exist, no
data is moved into this structure. The Filename piece of the structure can be any length but should be long
enough to hold the longest simple name. See IC_RESOLVE_FILE on page 580 for more information on
the file-entry formats.

rev (added in 5.00)
is a PIC 9(2) COMP (one-byte binary), that specifies the revision of the file-entry for output-file. Valid
values are 1, 2, 3, and 4 (default is 1). Rev 2 entry is 4-bytes larger (dates have 4-byte years). Rev 4 entry
has a larger FILESIZE-BYTES. (Rev 4 entry is available in 5.00 and up).

In the rev 3 structure, each date is of the form YYYYMMDD and each time is of the form hhmmsshh. The
USER-COUNT field returns the number of times the file is open to any ICOBOL runtime running on this machine.
The attribute field is a space if the particular attribute is not set, and contains a single uppercase letter if it is set.
(R-readable, W-writeable, P-protected, A-archive, D-directory, S-system, E-executable, L-linkfile).

If an error is generated, the ON EXCEPTION clause, if present, is executed. The EXCEPTION STATUS gives the
error.

If this call is made when not running as a ThinClient an Invalid Operation will be given.

If the file does not exist on the remote client a File Not Found error is given.

525

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.16. IC_CLIENT_SET_ENV (Added in 4.20)

The IC_CLIENT_SET_ENV builtin allows an environment entry to be set on a remote client when running a
ThinClient (icrunrc/icrunrs).

The syntax is:

CALL "IC_CLIENT_SET_ENV" USING name, value

Where
name

is a string that specifies the name of the environment variable to be set.
value

is a string that specifies the data value for the environment entry. Trailing spaces are ignored.

If this call is made when not running as a ThinClient an Invalid Operation will be given.

Possible errors include:

Parameter mismatch
Invalid Data
No memory

526

BUILTIN (IC_CLIENT_SHELLEXECUTE)

B.17. IC_CLIENT_SHELLEXECUTE (Windows only) (Added in 4.20)

The IC_CLIENT_SHELLEXECUTE performs an operation on a specified file on the remote client when running a
ThinClient (icrunrc/icrunrs) and the client is a Windows machine.

The syntax is:

CALL "IC_CLIENT_SHELLEXECUTE" USING lpverb, lpFile, lpParameters,
lpDirectory, nShowCmd

Where
lpverb

is a string, referred to as a verb, that specifies the action to be performed. The set of available verbs
depends on the particular file or folder. Generally the actions available from an object's context menu are
available verbs. The following verbs are commonly used:

edit Launches an editor and opens the document for editing.
explore Explores the folder specified by lpFile.
find Initiates a search starting from the specified directory.
open Opens the file specified by lpFile.
print Prints the document specified by lpFile.
properties Displays the file or folder's properties.

If set to spaces, then NULL is passed to the Windows function which defaults to the "default" verb or an
open.

 lpFile
is a string that specifies the file or object on which to execute the specified verb.

 lpParameters
is a string that is a string of parameters to be passed to the application specified by lpFile if lpFile is an
executable. If lpFile is a document then lpParameters should be spaces.

 lpDirectory
is a string that specifies the default directory. If set to spaces the current directory is used. (NULL is
passed to the Windows call.)

 nShowcmd
is a Numeric with a value as given under IC_WINDOWS_SHOW_CONSOLE as cmd.

If the Windows ShellExecute call returns with a value greater than 32 then IC_CLIENT_SHELLEXECUTE returns
a success. Otherwise, it is an error and an exception is generated and the ON EXCEPTION clause is executed, if
provided.

This call is available only on Windows when running on a graphic desktop.

More on this can be seen by looking at the Microsoft call "ShellExecute".

If this call is made when not running as a ThinClient on a Windows machine an Invalid Operation will be given.

Possible errors include:

Parameter mismatch Invalid Data
Program not found No memory
Path not found Invalid Format
Access Denied Sharing violation
Invalid operation

This call can be used to:

A) start Internet Explorer by giving a valid URL address (www.icobol.com)
B) start an e-mail by giving "mailto: <name>".
C) start a find file by giving the verb "find" with lpFile set to a directory specifier.

527

Interactive COBOL Language Reference & Developer’s Guide - Part One

Basically you should be able to do all the actions associated with an object that can be seen by using Explorer to
view the file and then right-clicking on the object. The top entry in the list is the default selection.

528

BUILTIN (IC_COMPRESS_OFF)

B.18. IC_COMPRESS_OFF (Added in 3.30)

The IC_COMPRESS_OFF builtin causes screen compression to be disabled if the current screen allows compression
and is currently in compressed mode.

The syntax is:

CALL "IC_COMPRESS_OFF"

Errors include "Invalid operation" if compressed mode support is not enabled and "Parameter mismatch" if any
parameters are passed.

When compressed mode is switched from one mode to the other, the screen is completely erased. All information
must be re-displayed by the program. The screen buffer is erased also.

529

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.19. IC_COMPRESS_ON (Added in 3.30)

The IC_COMPRESS_ON builtin causes screen compression to be enabled if the current screen allows compression
and is currently not in compressed mode.

The syntax is:

CALL "IC_COMPRESS_ON"

Errors include "Invalid operation" if compressed mode support is not enabled and "Parameter mismatch" if any
parameters are passed.

When compressed mode is switched from one mode to the other, the screen is completely erased. All information
must be re-displayed by the program. The screen buffer is erased also.

530

BUILTIN (IC_CREATE_DIR)

B.20. IC_CREATE_DIR

The IC_CREATE_DIR builtin creates a directory.

The syntax is:

CALL "IC_CREATE_DIR" USING name

Where
name

is a PIC X(n) and holds the directory name to be created.

If the directory already exists, a File Exists (Exception Status 32) will be returned.

531

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.21. IC_CURRENT_DIR

The IC_CURRENT_DIR builtin allows the program to get the current working directory.

The syntax is:

CALL "IC_CURRENT_DIR" USING name

Where
name

is a PIC X(n) and holds the current working directory name.

Any error will result in a non-zero exception status and the ON EXCEPTION clause, if present, to be executed.

532

BUILTIN (IC_DECODE_CSV)

B.22. IC_DECODE_CSV (Added in 4.00)

The IC_DECODE_CSV builtin decodes a delimiter separated record provided in one data item, placing the result(s)
in following data items. IC_DECODE_CSV is the opposite of IC_ENCODE_CSV.

The syntax is:

CALL "IC_DECODE_CSV" USING buffer, position, delimiter, value [, value]...

Where
 buffer

is an alphanumeric data buffer to receive the encoded data or from which to decode the data.
position

is a 1-based integer numeric value with the position in buffer that defines where to begin the decode
operation, and which is updated to reflect the next available position at the end of the operation, or the
position where an error was detected.

Position should be at least large enough for the size of the buffer + 1.

If position is greater than the length of buffer a record position too big, exception 87 is given. If position is
0, an Invalid Argument exception 137 is given.

delimiter
is an alphanumeric item of length one that contains the field delimiter to use. The delimiter cannot be the
double-quote character.

 value
is a data item that can represent the data to be MOVE'd to it. It should be large enough to hold any possible
data.

Multiple values can be specified or repeated as required.

When using IC_DECODE_CSV, fetching the next value field will start at whatever position is specified. The end of
the next value field is the next occurrence of a delimiter or the end of the buffer (accounting for quoted values in the
input).

IC_DECODE_CSV first trims leading white space and then inspects the first character of the value to see if it is
quoted. A quoted field is processed until the matching closing quote. Then trailing white space is discarded until the
delimiter or end of buffer. If the buffer ends before the matching quote an EOF error, exception 39 is given. An
unquoted field is processed until the next delimiter (or end of buffer) is found and then the trailing spaces and tabs
are removed from the field. Note that white space includes spaces and tabs unless tab is used as the delimiter, in
which case only the space character is treated as white space.

Once the field data has been determined, it is effectively moved to the next value argument according to the rules for
a MOVE statement. If the receiving item is numeric, the sending item must pass the same criteria as the
TEST-NUMVAL intrinsic function, or the field is in error. In the case of this type of error, the position argument
will point to the error instead of the next field.

If the buffer being decoded has currency fields in it, it is suggested they be fetched into alphanumeric data items and
then applying the TEST-NUMVAL-C and NUMVAL-C intrinsic functions to retrieve the numeric values.

When no more values are found, an exception 131 "No more Data is available" will be returned and the position will
be at the size of the buffer plus 1.

533

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.23. IC_DECODE_URL

The IC_DECODE_URL builtin decodes a URL-encoded string provided in one data item, placing the result in
another data item.

IC_ENCODE_URL. can be used to build URL-encoded strings.

The syntax is:

CALL "IC_DECODE_URL" USING source-string, destination-string

Where
source-string

is a PIC X(n) data item that is to be decoded..
destination-string

is a PIC X(n) data item into which the decoded characters are to be moved. The destination can be the
same size if no characters need to be decoded or could be 1/3 the size if ALL values must be decoded.

Any error will result in a non-zero exception status and the ON EXCEPTION clause, if present, to be executed.

Any %hex-format characters that are in the URL source-string are converted from their %hex-format and placed into
the destination-string as standard ASCII. This includes ALL %hex-format values, not just reserved and unsafe
encoded values Both parameters should be PIC X(n). Processing of the source-string stops at the length of the
string or on a LOW-VALUE. Generally the destination-string should be initialized to LOW-VALUES.

Reserved characters are:

Character URL code Characte URL code Character URL code

& %26 (or &) ; %2B / %2F
? %3F : %3A = %3D
@ %40

Unsafe characters:

Character URL code Character URL code Character URL code

 (space) %20 < %3C > %3E
" %22 # %23 % %25
[%5B] %5D { %7B
} %7D | %7C \ %5C
^ %5E ~ %7E ` %60

For example:

The the 24-byte string “This%20is%20an%20address” would be decoded as the
18-byte string “This is an address”.

534

BUILTIN (IC_DELAY)

B.24. IC_DELAY

Suspends program execution for the given number of tenths of seconds. If no argument is specified, 30 (3 seconds)
is used.

The syntax is:

CALL "IC_DELAY" [USING delay-time]

Where
delay-time

is a PIC 9(4) COMP between 0 and 65535. A 0 implies only that a resched be done.

535

Interactive COBOL Language Reference & Developer’s Guide - Part One

NOTES:
If a detached program is started with no optional output file, then all output from the program will go to the null
device (discarded).

All detached programs will generate an end-of-file (EOF) error on any ACCEPT or READ from the console, as the
input device will always be set to the null device.

A detached program can only execute non-screen DISPLAY statements. A screen DISPLAY will generate an error
and the program will terminate.

B.25. IC_DETACH_PROGRAM

The IC_DETACH_PROGRAM builtin allows a COBOL program to be started on another logical console.

IC_DETACH_PROGRAM is enabled with the Detach/Host programs privilege in the Program Environment of the
configuration file (.cfi). If not enabled, the call will fail with an Exception Status 221 "This operation is not
permitted.".

The syntax is:

CALL "IC_DETACH_PROGRAM" USING program [, console [, file-name]]

Where
program

is a PIC X(n) string holding a valid COBOL program including switches to be executed.
console

is a PIC 9(4) COMP and specifies the logical console on which to start the new program. 65535 says to use
the next available console and return that value into console. Otherwise that logical console is used to start
the program. If console is not given, then the next available console is used.

file-name
is a PIC X(n) and specifies an output filename to which to send any output from this program. If not
specified, all output is sent to the null device (discarded). File-name can use ICLINK.

An available detachable console is defined to be a logical console that is:

1) enabled,
2) whose device is set to NUL (on Windows) or null (on Linux), and
3) is currently not running a detached program.

Possible errors for IC_DETACH_PROGRAM include:

Error
number

Meaning

1 Invalid operation

36 Filename is not valid (for an invalid program name)

209 Parameter mismatch (for no program name specified or
if console is invalid, i.e., greater than 65535 or
not a number)

212 No more programs are available (if no available
consoles can be found to detach this program to)

219 Invalid task number (if the console specified by
console is not avilable or is in use)

221 This operation is not permitted (if the calling
program does not have the Detach/Host programs
privilege).

536

BUILTIN (IC_DETATCH_PROGRAM)

NOTE: A standard CALL PROGRAM error like Program Not Found, Program Too Big, etc. is not returned
by an IC_DETACH_PROGRAM because it occurs after the "detached program" has been detached
from the current program.

The detached program will inherit the starting program's username. Its privileges are those specified for the console
on which it is running. Detached programs cannot execute any builtins or system calls that perform screen I/O.

If a detached program terminates abnormally, any error will be written to the standard output file or to the starting
program's standard error file on Linux.

537

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.26. IC_DIR_LIST

The IC_DIR_LIST builtin allows directory information on a file or files to be retrieved.

The syntax is:

CALL "IC_DIR_LIST" USING lookup-file, entries [, output-file [, rev]]

Where
lookup-file

is a PIC X(n) and specifies the template (or filename) to look up.
entries

is a numeric into which is returned the number of entries found.
output-file

is a PIC X(n) and specifies the filename to which file-entry printer records are to be written. Output-file can
use ICLINK.

rev
is a PIC 9(2) COMP (one-byte binary), that specifies the revision of the file-entry for output-file. Valid
values are 1, 2, 3, and 4 (default is 1). Rev 2 entry is 4-bytes larger (dates have 4-byte years). Rev 4 entry
has a larger FILESIZE-BYTES. (Rev 4 entry is available in 5.00 and up).

See IC_RESOLVE_FILE on page 580 for more information on the file-entry formats.

Any error is stored into Exception Status and the ON EXCEPTION clause, if present, is executed. The
EXCEPTION STATUS gives the error.

538

BUILTIN (IC_DISABLE_HOTKEY)

B.27. IC_DISABLE_HOTKEY

The IC_DISABLE_HOTKEY builtin completely or selectively disables hotkeys.

The syntax is:

CALL "IC_DISABLE_HOTKEY" [USING argument-1 [, argument-2]...]

Where
argument-n

is a PIC 9(2) COMP item specifying a number from 0 to 99. This number identifies the hotkey that is to be
disabled.

For example, if an argument contains 25, the program hotkey25.cx will not be executed as the result of pressing a
key to which it has been assigned.

Multiple hotkeys may be disabled by specifying multiple arguments. ALL hotkeys may be disabled by calling
IC_DISABLE_HOTKEY with no arguments. Hotkeys remain disabled until they are enabled by the
IC_ENABLE_HOTKEY builtin or until the icrun process terminates.

539

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.28. IC_DISABLE_INTS

The IC_DISABLE_INTS builtin disables console interrupts for the current task. This can be done to protect critical
sections of code from unexpected or premature exit.

The syntax is:

CALL "IC_DISABLE_INTS"

Console interrupts will be disabled for the console executing the call. Console interrupts will remain disabled until
either a call is made to IC_ENABLE_INTS or the runtime system terminates.

540

BUILTIN (IC_ENABLE_HOTKEY)

B.29. IC_ENABLE_HOTKEY

The IC_ENABLE_HOTKEYS builtin allows hotkeys to be completely or selectively enabled.

The syntax is:

CALL "IC_ENABLE_HOTKEY" [USING argument-1 [, argument-2]...]

Where
argument-n

is a PIC 9(2) COMP item specifying a number from 0 to 99. This number identifies the hotkey that is to be
enabled.

For example, if an argument contains 25, the program hotkey25.cx may be executed as the result of pressing a key to
which it has been assigned.

Multiple hotkeys may be enabled by specifying multiple arguments. ALL hotkeys may be enabled by calling
IC_ENABLE_HOTKEY with no arguments. Defined hotkeys are always enabled until they are disabled by the
IC_DISABLE_HOTKEY builtin.

541

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.30. IC_ENABLE_INTS

The IC_ENABLE_INTS builtin allows console interrupts to be enabled under program control. This can be used
along with IC_DISABLE_INTS to protect critical sections of code from unexpected or premature exit. Console
interrupt privilege is required in order execute this builtin successfully.

The syntax is:

CALL "IC_ENABLE_INTS"

Console interrupts will be enabled for the console executing the call. Console interrupts will remain enabled until a
call is made to IC_DISABLE_INTS. IC_ENABLE_INTS cannot be used to enable interrupts on consoles that do
not initially support console interrupts as configured with the console interrupt privilege in the Program
Environments section of the configuration file (.cfi).

Exception 221 "This operation is not permitted", is returned when the call is made but the current console does not
have the console interrupt privilege.

542

BUILTIN (IC_ENCODE_CSV)

B.31. IC_ENCODE_CSV (Added in 4.00)

The IC_ENCODE_CSV builtin encodes a delimiter separated record provided in the initial data item, by placing the
value(s) there using the provided delimiter. IC_DECODE_CSV is the opposite of IC_ENCODE_CSV.

The syntax is:

CALL "IC_ENCODE_CSV" USING buffer, position, delimiter, value [, value]...

Where
 buffer

is an alphanumeric data buffer to receive the encoded data.
position

is a 1-based integer numeric value with the position in buffer that defines where to begin the encode
operation, and which is updated to reflect the next available position at the end of the operation, or the
position where an error was detected.

For IC_ENCODE_CSV, this means that the length of data in the buffer after encoding is (position - 1).

Position should be at least large enough for the size of the buffer + 1.

If position is greater than the length of buffer a record position too big, exception 87 is given. If position is
0, an Invalid Argument exception 137 is given.

delimiter
is an alphanumeric item of length one that contains the field delimiter to use. The delimiter cannot be the
double-quote character.

 value
is a data item that can represent the data to be MOVE'd to the output buffer.

Multiple values can be specified.

When IC_ENCODE_CSV is called, if position is not 1, a copy of delimiter will be added to the buffer before
inserting any values. If multiple values are specified in the USING list, each one after the first is preceded by a copy
of the delimiter character. If there is not enough space for a particular value (and the delimiter, if needed), the value
will not be inserted and a No Space error, exception 39 will be given. That is the buffer will never end with a
partially inserted value.

A numeric value (class & category numeric) argument will be converted to its character representation with a leading
minus sign if negative, no sign if positive, at least one integer digit (which may be zero), and a decimal point and
fractional digits if the numeric value has fractional digits. Leading integer zeros will be suppressed. An integer
numeric value will not emit a trailing decimal point.

DECIMAL POINT IS COMMA conventions apply, so we suggest that you pick a separator other than comma (such
as tab) if this is in force or else the values will get quoted.

All other values will be emitted without quotes unless the data value (1) begins or ends with spaces or tabs, (2)
begins with a double-quote character, or (3) it contains the delimiter character anywhere, or (4) it contains the CR
(hex 0D) or LF (hex 0A) characters anywhere.

While it is possible to emit a value with carriage control characters embedded in it, and this is permitted in the CSV
specification, the IC_DECODE_CSV has no mechanism to fully handle this case.

543

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.32. IC_ENCODE_URL

The IC_ENCODE_URL builtin encodes an ASCII source string into a valid URL-encoded string converting
reserved and unsafe characters into their %hex formats for the correct interpretation of the data by a browser.

IC_DECODE_URL. can be used to reconstitute a string from a URL-encoded string.

The syntax is:

CALL "IC_ENCODE_URL" USING source-string, destination-string

Where
source-string

is a PIC X(n) data item that is to be encoded..
destination-string

is a PIC X(n) data item into which the encoded characters are to be moved. In almost all cases this string
will be larger than the source string. The maximum is three (3) times as large as the source if every source
character must be encoded.

Any error will result in a non-zero exception status and the ON EXCEPTION clause, if present, to be executed.

Any unsafe or reserved characters that are in the ASCII source-string are converted to their %hex-format and placed
into the destination-string. Both parameters should be PIC X(n). Processing of the source-string stops at the length
of the string or on a LOW-VALUE. Generally the destination-string should be initialized to LOW-VALUES.

Reserved characters are:

Character URL code Characte URL code Character URL code

& %26 (or &) ; %2B / %2F
? %3F : %3A = %3D
@ %40

Unsafe characters:

Character URL code Character URL code Character URL code

 (space) %20 < %3C > %3E
" %22 # %23 % %25
[%5B] %5D { %7B
} %7D | %7C \ %5C
^ %5E ~ %7E ` %60

For example:

The 18-byte string “This is an address” would be encoded as the 24-byte string
“This%20is%20an%20address”.

544

BUILTIN (IC_EXTRACT_STRING)

B.33. IC_EXTRACT_STRING

The IC_EXTRACT_STRING builtin extracts a range of characters from a data-item and stores them into another
one.

The syntax is:

CALL "IC_EXTRACT_STRING" USING source, src-pos, src-len, dest

Where
source

is the data item from which the characters are to be extracted
src-pos

is a two-byte PIC S9(4) COMP-5 item whose content identifies the leftmost character position of the string
to be extracted. It must be in the range 1 to the length of source.

src-len
is a two-byte PIC S9(4) COMP-5 item whose content identifies the number of characters to be extracted. It
must be in the range 1 to length of source minus src-pos plus 1.

dest
is the data-item into which the extracted characters are to be moved

The characters extracted from the source data item are treated as an alphanumeric item and moved to dest according
to the rules for an alphanumeric to alphanumeric MOVE.

Exception Status 13 "Invalid Data" is returned if src-pos or src-len are not within the required ranges.

NOTE: For ANSI 74 and ANSI 85, use of this builtin is not recommended. A more efficient and standard
manner to accomplish this task is to use reference modification:

MOVE source (src-pos:scr-len) TO dest.

545

Interactive COBOL Language Reference & Developer’s Guide - Part One

Using the IC_FULL_DATE builtin or the CURRENT_DATE intrinsic function are recommended methods to get
date and time information as it returns a full, four-digit year, and, in addition, crossing midnight is not a problem as
it is with two separate statements like ACCEPT FROM DATE and ACCEPT FROM TIME.

B.34. IC_FULL_DATE

The IC_FULL_DATE builtin returns a full date and time string including century in a single call. It should be used
to replace ACCEPT FROM DATE and ACCEPT FROM TIME statements, especially to support the year 2000.

The syntax is:

CALL "IC_FULL_DATE" USING date-string

Where
date-string

is a PIC X(20) into which the following data will be stored.

Data Description

YYYY year e.g., 1994

ddd day of the year (1-366)

MM month (1-12)

DD day of the month (1-31)

HH hour (0-23)

MM minute (0-59)

SS second (0-59)

hh hundredths of seconds (0-99)
or 0 if not supported

w day of the week (1-7) where
1-Mon, ... 7-Sunday

The argument must be 20 characters or else an error is returned and no data is moved.

546

BUILTIN (IC_GET_DISK_SPACE)

By using the disk-units parameter in combination with free-space and total-space, disks larger than 4GB can be
described.

B.35. IC_GET_DISK_SPACE

The IC_GET_DISK_SPACE builtin allows total and free disk space to be determined.

The syntax is:

CALL "IC_GET_DISK_SPACE" USING location, free-space [, total-space
[, disk-units]]

Where
location

is a PIC X(n) that holds the drive-name (Windows) or filesystem name (Linux) upon which to get the
needed data. Space implies the current drive or filesystem be used.

free-space
is a numeric receiving the free space in bytes.

total-space
is a numeric receiving the total space in bytes. This argument is optional.

disk-units
is a numeric receiving the number of bytes per unit that the free-space and total-space were returned in. If
not specified, 1 is used.

547

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.36. IC_GET_ENV

The IC_GET_ENV builtin allows an environment variable to be read.

The syntax is:

CALL "IC_GET_ENV" USING name-argument, return-argument

Where
name-argument

is a PIC X(n) that holds the name of the environment variable to be read
return-argument

is a PIC X(n) into which is returned the value of that argument according to the rules for MOVE.

If the environment variable cannot be found, an error is generated and the ON EXCEPTION clause, if present, is
executed.

548

BUILTIN (IC_GET_FILE_IND)

B.37. IC_GET_FILE_IND (Added in 3.23)

The IC_GET_FILE_IND builtin returns header information about a particular ICISAM indexed file. This call uses
ICDATAPATH, if needed, to find the file. This call only works for ICISAM indexed files.

The syntax is:

CALL "IC_GET_FILE_IND" USING file-name, file-info-struc

Where
 File-name

 is a PIC X(n) that holds the name of the file to lookup.
File-info-struct

is a structure with the following format:

 01 FILE-INFO-STRUCT.
 02 IND-STRUCT-REV PIC 9(4) COMP.
 02 FILLER PIC X(2).
 * 7 or 8
 02 IND-VERSION PIC 9(2) COMP.
 * 0x80-Purge attribute value is set
 * 0x40-Purge attribute value (on/off)
 * 0x20-4GB big file attribute value is set
 * 0x10-4GB big file attribute value (on/off)
 02 IND-ATTRIBUTES PIC 9(2) COMP.
 02 IND-MIN-REC-SIZE PIC 9(4) COMP.
 02 IND-MAX-REC-SIZE PIC 9(4) COMP.
 02 IND-NUM-KEYS PIC 9(4) COMP.
 02 IND-KEY-TABLE.
 * 32 bytes each
 10 IND-KEY-ENTRY OCCURS 17 TIMES.
 * 0x80-duplicates (7.00), 0x40-case-insensitive (7.00)
 * 0x20-reverse ordered (7.10) 0x10-Do not invert null (7.10)
 * 0x08-Also keys
 15 IND-KEY-OPTS PIC 9(2) COMP.
 15 IND-KEY-BASE-SIZE PIC 9(2) COMP.
 15 IND-KEY-NULL-VALUE PIC 9(2) COMP.
 15 IND-KEY-COUNT PIC 9(2) COMP.
 15 IND-KEY-BASE-OFFSET PIC 9(4) COMP.
 15 FILLER PIC X(2).
 15 IND-ALSOS.
 17 IND-ALSO-OFFSET OCCURS 6 TIMES PIC 9(4) COMP.
 15 IND-OCCURS REDEFINES IND-ALSOS.
 17 IND-OCCURS-SPAN PIC 9(4) COMP.
 17 IND-OCCURS-SUFFIX-COUNT PIC 9(2) COMP.
 17 IND-OCCURS-SIZE OCCURS 3 TIMES PIC 9(2) COMP.
 17 IND-OCCURS-OFFSET OCCURS 3 TIMES PIC 9(4) COMP.
 02 IND-RECORD-COUNT PIC 9(9) COMP.
 * Below is always 0 for rev 5 icisam file
 02 IND-DELRECORD-COUNT PIC 9(9) COMP.

See the Indexed API for more info on this structure. INDEXED-STRUCT-REV returns 0x6931. (Decimal 26929).

The IND-DELRECORD-COUNT is set to 0xFFFFFFFF (4,294,967,295) when it cannot be determined. It is set this
way also for files that use ICNETD.

549

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 KEY-STRUC.
 05 KEY-TYPE PIC 99 COMP.
 05 KEY-CODE PIC 99 COMP.
 05 KEY-CODE-X REDEFINES KEY-CODE PIC X.

B.38. IC_GET_KEY

The IC_GET_KEY builtin allows the program to get a keystroke from the keyboard in a terminal independent
manner with a timeout. If no keystroke is received within the timeout period, an error is returned with the Exception
Status 76 "Device Timeout". On an error, the KEY-TYPE and KEY-CODE are set to zero

The syntax is:

CALL "IC_GET_KEY" USING key-struc, time-out-value

Where
key-struc

specifies a structure defined like this:

KEY-TYPE is the type of character and will contain one of the values: 1, 2, 3, 4, 5, 7, or 8, as shown in the
following table.

KEY-CODE returns the given code for the character, as specified in the current terminal definition. The
table below shows KEY-CODE values that are possible for each KEY-TYPE value.

KEY-TYPE
value

KEY-TYPE
description

Possible KEY-CODE values, for each KEY-TYPE value

1 normal
character

The character's numeric value. NOTE: KEY-CODE-X can be
displayed and is the character.

2 editing
function

1=left a character, 2=right a character, 3=backspace,
4=delete a character, 5=insert mode on/off,
6=clear field, 7=clear to end of field,
8=beginning of field, 9=end of field, 10=right a word,
11=left a word,, 12=destructive TAB, 13=left tab stop,
14=right tab stop, 15=sound bell, 16=back delete

3 terminate field Escape key code for terminate field key.

4 previous field Escape key code for previous field key.

5 next field Escape key code for next field key.

7 previous row Escape key code for previous row key.

8 next row Escape key code for next row key.

TABLE 35. IC_GET_KEY values returned

550

BUILTIN (IC_GET_KEY)

NOTES:
The key types and key codes correspond to those which are specified for the terminal
description file (.tdi) which was configured using ICCONFIG (ICEDCFW).

Characters set to Special Function (Illegal, Ignored, Refresh screen, Enter minus), Hot
Keys and Interrupt keys are not returned; instead, the defined action is carried out. For
example, when an IC_GET_KEY call is executed if a hot key is pressed, the hot-key
program is executed, and nothing is returned to the call.

No echoing of the keystroke is done to the screen except for those configured as Special
Function.

timeout-value
specifies a PIC 9(4) COMP containing the number of tenths of seconds to wait before terminating the
READ. The values 0 through 63000 set a timeout in tenths of seconds, a 65535 is interpreted to wait
forever, a 65534 says to default to the value specified as the global timeout (ICTIMEOUT), while a number
between 63000 and 65534 will set the value to 63000. This value represents the time allowed between
keystrokes before the system will timeout and terminate the operation. Setting a 0 essentially only reads the
input buffer.

551

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.39. IC_HANGUP (Added in 3.00)

The IC_HANGUP terminates the runtime system. If the optional argument is specified the value is returned to the
runtime system’s parent process as an exit code.

The syntax is:

CALL "IC_HANGUP" [USING exit-code]

Where
exit-code

is a PIC 9(n). Exit-code may be zero, or any value between 10 and 255 inclusive. Values 1 thru 9 are
reserved for runtime use.

Exception status 13 “Invalid data” is returned if the exit-code is out of range.

552

BUILTIN (IC_HEX_TO_NUM)

B.40. IC_HEX_TO_NUM (Added in 3.00)

The IC_HEX_TO_NUM builtin converts a hexadecimal string into a decimal number.

The syntax is:

CALL "IC_HEX_TO_NUM" USING hex-string, decimal-number

Where
hex-string

specifies a PIC X(n) or A(n) where n is from 1 to 8 inclusive and contains valid hex digits.
decimal-number

specifies a numeric type and the hex-string is converted to an integer and returned into decimal-number.

If the string cannot be converted or if the result will not fit, then an exception 13 (Invalid Data) is generated, and the
ON EXCEPTION clause, if present, is executed.

553

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.41. IC_INFOS_STATUS_TEXT (VXCOBOL) (Added in 3.00)

The IC_INFOS_STATUS_TEXT builtin returns the text associated with an INFOS STATUS.

The syntax is:

CALL "IC_INFOS_STATUS_TEXT" USING infos-status, message-buffer

Where
infos-status

specifies a PIC X(11) holding an INFOS STATUS as returned by ICRUN.
message-buffer

specifies a PIC X(n) into which the message text is returned.

If the data in the INFOS STATUS item does not conform to the standards for INFOS status, an error is generated
and the ON EXCEPTION clause, if present, is executed.

The message file infostat.ms holds the messages returned by IC_INFOS_STATUS_TEXT. The text file infostat.txt
can be used to change the text of the messages as needed. See ICMAKEMS in the Utilities manual for more
information on changing message text.

554

BUILTIN (IC_INSERT_STRING)

B.42. IC_INSERT_STRING

The IC_INSERT_STRING builtin allows a data item to be stored into a specified range of characters in another data
item.

The syntax is:

CALL "IC_INSERT_STRING" USING source, dest, dest-pos, dest-len

Where
source

is the data item to be stored
dest

is the data-item into which all or part of the source is to be moved
dest-pos

is a two-byte PIC S9(4) COMP-5 item whose content identifies the leftmost character position in the
destination data item into which characters will be stored. It must be in the range 1 to the length of dest.

dest-len
is a two-byte PIC S9(4) COMP-5 item whose content identifies the number of characters positions of dest
into which characters will be stored. It must be in the range 1 to length of dest minus dest-pos plus 1.

The characters identified in the dest data item are treated as an alphanumeric item and source is moved to that item
according to the rules for an alphanumeric to alphanumeric MOVE.

Exception Status 13 "Invalid Data" is returned if dest-pos or dest-len are not within the required ranges.

NOTE: For ANSI 74 and ANSI 85, use of this builtin is not recommended. A more efficient and standard
manner to accomplish this task is to use reference modification:

MOVE source TO dest (dest-pos:dest-len)

555

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.43. IC_KILL_TERM

The IC_KILL_TERM builtin allows ICOBOL runtime user tasks to be terminated. This builtin is similar to the
IC_ABORT_TERM builtin except that it terminates the process rather than just aborting the executing program.

The IC_KILL_TERM builtin requires the Abort terminal privilege in the Program Environment configuration of the
configuration file (.cfi). If not enabled, the call will fail with an Exception Status 221 "This operation is not
permitted.".

The syntax is:

CALL "IC_KILL_TERM" [USING term-number]

Where
term-number

is a PIC 9(4) COMP item that holds the terminal number of the process to be terminated.

If no terminal number is specified, a terminal status window of all logged-on terminals will be displayed. You are
then prompted as to which terminal you want to terminate. Once terminated, the terminal will be removed from the
status window.

On Linux, IC_KILL_TERM requests ICEXEC to issue a Linux signal of SIGTERM to the PID corresponding to the
console number selected.

On Windows, the runtime passes the request to ICEXEC.

For more on IC_KILL_TERM with no terminal number, see the Kill Terminal utility in the Utilities Manual.

556

BUILTIN (IC_LEFT)

B.44. IC_LEFT (Added in 5.09)

The IC_LEFT builtin provides the ability to left justify text.

The syntax is:

CALL "IC_LEFT" USING source, destination

Where
source

is a PIC X(n) and holds the string to be justified.
destination

is a PIC X(n) and returns the left-justified string.

The content of source is trimmed of leading and trailing spaces and then padded with trailing spaces so as to left
justify the item in the destination. If the length of the trimmed source is greater than width, the trimmed item is
truncated on the right.

Use of the IC_LEFT builtin requires 5.09 or greater of the runtime.

Any error will result in a non-zero exception status and the ON EXCEPTION clause, if present, to be executed.

557

Interactive COBOL Language Reference & Developer’s Guide - Part One

NOTE: A CALL PROGRAM "LOGON" is not the same as CALL “IC_LOGON”, since it will not mark the
terminal as being Inactive.

B.45. IC_LOGON (Added in 3.00)

The IC_LOGON builtin chains to logon. It runs the standard LOGON program and makes the terminal line Inactive
in the terminal status window. IC_LOGON does not remove the terminal from the Terminal Status window. No
ICISAM files should be open in the LOGON program since the system can and will abort users executing LOGON
when entered via IC_LOGON or after the initial sign-on.

The syntax is:

CALL "IC_LOGON"

Any error will result in a non-zero exception status and the ON EXCEPTION clause, if present, to be executed.

558

BUILTIN (IC_LOWER)

B.46. IC_LOWER

The IC_LOWER builtin converts the specified string to all lower-case characters.

The syntax is:

CALL "IC_LOWER" USING string

Where
string

specifies a PIC X(n) that holds the data to be converted to lower-case.

NOTE: For ANSI 74 and ANSI 85, a more efficient way of accomplishing this task is by using the
LOWER-CASE intrinsic function:

MOVE FUNCTION LOWER-CASE (string) TO string.

559

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.47. IC_MOVE_FILE_DATA

The IC_MOVE_FILE_DATA builtin provides the ability to quickly copy files from one place to another with
various options.

The syntax is:

CALL "IC_MOVE_FILE_DATA" USING option, source, destination [, count
[, start-src-pos [, start-dst-pos]]]

Where
option

is a PIC 9(2) COMP and is composed of the following bit options:
Option-bit Meaning

1 Don't erase destination if it exists

2 Write at eof (ignore start-dst-pos)

4 The destination file must exist

8 The destination file must NOT exist

Below are the useful combinations of the above option-bits.

Option
Destination file Destination

PositionDoes NOT exist Exists

0 create erase as specified

1 create don't erase as specified

3 create don't erase at eof

4 ERROR erase as specified

5 ERROR don't erase as specified

7 ERROR don't erase at eof

8 create ERROR as specified

source
is a PIC X(n) and holds the source filename to be copied ICLINK can be used.

destination
Is a PIC X(n) and holds the destination filename. It cannot be a directory. ICLINK can be used.

count
is a PIC 9(9) COMP and holds an optional count for how many bytes to copy from source or until EOF. If
given, the number of bytes actually copied is returned.

start-src-pos
is a PIC 9(9) COMP and holds a optional byte offset in the source from which to start the copy. 0 is the
beginning of file.

start-dst-pos
is a PIC 9(9) COMP and holds an optional byte offset in the destination to which copying should start.

The source file must exist and must be available to be opened for binary input.

This call allows a file to be copied upon itself with possible unintended results.

Source and destination are processed as an External Filename as described on page 791.

560

BUILTIN (IC_MOVE_STRING)

B.48. IC_MOVE_STRING

The IC_MOVE_STRING builtin allows a range of characters to be extracted from one data item and be stored into a
specified range of characters in another data item.

The syntax is:

CALL "IC_MOVE_STRING" USING source, src-pos, src-len, dest, dest-pos,
dest-len

Where
source

is the data item from which the characters are to be extracted
src-pos

is a two-byte PIC S9(4) COMP-5 item whose content identifies the leftmost character position of the string
to be extracted. It must be in the range 1 to the length of source.

src-len
is a two-byte PIC S9(4) COMP-5 item whose content identifies the number of characters to be extracted. It
must be in the range 1 to length of source minus src-pos plus 1.

dest
is the data-item into which all or part of the source is to be moved

dest-pos
is a two-byte PIC S9(4) COMP-5 item whose content identifies the leftmost character position in the
destination data item into which characters will be stored. It must be in the range 1 to the length of dest.

dest-len
is a two-byte PIC S9(4) COMP-5 item whose content identifies the number of characters positions of dest
into which characters will be stored. It must be in the range 1 to length of dest minus dest-pos plus 1.

The characters extracted from the source data item are treated as an alphanumeric item and moved to the characters
identified in the dest data item according to the rules for an alphanumeric to alphanumeric MOVE.

Exception Status 13 "Invalid Data" is returned if src-pos, src-len, dest-pos, or dest-len are not within the required
ranges.

NOTE: Use of this builtin is no longer recommended. A more efficient and standard method to accomplish this
task is to use reference modification:

MOVE source (src-pos:src-len) TO dest (dest-pos:dest-len)

561

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.49. IC_MSG_TEXT

The IC_MSG_TEXT builtin allows system message text to be retrieved for a corresponding status code.

The syntax is:

CALL "IC_MSG_TEXT" USING exc-code, return-argument

Where
exc-code

is a PIC 9(5) that holds the numeric Error or Exception Status for the message to be retrieved.
return-argument

is a PIC X(n) (n should be at least 60) into which is returned the corresponding text.

562

BUILTIN (IC_NUM_TO_HEX)

B.50. IC_NUM_TO_HEX (Added in 3.00)

The IC_NUM_TO_HEX builtin converts a decimal number into a hexadecimal string.

The syntax is:

CALL "IC_NUM_TO_HEX" USING decimal-number, hex-string

Where
decimal-number

specifies a numeric type containing an integer whose value is greater than or equal to 0 and < (2**32 - 1)
hex-string

specifies a PIC X(n) or A(n). An n=8 will hold any possible numeric value. Decimal-number is converted
into a hex string and placed in hex-string.

If the number cannot be converted (negative, fractional digits) or if the result will not fit, then an exception 13
(Invalid Data) is generated and the ON EXCEPTION clause, if present, is executed.

563

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.51. IC_PDF_PRINT (Added in 4.10, third argument in 5.00)

The IC_PDF_PRINT builtin allows a PDF file to be generated from an existing data-sequential file using a given
pdf-format.

The syntax is:

CALL "IC_PDF_PRINT" USING filename, pdf-format [, userpw[|ownerpw]

Where
filename

is a PIC X(n) that holds the existing data-sensitive filename.
pdf-format

is a PIC 9(n) that holds the pdf-format that should be used.
userpw[|ownerpw]

is a PIC X(n) and specifies a user or user and owner password for the resulting .pdf file. When only the
userpw is specified, it is used as both the user and owner password. When both passwords are supplied, the
rights are controlled by which password is used. The owner password has all rights, which includes the
ability to change the password. The user password has the following rights:

Printing: Yes
Changing the document: No
Document assembly: No
Content Copying: Yes
Content Copying for Accessibility: Yes
Page Extractions: No
Commenting: Yes
Filling Form fields: Yes
Signing: Yes
Creation of Template Pages: No

 When a password is given Document Security is set in the .PDF with Security Method set to Password
Security.

 Security Method: Password Security

The maximum password is 32 bytes and the minimum password is 5 bytes, otherwise an exception 133 "The
parameter string is not valid for this object" will be given.

Filename is processed as an External Filename as described on page 791, except a full pathname is not made if only
a simple name is given. Extended open options are stripped.

The .pdf extension is added to the name for the generated file. More on PDF generation can be found on starting on
page 806.

564

BUILTIN (IC_PID_EXISTS)

B.52. IC_PID_EXISTS (Added in 3.00)

IC_PID_EXISTS, checks for the existence of a specific pid.

The syntax is:

 CALL "IC_PID_EXISTS" USING pid

Where
pid

is a numeric identifier containing the process identifier (PID) whose existence is to be verified

If the PID specified does not exist, exception status 219 (Invalid Task Number) is generated and the ON
EXCEPTION clause, if present, is executed.

565

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 PCQ-FILTER-NULL.
 03 PCQ-FILTER-HEADER.

05 PKT-ID PIC 9(2) COMP VALUE ZERO.
05 PKT-REV PIC 9(2) COMP VALUE ZERO.

01 PCQ-FILTER-QUEUE.
 03 PCQ-FILTER-HEADER.

05 PKT-ID PIC 9(2) COMP VALUE 1.
05 PKT-REV PIC 9(2) COMP VALUE ZERO.
05 FILLER PIC 9(4) COMP VALUE ZERO.

 03 QUEUE-PKT-MIN-PCQ PIC 9(4) COMP.

01 PCQ-FILTER-SIZE.
 03 PCQ-FILTER-HEADER.

05 PKT-ID PIC 9(2) COMP VALUE 2.
05 PKT-REV PIC 9(2) COMP VALUE ZERO.
05 FILLER PIC 9(4) COMP VALUE ZERO.

 03 SIZE-PKT-MIN-SIZE PIC 9(8) COMP.

01 PCQ-FILTER-OWNER-ID.
 03 PCQ-FILTER-HEADER.

05 PKT-ID PIC 9(2) COMP VALUE 3.
05 PKT-REV PIC 9(2) COMP VALUE ZERO.
05 FILLER PIC 9(4) COMP VALUE ZERO.

 03 OWNER-ID-PKT-MIN-ID PIC 9(4) COMP.

B.53. IC_PRINT_STAT

The IC_PRINT_STAT builtin calls the Printer Control Utility. The IC_PRINT_STAT builtin requires the Printer
Control privilege in the Program Environment configuration of the configuration file (.cfi). If not enabled, the call
returns Exception Status 221 "This operation is not permitted".

The syntax is:

CALL "IC_PRINT_STAT" [USING packet-1 [, packet-2]...]

Where
packet-n

may be the name of any of the following packets.

No filtering:

Filter by range of PCQ numbers:

Filter by range file sizes:

Filter by range of owners' console numbers (Windows) or user-ids (Linux):

566

BUILTIN (IC_PRINT_STAT)

01 PCQ-FILTER-PRINT-ID.
 03 PCQ-FILTER-HEADER.

05 PKT-ID PIC 9(2) COMP VALUE 4.
05 PKT-REV PIC 9(2) COMP VALUE ZERO.
05 FILLER PIC 9(4) COMP VALUE ZERO.

 03 PRINT-ID-PKT-MIN-ID PIC 9(4) COMP.

01 PCQ-FILTER-OWNER-NAME.
 03 PCQ-FILTER-HEADER.

05 PKT-ID PIC 9(2) COMP VALUE 5.
05 PKT-REV PIC 9(2) COMP VALUE ZERO.
05 FILLER PIC 9(4) COMP VALUE ZERO.

01 PCQ-FILTER-PRINT-NAME.
03 PCQ-FILTER-HEADER.

05 PKT-ID PIC 9(2) COMP VALUE 6.
05 PKT-REV PIC 9(2) COMP VALUE ZERO.
05 FILLER PIC 9(4) COMP VALUE ZERO.

01 PCQ-FILTER-FILE-NAME.
 03 PCQ-FILTER-HEADER.

05 PKT-ID PIC 9(2) COMP VALUE 7.
05 PKT-REV PIC 9(2) COMP VALUE ZERO.
05 FILLER PIC 9(4) COMP VALUE ZERO.

Filter by range of printed-by users' console number (Windows) or user-ids (Linux):

Filter by owner's user name:

Filter by printed-by user name:

Filter by simple filename:

FILE-NAME-PKT-NAME can use ICLINK.

567

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 PCQ-FILTER-READ-ACCESS.
03 PCQ-FILTER-HEADER.

05 PKT-ID PIC 9(2) COMP VALUE 8.
05 PKT-REV PIC 9(2) COMP VALUE ZERO.
05 FILLER PIC 9(4) COMP VALUE ZERO.

01 PCQ-FILTER-STATUS.
 03 PCQ-FILTER-HEADER.

05 PKT-ID PIC 9(2) COMP VALUE 9.
05 PKT-REV PIC 9(2) COMP VALUE ZERO.
05 FILLER PIC 9(4) COMP VALUE ZERO.

 03 STATUS-PKT-STATUS PIC 9(4) COMP.
 03 FILLER PIC 9(4) COMP VALUE ZERO.

01 PCQ-FILTER-DIR-NAME.
 03 PCQ-FILTER-HEADER.

05 PKT-ID PIC 9(2) COMP VALUE 10.
05 PKT-REV PIC 9(2) COMP VALUE ZERO.
05 FILLER PIC 9(4) COMP VALUE ZERO.

 03 DIR-NAME-PKT-NAME PIC X(64).

01 FILLER.
* No status
 03 PCQ-STATUS-NULL PIC 9(2) COMP VALUE ZERO.
* Not yet printed
 03 PCQ-STATUS-NEW PIC 9(2) COMP VALUE 1.
* Already printed
 03 PCQ-STATUS-OLD PIC 9(2) COMP VALUE 2.
* Error has occurred
 03 PCQ-STATUS-ERROR PIC 9(2) COMP VALUE 3.
* Update in progress
 03 PCQ-STATUS-OPEN PIC 9(2) COMP VALUE 4.
* Queued to print
 03 PCQ-STATUS-QUEUE PIC 9(2) COMP VALUE 5.
* Holding in the print queue
 03 PCQ-STATUS-HOLD PIC 9(2) COMP VALUE 6.
* Printing
 03 PCQ-STATUS-PRINT PIC 9(2) COMP VALUE 7.
* Retrying
 03 PCQ-STATUS-RETRY PIC 9(2) COMP VALUE 8.
* Terminating
 03 PCQ-STATUS-TERM PIC 9(2) COMP VALUE 9.

Filter by READ access to file:

Filter by status (mode): (values for status field are defined below)

Filter by directory name: (values for status field are defined below)

DIR-NAME-PKT-NAME can use ICLINK.

Values for STATUS-PKT-STATUS:

If no packets are specified, the Printer Control Utility is started and uses either no filtering or a default filter
specified with the ICPCQFILTER environment variable.

If any packets are specified, then only those files which meet the specified criterion will be displayed. If more than
one of these items is specified, then only files which meet ALL of the specified criteria will be displayed.

568

BUILTIN (IC_PRINT_STAT)

NOTE: These packet definitions are shipped on the release media in the file pqfilter.ws found in the examples
directory.

No more than 9 packets may be specified, and except for PCQ-FILTER-NULL, each packet may be specified at
most one time.

Note that each packet has a common header format that varies only by the value of the packet identifier (and possibly
rev at some later date).

569

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.54. IC_QUEUE_LIST (Added in 3.01)

The IC_QUEUE_LIST builtin is used to retrieve the status of one of the printer control queues. The
IC_QUEUE_LIST builtin allows a COBOL program to obtain a snapshot of the current contents of the printer
control queue. The information that is provided is equivalent to that viewed with the interactive Printer Control
Utility initiated by the IC_PRINT_STAT builtin. The information returned may optionally be filtered to reduce the
number of entries returned to a particular set of interest.

The syntax is:

CALL "IC_QUEUE_LIST" USING packet [, filt-pkt-1 [, filt-pkt-2]...]

Where
 packet

 is the following structure:
 01 IC-QUEUE-LIST-PKT.
 05 IC-QUEUE-LIST-PKT-REV PIC 9(2) COMP VALUE 1.
 05 IC-QUEUE-LIST-OS-TYPE PIC 9(2) COMP.
 88 IC-QUEUE-LIST-OS-TYPE-WINDOWS VALUE 1.
 88 IC-QUEUE-LIST-OS-TYPE-UNIX VALUE 2.
 05 IC-QUEUE-LIST-COUNT PIC 9(4) COMP.
 05 IC-QUEUE-LIST-ENTRY OCCURS 1 TO 1024 TIMES
 DEPENDING ON IC-QUEUE-LIST-COUNT.
 10 IC-QUEUE-LIST-FILE-SIZE PIC 9(9) COMP.
 10 IC-QUEUE-LIST-PRINT-ERR-CODE PIC 9(9) COMP.
 10 IC-QUEUE-LIST-OWNER-USER-ID PIC 9(9) COMP.
 10 IC-QUEUE-LIST-PRINT-USER-ID PIC 9(9) COMP.
 10 IC-QUEUE-LIST-TIME-MODIFIED PIC X(24).
 10 IC-QUEUE-LIST-TIME-PRINTED PIC X(24).
 10 IC-QUEUE-LIST-OWNER-USER-NAME PIC X(16).
 10 IC-QUEUE-LIST-PRINT-USER-NAME PIC X(16).
 10 IC-QUEUE-LIST-FIRST-PAGE PIC 9(9) COMP.
 10 IC-QUEUE-LIST-LAST-PAGE PIC 9(9) COMP.
 10 IC-QUEUE-LIST-PCQ-UNIT PIC 9(4) COMP.
 10 IC-QUEUE-LIST-PRIORITY PIC 9(4) COMP.
 10 IC-QUEUE-LIST-COPIES PIC 9(4) COMP.
 10 IC-QUEUE-LIST-DISPOSITION PIC 9(2) COMP.
 10 IC-QUEUE-LIST-OPTIONS.
 15 IC-QUEUE-LIST-OPTION-NO-BANNER PIC X.
 15 IC-QUEUE-LIST-OPTION-NOTIFY PIC X.
 15 IC-QUEUE-LIST-OPTION-START-FF PIC X.
 15 IC-QUEUE-LIST-OPTION-COPIES-FF PIC X.
 15 IC-QUEUE-LIST-OPTION-END-FF PIC X.
 15 FILLER PIC X(11).
 10 IC-QUEUE-LIST-STATUS PIC 9(2) COMP.
 10 IC-QUEUE-LIST-OS-INFO PIC X(24).
 10 IC-QUEUE-LIST-WINDOWS REDEFINES IC-QUEUE-LIST-OS-INFO.
 15 IC-QUEUE-LIST-WIN-PRINT-COPY PIC 9(4) COMP.
 15 IC-QUEUE-LIST-WIN-PRINT-PCNT PIC 9(2) COMP.
 15 FILLER PIC X(21).
 10 IC-QUEUE-LIST-UNIX REDEFINES IC-QUEUE-LIST-OS-INFO.
 15 IC-QUEUE-LIST-UNIX-REQ-ID-LEN PIC 9(4) COMP.
 15 IC-QUEUE-LIST-UNIX-REQ-ID PIC X(22).
 10 IC-QUEUE-LIST-QUEUE-SPOT PIC 9(4) COMP.
 10 IC-QUEUE-LIST-FILE-NAME-LEN PIC 9(4) COMP.
 10 IC-QUEUE-LIST-SIMPLE-NAME-OFS PIC 9(4) COMP.
 10 FILLER PIC X(2).
 10 IC-QUEUE-LIST-FILE-NAME PIC X(256).

 filt-pkt-n is a printer control filter packet.
 (See the IC_PRINT_STAT builtin's documentation for a complete description.)

On a call to IC_QUEUE_LIST, the packet revision must be set to one. No other field needs to be set, and if set it
will be overwritten. The fields are described below:

IC-QUEUE-LIST-PKT-REV
Revision of this packet structure -- it must always be set to 1.

IC-QUEUE-LIST-OS-TYPE
Operating system on which call is executed (returned by call). 1 is WINDOWS and 2 is Linux.

570

BUILTIN (IC_QUEUE_LIST)

IC-QUEUE-LIST-COUNT
Number of entries returned returned from call

IC-QUEUE-LIST-ENTRY
Array of queue entries. The maximum size may be lowered from 1024 to a smaller number, but MUST be a
least as large as the configured number of printer control entries.

IC-QUEUE-LIST-FILE-SIZE
Size of the file to be printed.

IC-QUEUE-LIST-PRINT-ERR-CODE
Standard ICOBOL exception code. Corresponding text can be retrieved for it using the IC_MSG_TXT
builtin function. This code is valid when IC-QUEUE-LIST-STATUS is
IC-QUEUE-LIST-STATUS-ERROR or IC-QUEUE-LIST-STATUS-RETRY.

IC-QUEUE-LIST-OWNER-USER-ID
User id number (Linux) or console number (WINDOWS) of the file's owner. If not yet known or assigned
the field will contain NULL-USER-ID.

IC-QUEUE-LIST-PRINT-USER-ID
User id number (Linux) or console number (WINDOWS) of the last user who printed the file. If not yet
known or assigned the field will contain NULL-USER-ID.

IC-QUEUE-LIST-TIME-MODIFIED
The time the file was last modified returned as a string of the form mmm-dd-yyyy hh:mm:ss.hh

IC-QUEUE-LIST-TIME-PRINTED
The time the file was last printed returned as a string of the form mmm-dd-yyyy hh:mm:ss.hh

IC-QUEUE-LIST-OWNER-USER-NAME
User name of the file's owner

IC-QUEUE-LIST-PRINT-USER-NAME
User name of the last user who printed the file

IC-QUEUE-LIST-FIRST-PAGE
First page to print. (May be set for modify operation.) If this value is NULL-PAGE-NUMBER all pages
will be printed.

IC-QUEUE-LIST-LAST-PAGE
Last page to print. (May be set for modify operation.) If this value is NULL-PAGE-NUMBER all from the
specified first through the end of the file will be printed. If IC-QUEUE-LIST-FIRST-PAGE is
NULL-PAGE-NUMBER, the IC-QUEUE-LIST-LAST-PAGE should be as well.

IC-QUEUE-LIST-PCQ-UNIT
PCQ unit on which the file is assigned to print. (May be set for modify operation.) It should always be less
than the maximum configured PCQ.

IC-QUEUE-LIST-PRIORITY
Print job's priority. (May be set for modify operation.) Normally this is set to NULL-PRIORITY to allow
the system to assign. Note that Linux and Windows priorities differ (see below).

IC-QUEUE-LIST-COPIES
Number of copies to be printed. (May be set for modify operation)

IC-QUEUE-LIST-DISPOSITION
Disposition of the printer queue entry when the file has finished printing. (It may be set for modify
operation.)

IC-QUEUE-LIST-OPTION-NO-BANNER
(Linux only) Suppress banner page when printing? Field contains 'Y' or 'N' for yes or no respectively.
(May be set for modify operation.)

IC-QUEUE-LIST-OPTION-NOTIFY
(Linux only) Notify when printing is complete? Field contains 'Y' or 'N' for yes or no respectively. (May be
set for modify operation.)

IC-QUEUE-LIST-OPTION-START-FF
(Windows only) Start printing with a form-feed? Field contains 'Y' or 'N' for yes or no respectively. (May
be set for modify operation.)

IC-QUEUE-LIST-OPTION-COPIES-FF
(Windows only) End each copy with a form-feed? Field contains 'Y' or 'N' for yes or no respectively. (May
be set for modify operation.)

IC-QUEUE-LIST-OPTION-END-FF
(Windows only) End printing with a form-feed? Field contains 'Y' or 'N' for yes or no respectively. (May
be set for modify operation.)

571

Interactive COBOL Language Reference & Developer’s Guide - Part One

IC-QUEUE-LIST-STATUS
This is a code for the current status of the print job. (When any operation is performed, the status is
cross-checked against the operation for validity.) Certain information in this packet is only valid when a
print job has a particular status.

IC-QUEUE-LIST-WIN-PRINT-COPY
(Windows only) Copy number currently being printed. This number is only valid when
IC-QUEUE-LIST-STATUS is IC-QUEUE-LIST-STATUS-PRINT.

IC-QUEUE-LIST-WIN-PRINT-PCNT
(Windows only) Percentage of job already printed. This number is only valid when
IC-QUEUE-LIST-STATUS is IC-QUEUE-LIST-STATUS-PRINT.

IC-QUEUE-LIST-UNIX-REQ-ID-LEN
(Linux only) Length of the lp request id. This number is only valid when IC-QUEUE-LIST-STATUS is
IC-QUEUE-LIST-STATUS-QUEUE, IC-QUEUE-LIST-STATUS-HOLD,
IC-QUEUE-LIST-STATUS-PRINT or IC-QUEUE-LIST-STATUS-TERM.

IC-QUEUE-LIST-UNIX-REQ-ID
(Linux only) The lp request id. This field is only valid when IC-QUEUE-LIST-STATUS is
IC-QUEUE-LIST-STATUS-QUEUE, IC-QUEUE-LIST-STATUS-HOLD,
IC-QUEUE-LIST-STATUS-PRINT or IC-QUEUE-LIST-STATUS-TERM.

IC-QUEUE-LIST-QUEUE-SPOT
Print job's current ordinal spot in the queue. This field is only valid when IC-QUEUE-LIST-STATUS is
IC-QUEUE-LIST-STATUS-QUEUE or IC-QUEUE-LIST-STATUS-HOLD.

IC-QUEUE-LIST-FILE-NAME-LEN
Length of the pathname found in IC-QUEUE-LIST-FILE-NAME.

IC-QUEUE-LIST-SIMPLE-NAME-OFs
One-based offset to simple filename found in IC-QUEUE-LIST-FILE-NAME

IC-QUEUE-LIST-FILE-NAME
Full pathname of the file to be printed

 Other flag values used with the control are defined below:

 * Flag values for unassigned entries
01 NULL-PAGE-NUMBER PIC 9(9) COMP VALUE 4294967295.
01 NULL-USER-ID PIC 9(9) COMP VALUE 4294967295.
01 NULL-PRIORITY PIC 9(4) COMP VALUE 65535.

 * Priority values
01 UNIX-HIGH-PRIORITY PIC 9(4) COMP VALUE 0.
01 UNIX-LOW-PRIORITY PIC 9(4) COMP VALUE 39.
01 UNIX-DEFAULT-PRIORITY PIC 9(4) COMP VALUE 39.
01 WINDOWS-HIGH-PRIORITY PIC 9(4) COMP VALUE 99.
01 WINDOWS-LOW-PRIORITY PIC 9(4) COMP VALUE 1.
01 WINDOWS-DEFAULT-PRIORITY PIC 9(4) COMP VALUE 1.

 * Values for IC-QUEUE-LIST-STATUS
01 FILLER.
* No status

 03 IC-QUEUE-LIST-STATUS-NULL PIC 9(2) COMP VALUE ZERO.
 * Not yet printed
 03 IC-QUEUE-LIST-STATUS-NEW PIC 9(2) COMP VALUE 1.
 * Already printed
 03 IC-QUEUE-LIST-STATUS-OLD PIC 9(2) COMP VALUE 2.
 * Error has occurred
 03 IC-QUEUE-LIST-STATUS-ERROR PIC 9(2) COMP VALUE 3.
 * Update in progress
 03 IC-QUEUE-LIST-STATUS-OPEN PIC 9(2) COMP VALUE 4.
 * Queued to print
 03 IC-QUEUE-LIST-STATUS-QUEUE PIC 9(2) COMP VALUE 5.
 * Holding in the print queue
 03 IC-QUEUE-LIST-STATUS-HOLD PIC 9(2) COMP VALUE 6.
 * Printing
 03 IC-QUEUE-LIST-STATUS-PRINT PIC 9(2) COMP VALUE 7.
 * Retrying due to error
 03 IC-QUEUE-LIST-STATUS-RETRY PIC 9(2) COMP VALUE 8.
 * Terminating
 03 IC-QUEUE-LIST-STATUS-TERM PIC 9(2) COMP VALUE 9.

572

BUILTIN (IC_QUEUE_LIST)

 * Values for IC-QUEUE-LIST-DISPOSITION
 01 FILLER.
 * Keep file (don't delete or remove)
 03 IC-QUEUE-LIST-KEEP-DISPOSITION PIC 9(2) COMP VALUE ZERO.
 * Remove file from PASS after printing
 03 IC-QUEUE-LIST-REMOVE-DISPOSITION PIC 9(2) COMP VALUE 1.
 * Delete file (& remove) after printing
 03 IC-QUEUE-LIST-DELETE-DISPOSITION PIC 9(2) COMP VALUE 2.

If no filter packets are specified, then the information returned without filtering or filtered by a default filter specified
with the ICPQFILTER environment variable.

If any filter packets are specified, the only entries for those files which meet the specified criteria will be returned. If
more than one filter packet is specified, then only entries for files which meet ALL of the specified criteria will be
displayed. No more than 9 filter packets may be specified, and except for PCQ-FILTER-NULL, each packet may be
specified at most one time.

The exception status codes which may be returned include:

13 Invalid data One or more of the arguments contain invalid data

36 File name is not valid Simple filename cannot be isolated

203 Program was not found Printer control must be enabled

209 Parameter mismatch on call Number, size or type of arguments is invalid

220 No more entries in the table There are no applicable entries

221 Operation is not permitted The call requires the Printer Control privilege in the program environments
section of the configuration file (.cfi)

378 Data area passed to a system call is too small The size of the entry array has call is too small been
changed so that there is insufficient room to return all the
entries in the .pq file

476 Filename too long The length of the filename exceeds the size of the packet. (Can occur on
Linux with pathnames > 255 characters.)

NOTE: The filter packet definitions are shipped on the ICOBOL release media in the file pqfilter.ws found in
the examples directory.

The main IC_QUEUE_LIST packet definitions are shipped in the ICOBOL release media in the file pq_list.ws
found in the examples directory.

573

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.55. IC_QUEUE_OPERATION (Added in 3.01)

The IC_QUEUE_OPERATION builtin is used to retrieve the status of one of the printer control queues. The
IC_QUEUE_OPERATION builtin allows a COBOL program to perform operations on items in the printer control
queue. The operations that are available are equivalent to those available with the interactive Printer Control Utility
initiated by the IC_PRINT_STAT builtin, with the addition of a PCQ info operation and get default filter operation.

The syntax is:

CALL "IC_QUEUE_OPERATION" USING operation, op-packet

Where
operation

is a numeric value which indicates what operation to perform
0 = Null operation 1 = Cancel job 2 = Delete job 3 = Hold job
4 = Modify job’s options 5 = Print job 6 = Remove job 7 = terminate job
8 = Unhold job 9 = Get PCQ info 10 = Get default PCQ filter

op-packet
For operations 1-8 (Job operations), op-packet is an IC-QUEUE-LIST-ENTRY from the IC_QUEUE_LIST
builtin's main packet. See the IC_QUEUE_LIST documentation for full details. It has the following
structure:

01 IC-QUEUE-LIST-ENTRY.
10 IC-QUEUE-LIST-FILE-SIZE PIC 9(9) COMP.
10 IC-QUEUE-LIST-PRINT-ERR-CODE PIC 9(9) COMP.
10 IC-QUEUE-LIST-OWNER-USER-ID PIC 9(9) COMP.
10 IC-QUEUE-LIST-PRINT-USER-ID PIC 9(9) COMP.
10 IC-QUEUE-LIST-TIME-MODIFIED PIC X(24).
10 IC-QUEUE-LIST-TIME-PRINTED PIC X(24).
10 IC-QUEUE-LIST-OWNER-USER-NAME PIC X(16).
10 IC-QUEUE-LIST-PRINT-USER-NAME PIC X(16).
10 IC-QUEUE-LIST-FIRST-PAGE PIC 9(9) COMP.
10 IC-QUEUE-LIST-LAST-PAGE PIC 9(9) COMP.
10 IC-QUEUE-LIST-PCQ-UNIT PIC 9(4) COMP.
10 IC-QUEUE-LIST-PRIORITY PIC 9(4) COMP.
10 IC-QUEUE-LIST-COPIES PIC 9(4) COMP.
10 IC-QUEUE-LIST-DISPOSITION PIC 9(2) COMP.
10 IC-QUEUE-LIST-OPTIONS.

15 IC-QUEUE-LIST-OPTION-NO-BANNER PIC X.
15 IC-QUEUE-LIST-OPTION-NOTIFY PIC X.
15 IC-QUEUE-LIST-OPTION-START-FF PIC X.
15 IC-QUEUE-LIST-OPTION-COPIES-FF PIC X.
15 IC-QUEUE-LIST-OPTION-END-FF PIC X.
15 FILLER PIC X(11).

10 IC-QUEUE-LIST-STATUS PIC 9(2) COMP.
10 IC-QUEUE-LIST-OS-INFO PIC X(24).
10 IC-QUEUE-LIST-WINDOWS REDEFINES IC-QUEUE-LIST-OS-INFO.

15 IC-QUEUE-LIST-WIN-PRINT-COPY PIC 9(4) COMP.
15 IC-QUEUE-LIST-WIN-PRINT-PCNT PIC 9(2) COMP.
15 FILLER PIC X(21).

10 IC-QUEUE-LIST-UNIX REDEFINES IC-QUEUE-LIST-OS-INFO.
15 IC-QUEUE-LIST-UNIX-REQ-ID-LEN PIC 9(4) COMP.
15 IC-QUEUE-LIST-UNIX-REQ-ID PIC X(22).

10 IC-QUEUE-LIST-QUEUE-SPOT PIC 9(4) COMP.
10 IC-QUEUE-LIST-FILE-NAME-LEN PIC 9(4) COMP.
10 IC-QUEUE-LIST-SIMPLE-NAME-OFS PIC 9(4) COMP.
10 FILLER PIC X(2).
10 IC-QUEUE-LIST-FILE-NAME PIC X(256).

For operation 9 (Get PCQ Info), packet is an IC-QUEUE-OP-INFO-PKT. It is defined as follows:

01 IC-QUEUE-OP-INFO-PKT.
03 IC-QUEUE-OP-INFO-PKT-REV PIC 9(2) COMP VALUE 1.
03 FILLER PIC X.
03 IC-QUEUE-OP-INFO-PCQ-COUNT PIC 9(4) COMP.
03 IC-QUEUE-OP-INFO-PCQ-MAX PIC 9(4) COMP.
03 IC-QUEUE-OP-INFO-JOB-COUNT PIC 9(4) COMP.

574

BUILTIN (IC_QUEUE_OPERATION)

For operation 10 (Get default PCQ filter), packet is an IC-QUEUE-OP-FILT-PKT. It is defined as follows:

01 IC-QUEUE-OP-FILT-PKT.
05 IC-QUEUE-OP-FILT-PKT-REV PIC 9(2) COMP VALUE 1.
05 FILLER PIC X.
05 IC-QUEUE-OP-FILT-OPTIONS.

10 IC-QUEUE-OP-FILT-QUEUE PIC X.
10 IC-QUEUE-OP-FILT-SIZE PIC X.
10 IC-QUEUE-OP-FILT-OWNER-ID PIC X.
10 IC-QUEUE-OP-FILT-PRINT-ID PIC X.
10 IC-QUEUE-OP-FILT-OWNER PIC X.
10 IC-QUEUE-OP-FILT-PRINT PIC X.
10 IC-QUEUE-OP-FILT-NAME PIC X.
10 IC-QUEUE-OP-FILT-ACCESS PIC X.
10 IC-QUEUE-OP-FILT-STATUS PIC X.
10 IC-QUEUE-OP-FILT-DIR PIC X.
10 FILLER PIC X(6).

05 IC-QUEUE-OP-FILT-STATUS-VAL PIC 9(4) COMP.
05 IC-QUEUE-OP-FILT-MIN-PCQ PIC 9(4) COMP.
05 IC-QUEUE-OP-FILT-MAX-PCQ PIC 9(4) COMP.
05 IC-QUEUE-OP-FILT-MIN-OWNER-ID PIC 9(4) COMP.
05 IC-QUEUE-OP-FILT-MAX-OWNER-ID PIC 9(4) COMP.
05 IC-QUEUE-OP-FILT-MIN-PRINT-ID PIC 9(4) COMP.
05 IC-QUEUE-OP-FILT-MAX-PRINT-ID PIC 9(4) COMP.
05 IC-QUEUE-OP-FILT-MIN-SIZE PIC 9(8) COMP.
05 IC-QUEUE-OP-FILT-MAX-SIZE PIC 9(8) COMP.
05 IC-QUEUE-OP-FILT-OWNER-NAME PIC X(16).
05 IC-QUEUE-OP-FILT-PRINT-NAME PIC X(16).
05 IC-QUEUE-OP-FILT-FILE-NAME PIC X(64).
05 IC-QUEUE-OP-FILT-DIR-NAME PIC X(64).

Null operation (0)

Will always return an invalid operation and not check any arguments.

Job operations (1-8)

On a call to IC_QUEUE_OPERATION with job operations (1 - 8), the list entry packet provided should be one that
was filled in by a call to IC_QUEUE_LIST. All fields should be left exactly as returned from the call to
IC_QUEUE_LIST. The only exception is that certain fields -- as noted below -- may be set with the new values
requested on a modify operation.

The fields which set for a modify operation are IC-QUEUE-LIST-FIRST-PAGE, IC-QUEUE-LIST-LAST-PAGE,
IC-QUEUE-LIST-PCQ-UNIT, IC-QUEUE-LIST-PRIORITY, IC-QUEUE-LIST-COPIES,
IC-QUEUE-LIST-DISPOSITION.

On UNIX, IC-QUEUE-LIST-OPTION-NO-BANNER and IC-QUEUE-LIST-OPTION-NOTIFY may be set.

On Windows, IC-QUEUE-LIST-OPTION-START-FF, IC-QUEUE-LIST-OPTION-COPIES-FF, and
IC-QUEUE-LIST-OPTION-END-FF may be set.

Once the operation is performed the provided entry is updated with its current values. The entry is set to
LOW-VALUES after the REMOVE or DELETE operations are performed.

The incoming operation code is cross checked against IC-QUEUE-LIST-STATUS for validity and allowed or
rejected according to the following table:

Status Allowable operations
------ --------------------
IC-QUEUE-LIST-STATUS-NEW Delete, Modify, Print, Remove
IC-QUEUE-LIST-STATUS-OLD Delete, Modify, Print, Remove
IC-QUEUE-LIST-STATUS-ERROR Delete, Modify, Print, Remove
IC-QUEUE-LIST-STATUS-OPEN -
IC-QUEUE-LIST-STATUS-QUEUE Cancel, Hold

575

Interactive COBOL Language Reference & Developer’s Guide - Part One

IC-QUEUE-LIST-STATUS-HOLD Cancel, Unhold
IC-QUEUE-LIST-STATUS-PRINT Terminate
IC-QUEUE-LIST-STATUS-RETRY Terminate
IC-QUEUE-LIST-STATUS-TERM -

PCQ Info Operation (9)

On a call to IC_QUEUE_OPERATION with the PCQ info option (9), the info packet's revision must be set to one.
No other field needs to be set, and if set it will be overwritten. The fields are described below:

IC-QUEUE-OP-INFO-PKT-REV
Revision of this packet structure -- it must always be set to 1.

IC-QUEUE-OP-INFO-PCQ-COUNT
This is the number of PCQ devices configured

IC-QUEUE-OP-INFO-PCQ-MAX-UNIT
This is the number of the highest PCQ device (currently 127)

IC-QUEUE-OP-INFO-JOB-COUNT
This is the configured maximum number of PCQ jobs

PCQ Default Info Operation (10)

On a call to IC_QUEUE_OPERATION with the PCQ default filter option (10), the filter packet's revision must be
set to one. No other field needs to be set, and if set it will be overwritten. The fields are described below:

IC-QUEUE-OP-FILT-PKT-REV
Revision of this packet structure -- it must always be set to 1.

IC-QUEUE-OP-FILT-QUEUE
If this field contains a 'Y', filtering by queue number is enabled. The two fields
IC-QUEUE-OP-FILT-MIN-PCQ and IC-QUEUE-OP-FILT-MIN-PCQ are valid and contain the minimum

 and maximum queues being viewed.
IC-QUEUE-OP-FILT-SIZE

If this field contains a 'Y', filtering by file size is enabled. The fields IC-QUEUE-OP-FILT-MIN-SIZE and
IC-QUEUE-OP-FILT-MIN-SIZE are valid and contain the minimum and maximum file sizes being viewed.

IC-QUEUE-OP-FILT-OWNER-ID
If this field contains a 'Y', filtering by owner id is enabled. (This is the console number on Windows and
the user-id on Linux.) The two fields IC-QUEUE-OP-FILT-MIN-OWNER-ID and
IC-QUEUE-OP-FILT-MAX-OWNER-ID are valid and contain the minimum and maximum owner id value
being viewed.

IC-QUEUE-OP-FILT-PRINT-ID
If this field contains a 'Y', filtering by printed-by id is enabled. (This is the console number on Windows
and the user-id on Linux.) The two fields IC-QUEUE-OP-FILT-MIN-PRINT-ID and
IC-QUEUE-OP-FILT-MAX-PRINT-ID are valid and contain the minimum and maximum printed-by id
value being viewed.

IC-QUEUE-OP-FILT-OWNER
If this field contains a 'Y', filtering by owner name is enabled. The field
IC-QUEUE-OP-FILT-OWNER-NAME is valid and contains the owner name of the files being viewed.

IC-QUEUE-OP-FILT-PRINT
If this field contains a 'Y', filtering by printed-by name is enabled. The field
IC-QUEUE-OP-FILT-PRINT-NAME is valid and contains the printed-by name of the files being viewed.

IC-QUEUE-OP-FILT-NAME
If this field contains a 'Y', filtering by file name is enabled. The field IC-QUEUE-OP-FILT-FILE-NAME is
is valid and contains the simple filename of the files being viewed.

IC-QUEUE-OP-FILT-ACCESS
If this field contains a 'Y', filtering by read access to the file is enabled.

IC-QUEUE-OP-FILT-STATUS

576

BUILTIN (IC_QUEUE_OPERATION)

If this field contains a 'Y', filtering by status is enabled. The field IC-QUEUE-OP-FILT-STATUS-VAL is
valid and contains the status value of the files being viewed.

IC-QUEUE-OP-FILT-DIR
If this field contains a 'Y', filtering by directory name is enabled. The field
IC-QUEUE-OP-FILT-DIR-NAME is is valid and contains the directory name of the files being viewed.

IC-QUEUE-OP-FILT-MIN-PCQ
IC-QUEUE-OP-FILT-MAX-PCQ

If IC-QUEUE-OP-FILT-QUEUE contains a 'Y', these two fields are valid and contain the minimum and
maximum queues being viewed.

IC-QUEUE-OP-FILT-MIN-SIZE
IC-QUEUE-OP-FILT-MAX-SIZE

If IC-QUEUE-OP-FILT-QUEUE contains a 'Y', these fields are valid and contain the minimum and
maximum file sizes being viewed.

IC-QUEUE-OP-FILT-MIN-OWNER-ID
IC-QUEUE-OP-FILT-MAX-OWNER-ID

If IC-QUEUE-OP-OWNER-ID contains a 'Y', these fields are valid and contain the minimum and maximum
owner id value being viewed.

IC-QUEUE-OP-FILT-MIN-PRINT-ID
IC-QUEUE-OP-FILT-MAX-PRINT-ID

If IC-QUEUE-OP-PRINT-ID contains a 'Y', these fields are valid and contain the minimum and maximum
printed-by id value being viewed.

IC-QUEUE-OP-FILT-STATUS
If this field contains a 'Y', filtering by status is enabled.

IC-QUEUE-OP-FILT-OWNER-NAME
If IC-QUEUE-OP-FILT-OWNER contains a 'Y', this field is valid and contains the owner name of the files
being viewed.

IC-QUEUE-OP-FILT-PRINT-NAME
If IC-QUEUE-OP-FILT-PRINT contains a 'Y', this field is valid and contains the printed-by name of the
files being viewed.

IC-QUEUE-OP-FILT-FILE-NAME
If IC-QUEUE-OP-FILT-NAME contains a 'Y', this field is valid and contains the simple filename of the
files being viewed.

IC-QUEUE-OP-FILT-DIR-NAME
If IC-QUEUE-OP-FILT-DIR contains a 'Y', this field is valid and contains the directory name of the files
being viewed.

Exception Status Codes

The exception status codes which may be returned include:

1 Invalid operation An invalid operation code has been supplied or the operation is not
valid with the status specified by the main packet.

2 File not found A get default PCQ filter operation request was made when there is
no default filter

13 Invalid data One or more of the arguments contain invalid data

36 File name is not valid Simple filename cannot be isolated

203 Program was not found Printer control must be enabled

209 Parameter mismatch on call Number, size or type of arguments is invalid

221 Operation is not permitted The call requires the Printer Control privilege in the program
environments section of the configuration file (.cfi)

577

Interactive COBOL Language Reference & Developer’s Guide - Part One

476 Filename too long The length of the filename exceed the size of the packet. (Can
occur on Linux with pathnames > 255 characters.)

NOTE: The main IC_QUEUE_OPERATION packet definitions are shipped in the ICOBOL release media in the
file pq_list.ws found in the examples directory.

578

BUILTIN (IC_QUEUE_STATUS)

B.56. IC_QUEUE_STATUS (Added in 3.00)

The IC_QUEUE_STATUS builtin is used to retrieve the status of one of the printer control queues. The information
returned is equivalent to that returned for the queue when TAB is pressed in the Printer Control Utility.

The syntax is:

 CALL "IC_QUEUE_STATUS" USING queue-number, queue-status, queue-name [, queue-trans]

Where
queue-number

is an integer item containing the queue number for which the status is requested
queue-status

is a signed intger item into which a status code is returned, where the value is one of the following:

Status
code Meaning

1 Not available

2 Offline

3 Paused

4 Needs Attention

5 Retrying

6 Printing

7 Available

If the printer is the default printer, then the value returned will be negative. For example, if queue-status
equals -7, then this is the default printer and it is available.

queue-name
is a PIC X(n) item into which the device name for the queue is returned

queue-trans
is an optional PIC X(n) item which, if present, receives the name of the printer translation

The following exception status codes may be returned:

Exception
status code Description

209 (Parameter mismatch on CALL) - Too many or few
arguments, or incorrect type of argument

13 (Invalid data) - Queue number contains invalid data

2 (File not found) - Queue number specified not found

579

Interactive COBOL Language Reference & Developer’s Guide - Part One

Directory must be empty (except for . and .. files) to be removed. If the directory is not empty, a File Exists
(Exception Status 32) will be returned. On Linux, the current directory can be removed resulting in File Not Found
errors when accessing any file based on the current directory. Generally, this should be avoided.

B.57. IC_REMOVE_DIR

The IC_REMOVE_DIR builtin allows a directory to be removed.

The syntax is:

CALL "IC_REMOVE_DIR" USING name

Where
name

is a PIC X(n) and holds the directory name to be removed.

580

BUILTIN (IC_RENAME)

B.58. IC_RENAME

The IC_RENAME builtin allows a file to be renamed.

The syntax is:

CALL "IC_RENAME" USING old-filename, new-filename

Where
old-filename

is a PIC X(n) that holds the old filename to be renamed.
new-filename

is a PIC X(n) that holds the new filename.

Pathnames can be used. To rename an ICISAM file, you must rename each individual portion, explicitly supplying
the .XD and .NX extensions with two builtin calls.

IC_RENAME does not go through the ICLINK link file facility.

Old-filename and new-filename are processed as an External Filename as described on page 791, except a full
pathname is not made if only a simple name is given.

581

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 FILE-ENTRY-REV1.
 02 MODIFIED-INFO.

03 DATE-MODIFIED PIC 9(6).
03 TIME-MODIFIED PIC 9(8).

 02 ACCESSED-INFO.
03 DATE-ACCESSED PIC 9(6).
03 TIME-ACCESSED PIC 9(8).

 02 FILESIZE-BYTES PIC 9(10).
 02 F-ATTRIBUTES PIC X(8).
 02 F-ATTRIBUTE-RED REDEFINES F-ATTRIBUTES.

03 READABLE-ON PIC X(1).
03 WRITABLE-ON PIC X(1).
03 PROTECTABLE-ON PIC X(1).
03 ARCHIVE-IT PIC X(1).
03 DIRECTORY-TYPE PIC X(1).
03 SYSTEM-TYPE PIC X(1).
03 EXECUTABLE-TYPE PIC X(1).
03 FILLER PIC X(1).

 02 FILENAME PIC X(64).

B.59. IC_RESOLVE_FILE

The IC_RESOLVE_FILE builtin resolves a filename to a full pathname using a search path. Templates are not
allowed. When using ICDATAPATH this works just like an OPEN. When using ICCODEPATH this works just
like a CALL or CALL PROGRAM.

The syntax is:

CALL "IC_RESOLVE_FILE" USING file-argument, lib-name [, search-path
[, file-entry [, rev]]]

Where
file-argument

is a PIC X(n) that holds the name of the file to be resolved. The fully resolved name is returned into this
argument. If the file was found in a library only the simple name is returned in file-argument. If the file
does not exist, the fully resolved name of where the file would be created is returned and the ON
EXCEPTION clause is executed. ICLINK can be used.

lib-name
is a PIC X(n) that holds the fully resolved library name if the file-argument was found in a library. If not
found in a library, this entry will be set to spaces.

search-path
is a PIC X(n) that holds the name of the ICOBOL search path to use. Valid search paths are
ICDATAPATH, ICCODEPATH, and blank for no searching. If the argument is not specified, it defaults to
ICDATAPATH. For an invalid argument, an error is returned and no processing is done.

file-entry
is a structure as defined below that provides status information about the file. If the file does not exist, no
data is moved into this structure. The Filename piece of the structure can be any length but should be long
enough to hold the longest simple name. Each entry can be defined as one of the following:

or

582

BUILTIN (IC_RESOLVE_FILE)

01 FILE-ENTRY-REV2.
 02 MODIFIED-INFO.

03 DATE-MODIFIED PIC 9(8).
03 TIME-MODIFIED PIC 9(8).

 02 ACCESSED-INFO.
03 DATE-ACCESSED PIC 9(8).
03 TIME-ACCESSED PIC 9(8).

 02 FILESIZE-BYTES PIC 9(10).
 02 F-ATTRIBUTES PIC X(8).
 02 F-ATTRIBUTE-RED REDEFINES F-ATTRIBUTES.

03 READABLE-ON PIC X(1).
03 WRITABLE-ON PIC X(1).
03 PROTECTABLE-ON PIC X(1).
03 ARCHIVE-IT PIC X(1).
03 DIRECTORY-TYPE PIC X(1).
03 SYSTEM-TYPE PIC X(1).
03 EXECUTABLE-TYPE PIC X(1).
03 FILLER PIC X(1).

 02 FILENAME PIC X(64).

01 FILE-ENTRY-REV3.
 02 MODIFIED-INFO.

03 DATE-MODIFIED PIC 9(8).
03 TIME-MODIFIED PIC 9(8).

 02 ACCESSED-INFO.
03 DATE-ACCESSED PIC 9(8).
03 TIME-ACCESSED PIC 9(8).

 02 FILESIZE-BYTES PIC 9(10).
 02 F-ATTRIBUTES PIC X(8).
 02 F-ATTRIBUTE-RED REDEFINES F-ATTRIBUTES.

03 READABLE-ON PIC X(1).
03 WRITABLE-ON PIC X(1).
03 PROTECTABLE-ON PIC X(1).
03 ARCHIVE-IT PIC X(1).
03 DIRECTORY-TYPE PIC X(1).
03 SYSTEM-TYPE PIC X(1).
03 EXECUTABLE-TYPE PIC X(1).
03 LINK-TYPE PIC X(1).

 02 USER-COUNT PIC 9(5).
 02 FILENAME PIC X(64).

01 FILE-ENTRY-REV4.
 02 MODIFIED-INFO.

03 DATE-MODIFIED PIC 9(8).
03 TIME-MODIFIED PIC 9(8).

 02 ACCESSED-INFO.
03 DATE-ACCESSED PIC 9(8).
03 TIME-ACCESSED PIC 9(8).

 02 FILESIZE-BYTES PIC 9(18).
 02 F-ATTRIBUTES PIC X(8).
 02 F-ATTRIBUTE-RED REDEFINES F-ATTRIBUTES.

03 READABLE-ON PIC X(1).
03 WRITABLE-ON PIC X(1).
03 PROTECTABLE-ON PIC X(1).
03 ARCHIVE-IT PIC X(1).
03 DIRECTORY-TYPE PIC X(1).
03 SYSTEM-TYPE PIC X(1).
03 EXECUTABLE-TYPE PIC X(1).
03 FILLER PIC X(1).

 02 FILENAME PIC X(64).

or

or

rev
is a PIC 9(2) COMP (one-byte binary), that specifies the revision of the file-entry lines provided in the
output-file. If not specified, 1 is assumed. Valid entries are 1 ,2, 3, and 4. If not specified, ANSI 74 and
ANSI 85 default to rev1, and VXCOBOL defaults to 3. Rev 4 is available in 5.00 and up.

583

Interactive COBOL Language Reference & Developer’s Guide - Part One

In the rev 1 structure each date is of the form YYMMDD. In the rev 2, 3,and 4 structures each date is of the form
YYYYMMDD and each time is of the form hhmmsshh. The rev 4 structure provides a larger FILESIZE-BYTES
entry. For all revisions, the FILENAME entry should be at least 64 bytes and no longer than 256 bytes. The
USER-COUNT field returns the number of times the file is open to any ICOBOL runtime running on this machine.
The attribute field is a space if the particular attribute is not set, and contains a single uppercase letter if it is set. (R-
readable, W-writeable, P-protected, A-archive, D-directory, S-system, E-executable, L-linkfile).

If an error is generated, the ON EXCEPTION clause, if present, is executed. The EXCEPTION STATUS gives the
error.

584

BUILTIN (IC_RIGHT)

B.60. IC_RIGHT (Added in 5.09)

The IC_RIGHT builtin provides the ability to right justify text.

The syntax is:

CALL "IC_RIGHT" USING source, destination

Where
source

is a PIC X(n) and holds the string to be justified.
destination

is a PIC X(n) and returns the right-justified string.

The content of source is trimmed of leading and trailing spaces and then padded with leading spaces so as to right
justify the item in the destination. If the length of the trimmed source is greater than width of destination, the
trimmed item is truncated on the left.

Use of the IC_RIGHT builtin requires 5.09 or greater of the runtime.

Any error will result in a non-zero exception status and the ON EXCEPTION clause, if present, to be executed.

585

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 KEY-STRUC.
 05 KEY-TYPE PIC 99 COMP.
 05 KEY-CODE PIC 99 COMP.
 05 KEY-CODE-X REDEFINES KEY-CODE PIC X.

B.61. IC_SEND_KEY (Added in 5.20)

The IC_SEND_KEY builtin allows the program to send a keystroke to another terminal running ICOBOL just as if
that key had been entered on that keyboard.

The call requires both the "Terminal Status" and "Watch Other Terminals" privileges; otherwise, it will return
exception status 221 - "This operation is not permitted." The call takes two arguments: the first is the terminal
number to which the key is being sent and the second is a KEY-STRUC group with values as described under the
IC_GET_KEY builtin. The effect of this builtin is similar to the full sequence of (a) watch the terminal with control,
(b) enter the keystroke, (c) cancel the watch. A beep will sound on the receiving terminal to indicate that something
has been received.

The syntax is:

CALL "IC_SEND_KEY" USING terminal-number, key-struc

Where
terminal-number

specifies a numeric value for the terminal to send the key.
key-struc

specifies a structure defined like this:

KEY-TYPE is the type of character and will contain one of the values: 1, 2, 3, 4, 5, 7, or 8, as shown in the
following table.

KEY-CODE returns the given code for the character, as specified in the current terminal definition. The
table below shows KEY-CODE values that are possible for each KEY-TYPE value.

KEY-TYPE
value

KEY-TYPE
description

Possible KEY-CODE values, for each KEY-TYPE value

1 normal
character

The character's numeric value. NOTE: KEY-CODE-X can be
displayed and is the character.

2 editing
function

1=left a character, 2=right a character, 3=backspace,
4=delete a character, 5=insert mode on/off, 6=clear field,
7=clear to end of field, 8=beginning of field, 9=end of field,
10=right a word, 11=left a word,, 12=destructive TAB, 13=left
tab stop, 14=right tab stop, 15=sound bell, 16=back delete

3 terminate field Escape key code for terminate field key.

4 previous field Escape key code for previous field key.

5 next field Escape key code for next field key.

7 previous row Escape key code for previous row key.

8 next row Escape key code for next row key.

TABLE 36. IC_SEND_KEY values

586

BUILTIN (IC_SEND_MAIL)

B.62. IC_SEND_MAIL (Added in 3.50)

The IC_SEND_MAIL builtin allows a COBOL program to send email directly from within COBOL using a standard
SMTP server. Both secure (SSL) and unsecure connections are supported.

The syntax is:

CALL "IC_SEND_MAIL" USING to-list, from-addr, cc-list, bcc-list, subject,
message [[[, att-type, attachment] [, uname-pass]] [, [att-type,
attachment]...]

Where the parameters are strings that hold:

to-list address [, address]... (comma-separated list)
from-addr address
cc-list [address [, address]...] (comma-separated list)
bcc-list [address [, address]...] (comma-separated list)
subject subject-line
message text-body-of-message (use <cr><nl> to split lines)

att-type mime type of file attached (optional)
attachment filename of file to attach (req'd if att-type specified)
uname-pass a username-password pair to pass as authorization to the SMTP server. Separate the username

from the password with a comma.

All strings are trimmed of trailing blanks. A LOW_VALUE will terminate a string.

The number of parameters are checked along with at least one valid to-address is required, the from-address can not
be blank and should be a valid address, subject cannot be blank, message can use <cr><nl> to split lines and can be
blank, cc-list, bcc-list, att-type, attachment, and uname-pass can be blank.

An address must consist of a local-part, an @ sign, and a domain as localpart@domain. To indicate the message
recipient, an email address also may have an associated display name for the recipient, which is followed by the

address specification surrounded by angled brackets, for example:

John Smith <john.smith@example.org>

This associated display name capability was added in 5.03.

If an att_type is specified, an attachment must be specified. If no att-type is specified, no attachment can be
specified. The appropriate mime-type must be specified or some email systems could modify the attachment. For
the second set of att-type, attachment they must be specified in pairs.

All attachment files are checked before the sending of the email that they do exist.

Some valid basic mime-types for att-type are text, video, ... Attachment must specify a valid file. For example to
attach a .pdf file the mime-type would be application/pdf.

For Mime Types see:

http://www.iana.org/assignments/media%2Dtypes/index.htm

Environment variables:

ICSMTPSERVER required to tell where the SMTP server is located. There is no default.
ICSMTPPORT specifies the port for the SMTP server, 25 is the default
ICSMTPSSLPORT specifies the port for the SMTP server to make a SSL connection. There is no

default. (Added in 5.00)

587

Interactive COBOL Language Reference & Developer’s Guide - Part One

ICSMTPTIMEOUT specifies the connection timeout in tenths of seconds for connection to the SMTP
server. The default is now 45 seconds. Values can be 1 to 65535 where 65535 is
“wait forever”. (Added in 5.12) (Previous value was wait forever.)

If ICSMTPSSLPORT is provided that port is used to connect first. If that is not successful the unsecure port
(ICSMTPPORT) will be tried.

Error messages for this builtin include:

2079 SMTP Authorization successful

2081 A mail recipient must be specified (To: field)
2082 A mail sender must be specified (From: field)
2083 A message subject must be specified (Subject: field)
2084 No mail server was specified (ICSMTPSERVER environment variable)
2085 The mail server port was not valid (ICSMTPPORT environment variable)
2086 SMTP System or Help message
2087 The SMTP service is ready
2088 The SMTP service is closing
2089 The SMTP action completed OK
2090 The recipient is nonlocal, message is being forwarded
2091 The recipient was not verified but message was accepted
2092 Start message input and end with <CRLF>.<CRLF>
2093 The SMTP service is not available - closing connection
2094 The command failed because the user's mailbox was unavailable
2095 The command failed because of a server error
2096 The command failed because of insufficient server storage

2098 The SMTP command failed with a 500 level error
2099 The SMTP command failed because mailbox was unavailable

2112 SMTP Authorization in progress
2113 SMTP Authorization required (A username/password is required)
2114 SMTP Authorization failed

2127 The secure mail server port was not valid (ICSMTPSSLPORT environment variable)
2128 The STARTTLS command failed because TSL was temporarily unavailable
2129 The smtp/pop3 server connection could not be secured with SLL or TLS (see below)
2130 SMTP Authorization doesn't support the available methods

If you receive an error 2129 and are using the ICSMTPSSLPORT entry try removing that entry and using the
standard ICSMTPPORT entry as the SMTP port may be using STARTTLS to switch into SSL/TLS mode.

The connection algorithm in the IC_SEND_MAIL builtin was changed in 5.12 to implement a retry algorithm FOR
INSECURE SOCKETS ONLY. The algorithm starts with a short timeout and progressively increases each time it
fails until the total timeout period has elapsed.

A sample ICOBOL source that provides an interface to the new IC_SEND_MAIL builtin is available as sendmail.sr
in the examples directory.

In the example program, sendmail.sr, the environment variable ICSMTPSERVER is read and can be set. A message
can be composed and sent to people with both CC and BC addresses. An attachment can also be added.

To help debug IC_SEND_MAIL problems you can use the Enhanced Auditing feature with WEB selected and an
Audit log and connection information will be logged. For example:

588

BUILTIN (IC_SEND_MAIL)
icrun -a::WEB

or
icrun -a:p:WEB

The log file will have messages such as:

<date-time-stamp>: WEB: ic_send_mail_bltn(544): entry
<date-time-stamp>: WEB: ic_send_mail_bltn(718): connecting to mail.xxxxxx.com:25
<date-time-stamp>: WEB: ic_send_mail_bltn(724): connection succeeded
<date-time-stamp>: WEB: ic_send_mail_bltn(735): snd: EHLO USERXX
<date-time-stamp>: WEB: ic_send_mail_bltn(741): rcv loop
<date-time-stamp>: WEB: ic_send_mail_bltn(759): rcv: 250-cm-omr14 says EHLO to
192.xxx.xxx.xxx:xxxx
<date-time-stamp>: WEB: ic_send_mail_bltn(741): rcv loop
<date-time-stamp>: WEB: ic_send_mail_bltn(759): rcv: 250-AUTH=CRAM-MD5 LOGIN PLAIN
<date-time-stamp>: WEB: ic_send_mail_bltn(741): rcv loop
<date-time-stamp>: WEB: ic_send_mail_bltn(759): rcv: 250-AUTH CRAM-MD5 LOGIN PLAIN
<date-time-stamp>: WEB: ic_send_mail_bltn(741): rcv loop
<date-time-stamp>: WEB: ic_send_mail_bltn(759): rcv: 250-8BITMIME
<date-time-stamp>: WEB: ic_send_mail_bltn(741): rcv loop
<date-time-stamp>: WEB: ic_send_mail_bltn(759): rcv: 250-ENHANCEDSTATUSCODES
<date-time-stamp>: WEB: ic_send_mail_bltn(741): rcv loop
<date-time-stamp>: WEB: ic_send_mail_bltn(759): rcv: 250 PIPELINING
<date-time-stamp>: WEB: ic_send_mail_bltn(860): snd: MAIL FROM:<xxxxxx@icobol.com>
<date-time-stamp>: WEB: ic_send_mail_bltn(870): rcv: 250 MAIL FROM accepted
<date-time-stamp>: WEB: ic_send_mail_bltn(877): snd: RCPT TO:<xxxxxx@nc.rr.com>
<date-time-stamp>: WEB: ic_send_mail_bltn(935): snd: DATA
<date-time-stamp>: WEB: ic_send_mail_bltn(949): snd: Subject: Test8
<date-time-stamp>: WEB: ic_send_mail_bltn(956): snd: From: xxxxxx@icobol.com
<date-time-stamp>: WEB: ic_send_mail_bltn(963): snd: To: xxxxxx@nc.rr.com
<date-time-stamp>: WEB: ic_send_mail_bltn(988): snd: X-Mailer: icrun Revision 4.61 (Windows)
<date-time-stamp>: WEB: ic_send_mail_bltn(995): snd: Mime-version: 1.0
<date-time-stamp>: WEB: ic_send_mail_bltn(1004): snd: Content-type: multipart/mixed;
boundary="_=ic0001/jy+RghScIFqyoJc"
<date-time-stamp>: WEB: ic_send_mail_bltn(1012): snd: --_=ic0001/jy+RghScIFqyoJc
<date-time-stamp>: WEB: ic_send_mail_bltn(1020): snd: Content-type: text/plain;
charset="iso-8859-1"
<date-time-stamp>: WEB: ic_send_mail_bltn(1028): snd: Content-transfer-encoding: 7bit
<date-time-stamp>: WEB: ic_send_mail_bltn(1038): snd: <mail msg>
<date-time-stamp>: WEB: ic_send_mail_bltn(1069): snd: CRLF
<date-time-stamp>: WEB: ic_send_mail_bltn(1220): snd: --_=ic0001/jy+RghScIFqyoJc--
<date-time-stamp>: WEB: ic_send_mail_bltn(1227): snd: CRLF.CRLF
<date-time-stamp>: WEB: ic_send_mail_bltn(1237): rcv: 250 OK 3B/4A-11934-F15C5FF4
<date-time-stamp>: WEB: ic_send_mail_bltn(1243): snd: QUIT
<date-time-stamp>: WEB: ic_send_mail_bltn(1253): rcv: 221 cm-omr14 closing connection
<date-time-stamp>: WEB: ic_send_mail_bltn(1269): exit: ret_code=2147485737: The SMTP action
completed OK

Some places that errors can occur include the initial connection response from the mail server which will show up as
an error at “Get greeting”, the response to the EHLO string which shows up as error at “Get EHLO response” or the
response to the HELO string which shows up as an error at “Get HELO message”.

Telnet can be used to help debug your SMTP connection as such:

telnet <smtp-server> 25
(greeting response from smtp-server)

EHLO <this-machine-name> CR LF
(EHLO response from smtp-server)

HELO
(HELO response from smtpserver)
...

QUIT
(closing connection message)

589

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.63. IC_SEND_MSG

The IC_SEND_MSG builtin allows the user to send a message to one, several, or all logged-on ICOBOL users,
either active or inactive on the same machine.

The IC_SEND_MSG builtin is enabled with the Message sending privilege in the Program Environment
configuration of the configuration file (.cfi). If not enabled, the call will fail with an Exception Status 221 "The
operation is not permitted.".

Two modes are available.

Mode 1 (Interactive Mode)

For mode 1, the syntax is:

CALL "IC_SEND_MSG"

Upon invocation, a terminal status window of all logged on terminals is displayed. You are then prompted for the
message that you wish to send. You are then prompted for the terminal number to send the message to. If none, the
message is sent to all logged-on users.

For more on IC_SEND_MSG in mode 1 see the Message Broadcast utility in the Utilities Manual.

Mode 2 (Program Mode)

For mode 2, the syntax is:

CALL "IC_SEND_MSG" USING term-number, message [, line-no, col-no]

Where
term-number

is a PIC 9(4) COMP that specifies the terminal number to send the message to. A value of 65535 sends the
message to all users.

message
is a PIC X(n) string of the message to be sent. Trailing spaces and nulls are removed. If longer than 60 the
string is truncated.

line-no
is a numeric that specifies the row (0-255) of where to place the message on the terminal

 col-no
is a numeric that specifies the column (0-255) of where to place the message on the terminal

NOTE: For line and column 0,0 is the upper-left corner of the terminal.

If n is an invalid terminal number or is not currently active, an Exception Status 228 "The terminal is not logged on"
is returned. If n is a terminal which is not enabled, Exception Status 229 "The terminal is not configured into the
system" is returned.

When the line and column format is specified, the message can include DG attribute characters like reverse, blink,
dim-on, dim-off, etc. On the specified terminal, all attributes will be reset at the end of the message and the cursor
position will be returned to its starting position.

590

BUILTIN (IC_SERIAL_NUMBER)

B.64. IC_SERIAL_NUMBER

The IC_SERIAL_NUMBER builtin returns the ICOBOL runtime license serial number, as determined by the
license manager (ICPERMIT) from the current license activation key.

The syntax is:

CALL "IC_SERIAL_NUMBER" USING argument

Where
argument

is a PIC 9(8) into which the license serial number will be stored.

591

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.65. IC_SET_ENV (Added in 3.13)

The IC_SET_ENV builtin allows an environment entry to be set.

The syntax is:

CALL "IC_SET_ENV" USING name, value

Where
name

is a string that specifies the name of the environment variable to be set.
value

is a string that specifies the data value for the environment entry. Trailing spaces are ignored.

Possible errors include:

Parameter mismatch
Invalid Data
No memory

592

BUILTIN (IC_SET_TIMEOUT)

B.66. IC_SET_TIMEOUT

The IC_SET_TIMEOUT builtin allows default timeouts to be enabled and disabled for ACCEPT and STOP literal
statements.

The syntax is:

CALL "IC_SET_TIMEOUT" [USING timeout]

Where
timeout

is a PIC 9(4) COMP that specifies the default timeout in tenths of seconds. 65535 disables timeout, 65534
says to use that specified as the global timeout (ICTIMEOUT), while a number between 0 and 63000 will
set the timeout to that value.

If no argument is specified, wait forever is set. The timeout value remains in effect whenever this program is active.
I.E., if a CALL statement is made, while in the new program the timeout is reset to that specified by the global
timeout (ICTIMEOUT) for the new program. Upon returning to the calling program, the timeout is restored to be
the value that was set before the CALL.

When an ACCEPT statement times out, ESCAPE KEY is set to 99 and no data is moved to the particular item (just
as when an ESC key is pressed).

593

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.67. IC_SET_USERNAME

The IC_SET_USERNAME builtin allows a program to set or change the name that is returned from the ACCEPT
FROM USER NAME statement. On Windows, it also changes the owner and printed-by names used by the Printer
Control Utility. This call does not change any identification of the user known to the operating system. In particular,
the Linux user-id for the process remains unchanged. (Hence, the permissions required on Linux to perform certain
Printer Control Utility functions remain unchanged after making this call.)

The syntax is:

CALL "IC_SET_USERNAME" USING username

Where
username

is a PIC X(n) string (1 <= n <= 15) containing the new username. The new username will consist of the
characters from this string up through the first space or null.

On Linux, Exception Status 13 "Invalid data", is returned if the name string does not represent a name of at least one
character, i.e., you may not eliminate the username entirely.

Any username case conversion specified on the ICRUN command line will be applied to the username supplied to
this builtin.

594

BUILTIN (IC_SHUTDOWN)

B.68. IC_SHUTDOWN (Added in 3.00)

The IC_SHUTDOWN builtin terminates the runtime system. The IC_SHUTDOWN call is enabled with the System
Shutdown privilege in the Program Environment configuration of the configuration file (.cfi). If the optional
argument is specified the value is returned to the runtime system’s parent process as an exit code.

The syntax is:

CALL "IC_SHUTDOWN" [USING exit-code]

Where
exit-code

is a PIC 9(n). Exit-code may be zero, or any value between 10 and 255 inclusive. Values 1 thru 9 are
reserved for runtime use.

Any error is stored into Exception Status and the ON EXCEPTION clause, if present, is executed. Exception status
13 “Invalid data” is returned if the exit-code is out of range.

595

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.69. IC_SYS_INFO (Enhanced in 3.22/3.35)

The IC_SYS_INFO builtin is supported in ICOBOL to allow internal status information for the entire ICOBOL
system to be viewed or read. The optional argument was added in 3.22.

The IC_SYS_INFO builtin is enabled with the System Information privilege in the Program Environment
configuration of the configuration file (.cfi). If not enabled, the call will fail with an Exception Status 203 "Program
not found.".

The syntax is:

CALL "IC_SYS_INFO" [USING sys-info-struc].

Where
sys-info-struc

is a structure with the following format:

 01 SYS-INFO-STRUCTURE.
 02 REV PIC 9(4) COMP.
 02 PROCESSES.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 TERMINALS.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 RPTERMINALS.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 DTTERMINALS.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 ANTERMINALS. (This group no longer used in 4.00)
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 SEQ-FILES.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 REL-FILES.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 IND-FILES.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 REC-LOCKS.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 OS-FILES.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 PRN-FILES.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 PCQ-FILES.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.

596

BUILTIN (IC_SYS_INFO)
 02 PCQ-JOBS.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 SER-FILES.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 CON-FILES.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 BUFFERS.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 03 IN-LRU PIC 9(4) COMP.
 03 MIN-LRU PIC 9(4) COMP.
 03 SIZE-BYTES PIC 9(4) COMP.
 02 DEVICES.
 03 IN-USE PIC 9(4) COMP.
 03 MAX-USED PIC 9(4) COMP.
 03 TOTAL-COUNT PIC 9(4) COMP.
 02 NEWBUFFERS. Added in 3.35 (rev 2)
 03 FILLER PIC 9(4) COMP.
 03 IN-USE PIC 9(9) COMP.
 03 MAX-USED PIC 9(9) COMP.
 03 TOTAL-COUNT PIC 9(9) COMP.
 03 IN-LRU PIC 9(9) COMP.
 03 MIN-LRU PIC 9(9) COMP.
 03 SIZE-BYTES PIC 9(9) COMP.

In the optional argument is given then it is filled in with the appropriate information. If the argument is not given,
then a screen of statistical information about various ICOBOL parameters is shown.

For the named resource, three numbers are provided. These are:

Value Description

In Use The number currently in use

MaxUsed The most this has ever been,
for this invocation

Max The maximum number configured

The MaxUsed values can be used to either raise or lower individual System Parameters in the configuration file (.cfi)
or in the Linux Kernel to provide a better-tuned system.

In the sys-info-structure, REV will contain a 2 when used with ICRUN 3.35 and up, and a 1 with previous versions.

Note that the SYS-INFO-STRUCTURE has been upgraded in 3.35 to handle the larger buffer structure added in
3.30.

The rev returned will be 2.

The previous BUFFER section of PIC 9(4) COMP values will be set to zero.

A new BUFFER section has been added at the end of the structure and all the sizes will be PIC 9(9) COMP.

The new structure is 136 bytes long.

When passed an old structure, the new buffer information will NOT be stored.

Starting in 4.00 the Assigned Terminal values (ANTERMINAL) are no longer used. They are set to 0.

597

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 WATCH-FUNC-STRUC.
 02 FUNCTION-CODE PIC 99 COMP.
 02 STATUS-LINE-CODE PIC 99 COMP.

B.70. IC_TERM_CTRL

The IC_TERM_CTRL builtin allows the user to view the status of all terminals and optionally perform some
operation on one or more selected terminals.

- Users with the Message sending privilege can send messages to one or more terminals.
- Users with the Abort terminal privilege can abort or kill a terminal.
- Users with the Watch other terminals privilege can view the screen of a selected terminal and optionally

control the selected terminal's keyboard.

The IC_TERM_CTRL builtin is enabled with the Terminal status privilege in the Program Environment
configuration of the configuration file (.cfi). If not enabled an Exception Status 221 "This operation is not
permitted" will be given. The Abort terminal, Console Interrupt, Message sending, and Watch privileges enable the
commands available to the user.

The syntax is:

CALL "IC_TERM_CTRL" [USING term-num, watch-func-struc].

Where
term-num

is a PIC 9(4) COMP that holds the terminal number of the terminal to be accessed.
watch-func-struc

is a structure holding the requested function and status-line setting for the session. It looks like:

Valid settings for FUNCTION-CODE are:
0=Watch term-num
1=Control term-num

Valid settings for STATUS-LINE-CODE are:
0=no status line
1=status line at the top of the screen starting in col 1
2=status line at the top of the screen starting in col 41

When the optional parameters are given, the IC_TERM_CTRL screen is never seen, the appropriate function is
executed and on exit control is returned to the calling program.

All terminals running ICOBOL on this machine are available.

For more on IC_TERM_CTRL see the Terminal Control Utility in the Utilities manual.

598

BUILTIN (IC_TERM_STAT)

01 STAT-STRUC.
 02 STRUC-REV PIC 9(4) COMP.
 02 TERM-NUM PIC 9(4) COMP.
 02 PROC-PID PIC 9(9) COMP.
 02 PROC-NUM PIC 9(4) COMP.
 02 PGM-STATE PIC 9(4) COMP.
 02 PGM-PC PIC 9(4) COMP.
 02 SP2-SRV-FLAG PIC X.
 02 CHAR-SRV-FLAG PIC X.
 02 USERNAME PIC X(16).
 02 PGMNAME PIC X(30).
 02 FLAGS.
 03 MASTER-FLAG PIC X.
 03 BATCH-FLAG PIC X.
 03 ABORT-FLAG PIC X.
 03 BREAK-FLAG PIC X.
 03 DEBUG-FLAG PIC X.
 03 SYS-INFO-FLAG PIC X.
 03 MSG-FLAG PIC X.
 03 BACK-FLAG PIC X.
 03 PRINTER-FLAG PIC X.
 03 PRT-MGR-FLAG PIC X.
 03 SHUTDOWN-FLAG PIC X.
 03 TERM-FLAG PIC X.
 03 EXEC-FLAG PIC X.
 03 WATCH-FLAG PIC X.
 03 XWATCH-FLAG PIC X.
 03 FILLER PIC X(3).

B.71. IC_TERM_STAT

The IC_TERM_STAT builtin is enabled with the Terminal status privilege in the Program Environment
configuration of the configuration file (.cfi). If not enabled, the call will fail with an Exception Status 221 "This
operation is not permitted.".

The syntax is:

CALL "IC_TERM_STAT" [USING term-num, stat-struc]

Where
term-num

is a PIC 9(4) COMP that holds the terminal number of a particular console of which status information is
required. 65535 means do a terminal status on the current console.

stat-struc
is a structure holding specific status information for the given terminal. The structure looks like:

Terminal Status allows the user to view the status of all ICOBOL users on the machine as well as current system
information.

For more on IC_TERM_STAT with no arguments see the Terminal Status utility in the Utilities Manual.

STRUCT-REV returns a 3 using the above description.

TERM-NUM is the terminal number of the console (it is the same as term-num or the current console number if
term-num was set to 65535.

PROC-PID is the pid of the stated terminal.

PROC-NUM is the internal ICOBOL process number.

PGM-STATE is the current state of the process: 0=unused, 1=logging on/off, 2=inactive, 3=active, 4=stopped,
5=while debugging, 6=pushed to shell/executable, 7=watching,
8=defunct.

599

Interactive COBOL Language Reference & Developer’s Guide - Part One

PGM-PC is always zero.

Previous to ICOBOL 3.30 the two bytes after the PGM-PC were filler bytes. With 3.30 and up they hold the
following flags:

 02 SP2-SRV-FLAG PIC X.
 02 CHAR-SRV-FLAG PIC X.

If this process is a thinclient surrogate process that supports gui-mode (sp2 or formprint) then the first flag
(SP2-SRV-FLAG) will be set to "Y". If the process supports character-mode, then the second flag
(CHAR-SRV-FLAG) will be set to "Y". So if the process supports both character-mode and gui-mode both flags
will be set. (Revision 4.00 or later.)

USERNAME is the name of the user of the terminal.

PGMNAME is the currently executing COBOL program.

Each flag byte is either Y or N indicating that the console is the master, is a batch job, or has the specific privilege.
The XWATCH-FLAG was added in 3.30.

600

BUILTIN (IC_TRIM)

B.72. IC_TRIM (Added in 3.34)

The IC_TRIM builtin takes a string and returns the starting position in the string of the first non-blank character and
the actual length of the string NOT including leading or trailing spaces.

The syntax is:

CALL "IC_TRIM" USING string, num-start, num-len

Where
string

specifies a PIC X(n) that holds the string.
num-start

 is a PIC 9(n) to which is returned the starting position in string for the first non-blank character.
num-len

 is a PIC 9(n) to which is returned the actual length of the string NOT including leading or trailing spaces.

NOTES:
1) Num-len and num-start can return 0.
2) You must ensure a num-start=0 is NOT passed to a reference modification

Examples:

For the nine-byte string " abcd " (that is <space><space>abcd<space><space><space>) num-start would
return 3 and num-len would return 4.

For nine-byte string " " (that is <space><space><space><space><space><space><space><space><space>)
num-start and num-len would return 0.

For the nine-byte string "abc d " (that is abc<space>d<space><space><space><space>), num-start would
return 1 and num-len would return 5.

The ‘trimmed’ string can then be extracted with reference modification. (I.E., string (num-start:num-len))

601

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.73. IC_UPPER

The IC_UPPER builtin converts the specified string to all upper-case characters.

The syntax is:

CALL "IC_UPPER" USING string

Where
string

specifies a PIC X(n) that holds the data to be converted to upper-case.

NOTE: For ANSI 74 and ANSI 85, a more efficient way of accomplishing this task is by using the
UPPER-CASE intrinsic function:

MOVE FUNCTION UPPER-CASE (string) TO string.

602

BUILTIN (IC_VERSION)

01 RUNTIME-VERSION PIC X(16).
...
CALL "IC_VERSION" USING RUNTIME-VERSION.
DISPLAY QUOTE, RUNTIME-VERSION, QUOTE.

B.74. IC_VERSION

The IC_VERSION builtin allows a program to obtain the revision number of the runtime system which is executing
the current program.

The syntax is:

CALL "IC_VERSION" USING version-string

Where
version-string

specifies a PIC X(n) item which will receive the revision number of the string. n >= 16 is suggested. The
version string will be of the form x.xx[.xx][Beta x] where each x represents a digit and parts within
brackets are present only if the runtime is an update and/or Beta test version.

The following exception status codes may be returned:

209 (Parameter mismatch on call) Too many or too few USING arguments

In the following example, a runtime system with revision 2.51 Beta 1 would display "2.51 Beta 1 ", and the 3.00
final release would display “3.00 “.

603

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.75. IC_WHOHAS_LOCKS (Added in 5.20)

The IC_WHOHAS_LOCKS builtin provides the ability to detect records that are locked in the system. The call
requires both the "Terminal Status" and "System Information" privileges; otherwise, it will return exception status
221 - "This operation is not permitted." The builtin call takes a single argument.

The syntax is:

CALL "IC_WHOHAS_LOCKS" USING struc

Where
struc

01 WHOHAS-GROUP.
02 MAX-COUNT PIC 9(4) COMP-5 VALUE 20. *> #table elements (input)
02 CUR-COUNT PIC 9(4) COMP-5 VALUE 0. *> actual count (output)
02 INFO-TBL OCCURS 20 TIMES. *> set occurs count as needed

03 TERM-NUM PIC 9(4) COMP-5. *> terminal holding the lock
03 USERNAME PIC X(16). *> user holding the lock
03 PROGNAME PIC X(30). *> program holding the lock
03 FILENAME PIC X(64). *> file with the locked record
03 LOCK-POS PIC 9(9) COMP-5. *> record position of the lock
03 PID-NUM PIC 9(9) COMP-5. *> PID of locking terminal

The OCCURS count can be set as needed, 20 is just an example. Typically there are only a handful of locked
records active at any given time, so usually only a small number is needed. The OCCURS count that is set must also
be specified in the VALUE clause of the MAX-COUNT field. The builtin uses MAX-COUNT to make sure that it
does not exceed the storage allocated to the table. If the number of actual locks exceeds the MAX-COUNT limit, an
exception 220 - "There are no more entries in the table" is returned and the CUR-COUNT field is set to the number
needed.

604

BUILTIN (IC_WINDOW_TITLE)

B.76. IC_WINDOW_TITLE

The IC_WINDOW_TITLE builtin allows the caller to set the title bar of the GUI icrunw or icrunrc screen. This title
remains in effect until another call to IC_WINDOW_TITLE. This call is available under Windows and when
running ThinClient Client (icrunrc) under Windows.

The syntax is:

CALL "IC_WINDOW_TITLE" USING fmt [, string-1]...

Where
fmt

specifies a PIC X(n) that holds a format string on how to display the title.
String-1

specifies a PIC X(n) that provides a series of character strings to be applied to the format.

The format string may contain any characters which will be literally used in the title. It may also contain any of the
following:

Format string
Characters Description

%% Insert a per cent sign at this location

%C Insert the name of the current COBOL program at this
location (only allowed once). This will change as
the COBOL program changes.

%D Insert today’s date at this location

%m Insert the current machine name

%O Insert the current os name

%P Insert the process name at this location

%S Insert the next string argument at this location

%T Insert the current time at this location

Any other character following the % will be treated as invalid. Trailing spaces or low-values will be trimmed from
the format string.

Without this call, the default is”%P - %C”.

The string values are used to satisfy the %S format directive. They are inserted in their entirety, including trailing
spaces, unless a LOW-VALUE is encountered in which case the string ends at the preceeding character.

The following exception status codes may be returned:

Exception status Description

209 - Parameter mismatch on call - Too few arguments
- more string parameters than %S directives

13 - Invalid data - bad format string

39 - Out of disk space - constructed string exceeds buffer size

When this builtin is NOT available an error 203 - "Program not found" will be given.

605

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 FORMAT PIC X(50) VALUE “%S: My application (%C)”.
01 STRING-1 PIC X(10) VALUE “My company”.

CALL “ic_window_title” USING FORMAT, STRING-1 ON EXCEPTION

Example:

Suppose these lines appear in the program MYPROG.SR:

The window title would be set to:

"My Company: My Application (myprog)".

The program name (myprog) would change as your application calls different COBOL programs.

606

BUILTIN (IC_WINDOWS_MSG_BOX)

B.77. IC_WINDOWS_MSG_BOX

The IC_WINDOWS_MSG_BOX builtin allows a COBOL program to display a message box using the Windows
MessageBox function when the console is on a Windows machine either with the Gui runtime (icrunw) or ThinClient
(icrunrc).

The syntax is:

 CALL "IC_WINDOWS_MSG_BOX" USING msg-text, msg-title, msg-ctrl, msg-button

Where
 msg-text

specifies a PIC X(n) item containing the message to be displayed. Trailing spaces are ignored.
msg-title

specifies a PIC X(n) item containing the title for the dialog box. Windows does not automatically break the
lines to fit in the message box so the message string must contain new lines to break the lines at the
appropriate places. Trailing spaces are ignored.

msg-ctrl
specifies a PIC X(3) item which controls the appearance and behavior of the message box

The first character controls the type of message box that will be displayed, i.e., the number of buttons and
their legends. The valid character values and their meanings are:

1st character Number of buttons to display Legends for the buttons

SPACE one push button OK

"0" one push button OK

"1" two push buttons OK and Cancel

"2" two push buttons Retry and Cancel

"3" two push buttons Yes and No

"4" three push buttons Yes, No, and Cancel

"5" three push buttons Abort, Retry, and Ignore

The second character controls which of the buttons will be the default. The selected button must
correspond to one of the buttons that is available as a result of the value entered in the first character
position. If the Enter key is pressed this button is selected. The valid selections follow:

2nd character Default button

SPACE First button on the message box

"A" Abort button

"C" Cancel button

"I" Ignore button

"N" No button

"O" OK button

"R" Retry button

"Y" Yes button

607

Interactive COBOL Language Reference & Developer’s Guide - Part One

 01 MSG-TEXT PIC X(32) VALUE "The account number is not valid.".
 01 MSG-TITLE PIC X(29) VALUE "Error: Invalid account number".
 01 MSG-CTRL PIC X(3) VALUE "2RX".
 ...
 CALL "IC_WINDOWS_MSG_BOX" USING MSG-TEXT, MSG-TITLE, MSG-CTRL,

MSG-BUTTON.

The third character controls the icon which is displayed in the message box. Valid selections are as
follows:

3rd character Icon to display in message box

SPACE No icon

"!" An exclamation point

"?" A question mark

"I" Icon consists of the lower case letter i

"X" A stop sign icon

msg-button
specifies a PIC X(1) item which is returned to from the call. This value identifies which button was
selected. If the message box has a Cancel button, pressing ESC is equivalent to selecting the Cancel button.

Value returned
from the call

Meaning
(which button
was selected)

"A" Abort button

"C" Cancel button

"I" Ignore button

"N" No button

"O" OK button

"R" Retry button

"Y" Yes button

The following exception status codes may be returned

Exception status Description

209 (Parameter mismatch on call) Too many or too few USING arguments, or invalid length
for argument

13 (Invalid data) One or more values in msg-ctrl is not valid

8 (Insufficient memory) Not enough memory to execute call

When this builtin is NOT available in the Thinclient case, an error 231 - "Unsupported feature for the current
terminal type" will be given.

Example:

Suppose the following code appears in a program running on Windows:

A message box will appear containing 2 buttons -- retry and cancel. The box will have the title "Error: Invalid
account number" and contain a stop sign icon and the text "The account number is not valid." as shown in the
next image.

608

BUILTIN (IC_WINDOWS_MSG_BOX)

609

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.78. IC_WINDOWS_SETFONT (Added in 3.13)

The IC_WINDOWS_SETFONT builtin allows the current font and font-size to be changed when running the GUI
Windows runtime or ThinClient Client (icrunrc). This call will also run on Linux platforms when using the
ThinClient client (icrunrc) on Windows. (Added in 3.30)

The syntax is:

CALL "IC_WINDOWS_SETFONT" [USING fontname, fontsize]

Where
fontname

is a string that specifies the name of a fixed font to which the font should be set. If not specified, the default
usually "Courier New" will be used. The name of the selected font will be returned into this location if the
call is successful.

fontsize
is an integer that specifies the font point size from 2 to 99, or is an integer that specifies the font point size
in deci-points from 20 to 999 as the number 1020 thru 1999, or a zero which will cause the Windows
ChooseFont Dialog box to be shown to the user.

This call acts just like the ICFONT and ICFONTSIZE environment entries when ICRUNW is started.

This call is available only on Windows when running on a graphic desktop and using the GUI runtime (icrunw) or
when running the ThinClient (icrunrc). (It does not matter if the ICRUNRC is connected to a Linux server.)

If no parameters are specified, the default ChooseFont dialog will be displayed. (Added in 3.56)

Possible errors include:

Parameter mismatch Invalid Data Program not found No memory
Path not found Invalid Format Invald operation

When this builtin is NOT available in the Thinclient case, an error 231 - "Unsupported feature for the current
terminal type" will be given.

610

BUILTIN (IC_WINDOWS_SHELLEXECUTE)

B.79. IC_WINDOWS_SHELLEXECUTE (Windows only) (Added in 3.11)

The IC_WINDOWS_SHELLEXECUTE performs an operation on a specified file.

The syntax is:

CALL "IC_WINDOWS_SHELLEXECUTE" USING lpverb, lpFile, lpParameters,
lpDirectory, nShowCmd

Where
lpverb

Is a string, referred to as a verb, that specifies the action to be performed. The set of available verbs
depends on the particular file or folder. Generally the actions available from an object's context menu are
available verbs. The following verbs are commonly used:

edit Launches an editor and opens the document for editing.
explore Explores the folder specified by lpFile.
find Initiates a search starting from the specified directory.
open Opens the file specified by lpFile.
print Prints the document specified by lpFile.
properties Displays the file or folder's properties.

If set to spaces, then NULL is passed to the Windows function which defaults to the "default" verb or an
open.

 lpFile
is a string that specifies the file or object on which to execute the specified verb.

 lpParameters
is a string that is a string of parameters to be passed to the application specified by lpFile if lpFile is an
executable. If lpFile is a document then lpParameters should be spaces.

 lpDirectory
is a string that specifies the default directory. If set to spaces the current directory is used. (NULL is
passed to the Windows call.)

 nShowcmd
is a Numeric with a value as given under IC_WINDOWS_SHOW_CONSOLE as cmd.

If the Windows ShellExecute call returns with a value greater than 32 then IC_WINDOWS_SHELLEXECUTE
returns a success. Otherwise, it is an error and an exception is generated and the ON EXCEPTION clause is
executed, if provided.

This call is available only on Windows when running on a graphic desktop.

More on this can be seen by looking at the Microsoft call "ShellExecute".

Possible errors include:

Parameter mismatch Invalid Data
Program not found No memory
Path not found Invalid Format
Access Denied Sharing violation
Invalid operation

This call can be used to:

A) start Internet Explorer by giving a valid URL address (www.icobol.com)
B) start an e-mail by giving "mailto: <name>".
C) start a find file by giving the verb "find" with lpFile set to a directory specifier.

Basically you should be able to do all the actions associated with an object that can be seen by using Explorer to
view the file and then right-clicking on the object. The top entry in the list is the default selection.

611

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.80. IC_WINDOWS_SHOW_CONSOLE

The IC_WINDOWS_SHOW_CONSOLE builtin specifies how the window is to be shown when running with the
GUI runtime or the Windows ThinClient (icrunrc) screen..

The syntax is:

CALL "IC_WINDOWS_SHOW_CONSOLE" USING cmd

Where
cmd

specifies a PIC 9(2) COMP item with one of the following values:

Value Command Description

1 Hide Hides the window.

2 Maximize Maximizes the window.

3 Minimize Minimizes the window and activates the next
top-level window in the z-order.

4 Restore Activates and displays the window. If the window
is minimized or maximized, the system restores it
to its original size and position. An applica-
tion should specify this flag when restoring a
minimized window.

5 Show Activates the window and displays it in its
current size and position.

6 ShowDefault Sets the show state based on how the program was
started.

7 ShowMaximized Activates the window and displays it as a maxi-
mized window.

8 ShowMinimized Activates the window and displays it as a mini-
mized window.

9 ShowMinNoActive Displays the window as a minimized window. The
active window remains active.

10 ShowNA Displays the window in its current state. The
active window remains active.

11 ShowNoActivate Displays a window in its most recent size and
position. The active window remains active.

12 ShowNormal Activates and displays a window. If the window
is minimized or maximized, the system restores it
to its original size and position.

NOTE: An Active window is where keyboard input is directed.

The following exception status codes may be returned

Exception status code Description

209 (Parameter mismatch on call) Too many or too few USING arguments,
or invalid length for argument

13 (Invalid data) Cmd is not valid

When this builtin is NOT available in the Thinclient case, an error 231 - "Unsupported feature for the current
terminal type" will be given.

612

BUILTIN (IC_WINDOWS_SHOW_CONSOLE)

MOVE 1 TO WINDOW-CMD.
CALL "IC_WINDOWS_SHOW_CONSOLE" USING WINDOW-CMD.

Example:

Suppose the following code appears in a program running on Windows:

The current window will be hidden. If you had used a 3 (minimize), the current window would be minimized.

This builtin is useful with Sp2 programs since it can be used to hide the runtime system’s main window if it is not
needed and restored if it is needed.

613

Interactive COBOL Language Reference & Developer’s Guide - Part One

614

INTRINSIC FUNCTIONS (GENERAL DESCRIPTION)

VIII. INTRINSIC FUNCTIONS (Added in 3.00)

A. General Description

Each intrinsic function definition specifies:

1) the name and description of the function

2) the type of the function

3) the general format of the function

4) the arguments, if any

5) the returned value.

See page 135, Function-identifier, for rules and explanations on the referencing of functions.

A.1. Types of Functions

Types of intrinsic functions are:

1) Alphanumeric functions. These are of the class and category alphanumeric. The number of character
positions in this data item is specified in the function definition. Alphanumeric functions have an implicit usage
display. Unless stated otherwise in the definition of a function, the data item is represented in the alphanumeric
coded character set in effect when the function is referenced at runtime.

2) Numeric functions. These are of the class and category numeric. A numeric function has an operational sign.

3) Integer functions. These are of the class and category numeric. An integer function has an operational sign
and no digits to the right of the decimal point.

4) Index functions. These are of the class and category index.

A.2. Arguments

Arguments specify values used in the evaluation of a function. Arguments are specified in the function-
identifier. The definition of a function specifies the number of arguments required, which may be zero, one, or more.
For some functions, the number of arguments may be variable. The order in which arguments are specified in a
function-identifier determines the interpretation given to each value in arriving at the function value.

Arguments may be required to have a certain class or a subset of a certain class, to be a keyword, a type
declaration, or a mnemonic-name. The types of argument are:

1) Alphabetic. An elementary data item of the class alphabetic or an alphanumeric literal containing only
alphabetic characters shall be specified. The size associated with the argument may be used in determining the value
of the function.

2) Alphanumeric. A data item of the class alphabetic or alphanumeric or an alphanumeric literal shall be
specified. The size associated with the argument may be used in determining the value of the function.

3) Index. An index data item shall be specified. The size associated with the argument may be used in
determining the value of the function.

615

Interactive COBOL Language Reference & Developer’s Guide - Part One

4) Integer. An arithmetic expression that will always result in an integer value or an integer data item shall be
specified. The value of the arithmetic expression, including operational sign, is used in determining the value of the
function.

5) Numeric. An arithmetic expression or a numeric data item shall be specified. The value of the arithmetic
expression is used in determining the value of the function.

6) Pointer. A pointer identifier shall be specified. The size associated with the argument may be used in
determining the value of the function.

NOTE: Permissible value errors return 0 for numeric and integer functions as well as raise the SIZE error
condition. It is advisable to use arithmetic statements with SIZE ERROR checks when assigning
function values if there is any possibility that improper arguments are supplied or if a size error could
occur.

A.3. Returned values

The evaluation of a function produces a returned value in a temporary elementary data item. The type of a
function identifies the type of the returned value as specified in the section, Types of functions, on page 613.

The returned value rules for certain integer and numeric intrinsic functions contain one or more equivalent
arithmetic expressions. An equivalent arithmetic expression is a formal definition that defines the relationship
among a function, its arguments, and its returned value. In the presentation of the equivalent arithmetic expressions
where there is a variable number of occurrences of an argument, the rules may contain an equivalent arithmetic
expression for one, two, and n occurrences.

The returned value of numeric and integer functions depends on whether an equivalent arithmetic expression is
specified for the function.

The returned value for numeric and integer functions is contained in a temporary standard intermediate data
item. With the exception of the CURRENT-DATE function, DATE-TO-YYYYMMDD function, the
DAY-TO-YYYYDDD function, the RANDOM function when no argument is specified, and the YEAR-TO-YYYY
function, the returned value shall be the same for all instances of a given function within a single execution of the
runtime element so long as the value and order of the arguments are the same.

When an equivalent arithmetic expression is specified:

1) the returned value shall equal the value of the equivalent arithmetic expression.

NOTE — As a result, the relation condition

function-identifier = equivalent-arithmetic-expression

will evaluate to true.

A.4. Date conversion functions

The Gregorian calendar is used in the date conversion functions. The starting date of Monday, January 1, 1601,
was chosen to establish a simple relationship between the Standard Date and DAY-OF-WEEK: integer date 1 was a
Monday, DAY-OF-WEEK 1.

616

INTRINSIC FUNCTIONS (SUMMARY TABLE)

A.5. Summary of functions

The following table summarizes the intrinsic functions that are available.

The "arguments" column defines argument type and the "type" column defines the type of the function, as
follows:

Alph means alphabetic
Anum means alphanumeric
Ind means index
Int means integer
Num means numeric
Ptr means pointer

NOTE — Num in the arguments column includes Int. Both Int and Num are listed in the arguments column
when the type of the argument determines the type of the function.

Intrinsic-function-name Arguments Type Value returned

ABS Int1 or
Num1

Depends
upon
argument

The absolute value of argument

ACOS Num1 Num Arccosine of Num1

ANNUITY Num1, Int2 Num Ratio of annuity paid for Int2 periods at
interest of Num1 to initial investment of one

ASIN Num1 Num Arcsine of Num1

ATAN Num1 Num Arctangent of Num1

BYTE-LENGTH Alph1 or
Anum1 or
Ind1 or
Num1 or
Ptr1

Int Length of argument in number of bytes

CHAR Int1 Anum Character in position Int1 of the alphanumeric
program collating sequence

COS Num1 Num Cosine of Num1

CURRENT-DATE Anum Current date and time and difference from
Coordinated Universal Time

DATE-OF-INTEGER Int1 Int Standard date equivalent (YYYYMMDD) of
integer date

DATE-TO-YYYYMMDD Int1, Int2 Int Argument-1 converted from YYMMDD to
YYYYMMDD based on the value of argument-2

DAY-OF-INTEGER Int1 Int Julian date equivalent (YYYYDDD) of integer
date

DAY-TO-YYYYDDD Int1, Int2 Int Argument-1 converted from YYDDD to YYYYDDD
based on the value of argument-2

E Num Value of e, the natural base

EXP Num1 Num e raised to the power Num1

EXP10 Num1 Num 10 raised to the power Num1

FACTORIAL Int1 Int Factorial of Int1

FRACTION-PART Num1 Num Fraction part of Num1

HIGHEST-ALGEBRAIC Int1 or
Num1 or
Anum1

Int
Num

Greatest algebraic value that may be repre-
sented in the argument

IC-CENTER Anum, [Int] Anum Argument-1 centered within argument-2 width

IC-DECODE-URL Anum Anum argument-1 url-decoded

IC-ENCODE-URL Anum Anum argument-1 url encoded

617

Interactive COBOL Language Reference & Developer’s Guide - Part One

Intrinsic-function-name Arguments Type Value returned

IC-GET-ENV Anum Anum value of the environment value argument-1

IC-HEX-TO-NUM Anum Int Integer of the hex-argument-1

IC-MSG-TEXT Int Anum Message matching argument-1 exception

IC-NUM-TO-HEX Int, Int Anum Hex value of the given numeric

IC-PID-EXISTS Int Int 0 if pid exists, exception otherwise

IC-SERIAL-NUM Anum current runtime serial number

IC-TRIM Anum Anum Argument-1 string returned trimmed

IC-VERSION Anum current revision string

INTEGER Num1 Int The greatest integer not greater than Num1

INTEGER-OF-DATE Int1 Int Integer date equivalent of standard date
(YYYYMMDD)

INTEGER-OF-DAY Int1 Int Integer date equivalent of Julian date
(YYYYDDD)

INTEGER-PART Num1 Int Integer part of Num1

LENGTH Alph1 or
Anum1 or
Ind1 or
Num1 or
Ptr1

Int Length of argument in number of character
positions

LOG Num1 Num Natural logarithm of Num1

LOG10 Num1 Num Logarithm to base 10 of Num1

LOWER-CASE Alph1 or
Anum1

Depends
upon
argu-
ment*

All letters in the argument are set to lower-
case

LOWEST-ALGEBRAIC Int1 or
Num1 or
Anum1

Int
Num

Lowest algebraic value that may be represented
in the argument.

MAX Alph1 ...
or
Anum1 ...
or
Ind1 ... or
Int1 ... or
Num1 ...

Depends
upon
argu-
ments*

Value of maximum argument

MEAN Num1 ... Num Arithmetic mean of arguments

MEDIAN Num1 ... Num Median of arguments

MIDRANGE Num1 ... Num Mean of minimum and maximum arguments

MIN Alph1 ...
or
Anum1 ...
or
Ind1... or
Int1 ... or
Num1 ...

Depends
upon
argu-
ments*

Value of minimum argument

MOD Int1, Int2 Int Int1 modulo Int2

NUMVAL Anum1 Num Numeric value of simple numeric string

NUMVAL-C Anum1 or
Anum2

Num Numeric value of numeric string with optional
commas and currency sign

NUMVAL-F Anum1 Num Numeric value of numeric string representing a
floating-point number

ORD Alph1 or
Anum1

Int Ordinal position of the argument in collating
sequence

618

INTRINSIC FUNCTIONS (SUMMARY TABLE)

Intrinsic-function-name Arguments Type Value returned

ORD-MAX Alph1 ...
or
Anum1 ...
or
Ind1 or
Num1 ...

Int Ordinal position of maximum argument

ORD-MIN Alph1 ...
or
Anum1 ...
or
Ind1 or
Num1 ...

Int Ordinal position of minimum argument

PI Num The value of pi

PRESENT-VALUE Num1,
Num2 ...

Num Present value of a series of future period-end
amounts, Num2, at a discount rate of Num1

RANDOM Int1 Num Random number

RANGE Int1 ... or
Num1 ...

Depends
upon
argument

Value of maximum argument minus value of
minimum argument

REM Num1, Num2 Num Remainder of Num1/Num2

REVERSE Alph1 or
Anum1

Depends
upon
argu-
ment*

Reverse order of the characters of the argument

SIGN Num1 Int The sign of Num1

SIN Num1 Num Sine of Num1

SQL-ADD-ESCAPES Aplha or
Anum

Alpha or
Anum

Adds SQL ESCs where needed

SQL-REMOVE-ESCAPES Alpha or
anum

Alpha or
Anum

Removes SQL ESCs as needed

SQRT Num1 Num Square root of Num1

STANDARD-DEVIATION Num1 ... Num Standard deviation of arguments

SUM Int1 ... or
Num1 ...

Depends
upon
argu-
ments

Sum of arguments

TAN Num1 Num Tangent of Num1

TEST-DATE-YYYYMMDD Int1 Int 0 if Int1 is a valid standard date;
otherwise identifies the sub-field in error

TEST-DAY-YYYYDDD Int1 Int 0 if Int1 is a valid Julian date;
otherwise identifies the sub-field in error

TEST-NUMVAL Anum1 Int 0 if argument-1 conforms to the requirements of
the NUMVAL function; otherwise identifies the
character in error

TEST-NUMVAL-C Anum1 or
Anum2 or
Key2
Key3

Int 0 if argument-1 conforms to the requirements of
the NUMVAL-C function; otherwise identifies the
character in error

TEST-NUMVAL-F Anum1 Int 0 if argument-1 conforms to the requirements of
the NUMVAL-F function; otherwise identifies the
character in error

UPPER-CASE Alph1 or
Anum1

Depends
upon
argu-
ment*

All letters in the argument are set to upper-
case

VARIANCE Num1 ... Num Variance of argument

WHEN-COMPILED Anum Date and time compilation unit was compiled

YEAR-TO-YYYY Int1, Int2 Int Argument-1 converted from YY to YYYY based on
the value of argument-2

619

Interactive COBOL Language Reference & Developer’s Guide - Part One

Intrinsic-function-name Arguments Type Value returned

* A function that has only alphabetic arguments is type alphanumeric.

TABLE 37. Summary of Intrinsic Functions

620

INTRINSIC FUNCTIONS (ABS)

01 A PIC S999 VALUE -987.
01 B PIC S999V99 VALUE -876.98.
01 C PIC S999V99 VALUE 0.
01 D PIC S999V99.

 COMPUTE D = FUNCTION ABS (A).
 IF D = 987
 PERFORM CORRECT-VALUE.

 COMPUTE D = FUNCTION ABS (B).
 IF D = 876.98
 PERFORM CORRECT-VALUE.

 COMPUTE D = FUNCTION ABS (C).
 IF D = 0
 PERFORM CORRECT-VALUE.

B. Intrinsic Functions

B.1. ABS

The ABS function returns the absolute value of the argument.

The type of this function depends on the argument type as follows:

Argument type Function type
Integer Integer
Numeric Numeric

B.1.1 General format

FUNCTION ABS (argument-1)

B.1.2 Arguments

1) Argument-1 shall be class numeric.

B.1.3 Returned values

1) The equivalent arithmetic expression shall be as follows:

a) When the value of argument-1 is zero or positive,

(argument-1)

b) When the value of argument-1 is negative,

(– argument-1)

B.1.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 30. ABS function

621

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 B PIC S9(10) VALUE 4.
01 WS-NUM PIC S9(5)V9(6).
01 MIN-RANGE PIC S9(5)V9(7).
01 MAX-RANGE PIC S9(5)V9(7).

 MOVE ZERO TO WS-NUM.
 MOVE 0.000000 TO MIN-RANGE.
 MOVE 0.000020 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION ACOS(1.0).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

 EVALUATE FUNCTION ACOS(0)
 WHEN 1.57076 THRU 1.57082
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-NUM.
 MOVE -0.000040 TO MIN-RANGE.
 MOVE 0.00004 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION ACOS(IND (B) - 2).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

B.2. ACOS

The ACOS function returns a numeric value in radians that approximates the arccosine of argument-1.

The type of this function is numeric.

B.2.1 General format

FUNCTION ACOS (argument-1)

B.2.2 Arguments

1) Argument-1 shall be class numeric.

2) The value of argument-1 shall be greater than or equal to –1 and less than or equal to +1.

B.2.3 Returned values

1) The returned value is the approximation of the arccosine of argument-1 and is greater than or equal to zero
and less than or equal to pi.

B.2.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 31. ACOS function

622

INTRINSIC FUNCTIONS (ANNUITY)

B.3. ANNUITY

The ANNUITY function (annuity immediate) returns a numeric value that approximates the ratio of an annuity paid
at the end of each period for the number of periods specified by argument-2 to an initial investment of one. Interest
is earned at the rate specified by argument-1 and is applied at the end of the period, before the payment.

The type of this function is numeric.

B.3.1 General format

FUNCTION ANNUITY (argument-1, argument-2)

B.3.2 Arguments

1) Argument-1 shall be class numeric.

2) The value of argument-1 shall be greater than or equal to zero.

3) Argument-2 shall be a positive integer.

B.3.3 Returned values

1) The equivalent arithmetic expression shall be as follows:

a) When the value of argument-1 is zero,

(1 / argument-2)

b) When the value of argument-1 is not zero,

(argument-1 / (1 – (1 + argument-1)** (–argument-2)))

623

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 WS-NUM PIC S9(5)V9(6).
01 MIN-RANGE PIC S9(5)V9(7).
01 MAX-RANGE PIC S9(5)V9(7).

 EVALUATE FUNCTION ANNUITY(2.9, 4)
 WHEN 2.91252 THRU 2.91264
 PERFORM CORRECT-VALUE
 WHEN OTHER
 PERFORM BAD-VAL.
 MOVE ZERO TO WS-NUM.
 MOVE 0.576553 TO MIN-RANGE.
 MOVE 0.576599 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION ANNUITY(
 FUNCTION ANNUITY(0, 3), 3).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-NUM.
 MOVE 4.49978 TO MIN-RANGE.
 MOVE 5.50022 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION ANNUITY(0, 2) + 5.
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

B.3.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 32. ANNUITY function

624

INTRINSIC FUNCTIONS (ASIN)

01 PI PIC S9V9(17) VALUE 3.141592654.
01 WS-NUM PIC S9(5)V9(6).
01 MIN-RANGE PIC S9(5)V9(7).
01 MAX-RANGE PIC S9(5)V9(7).

 EVALUATE FUNCTION ASIN(0.5)
 WHEN 0.523588 THRU 0.523609
 PERFORM CORRECT-VALUE
 WHEN OTHER
 PERFORM BAD-VAL.

 MOVE ZERO TO WS-NUM.
 MOVE -1.52610 TO MIN-RANGE.
 MOVE -1.52604 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION ASIN(-.999).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-NUM.
 MOVE 0.142546 TO MIN-RANGE.
 MOVE 0.142558 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION ASIN(FUNCTION ASIN(PI - 3)).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

B.4. ASIN

The ASIN function returns a numeric value in radians that approximates the arcsine of argument-1.

The type of this function is numeric.

B.4.1 General format

FUNCTION ASIN (argument-1)

B.4.2 Arguments

1) Argument-1 shall be class numeric.

2) The value of argument-1 shall be greater than or equal to –1 and less than or equal to +1.

B.4.3 Returned values

1) The returned value is the approximation of the arcsine of argument-1 and is greater than or equal to –pi/2
and less than or equal to +pi/2.

B.4.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 33. ASIN function

625

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 B PIC S9(10) VALUE 2.
01 SQRT3 PIC S9V9(17) VALUE 1.732050808.
01 ARR VALUE "40537".
 02 IND OCCURS 5 TIMES PIC 9.
01 WS-NUM PIC S9(5)V9(6).
01 MIN-RANGE PIC S9(5)V9(7).
01 MAX-RANGE PIC S9(5)V9(7).

 MOVE ZERO TO WS-NUM.
 MOVE -0.785414 TO MIN-RANGE.
 MOVE -0.785382 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION ATAN(-1).
 IF (WS-NUM >= MIN-RANGE) AND (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-NUM.
 MOVE -0.000020 TO MIN-RANGE.
 MOVE 0.000020 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION ATAN(IND(B)).
 IF (WS-NUM >= MIN-RANGE) AND (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-NUM.
 MOVE 0.522827 TO MIN-RANGE.
 MOVE 0.522869 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION ATAN((1 / SQRT3) - .001).
 IF (WS-NUM >= MIN-RANGE) AND (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

B.5. ATAN

The ATAN function returns a numeric value in radians that approximates the arctangent of argument-1.

The type of this function is numeric.

B.5.1 General format

FUNCTION ATAN (argument-1)

B.5.2 Arguments

1) Argument-1 shall be class numeric.

B.5.3 Returned values

1) The returned value is the approximation of the arctangent of argument-1 and is greater than –pi/2 and less
than +pi/2.

B.5.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 34. ATAN function

626

INTRINSIC FUNCTIONS (BYTE-LENGTH)

B.6. BYTE-LENGTH

The BYTE-LENGTH function returns an integer equal to the length of the argument in bytes.

The type of the function is integer.

B.6.1 General format

FUNCTION BYTE-LENGTH (argument-1)

B.6.2 Arguments

1) Argument-1 shall be an alphanumeric literal or a data item of any class or category.

B.6.3 Returned values

1) If argument-1 is an elementary data item or a literal, the returned value shall be an integer equal to the length
of argument-1 in bytes.

2) If argument-1 is a group data item:

a) If argument-1 or any data item subordinate to argument-1 is described with the DEPENDING phrase of
the OCCURS clause, the returned value shall be an integer equal to the length of argument-1 in bytes, as a sending
operand, determined by evaluation of the data item specified in the DEPENDING phrase in accordance with the
rules of the OCCURS clause. The contents of the data item specified in the DEPENDING phrase are used at the
time the BYTE-LENGTH function is evaluated.

b) Otherwise, the value returned shall be an integer equal to the length of argument-1 in bytes.

c) The returned length shall include the number of implicit FILLER positions, if any, in argument-1.

627

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 DATA-BLOCK.
 03 DATA-ARRAY OCCURS 1 TO 5 TIMES DEPENDING ON I.
 05 DATA-ELEMENTS OCCURS 65535 TIMES.
 07 DATA-COUNTER PIC 9(18).
 07 ARRAY-VALUE PIC 9(18).
 07 FILL-A-BYTE PIC X(15).

01 A PIC S999 VALUE -999.
01 B PIC -999.99.
01 C PIC 9(9) COMP.
01 I PIC 99 VALUE 3.
01 NO-BYTES PIC 9(10).

 COMPUTE NO-BYTES = FUNCTION BYTE-LENGTH (A).
 IF NO-BYTES = 3 PERFORM CORRECT-VALUE.

 COMPUTE NO-BYTES = FUNCTION BYTE-LENGTH (B).
 IF NO-BYTES = 7 PERFORM CORRECT-VALUE.

 COMPUTE NO-BYTES = FUNCTION BYTE-LENGTH (C).
 IF NO-BYTES = 4 PERFORM CORRECT-VALUE.

 COMPUTE NO-BYTES = FUNCTION BYTE-LENGTH (DATA-BLOCK).
 IF NO-BYTES = 10026855 PERFORM CORRECT-VALUE.

 MOVE 5 TO I.
 COMPUTE NO-BYTES = FUNCTION BYTE-LENGTH (DATA-BLOCK).
 IF NO-BYTES = 16711425 PERFORM CORRECT-VALUE.

 COMPUTE NO-BYTES = FUNCTION BYTE-LENGTH (DATA-ARRAY (1)).
 IF NO-BYTES = 3342285 PERFORM CORRECT-VALUE.

 COMPUTE NO-BYTES = FUNCTION BYTE-LENGTH (DATA-ELEMENTS (1, 1)).
 IF NO-BYTES = 51 PERFORM CORRECT-VALUE.

 COMPUTE NO-BYTES = FUNCTION BYTE-LENGTH (FILL-A-BYTE (1, 1)).
 IF NO-BYTES = 15 PERFORM CORRECT-VALUE.

B.6.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 35. BYTE-LENGTH function

628

INTRINSIC FUNCTIONS (CHAR)

01 D PIC S9(10) VALUE 100.
01 ARR VALUE "066037100070044".
 02 IND OCCURS 5 TIMES PIC 9(3).
01 WS-ANUM PIC X.

 MOVE SPACE TO WS-ANUM.
 MOVE FUNCTION CHAR(37) TO WS-ANUM.
 IF WS-ANUM = "$" THEN
 PERFORM OK.

 MOVE SPACE TO WS-ANUM.
 MOVE FUNCTION CHAR(IND(5)) TO WS-ANUM.
 IF WS-ANUM = "+" THEN
 PERFORM OK.

 MOVE SPACE TO WS-ANUM.
 MOVE FUNCTION CHAR(D) TO WS-ANUM.
 IF WS-ANUM = "c" THEN
 PERFORM OK.

B.7. CHAR

The CHAR function returns a one-character alphanumeric value that is a character in the alphanumeric program
collating sequence having the ordinal position equal to the value of argument-1. Since ICOBOL uses the ASCII
collating sequence, these values are 1 through 256.

The type of this function is alphanumeric.

B.7.1 General format

FUNCTION CHAR (argument-1)

B.7.2 Arguments

1) Argument-1 shall be an integer.

2) The value of argument-1 shall be greater than zero and less than or equal to the number of positions in the
alphanumeric program collating sequence.

B.7.3 Returned values

1) The returned value shall be the character in the alphanumeric program collating sequence having the ordinal
position specified by argument-1.

B.7.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 36. CHAR function

629

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 PI PIC S9V9(17) VALUE 3.141592654.
01 MINUSPI PIC S9V9(17) VALUE -3.141592654.
01 WS-NUM PIC S9(5)V9(6).
01 MIN-RANGE PIC S9(5)V9(7).
01 MAX-RANGE PIC S9(5)V9(7).

 MOVE ZERO TO WS-NUM.
 MOVE -1.00000 TO MIN-RANGE.
 MOVE -0.999980 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION COS(MINUSPI).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-NUM.
 MOVE -0.000040 TO MIN-RANGE.
 MOVE 0.000040 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION COS(PI / 2).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-NUM.
 MOVE 0.999980 TO MIN-RANGE.
 MOVE 1.00000 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION COS(0).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

B.8. COS

The COS function returns a numeric value that approximates the cosine of an angle or arc, expressed in radians, that
is specified by argument-1.

The type of this function is numeric.

B.8.1 General format

FUNCTION COS (argument-1)

B.8.2 Arguments

1) Argument-1 shall be class numeric.

B.8.3 Returned values

1) The returned value is the approximation of the cosine of argument-1 and is greater than or equal to –1 and
less than or equal to +1.

B.8.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 37. COS function

630

INTRINSIC FUNCTIONS (CURRENT-DATE)

B.9. CURRENT-DATE

The CURRENT-DATE function returns a 21-character alphanumeric value that represents the calendar date, time of
day, and local time differential factor provided by the system on which the function is evaluated.

The type of this function is alphanumeric.

B.9.1 General format

FUNCTION CURRENT-DATE

B.9.2 Returned values

1) The character positions returned, numbered from left to right, are:

Character
Positions

Contents

1-4 Four numeric digits of the year in the Gregorian calendar.

5-6 Two numeric digits of the month of the year, in the range 01 through
12.

7-8 Two numeric digits of the day of the month, in the range 01 through
31.

9-10 Two numeric digits of the hours past midnight, in the range 00
through 23.

11-12 Two numeric digits of the minutes past the hour, in the range 00
through 59.

13-14 Two numeric digits of the seconds past the minute, in the range 00
through 59.

15-16 Two numeric digits of the hundredths of a second past the second,
in the range 00 through 99. The value 00 is returned if the system
on which the function is evaluated does not have the facility to
provide the fractional part of a second.

17 Either the character '–', the character '+', or the character '0'. The
character '–' is returned if the local time indicated in the previous
character positions is behind Coordinated Universal Time. The
character '+' is returned if the local time indicated is the same as or
ahead of Coordinated Universal Time. The character '0' is returned
if the system on which this function is evaluated does not have the
facility to provide the local time differential factor.

18-19 If character position 17 is '–', two numeric digits are returned in the
range 00 through 12 indicating the number of hours that the
reported time is behind Coordinated Universal Time. If character
position 17 is '+', two numeric digits are returned in the range 00
through 13 indicating the number of hours that the reported time is
ahead of Coordinated Universal Time. If character position 17 is '0',
the value 00 is returned.

20-21 Two numeric digits are returned in the range 00 through 59 indicat-
ing the number of additional minutes that the reported time is ahead
of or behind Coordinated Universal Time, depending on whether
character position 17 is '+' or '–', respectively. If character position
17 is '0', the value 00 is returned.

631

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 TODAYS-INFO.
 03 TODAYS-YEAR PIC 9(4).
 03 TODAYS-MONTH PIC 99.
 03 TODAYS-DAY PIC 99.
 03 TODAYS-HOUR PIC 99.
 03 TODAYS-MIN PIC 99.
 03 TODAYS-SEC PIC 99.
 03 TODAYS-HSEC PIC 99.

 MOVE SPACES TO TODAYS-INFO.
 MOVE FUNCTION CURRENT-DATE TO TODAYS-INFO.

B.9.3 Example

The following code fragments illustrate the use of this function.

EXAMPLE 38. CURRENT-DATE function

632

INTRINSIC FUNCTIONS (DATE-OF-INTEGER)

01 A PIC S9(10) VALUE 400.
01 C PIC S9(10) VALUE 300.
01 D PIC S9(10) VALUE 1.
01 ARG1 PIC S9(10) VALUE 1.
01 ARR VALUE "40537".
 02 IND OCCURS 5 TIMES PIC 9.
01 TEMP PIC S9(5)V9(5).
01 WS-DATE PIC 9(8).

 MOVE ZERO TO WS-DATE.
 COMPUTE WS-DATE = FUNCTION DATE-OF-INTEGER(730).
 IF WS-DATE = 16021231 THEN
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-DATE.
 COMPUTE WS-DATE = FUNCTION DATE-OF-INTEGER(1).
 IF WS-DATE = 16010101 THEN
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-DATE.
 COMPUTE WS-DATE = FUNCTION DATE-OF-INTEGER(145655).
 IF WS-DATE = 19991016 THEN
 PERFORM CORRECT-VALUE.

B.10. DATE-OF-INTEGER

The DATE-OF-INTEGER function converts a date in the Gregorian calendar from integer date form to standard date
form (YYYYMMDD).

The type of this function is integer.

B.10.1 General format

FUNCTION DATE-OF-INTEGER (argument-1)

B.10.2 Arguments

1) Argument-1 is a positive integer that represents a number of days succeeding December 31, 1600, in the
Gregorian calendar. It shall not exceed the value of FUNCTION INTEGER-OF-DATE(99991231), which is
3,067,671.

B.10.3 Returned values

1) The returned value represents the ISO standard date equivalent of the integer specified in argument-1.

2) The returned value is in the form (YYYYMMDD) where YYYY represents a year in the Gregorian calendar;
MM represents the month of that year; and DD represents the day of that month.

B.10.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 39. DATE-OF-INTEGER function

633

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.11. DATE-TO-YYYYMMDD

The DATE-TO-YYYYMMDD function converts argument-1 from the form YYmmdd to the form YYYYmmdd.
Argument-2, when added to the year at the time of execution, defines the ending year of a 100-year interval, or
sliding window, into which the year of argument-1 falls.

The type of the function is integer.

B.11.1 General format

FUNCTION DATE-TO-YYYYMMDD (argument-1 [, argument-2])

B.11.2 Arguments

1) Argument-1 shall be zero or a positive integer less than 1000000.

NOTE — This function does not check argument-1 to ensure that it is a valid date. The
returned value can be an argument to the TEST-DATE-YYYYMMDD function to check its
validity.

2) Argument-2 shall be an integer.

3) If argument-2 is omitted, the function shall be evaluated as though 50 were specified.

4) The sum of the year at the time of execution and the value of argument-2 shall be less than 10000 and greater
than 1699.

B.11.3 Returned values

1) The equivalent arithmetic expression shall be as follows:

(FUNCTION YEAR-TO-YYYY (YY, argument-2) * 10000 + mmdd)

where

YY = FUNCTION INTEGER (argument-1/10000)
mmdd = FUNCTION MOD (argument-1, 10000)

and where argument-1 of the INTEGER and MOD functions and argument-2 of the YEAR-TO-YYYY
function are the same as argument-1 and argument-2 of the DATE-TO-YYYYMMDD function itself.

NOTES

1 — In the year 2002 the returned value for FUNCTION DATE-TO-YYYYMMDD (851003, 10) is
19851003. In the year 1994 the returned value for FUNCTION DATE-TO-YYYYMMDD (981002,
(–10)) is 18981002.

2 — This function supports a sliding window algorithm. See the notes for the YEAR-TO-YYYY
function for a discussion of how to specify a fixed window.

634

INTRINSIC FUNCTIONS (DATE-TO-YYYYMMDD)

77 WS-DATE PIC 9(8).

 COMPUTE WS-DATE = FUNCTION DATE-TO-YYYYMMDD (700615, 5).
 IF WS-DATE = 19700615 THEN
 PERFORM CORRECT-VALUE.

 COMPUTE WS-DATE = FUNCTION DATE-TO-YYYYMMDD (490615).
 IF WS-DATE = 20490615 THEN
 PERFORM CORRECT-VALUE.

 COMPUTE WS-DATE = FUNCTION DATE-TO-YYYYMMDD (040615, -10).
 IF WS-DATE = 19040615 THEN
 PERFORM CORRECT-VALUE.

B.11.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 40. DATE-TO-YYYYMMDD function

635

Interactive COBOL Language Reference & Developer’s Guide - Part One

77 WS-DATE PIC 9(7).
77 A PIC S9(10) VALUE 400.

 COMPUTE WS-DATE = FUNCTION DAY-OF-INTEGER (145732).
 IF WS-DATE = 2000001 THEN
 PERFORM CORRECT-VALUE.

 EVALUATE FUNCTION DAY-OF-INTEGER(A)
 WHEN 1602035
 PERFORM CORRECT-VALUE.

 COMPUTE WS-DATE = FUNCTION DAY-OF-INTEGER(1).
 IF WS-DATE = 1601001 THEN
 PERFORM CORRECT-VALUE.

B.12. DAY-OF-INTEGER

The DAY-OF-INTEGER function converts a date in the Gregorian calendar from integer date form to Julian date
form (YYYYDDD).

The type of this function is integer.

B.12.1 General format

FUNCTION DAY-OF-INTEGER (argument-1)

B.12.2 Arguments

1) Argument-1 is a positive integer that represents a number of days succeeding December 31, 1600, in the
Gregorian calendar. It shall not exceed the value of FUNCTION INTEGER-OF-DATE(99991231).

B.12.3 Returned values

1) The returned value represents the Julian equivalent of the integer specified in argument-1.

2) The returned value is an integer of the form (YYYYDDD) where YYYY represents a year in the Gregorian
calendar and DDD represents the day of that year.

B.12.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 41. DAY-OF-INTEGER function

636

INTRINSIC FUNCTIONS (DAY-TO-YYYYDDD)

B.13. DAY-TO-YYYYDDD

The DAY-TO-YYYYDDD function converts argument-1 from the form YYnnn to the form YYYYnnn. Argument-
2, when added to the year at the time of execution, defines the ending year of a 100-year interval, or sliding window,
into which the year of argument-1 falls.

The type of the function is integer.

B.13.1 General format

FUNCTION DAY-TO-YYYYDDD (argument-1 [, argument-2])

B.13.2 Arguments

1) Argument-1 shall be zero or a positive integer less than 100000.

Note — This function does not check argument-1 to ensure that it is a valid date. The returned value can be
an argument to the TEST-DAY-YYYYDDD function to check its validity.

2) Argument-2 shall be an integer.

3) If argument-2 is omitted, the function shall be evaluated as though 50 were specified.

4) The sum of the year at the time of execution and the value of argument-2 shall be less than 10000 and greater
than 1699.

B.13.3 Returned values

1) The equivalent arithmetic expression shall be as follows:

(FUNCTION YEAR-TO-YYYY (YY, argument-2) * 1000 + nnn)

where

YY = FUNCTION INTEGER (argument-1/1000)
nnn = FUNCTION MOD (argument-1, 1000)

and where argument-1 of the INTEGER and MOD functions and argument-2 of the YEAR-TO-YYYY
function are the same as argument-1 and argument-2 of the DAY-TO-YYYYDDD function itself.

NOTES

1) In the year 2002 the returned value for FUNCTION DAY-TO-YYYYDDD (10004, 20) is
2010004. In the year 2013 the returned value for FUNCTION DAY-TO-YYYYDDD (95005,
(–10)) is 1995005.

2) This function supports a sliding window algorithm. See the notes for the YEAR-TO-YYYY
function for a discussion of how to specify a fixed window.

637

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 YEARVAL PIC 9(7).

DISPLAY "FUNCTION DAY-TO-YYYYDDD " NO ADVANCING.
COMPUTE YEARVAL = FUNCTION DAY-TO-YYYYDDD (10004, 20)
IF YEARVAL = 2010004
 PERFORM CORRECT-VALUE.

COMPUTE YEARVAL = FUNCTION DAY-TO-YYYY (85005, (-10))
IF YEARVAL = 1985005
 PERFORM CORRECT-VALUE.

B.13.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 42. DAY-TO-YYYYDDD function

638

INTRINSIC FUNCTIONS (E)

77 A PIC S9V9(17).

 COMPUTE A = FUNCTION E.
 IF A = 2.71828182845904523
 PERFORM CORRECT-VALUE.

B.14. E

The E function returns an approximation of e, the base of natural logarithms.

The type of the function is numeric.

B.14.1 General format

FUNCTION E

B.14.2 Returned values

1) The equivalent arithmetic expression shall be

(2 + .718281828459045235)

B.14.3 Example

The following code fragments illustrate the use of this function.

EXAMPLE 43. E function

639

Interactive COBOL Language Reference & Developer’s Guide - Part One

77 A PIC S999 VALUE -5.
77 RESULT PIC S9(9)V9(9).

 COMPUTE RESULT = FUNCTION EXP (3).
 IF RESULT = 20.085536923
 PERFORM CORRECT-VALUE.

 COMPUTE RESULT = FUNCTION EXP (A).
 IF RESULT = 0.006737946
 PERFORM CORRECT-VALUE.

 COMPUTE RESULT = FUNCTION EXP (14.5)
 IF RESULT = 1982759.263537568
 PERFORM CORRECT-VALUE.

B.15. EXP

The EXP function returns an approximation of the value of e raised to the power of the argument.

The type of the function is numeric.

B.15.1 General format

FUNCTION EXP (argument-1)

B.15.2 Arguments

1) Argument-1 shall be class numeric.

B.15.3 Returned values

1) The equivalent arithmetic expression shall be:

(FUNCTION E ** argument-1)

B.15.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 44. EXP function

640

INTRINSIC FUNCTIONS (EXP10)

77 A PIC S999 VALUE -5.
77 RESULT PIC S9(9)V9(9).
77 RESULTA PIC S9(18).

 COMPUTE RESULT = FUNCTION EXP10 (3).
 IF RESULT = 1000.00000
 PERFORM CORRECT-VALUE.

 COMPUTE RESULT = FUNCTION EXP10 (A).
 IF RESULT = 0.000010000
 PERFORM CORRECT-VALUE.

 COMPUTE RESULT = FUNCTION EXP10 (14.5).
 IF RESULTA = 316227766016837
 PERFORM CORRECT-VALUE.

B.16. EXP10

The EXP10 function returns an approximation of the value of 10 raised to the power of the argument.

The type of the function is numeric.

B.16.1 General format

FUNCTION EXP10 (argument-1)

B.16.2 Arguments

1) Argument-1 shall be class numeric.

B.16.3 Returned values

1) The equivalent arithmetic expression shall be:

(10 ** argument-1)

B.16.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 45. EXP10 function

641

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 B PIC 9(10) VALUE 2.
01 ARR VALUE "40537".
 02 IND OCCURS 5 TIMES PIC 9.
01 RESULT PIC 9(18).

 COMPUTE RESULT = FUNCTION FACTORIAL (1).
 IF RESULT = 1 PERFORM CORRECT-VALUE.

 COMPUTE RESULT = FUNCTION FACTORIAL (IND (B)).
 IF RESULT = 1 PERFORM CORRECT-VALUE.

 COMPUTE RESULT = FUNCTION FACTORIAL (B + 7).
 IF RESULT = 362880 PERFORM CORRECT-VALUE.

 COMPUTE RESULT = FUNCTION FACTORIAL (B).
 IF RESULT = 2 PERFORM CORRECT-VALUE.

B.17. FACTORIAL

The FACTORIAL function returns an integer that is the factorial of argument-1.

The type of this function is integer.

B.17.1 General format

FUNCTION FACTORIAL (argument-1)

B.17.2 Arguments

1) Argument-1 shall be an integer greater than or equal to zero.

B.17.3 Returned values

1) The equivalent arithmetic expression shall be as follows:

a) When the value of argument-1 is 0 or 1,

(1)

b) When the value of argument-1 is 2,

(2)

c) When the value of argument-1 is n,

(n * (n – 1) * (n – 2) * ... * 1)

B.17.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 46. FACTORIAL function

642

INTRINSIC FUNCTIONS (FRACTION-PART)

77 WS-FRACTION PIC -99.999

 COMPUTE WS-FRACTION = FUNCTION FRACTION-PART(6.3 - (4.2 / 2)).
 IF WS-FRACTION = .2
 PERFORM CORRECT-VALUE.

 COMPUTE WS-FRACTION =
 FUNCTION FRACTION-PART(1.35) - FUNCTION FRACTION-PART(2.85).
 IF WS-FRACTION = -.5
 PERFORM CORRECT-VALUE.

 EVALUATE FUNCTION FRACTION-PART (123.7890675)
 WHEN .7890675
 PERFORM CORRECT-VALUE.

B.18. FRACTION-PART

The FRACTION-PART function returns a numeric value that is the fraction portion of the argument.

The type of the function is numeric.

B.18.1 General format

FUNCTION FRACTION-PART (argument-1)

B.18.2 Arguments

1) Argument-1 shall be of the class numeric.

B.18.3 Returned values

1) The equivalent arithmetic expression shall be:

(argument-1 – FUNCTION INTEGER-PART (argument-1))

where the argument for the INTEGER-PART function is the same as for the FRACTION-PART function
itself.

NOTE — If the value of argument-1 is +1.5, +0.5 is returned. If the value of argument-1 is –1.5, –0.5
is returned.

B.18.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 47. FRACTION-PART function

643

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.19. HIGHEST-ALGEBRAIC

The HIGHEST-ALGEBRAIC function returns a value that is equal to the greatest algebraic value that may be
represented in argument-1.

The type of this function depends upon the argument types as follows:

Argument type Function type
Integer Integer
Numeric Numeric
Numeric-edited Numeric

B.19.1 General format

FUNCTION HIGHEST-ALGEBRAIC (argument-1)

B.19.2 Arguments

1) Argument-1 shall be an elementary data item of category numeric or numeric-edited.

B.19.3 Returned values

1) The value returned is equal to the positive algebraic value of greatest magnitude that may be represented in
argument-1.

NOTE — The following illustrates the expected results for some values of argument-1.

Argument-1
characteristics Value returned

S999 +999
S9(4) BINARY +9999
99V9(3) +99.999
$**,**9.99BCR +99999.99
$**,**9.99 +99999.99

B.19.4 Example

The following code fragments illustrate the use of this function.

77 A PIC S9(5)V9(3).
77 B PIC S9(16) COMP.
77 C PIC $$$$$$$9.99.
77 RESULT PIC 9(18).

 COMPUTE RESULT = FUNCTION HIGHEST-ALGEBRAIC (A).
 IF RESULT = 99999
 PERFORM CORRECT-VALUE.

 COMPUTE RESULT = FUNCTION HIGHEST-ALGEBRAIC (B).
 IF RESULT = 36028797018963967
 PERFORM CORRECT-VALUE.

 COMPUTE RESULT = FUNCTION HIGHEST-ALGEBRAIC (C).
 IF RESULT = 9999999
 PERFORM CORRECT-VALUE.

EXAMPLE 48. HIGHEST-ALGEBRAIC function

644

INTRINSIC FUNCTIONS (IC-CENTER)

B.20. IC-CENTER (Added in 4.40)

The IC-CENTER function returns an alphanumeric string containing the content of source (argument-1) with leading
and trailing spaces removed and then padded with leading and trailing spaces so as to “center” the item in the
specified width. If width (argument-2) is omitted or is out of range, the width is set to the size of the source item.
The result item will have a length of width. If the difference in the length of the trimmed source and the specified
width is an odd number of characters, the “extra” character is added to the right. If the length of the trimmed string
is greater than width, the trimmed item is truncated on the right.

The type of the function is alphanumeric.

B.20.1 General format

FUNCTION IC-CENTER (argument-1 [, argument-2])

B.20.2 Arguments

1) Argument-1 shall be class alphabetic or alphanumeric and shall be at least one character position in length
and is the source string.

2) Argument-2 is optional and if specified shall be class numeric and specifies the width of the returned string.
Valid values are 1-65535 inclusive. If not specified, the length of argument-1 is used.

B.20.3 Returned values

1) The trimmed and centered string as given by argument-1 is returned.

2) The character string returned has the length specified by argument-2.

B.20.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 49. IC-CENTER function

645

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.21. IC-DECODE-URL (Added in 4.40)

The IC-DECODE-URL function returns an alphanumeric string with the contents of argument-1 decoded.

See the IC_DECODE_URL builtin on page 532 for more information.

The type of the function is alphanumeric.

B.21.1 General format

FUNCTION IC-DECODE-URL (argument-1)

B.21.2 Arguments

1) Argument-1 shall be class alphabetic or alphanumeric and shall be at least one character position in length.

B.21.3 Returned values

1) The decoded url string is returned.

B.21.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 50. IC-DECODE-URL function

646

INTRINSIC FUNCTIONS (IC-ENCODE-URL)

B.22. IC-ENCODE-URL (Added in 4.40)

The IC-ENCODE-URL function returns an alphanumeric string with the contents of argument-1 url-encoded.

See the IC_ENCODE_URL builtin on page 542 for more information.

The type of the function is alphanumeric.

B.22.1 General format

FUNCTION IC-ENCODE-URL (argument-1)

B.22.2 Arguments

1) Argument-1 shall be class alphabetic or alphanumeric and shall be at least one character position in length.

B.22.3 Returned values

1) The encoded url string is returned.

B.22.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 51. IC-ENCODE-URL function

647

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.23. IC-GET-ENV (Added in 4.40)

The IC-GET-ENV function returns an alphanumeric string containing the content of the designated environment
variable as indicated by argument-1. An empty value can be returned if the environment variable is not found.

See the IC_GET_ENV builtin on page 546 for more information.

The type of the function is alphanumeric.

B.23.1 General format

FUNCTION IC-GET-ENV (argument-1)

B.23.2 Arguments

1) Argument-1 shall be class alphabetic or alphanumeric and shall be at least one character position in length
that gives the environment value to look up..

B.23.3 Returned values

1) The string as indicated above.

B.23.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 52. IC-GET-ENV function

648

INTRINSIC FUNCTIONS (IC-HEX-TO-NUM)

B.24. IC-HEX-TO-NUM (Added in 4.40)

The IC-HEX-TO-NUM function returns an integer value of sufficient precision to contain the converted hex value.
If the hex value exceeds 16 characters (64-bits), or if it contains invalid characters (other than leading or trailing
spaces), the results are undefined.

See the IC_HEX_TO_NUM builtin on page 551 for more information.

The type of the function is numeric.

B.24.1 General format

FUNCTION IC-HEX-TO-NUM (argument-1)

B.24.2 Arguments

1) Argument-1 shall be class alphabetic or alphanumeric and shall be at least one character position in length.

B.24.3 Returned values

1) The integer vale represented by the provided hex string is returned.

B.24.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 53. IC-HEX-TO-NUM function

649

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.25. IC-MSG-TEXT (Added in 4.40)

The IC-MSG-TEXT function returns an alphanumeric string containing the message that goes with the exception
number, argument-1. If there is no associated text, an empty string is returned.

If argument-1 is not specified, the current exception status is used.

See the IC_MSG_TEXT builtin on page 560 for more information.

The type of the function is alphanumeric.

B.25.1 General format

FUNCTION IC-MSG-TEXT [(argument-1)]

B.25.2 Arguments

1) Argument-1 shall be class numeric and provdes an execption value to look up.

B.25.3 Returned values

1) The message associated with the exception value.

B.25.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 54. IC-MSG-TEXT function

650

INTRINSIC FUNCTIONS (IC-NUM-TO-HEX)

B.26. IC-NUM-TO-HEX (Added in 4.40)

The IC-NUM-TO-HEX function returns an alphanumeric value with 1 to 16 hex digits representing the value of
argument-1. Normally leading zeros are removed; however, if argument-2 (min-width) is specified and the value has
fewer that min-width hex digirs, the result will be padded with leading zeros to reach min-width. If min-width is
greater than 16, the value will be padded with trailing spaces to achive min-width. If min-width is out of range, it
will be as if it was omitted. Which emits the hex value without leading zeros. The result uses the uppercase A-F hex
digits. If argument-1 is out of range an empty value will be returned.

See the IC_NUM_TO_HEX builtin on page 561 for more information.

The type of the function is alphanumeric.

B.26.1 General format

FUNCTION IC-NUM-TO-HEX (argument-1 [, argument-2])

B.26.2 Arguments

1) Argument-1 shall be class alphabetic or alphanumeric and shall be at least one character position in length.

2) Argument-2 is optional and specifies the minimum width to be returned.

B.26.3 Returned values

1) The hexadecimal value of the integer number is returned.

B.26.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 55. IC-NUM-TO-HEX function

651

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.27. IC-PID-EXISTS (Added in 4.40)

The IC-PID-EXISTS function returns a numeric value based on whether the specified pid (argument-1) exists.

See the IC_PID_EXISTS builtin on page 563 for more information.

The type of the function is numeric.

B.27.1 General format

FUNCTION IC-PID-EXISTS (argument-1)

B.27.2 Arguments

1) Argument-1 shall be numeric and provides the pid value to lookup.

B.27.3 Returned values

1) If the given pid exists a 0 is returned. Otherwise the exception code is returned.

B.27.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 56. IC-PID-EXISTS function

652

INTRINSIC FUNCTIONS (IC-SERIAL-NUMBER)

B.28. IC-SERIAL-NUMBER (Added in 4.40)

The IC-SERIAL-NUMBER function returns an alphanumeric string with the serial number from the license that was
used to authorize this runtime process.

See the IC_SERIAL_NUMBER builtin on page 589 for more information.

The type of the function is alphanumeric.

B.28.1 General format

FUNCTION IC-SERIAL-NUMBER

B.28.2 Arguments

1) None.

B.28.3 Returned values

1) The current serial number for the runtime license used to authorize this runtime process is returned.

B.28.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 57. IC-SERIAL-NUMBER function

653

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.29. IC-TRIM (Added in 4.40)

The IC-TRIM function returns the content of the source with the leading and trailing spaces removed. And with the
length of the trimmed value.

See the IC_TRIM builtin on page 599 for more information.

The type of the function is alphanumeric.

B.29.1 General format

FUNCTION IC-TRIM (argument-1)

B.29.2 Arguments

1) Argument-1 shall be class alphabetic or alphanumeric and shall be at least one character position in length.

B.29.3 Returned values

1) The trimmed string is returned.

B.29.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 58. IC-TRIM function

654

INTRINSIC FUNCTIONS (IC-VERSION)

B.30. IC-VERSION (Added in 4.40)

The IC-VERSION function returns an alphanumeric string that is the runtime system’s revision string.

See the IC_VERSION builtin on page 601 for more details.

The type of the function is alphanumeric.

B.30.1 General format

FUNCTION IC-VERSION

B.30.2 Arguments

1) None.

B.30.3 Returned values

1) The runtime revision string is returned.

B.30.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 59. IC-VERSION function

655

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.31. INTEGER

The INTEGER function returns the greatest integer value that is less than or equal to the argument.

The type of this function is integer.

B.31.1 General format

FUNCTION INTEGER (argument-1)

B.31.2 Arguments

1) Argument-1 shall be class numeric.

B.31.3 Returned values

1) Argument-1 is not rounded.

2) The returned value is the greatest integer less than or equal to the value of argument-1

NOTE — For example, if the value of argument-1 is –1.5, –2 is returned. If the value of argument-1 is
+1.5, +1 is returned.

B.31.4 Example

The following code fragments illustrate the use of this function.

77 WS-INT PIC S9(10).

 COMPUTE WS-INT = FUNCTION INTEGER (-9.763).
 IF WS-INT = -10
 PERFORM CORRECT-VALUE.

 COMPUTE WS-INT = FUNCTION INTEGER (230492.4828).
 IF WS-INT = 230492
 PERFORM CORRECT-VALUE.

 COMPUTE WS-INT = FUNCTION INTEGER (0.00032).
 IF WS-INT = 0
 PERFORM CORRECT-VALUE.

EXAMPLE 60. INTEGER function

656

INTRINSIC FUNCTIONS (INTEGER-OF-DATE)

77 WS-INT PIC 9(10).

 COMPUTE WS-INT = FUNCTION INTEGER-OF-DATE (20000101).
 IF WS-INT = 145732 PERFORM CORRECT-VALUE.

 COMPUTE WS-INT = FUNCTION INTEGER-OF-DATE (16010101).
 IF WS-INT = 1 PERFORM CORRECT-VALUE.

 MOVE 16010101 TO WS-INT.
 PERFORM DATEOFINT-TEST
 UNTIL FUNCTION INTEGER-OF-DATE(WS-INT) > 10.
 IF WS-INT = 16010111 PERFORM CORRECT-VALUE.

DATEOFINT-TEST.
 COMPUTE WS-INT = WS-INT + 1.

B.32. INTEGER-OF-DATE

The INTEGER-OF-DATE function converts a date in the Gregorian calendar from standard date form
(YYYYMMDD) to integer date form.

The type of this function is integer.

B.32.1 General format

FUNCTION INTEGER-OF-DATE (argument-1)

B.32.2 Arguments

1) Argument-1 shall be an integer of the form YYYYMMDD, whose value is obtained from the calculation
(YYYY * 10,000) + (MM * 100) + DD.

a) YYYY represents the year in the Gregorian calendar. It shall be an integer greater than 1600 and less
than 10000.

b) MM represents a month and shall be a positive integer less than 13.

c) DD represents a day and shall be a positive integer less than 32 provided that it is valid for the specified
month and year combination.

B.32.3 Returned values

1) The returned value is an integer that is the number of days the date represented by argument-1 succeeds
December 31, 1600, in the Gregorian calendar.

B.32.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 61. INTEGER-OF-DATE function

657

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 A PIC S9(10) VALUE 1602035.
01 ARR VALUE "16010011602035".
 02 IND OCCURS 2 TIMES PIC 9(7).
01 WS-INT PIC 9(10).
 EVALUATE FUNCTION INTEGER-OF-DAY(A)
 WHEN 400
 PERFORM CORRECT-VALUE.

 IF FUNCTION INTEGER-OF-DAY(IND(1)) = 1 THEN
 PERFORM CORRECT-VALUE.

 COMPUTE WS-INT = FUNCTION INTEGER-OF-DAY(A) + 10.
 IF WS-INT = 410 THEN
 PERFORM CORRECT-VALUE.

B.33. INTEGER-OF-DAY

The INTEGER-OF-DAY function converts a date in the Gregorian calendar from Julian date form (YYYYDDD) to
integer date form.

The type of this function is integer.

B.33.1 General format

FUNCTION INTEGER-OF-DAY (argument-1)

B.33.2 Arguments

1) Argument-1 shall be an integer of the form YYYYDDD, whose value is obtained from the calculation
(YYYY * 1000) + DDD.

a) YYYY represents the year in the Gregorian calendar. It shall be an integer greater than 1600 and less
than 10000.

b) DDD represents the day of the year. It shall be a positive integer less than 367 provided that it is valid
for the year specified.

B.33.3 Returned values

1) The returned value is an integer that is the number of days the date represented by argument-1 succeeds
December 31, 1600, in the Gregorian calendar.

B.33.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 62. INTEGER-OF-DAY function

658

INTRINSIC FUNCTIONS (INTEGER-PART)

77 WS-INTEGER PIC -99.999

 COMPUTE WS-INTEGER =
FUNCTION INTEGER-PART(6.3 - (4.2 / 2)).

 IF WS-INTEGER = 4 PERFORM CORRECT-VALUE.

 COMPUTE WS-INTEGER =
FUNCTION INTEGER-PART(1.35) -

 FUNCTION INTEGER-PART(2.85).

 IF WS-INTEGER = 0 PERFORM CORRECT-VALUE.

 EVALUATE FUNCTION INTEGER-PART (123.7890675)
 WHEN 123
 PERFORM CORRECT-VALUE.

B.34. INTEGER-PART

The INTEGER-PART function returns an integer that is the integer portion of argument-1.

The type of this function is integer.

B.34.1 General format

FUNCTION INTEGER-PART (argument-1)

B.34.2 Arguments

1) Argument-1 shall be class numeric.

B.34.3 Returned values

1) The equivalent arithmetic expression shall be:

(FUNCTION SIGN (argument-1) * FUNCTION INTEGER (FUNCTION ABS (argument-1)))

where the arguments for the SIGN and ABS functions are the same as for the INTEGER-PART function
itself.

NOTE — If the value of argument-1 is +1.5, +1 is returned; if the value of argument-1 is –1.5, –1 is
returned; and if the value of argument-1 is zero, zero is returned.

B.34.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 63. INTEGER-PART function

659

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.35. LENGTH

The LENGTH function returns an integer equal to the length of the argument in alphanumeric character positions.

The type of this function is integer.

B.35.1 General format

FUNCTION LENGTH (argument-1)

B.35.2 Arguments

1) Argument-1 shall be alphanumeric literal or a data item of any class or category.

B.35.3 Returned values

1) If argument-1 is an elementary data item or an alphanumeric literal, the returned value shall be an integer
equal to the length of argument-1 in alphanumeric character positions.

2) If argument-1 is a group data item:

a) If argument-1 or any data item subordinate to argument-1 is described with the DEPENDING phrase
of the OCCURS clause, the returned value shall be an integer equal to the length of argument-1 in
alphanumeric character positions, as a sending operand, determined by evaluation of the data item
specified in the DEPENDING phrase in accordance with the rules of the OCCURS clause. The
contents of the data item specified in the DEPENDING phrase are used at the time the LENGTH
function is evaluated.

b) Otherwise, the returned value shall be an integer equal to the length of argument-1 in alphanumeric
character positions.

c) The returned length shall include the number of implicit FILLER positions, if any, in argument-1.

660

INTRINSIC FUNCTIONS (LENGTH)

B.35.4 Example

The following code fragments illustrate the use of this function.

01 DATA-BLOCK.
 03 DATA-ARRAY OCCURS 1 TO 5 TIMES DEPENDING ON I.
 05 DATA-ELEMENTS OCCURS 65535 TIMES.
 07 DATA-COUNTER PIC 9(18).
 07 ARRAY-VALUE PIC 9(18).
 07 FILL-A-BYTE PIC X(15).
01 A PIC S999 VALUE -999.
01 B PIC -999.99.
01 C PIC 9(9)COMP.
01 I PIC 99 VALUE 3.
01 NO-BYTES PIC 9(10).

 COMPUTE NO-BYTES = FUNCTION LENGTH (A).
 IF NO-BYTES = 3 PERFORM CORRECT-VALUE.

 COMPUTE NO-BYTES = FUNCTION LENGTH (B).
 IF NO-BYTES = 7 PERFORM CORRECT-VALUE.

 COMPUTE NO-BYTES = FUNCTION LENGTH (C).
 IF NO-BYTES = 4 PERFORM CORRECT-VALUE.

 COMPUTE NO-BYTES = FUNCTION LENGTH (DATA-BLOCK).
 IF NO-BYTES = 10026855 PERFORM CORRECT-VALUE.

 MOVE 5 TO I.
 COMPUTE NO-BYTES = FUNCTION LENGTH (DATA-BLOCK).
 IF NO-BYTES = 16711425 PERFORM CORRECT-VALUE.

 COMPUTE NO-BYTES = FUNCTION LENGTH (DATA-ARRAY (1)).
 IF NO-BYTES = 3342285 PERFORM CORRECT-VALUE.

 COMPUTE NO-BYTES = FUNCTION LENGTH (DATA-ELEMENTS (1, 1)).
 IF NO-BYTES = 51 PERFORM CORRECT-VALUE.

 COMPUTE NO-BYTES = FUNCTION LENGTH (FILL-A-BYTE (1, 1)).
 IF NO-BYTES = 15 PERFORM CORRECT-VALUE.

EXAMPLE 64. LENGTH function

661

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 E PIC S9(1)V9(9) VALUE 2.718281828.
01 WS-NUM PIC S9(5)V9(6).
01 MIN-RANGE PIC S9(5)V9(7).
01 MAX-RANGE PIC S9(5)V9(7).

 MOVE ZERO TO WS-NUM.
 MOVE 0.999980 TO MIN-RANGE.
 MOVE 1.00002 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION LOG(E).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-NUM.
 MOVE 0.632497 TO MIN-RANGE.
 MOVE 0.632547 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION LOG(3.2 / 1.7).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-NUM.
 MOVE 1.48569 TO MIN-RANGE.
 MOVE 1.48581 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION LOG(E + 1.7).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

B.36. LOG

The LOG function returns a numeric value that approximates the logarithm to the base e (natural log) of
argument-1.

The type of this function is numeric.

B.36.1 General format

FUNCTION LOG (argument-1)

B.36.2 Arguments

1) Argument-1 shall be class numeric.

2) The value of argument-1 shall be greater than zero.

B.36.3 Returned values

1) The returned value is the approximation of the logarithm to the base e of argument-1.

B.36.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 65. LOG function

662

INTRINSIC FUNCTIONS (LOG10)

01 ARG1 PIC S9(5)V9(5) VALUE 10.00.
01 WS-NUM PIC S9(5)V9(6).
01 MIN-RANGE PIC S9(5)V9(7).
01 MAX-RANGE PIC S9(5)V9(7).

 MOVE ZERO TO WS-NUM.
 MOVE -0.000020 TO MIN-RANGE.
 MOVE 0.000020 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION LOG10(1).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

 MOVE -2.00004 TO MIN-RANGE.
 MOVE -1.99996 TO MAX-RANGE.
 IF (FUNCTION LOG10(.01) >= MIN-RANGE) AND
 (FUNCTION LOG10(.01) <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

 PERFORM LOG10-TEST
 UNTIL FUNCTION LOG10(ARG1) < 0.30.
 PERFORM CORRECT-VALUE.

LOG10-TEST.
 COMPUTE ARG1 = ARG1 - 1.00.

B.37. LOG10

The LOG10 function returns a numeric value that approximates the logarithm to the base 10 of argument-1.

The type of this function is numeric.

B.37.1 General format

FUNCTION LOG10 (argument-1)

B.37.2 Arguments

1) Argument-1 shall be class numeric.

2) The value of argument-1 shall be greater than zero.

B.37.3 Returned values

1) The returned value is the approximation of the logarithm to the base 10 of argument-1.

B.37.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 66. LOG10 function

663

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 WS-ANUM PIC X(10).

 MOVE SPACES TO WS-ANUM.
 IF FUNCTION LOWER-CASE("highnLOW") = "highnlow" THEN
 PERFORM CORRECT-VALUE.

 MOVE FUNCTION LOWER-CASE("figure") TO WS-ANUM.
 IF WS-ANUM = "figure" THEN
 PERFORM CORRECT-VALUE.

 MOVE SPACES TO WS-ANUM.
 MOVE FUNCTION LOWER-CASE("95") TO WS-ANUM.
 IF WS-ANUM = "95" THEN
 PERFORM CORRECT-VALUE.

B.38. LOWER-CASE

The LOWER-CASE function returns a character string that is the same length as argument-1 with each uppercase
letter replaced by the corresponding lowercase letter.

The type of the function depends on the argument type as follows:

Argument Type Function Type
Alphabetic Alphabetic
Alphanumeric Alphanumeric

B.38.1 General format

FUNCTION LOWER-CASE (argument-1)

B.38.2 Arguments

1) Argument-1 shall be class alphabetic or alphanumeric and shall be at least one character position in length.

B.38.3 Returned values

1) The same character string as argument-1 is returned, except that each uppercase letter shall be replaced by
the corresponding lowercase letter.

2) The character string returned has the same length as argument-1.

B.38.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 67. LOWER-CASE function

664

INTRINSIC FUNCTIONS (LOWEST-ALGEBRAIC)

77 A PIC S9(5)V9(3).
77 B PIC S9(7) COMP.
77 C PIC $$$$$$$9.99.
77 RESULT PIC S9(18).

 COMPUTE RESULT = FUNCTION LOWEST-ALGEBRAIC (A).
 IF RESULT = -99999 PERFORM CORRECT-VALUE.

 COMPUTE RESULT = FUNCTION LOWEST-ALGEBRAIC (B).
 IF RESULT = -2147483648 PERFORM CORRECT-VALUE.

 COMPUTE RESULT = FUNCTION LOWEST-ALGEBRAIC (C).
 IF RESULT = 0 PERFORM CORRECT-VALUE.

B.39. LOWEST-ALGEBRAIC

The LOWEST-ALGEBRAIC function returns a value that is equal to the lowest algebraic value that may be
represented in argument-1.

The type of this function depends upon the argument types as follows:

Argument type Function type
Integer Integer
Numeric Numeric
Numeric-edited Numeric

B.39.1 General format

FUNCTION LOWEST-ALGEBRAIC (argument-1)

B.39.2 Arguments

1) Argument-1 shall be an elementary data item of category numeric or numeric-edited.

B.39.3 Returned values

1) The value returned is equal to the lowest algebraic value that may be represented in argument-1.

NOTE — The following illustrates the expected results for some values of argument-1.

Argument-1
characteristics Value returned
S999 –999
S9(4) BINARY –9999
99V9(3) 0
$**,**9.99BCR –99999.99
$**,**9.99 0

B.39.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 68. LOWEST-ALGEBRAIC function

665

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.40. MAX

The MAX function returns the content of the argument-1 that contains the maximum value.

The type of this function depends upon the argument types as follows:

Argument type Function type
Alphabetic Alphanumeric
Alphanumeric Alphanumeric
Index Index
All arguments integer Integer
Numeric (some arguments may be integer) Numeric

B.40.1 General format

FUNCTION MAX ({ argument-1 }...)

B.40.2 Arguments

1) Argument-1 shall not be of class pointer.

2) All arguments shall be of the same class with the exception that mixing of arguments of alphabetic and
alphanumeric classes is allowed.

B.40.3 Returned values

1) The returned value is the content of the argument-1 having the greatest value. The comparisons used to
determine the greatest value are made according to the rules for simple conditions. (See page 241, Simple
conditions.)

2) If the value of more than one argument-1 is equal to the greatest value, the content of the argument-1
returned is the leftmost argument-1 having that value.

3) If the type of the function is alphanumeric, the size of the returned value is the same as the size of the
selected argument-1.

666

INTRINSIC FUNCTIONS (MAX)

01 WS-NUM PIC S9(6)V9(6).
01 WS-ANUM PIC X.

 MOVE ZERO TO WS-NUM.
 COMPUTE WS-NUM = FUNCTION MAX(-4.3, 10.2, -0.7, 3.9).
 IF (WS-NUM >= 10.1998) AND (WS-NUM <= 10.2002)
 PERFORM CORRECT-VALUE.

 MOVE SPACES TO WS-ANUM.
 MOVE FUNCTION MAX("R", “I”, "I", "a") TO WS-ANUM.
 IF WS-ANUM = "a" THEN
 PERFORM CORRECT-VALUE.

 COMPUTE WS-NUM = FUNCTION MAX(A * B, (C + 1) / 2, 3 + 4).
 IF (WS-NUM >= MIN-RANGE) AND (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

B.40.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 69. MAX function

667

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.41. MEAN

The MEAN function returns a numeric value that is the arithmetic mean (average) of its arguments.

The type of this function is numeric.

B.41.1 General format

FUNCTION MEAN ({ argument-1 }...)

B.41.2 Arguments

1) Argument-1 shall be class numeric.

B.41.3 Returned values

1) The equivalent arithmetic expression shall be as follows:

a) For one occurrence of argument-1,

(argument-1)

b) For two occurrences of argument-1,

((argument-1 1 + argument-1 2) / 2)

c) For n occurrences of argument-1,
((argument-1 1 + argument-1 2 +... + argument-1 n) / n)

B.41.4 Example

The following code fragments illustrate the use of this function.

01 A PIC S9(10) VALUE 5.
01 B PIC S9(10) VALUE 7.
01 C PIC S9(5)V9(5) VALUE 34.26.
01 WS-NUM PIC S9(6)V9(6).
01 MIN-RANGE PIC S9(5)V9(7).
01 MAX-RANGE PIC S9(5)V9(7).

 EVALUATE FUNCTION MEAN(3.9, -0.3, 8.7, 100.2)
 WHEN 28.1244 THRU 28.1256
 PERFORM CORRECT-VALUE.
 MOVE ZERO TO WS-NUM.
 MOVE 20.6896 TO MIN-RANGE.
 MOVE 20.6904 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION MEAN(C, 9 * A, 0, B / 2).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.
 MOVE ZERO TO WS-NUM.
 MOVE 4.49991 TO MIN-RANGE.
 MOVE 4.50009 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION MEAN(FUNCTION MEAN(4, 2), 6).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

EXAMPLE 70. MEAN function

668

INTRINSIC FUNCTIONS (MEAN)

669

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.42. MEDIAN

The MEDIAN function returns the content of the argument whose value is the middle value in the list formed by
arranging the arguments in sorted order.

The type of this function is numeric.

B.42.1 General format

FUNCTION MEDIAN ({ argument-1 }...)

B.42.2 Arguments

1) Argument-1 shall be class numeric.

B.42.3 Returned values

1) When the number of occurrences of argument-1 is odd, the returned value shall be such that at least half of
the occurrences referenced by argument-1 are greater than or equal to the returned value and at least half are less
than or equal. For the purposes of the equivalent arithmetic expression, the middle value is referred to as
argument-a.

The equivalent arithmetic expression shall be

(argument-a)

2) When the number of occurrences of argument-1 is even, the returned value is the arithmetic mean of the two
middle values. For the purposes of the equivalent arithmetic expression, the two middle values are referred to as
argument-b and argument-c.

The equivalent arithmetic expression shall be

((argument-b + argument-c) / 2)

3) The comparisons used to arrange the argument-1 values in sorted order are made according to the rules for
simple conditions. (See page 241, Simple conditions.)

670

INTRINSIC FUNCTIONS (MEDIAN)

01 A PIC S9(10) VALUE 5.
01 B PIC S9(10) VALUE 7.
01 C PIC S9(5)V9(5) VALUE 34.26.
01 WS-NUM PIC S9(6)V9(7).
01 MIN-RANGE PIC S9(5)V9(7).
01 MAX-RANGE PIC S9(5)V9(7).

 EVALUATE FUNCTION MEDIAN(3.9, -0.3, 8.7, 100.2)
 WHEN 6.29987 THRU 6.30013
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-NUM.
 MOVE 34.2593 TO MIN-RANGE.
 MOVE 34.2607 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION MEDIAN(C, 9 * A, B / 2).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-NUM.
 COMPUTE WS-NUM = FUNCTION MEDIAN(10.2, -0.2, 5.6, -15.).
 IF (WS-NUM >= 2.69995) AND
 (WS-NUM <= 2.70005)
 PERFORM CORRECT-VALUE.

B.42.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 71. MEDIAN function

671

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 A PIC S9(10) VALUE 5.
01 B PIC S9(10) VALUE 7.
01 C PIC S9(5)V9(5) VALUE 34.26.
01 WS-NUM PIC S9(6)V9(7).
01 MIN-RANGE PIC S9(5)V9(7).
01 MAX-RANGE PIC S9(5)V9(7).

 EVALUATE FUNCTION MIDRANGE(3.9, -0.3, 8.7, 100.2)
 WHEN 49.9490 THRU 49.9510
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-NUM.
 MOVE 22.4995 TO MIN-RANGE.
 MOVE 22.5004 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION MIDRANGE(C, 9 * A, 0, B / 2).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.
 MOVE ZERO TO WS-NUM.
 MOVE 3.49993 TO MIN-RANGE.
 MOVE 3.50007 TO MAX-RANGE.
 COMPUTE WS-NUM =
 FUNCTION MIDRANGE(FUNCTION MIDRANGE(1, 3), 5).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

B.43. MIDRANGE

The MIDRANGE (middle range) function returns a numeric value that is the arithmetic mean (average) of the values
of the minimum argument and the maximum argument.

The type of this function is numeric.

B.43.1 General format

FUNCTION MIDRANGE ({ argument-1 }...)

B.43.2 Arguments

1) Argument-1 shall be class numeric.

B.43.3 Returned values

1) The equivalent arithmetic expression shall be

((FUNCTION MAX (argument-1) + FUNCTION MIN (argument-1)) / 2)

where the arguments for the MAX and MIN functions are the same as the arguments for the MIDRANGE
function itself.

B.43.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 72. MIDRANGE function

672

INTRINSIC FUNCTIONS (MIN)

B.44. MIN

The MIN function returns the content of the argument-1 that contains the minimum value.

The type of this function depends upon the argument types as follows:

Argument Type Function type
Alphabetic Alphanumeric
Alphanumeric Alphanumeric
Index Index
All arguments integer Integer
Numeric (some arguments may be integer) Numeric

B.44.1 General format

FUNCTION MIN ({ argument-1 }...)

B.44.2 Arguments

1) Argument-1 shall not be of class pointer.

2) All arguments shall be of the same class with the exception that mixing of arguments of alphabetic and
alphanumeric classes is allowed.

B.44.3 Returned values

1) The returned value is the content of the argument-1 having the least value. The comparisons used to
determine the least value are made according to the rules for simple conditions. (See page 241, Simple conditions.)

2) If the value of more than one argument-1 is equal to the least value, the content of the argument-1 returned is
the leftmost argument-1 having that value.

3) If the type of the function is alphanumeric, the size of the returned value is the same as the size of
the selected argument-1.

673

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.44.4 Example

The following code fragments illustrate the use of this function.

01 A PIC S9(10) VALUE 5.
01 B PIC S9(10) VALUE 7.
01 C PIC S9(5)V9(5) VALUE 34.26.
01 WS-NUM PIC S9(5)V9(6).
01 MIN-RANGE PIC S9(5)V9(7).
01 MAX-RANGE PIC S9(5)V9(7).

 IF (FUNCTION MIN(4.3, 2.6, 7.3, 9.1) >= 2.59995) AND
 (FUNCTION MIN(4.3, 2.6, 7.3, 9.1) <= 2.60005) THEN
 PERFORM CORRECT-VALUE.
 MOVE ZERO TO WS-NUM.
 MOVE 1.99996 TO MIN-RANGE.
 MOVE 2.00004 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION MIN(A * B, (3 + 1) / 2, 3 + 4).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.
 MOVE ZERO TO WS-NUM.
 MOVE 4.99990 TO MIN-RANGE.
 MOVE 5.00010 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION MIN(FUNCTION MIN(14, A), E, 50).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

EXAMPLE 73. MIN function

674

INTRINSIC FUNCTIONS (MOD)

01 A PIC S9(10) VALUE 5.
01 B PIC S9(10) VALUE 7.
01 WS-NUM PIC S9(5)V9(6).
01 MIN-RANGE PIC S9(5)V9(7).
01 MAX-RANGE PIC S9(5)V9(7).

 EVALUATE FUNCTION MOD(11, 5)
 WHEN 1 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-NUM.
 COMPUTE WS-NUM = FUNCTION MOD(-11, 5).
 IF WS-NUM = 4 THEN
 PERFORM CORRECT-VALUE.

 MOVE ZERO TO WS-NUM.
 MOVE 6.99986 TO MIN-RANGE.
 MOVE 7.00014 TO MAX-RANGE.
 COMPUTE WS-NUM = FUNCTION MOD(FUNCTION INTEGER(A - B), 9).
 IF (WS-NUM >= MIN-RANGE) AND
 (WS-NUM <= MAX-RANGE) THEN
 PERFORM CORRECT-VALUE.

B.45. MOD

The MOD function returns an integer value that is argument-1 modulo argument-2.

The type of this function is integer.

B.45.1 General format

FUNCTION MOD (argument-1, argument-2)

B.45.2 Arguments

1) Argument-1 and argument-2 shall be integers.

2) The value of argument-2 shall not be zero.

B.45.3 Returned values

1) The equivalent arithmetic expression shall be

(argument-1 – (argument-2 * FUNCTION INTEGER (argument-1 / argument-2)))

where argument-1 and argument-2 for the INTEGER function are the same as the arguments for the MOD
function itself.

NOTE — The following illustrates the expected results for some values of argument-1 and argument-2.

Argument-1 Argument-2 Return
 11 5 1
–11 5 4
 11 –5 –4
–11 –5 –1

B.45.4 Example

The following code fragments illustrate the use of this function.

675

Interactive COBOL Language Reference & Developer’s Guide - Part One

EXAMPLE 74. MOD function

676

INTRINSIC FUNCTIONS (NUMVAL)

B.46. NUMVAL

The NUMVAL function returns the numeric value represented by the character string specified by argument-1.
Leading and trailing spaces are ignored.

The type of this function is numeric.

B.46.1 General format

FUNCTION NUMVAL (argument-1)

B.46.2 Arguments

1) Argument-1 shall be an alphanumeric literal or an alphanumeric data item whose content has one of the
following two formats:

or

where
space-string is a string of one or more space characters and digit is a string of one to 18 digits. If

argument-1 is alphanumeric, CR or DB, if specified, shall be uppercase, lowercase or a combination thereof
from the computer's alphanumeric character set.

2) The total number of digits in argument-1 shall not exceed 18.

3) If the DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-NAMES paragraph, a comma
shall be used in argument-1 rather than a decimal point.

B.46.3 Returned values

1) The returned value is the numeric value represented by argument-1.

2) The number of digits returned is 18.

3) If argument-1 contains CR, DB, or the minus sign, the returned value is negative.

677

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.46.4 Example

The following code fragments illustrate the use of this function.

01 TEMP PIC S9(5)V9(5).

 IF (FUNCTION NUMVAL (".935") >= 0.934981) AND
(FUNCTION NUMVAL (".935") <= 0.935019)

 PERFORM CORRECT-VALUE.

 MOVE ZERO TO TEMP.
 COMPUTE TEMP = FUNCTION NUMVAL ("+394.2").
 IF (TEMP >= 394.192) AND
 (TEMP <= 394.208)
 PERFORM CORRECT-VALUE.

 COMPUTE TEMP = FUNCTION NUMVAL (" 200.0002 - ").
 IF (TEMP >= -200.0042) AND
 (TEMP <= -199.9962)
 PERFORM CORRECT-VALUE.

EXAMPLE 75. NUMVAL function

678

INTRINSIC FUNCTIONS (NUMVAL-C)

B.47. NUMVAL-C

The NUMVAL-C function returns the numeric value represented by the character string specified by argument-1.
The currency sign, if any, and any grouping separators preceding the decimal separator are ignored. Optionally,
the currency sign may be specified by argument-2.

The type of this function is numeric.

B.47.1 General format

FUNCTION NUMVAL-C (argument-1 [, argument-2])

B.47.2 Arguments

1) Argument-1 shall be of class alphanumeric.

2) Argument-2, if specified, shall be of the same class as argument-1. Argument-2 shall contain exactly one
non-space character. Argument-2 shall not contain any of the digits 0 through 9; characters '*', '+', '–', ',' ,'.' or space.
Argument-2 specifies a currency sign that may appear in argument-1.

3) If argument-2 is not specified, there shall be only one currency sign for the compilation unit, either the
default currency sign or one specified in the SPECIAL-NAMES paragraph.

4) Argument-1 shall have one of the following two formats:

or

where
— digits is a string of one or more of the digits 0 through 9;
— except for currency, uppercase letters and the corresponding lowercase letters are equivalent;
— space is a string of zero or more spaces;
— currency is a string of one or more characters matching the currency sign in argument-2, if

specified, or matching the default currency sign if argument-2 is not specified;

5) If the DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-NAMES paragraph, the decimal
separator is a comma and the grouping separator is the decimal point.

6) The total number of digits in argument-1 shall not exceed 18.

B.47.3 Returned values

1) The returned value is the numeric value represented by argument-1.

2) The number of digits returned is 18.

3) The returned value is negative if argument-1 contains CR, DB, or a minus sign.

679

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 NUMVALC PIC S9(7)V9(5).

COMPUTE NUMVALC = FUNCTION NUMVAL-C ("90") + 10.
IF NUMVALC = 100 THEN PERFORM CORRECT-VALUE.

COMPUTE NUMVALC = FUNCTION NUMVAL-C ("$924.912", "$").
 IF NUMVALC = 924.912 PERFORM CORRECT-VALUE.

COMPUTE NUMVALC = FUNCTION NUMVAL-C ("$93,021", "$").
IF NUMVALC = 93021 PERFORM CORRECT-VALUE.

B.47.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 76. NUMVAL-C function

680

INTRINSIC FUNCTIONS (NUMVAL-F)

01 NUMVALF PIC S9(7)V9(5).

COMPUTE NUMVALF = FUNCTION NUMVAL-F ("35").
IF NUMVALF = 35 PERFORM CORRECT-VALUE.

COMPUTE NUMVALF = FUNCTION NUMVAL-F ("3E2").
IF NUMVALF = 300 PERFORM CORRECT-VALUE.

COMPUTE NUMVALF = FUNCTION NUMVAL-F ("3E-2").
IF NUMVALF = .03 PERFORM CORRECT-VALUE.

B.48. NUMVAL-F

The NUMVAL-F function returns the value or an approximation of the value represented by the character string
specified by argument-1. Leading, trailing, and embedded spaces are ignored.

The type of this function is numeric.

B.48.1 General format

FUNCTION NUMVAL-F (argument-1)

B.48.2 Arguments

1) Argument-1 shall be an alphanumeric literal or an alphanumeric data item whose
content has the following format:

where space is a string of zero or more spaces; n is one, two, or three digits representing the exponent; and
digit is a string of one to 18 digits. If argument-1 is alphanumeric, E shall be either an uppercase or lowercase
E in the computer's alphanumeric character set.

2) The total number of digits in the significand shall not exceed 18.

3) If the DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-NAMES paragraph, a comma
shall be used in argument-1 rather than a decimal point.

B.48.3 Returned values

1) Leading, trailing, and embedded spaces are ignored.

2) The returned value is the numeric value represented by argument-1, assuming that it can be expressed within
18 decimal digits.

B.48.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 77. NUMVAL-F function

681

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 ORDINT PIC S9(10).
01 A PIC X VALUE “F”.

IF FUNCTION ORD("5") = 54 THEN
PERFORM CORRECT-VALUE.

COMPUTE ORDINT = FUNCTION ORD(A).
IF ORDINT = 71 THEN
 PERFORM CORRECT-VALUE.

B.49. ORD

The ORD function returns an integer value that is the ordinal position of argument-1 in the program collating
sequence. The lowest ordinal position is 1.

The type of this function is integer.

B.49.1 General format

FUNCTION ORD (argument-1)

B.49.2 Arguments

1) Argument-1 shall be of one character position in length and shall be of class alphabetic or alphanumeric.

B.49.3 Returned values

1) The returned value shall be the ordinal position of argument-1 in the current program collating sequence.

B.49.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 78. ORD function

682

INTRINSIC FUNCTIONS (ORD-MAX)

01 ORDMAX PIC S9(10).
01 A PIC S9(10) VALUE 5.
01 B PIC S9(10) VALUE 7.
01 C PIC S9(10) VALUE 4.

COMPUTE ORDMAX = FUNCTION ORD-MAX(5, 3, 2, 8, 3, 1).
IF ORDMAX = 4 THEN PERFORM CORRECT-VALUE.
COMPUTE ORDMAX = FUNCTION ORD-MAX (A, B, C).
IF ORDMAX = 4 THEN PERFORM CORRECT-VALUE.

B.50. ORD-MAX

The ORD-MAX function returns a value that is the ordinal number of the argument-1 that contains the maximum
value.

The type of this function is integer.

B.50.1 General format

FUNCTION ORD-MAX ({ argument-1 }...)

B.50.2 Arguments

1) Argument-1 shall not be of class pointer.

2) All arguments shall be of the same class with the exception that mixing of arguments of alphabetic and
alphanumeric classes is allowed.

B.50.3 Returned values

1) The returned value is the ordinal number that corresponds to the position of the argument-1 having the
greatest value in the argument-1 series.

2) The comparisons used to determine the greatest valued argument are made according to the rules for simple
conditions. (See page 241, Simple conditions.)

3) If the value of more than one argument-1 is equal to the greatest value, the number returned corresponds to
the position of the leftmost argument-1 having that value.

B.50.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 79. ORD-MAX function

683

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 ORDMIN PIC S9(10).

01 A PIC S9(10) VALUE 5.
01 B PIC S9(10) VALUE 7.
01 C PIC S9(10) VALUE 4.
01 D PIC S9(10) VALUE 10.

COMPUTE ORDMIN = FUNCTION ORD-MIN(5, 3, 2, 8, 3, 1).
IF ORDMIN = 6 THEN PERFORM CORRECT-VALUE.

COMPUTE ORDMIN = FUNCTION ORD-MIN(A, B, D).
IF ORDMIN = 1 THEN PERFORM CORRECT-VALUE.

B.51. ORD-MIN

The ORD-MIN function returns a value that is the ordinal number of the argument that contains the minimum value.

The type of this function is integer.

B.51.1 General format

FUNCTION ORD-MIN ({ argument-1 }...)

B.51.2 Arguments

1) Argument-1 shall not be of pointer.

2) If more than one argument-1 is specified, all arguments shall be of the same class with the exception that
mixing of arguments of alphabetic and alphanumeric classes is allowed.

B.51.3 Returned values

1) The returned value is the ordinal number that corresponds to the position of the argument-1 having the least
value in the argument-1 series.

2) The comparisons used to determine the least valued argument-1 are made according to the rules for simple
conditions. (See page 241, Simple conditions.)

3) If the value of more than one argument-1 is equal to the least value, the number returned corresponds to the
position of the leftmost argument-1 having that value.

B.51.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 80. ORD-MIN function

684

INTRINSIC FUNCTIONS (PI)

01 PI-NUM PIC 9.9(5).
01 EXP-PI PIC 9V9(5) VALUE 3.14159.
01 EXP-DISP-PI PIC 9.9(5).

MOVE FUNCTION PI TO PI-NUM.
MOVE EXP-PI TO EXP-DISP-PI.
IF PI-NUM = EXP-DISP-PI PERFORM CORRECT-VALUE.

B.52. PI

The PI function returns a value that is an approximation of pi, the ratio of the circumference of a circle to its
diameter.

The type of this function is numeric.

B.52.1 General format

FUNCTION PI

B.52.2 Returned values

1) The equivalent arithmetic expression shall be

(3 + .141592653589793238)

B.52.3 Example

The following code fragments illustrate the use of this function.

EXAMPLE 81. PI function

685

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.53. PRESENT-VALUE

The PRESENT-VALUE function returns a value that approximates the present value of a series of future period-end
mounts specified by argument-2 at a discount rate specified by argument-1.

The type of this function is numeric.

B.53.1 General format

FUNCTION PRESENT-VALUE (argument-1, { argument-2 }...)

B.53.2 Arguments

1) Argument-1 and argument-2 shall be of the class numeric.

2) The value of argument-1 shall be greater than –1.

B.53.3 Returned values

1) The equivalent arithmetic expression shall be as follows:

a) For one occurrence of argument-2,

(argument-2 / (1 + argument-1))

b) For two occurrences of argument-2,

(argument-2 1 / (1 + argument-1) + argument-2 2 / (1 + argument-1) ** 2)

c) For n occurrences of argument-2, the equivalent arithmetic expression shall be

(FUNCTION SUM (

(argument-2 1 / (1 + argument-1) ** 1)

...

(argument-2 n / (1 + argument-1) ** n)))

where argument-1 and argument-2 i in the terms of the SUM function are the same as the arguments for
the PRESENT-VALUE function itself.

686

INTRINSIC FUNCTIONS (PRESENT-VALUE)

01 PV-NUM PIC S9(5)V9(6).

MOVE 43.9991 TO MINVAL.
MOVE 44.0009 TO MAXVAL.
COMPUTE PV-NUM = FUNCTION PRESENT-VALUE(0, 23, 12, 9).
IF (PV-NUM >= MINVAL) AND (PV-NUM <= MAXVAL) THEN
 PERFORM CORRECT-VALUE.

MOVE 65.9974 TO MINVAL.
MOVE 66.0026 TO MAXVAL.
COMPUTE PV-NUM = FUNCTION PRESENT-VALUE
 (-.5, (2 + 3), (6 / 3), (9 - 3)).
IF (PV-NUM >= MINVAL) AND (PV-NUM <= MAXVAL) THEN
 PERFORM CORRECT-VALUE.

B.53.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 82. PRESENT-VALUE function

687

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 RANDNUM PIC S9(5)V9(6).

COMPUTE RANDNUM = FUNCTION RANDOM.
IF (RANDNUM >= 0) AND
 (RANDNUM < 1) THEN
 PERFORM CORRECT-VALUE.

COMPUTE RANDNUM = FUNCTION RANDOM(2) + 1.
IF (RANDNUM >= 1) AND
 (RANDNUM < 2) THEN
 PERFORM CORRECT-VALUE.

B.54. RANDOM

The RANDOM function returns a numeric value that is a pseudo-random number from a rectangular distribution.

The type of this function is numeric.

B.54.1 General format

FUNCTION RANDOM [(argument-1)]

B.54.2 Arguments

1) If argument-1 is specified, it shall be zero or a positive integer. It is used as the seed value to generate a
sequence of pseudo-random numbers.

2) If a subsequent reference specifies argument-1, a new sequence of pseudo-random numbers is started.

3) If the first reference to this function in the run unit does not specify argument-1, the seed value is zero.

4) In each case, subsequent references without specifying argument-1 return the next number in the current
sequence.

B.54.3 Returned values

1) The returned value is greater than or equal to zero and less than one.

2) For a given seed value on a given implementation, the sequence of pseudo-random numbers will always be
the same.

3) The subset of the domain of argument-1 values that will yield distinct sequences of pseudo-random numbers
is 0 through 231-2.

B.54.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 83. RANDOM function

688

INTRINSIC FUNCTIONS (RANGE)

01 RANGENUM PIC S9(7)V9(7).
01 A PIC S9(10) VALUE 6.
01 B PIC S9(10) VALUE 8.
01 C PIC S9(10) VALUE -5.
01 D PIC S9(10) VALUE 12.

COMPUTE RANGENUM = FUNCTION RANGE(5, -2, -14, 0).
IF RANGENUM = 19 THEN PERFORM CORRECT-VALUE.

IF FUNCTION RANGE(A, B, C, D) = 17 THEN
 PERFORM CORRECT-VALUE.

B.55. RANGE

The RANGE function returns a value that is equal to the value of the maximum argument minus the value of the
minimum argument.

The type of this function depends upon the argument types as follows:

Argument type Function type
All arguments integer Integer
Numeric (some arguments may be integer) Numeric

B.55.1 General format

FUNCTION RANGE ({ argument-1 }...)

B.55.2 Arguments

1) Argument-1 shall be class numeric.

B.55.3 Returned values

1) The equivalent arithmetic expression shall be

(FUNCTION MAX (argument-list) – FUNCTION MIN (argument-list))

where argument-list is the argument-1 list for the RANGE function itself.

B.55.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 84. RANGE function

689

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 REMNUM PIC S9(5)V9(6).
01 A PIC S9(10) VALUE 5

.

COMPUTE REMNUM = FUNCTION REM(-11, -5).
IF REMNUM = -1 THEN
 PERFORM CORRECT-VALUE.

COMPUTE REMNUM = FUNCTION REM(A, 2).
IF REMNUM = 1 THEN
 PERFORM CORRECT-VALUE.

B.56. REM

The REM function returns a numeric value that is the remainder of argument-1 divided by argument-2.

The type of this function is numeric.

B.56.1 General format

FUNCTION REM (argument-1, argument-2)

B.56.2 Arguments

1) Argument-1 and argument-2 shall be class numeric.

2) The value of argument-2 shall not be zero.

B.56.3 Returned values

1) The equivalent arithmetic expression shall be

(argument-1 – (argument-2 * FUNCTION INTEGER-PART (argument-1 / argument-2)))

where argument-1 and argument-2 of the INTEGER-PART function are the same as the arguments for the
REM function itself.

B.56.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 85. REM function

690

INTRINSIC FUNCTIONS (REVERSE)

01 REVSNUM PIC X(10).

MOVE FUNCTION REVERSE("figure") TO REVSNUM.
IF REVSNUM = "erugif" THEN
 PERFORM CORRECT-VALUE.

B.57. REVERSE

The REVERSE function returns a character string of exactly the same length as argument-1 and whose characters
are exactly the same as those of argument-1, except that they are in reverse order.

The type of the function depends on the argument type as follows:

Argument type Function type
Alphabetic Alphanumeric
Alphanumeric Alphanumeric

B.57.1 General format

FUNCTION REVERSE (argument-1)

B.57.2 Arguments

1) Argument-1 shall be of class alphabetic or alphanumeric and shall be at least one character position in length.

B.57.3 Returned values

1) If argument-1 is a character string of length n, the returned value is a character string of length n such that for
1 # j # n, the character in position j of the returned value is the character from position n – j + 1 of argument-1.

B.57.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 86. REVERSE function

691

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 VAL PIC S9(1).
01 EXP-VAL1 PIC S9(1) VALUE -1.
01 EXP-VAL2 PIC S9(1) VALUE 0.
01 EXP-VAL3 PIC S9(1) VALUE 1.

MOVE -34431 TO NUM1.
COMPUTE VAL = FUNCTION SIGN (NUM1).
IF VAL = EXP-VAL1 THEN PERFORM CORRECT-VALUE.

MOVE 0 TO NUM1.
COMPUTE VAL = FUNCTION SIGN (NUM1).
IF VAL = EXP-VAL2 THEN PERFORM CORRECT-VALUE.

MOVE 34431 TO NUM1.
COMPUTE VAL = FUNCTION SIGN (NUM1).
IF VAL = EXP-VAL3 THEN PERFORM CORRECT-VALUE.

B.58. SIGN

The SIGN function returns +1, 0, or –1 depending on the sign of the argument.

The type of the function is integer.

B.58.1 General Format

FUNCTION SIGN (argument-1)

B.58.2 Arguments

1) Argument-1 shall be class numeric.

B.58.3 Returned Values

1) The equivalent arithmetic expression shall be as follows:

a) When the value of argument-1 is positive,

(1)

b) When the value of argument-1 is zero,

(0)

c) When the value of argument-1 is negative,

(–1)

B.58.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 87. SIGN function

692

INTRINSIC FUNCTIONS (SIN)

01 SINNUM PIC S9(5)V9(6).

MOVE ZERO TO SINNUM.
MOVE -0.000020 TO MINVAL.
MOVE 0.000020 TO MAXVAL.

COMPUTE SINNUM = FUNCTION SIN(0).
IF (SINNUM >= MINVAL) AND
 (SINNUM <= MAXVAL) THEN
 PERFORM CORRECT-VALUE.
MOVE 0.865990 TO MINVAL.
MOVE 0.866060 TO MAXVAL.

COMPUTE SINNUM = FUNCTION SIN(PI / 3).

IF (SINNUM >= MINVAL) AND
 (SINNUM <= MAXVAL) THEN
 PERFORM CORRECT-VALUE.

B.59. SIN

The SIN function returns a numeric value that approximates the sine of an angle or arc, expressed in radians, that
is specified by argument-1.

The type of this function is numeric.

B.59.1 General format

FUNCTION SIN (argument-1)

B.59.2 Arguments

1) Argument-1 shall be class numeric.

B.59.3 Returned values

1) The returned value is the approximation of the sine of argument-1 and is greater than or equal to –1 and less
than or equal to +1.

B.59.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 88. SIN function

693

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.60. SQL-ADD-ESCAPES (Added in 4.50, Updated in 5.44)

The SQL-ADD-ESCAPES function returns an alphanumeric string with the contents of argument-1 modified by
adding the appropriate escape character to each occurrence of the SQL search characters ‘%’ (percent), ‘_’
(underscore), ‘ (single-quote), and each occurrence of the escape character itself. The escape character is determined
by the ODBC driver associated with the currently active connection; so, it can vary from connection to connection.
The default escape character is ‘\’ (backslash). Escaping the single-quote character was added in 5.44.

The type of this function is alphanumeric.

The function is only recognized if the source is compiled with the –G q option (enable SQL processing).

B.60.1 General format

FUNCTION SQL-ADD-ESCAPES (argument-1)

B.60.2 Arguments

1) Argument-1 shall be class alphabetic or alphanumeric and shall be zero or more characters in length.

B.60.3 Returned values

1) The characters of argument-1 are scanned left to right and each “%” is replaced by “<esc>%”, each “_” is
replaced by “<esc>_”, and each “<esc>” is replaced by “<esc><esc>”.

B.60.4 Example

The following illustrate the use of this function.

FUNCTION SQL-ADD-ESCAPES (“Table%Type_\Col_”)

would return the string

“Table\&Type_\\Col_”.

Where the <esc> is “\” (backslash.

694

INTRINSIC FUNCTIONS (SQL-REMOVE-ESCAPES)

B.61. SQL-REMOVE-ESCAPES (Added in 4.50, Updated in 5.44)

The SQL-REMOVE-ESCAPES function returns an alphanumeric string with the contents of argument-1 modified
by removing the appropriate escape character from each occurrence where it precedes one of the SQL search
characters, ‘%’ (percent), ‘_’ (underscore), ‘ (single-quote), or the escape character itself. The escape character is
determined by the ODBC driver associated with the currently active connection; so, it can vary from connection to
connection. The default escape character is ‘\’ (backslash). Un-escaping the single-quote character was added in
5.44.

The type of this function is alphanumeric.

The function is only recognized if the source is compiled with the –G q option (enable SQL processing).

B.61.1 General format

FUNCTION SQL-REMOVE-ESCAPES (argument-1)

B.61.2 Arguments

1) Argument-1 shall be class alphabetic or alphanumeric and shall be zero or more characters in length.

B.61.3 Returned values

1) The characters of argument-1 are scanned left to right and each “<esc>%” is replaced by “%”, each “<esc>_”
is replaced by “_”, and each “<esc><esc>” is replaced by “<esc>”.

B.61.4 Example

The following illustrate the use of this function.

FUNCTION SQL-REMOVE-ESCAPES (“Table\%Type_\\Col_”)

would return the string

“Table%Type_\Col_”.

Where the <esc> is “\” (backslash.

695

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 SQRTNUM PIC S9(5)V9(7).

MOVE 0.000000 TO MINVAL.
MOVE 0.000020 TO MAXVAL.
COMPUTE SQRTNUM = FUNCTION SQRT(0).
IF (SQRTNUM >= MINVAL) AND
 (SQRTNUM <= MAXVAL)
 PERFORM CORRECT-VALUE.

MOVE 0.316214 TO MINVAL.
MOVE 0.316240 TO MAXVAL.
COMPUTE SQRTNUM = FUNCTION SQRT(9 - 8.9).
IF (SQRTNUM >= MINVAL) AND
 (SQRTNUM <= MAXVAL) THEN
 PERFORM CORRECT-VALUE.

B.62. SQRT

The SQRT function returns a numeric value that approximates the square root of argument-1.

The type of this function is numeric.

B.62.1 General format

FUNCTION SQRT (argument-1)

B.62.2 Arguments

1) Argument-1 shall be class numeric.

2) The value of argument-1 shall be zero or positive.

B.62.3 Returned values

1) Argument-1 is not rounded.

2) The returned value shall be the absolute value of the exact square root of argument-1 truncated to 19 digits.

B.62.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 89. SQRT function

696

INTRINSIC FUNCTIONS (STANDARD-DEVIATION)

01 STDNUM PIC S9(5)V9(6).

MOVE 6.92 TO MINVAL.
MOVE 7.02 TO MAXVAL.
COMPUTE STDNUM =
 FUNCTION STANDARD-DEVIATION(5, -2, -14, 0).
IF (STDNUM >= MINVAL) AND
 (STDNUM <= MAXVAL) THEN
 PERFORM CORRECT-VALUE.

MOVE 11.7995 TO MINVAL.
MOVE 11.8005 TO MAXVAL.
COMPUTE STDNUM =
 FUNCTION STANDARD-DEVIATION(2.6 + 30, 4.5 * 2).

IF (STDNUM >= MINVAL) AND
 (STDNUM <= MAXVAL) THEN
 PERFORM CORRECT-VALUE.

B.63. STANDARD-DEVIATION

The STANDARD-DEVIATION function returns a numeric value that approximates the standard deviation of its
arguments.

The type of this function is numeric.

B.63.1 General format

FUNCTION STANDARD-DEVIATION ({ argument-1 }...)

B.63.2 Arguments

1) Argument-1 shall be class numeric.

B.63.3 Returned values

1) The equivalent arithmetic expression shall be as follows:

(FUNCTION SQRT (FUNCTION VARIANCE (argument-list)))

where argument-list is the argument-1 list for the STANDARD-DEVIATION function itself.

B.63.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 90. STANDARD-DEVIATION function

697

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.64. SUM

The SUM function returns a value that is the sum of the arguments.

The type of this function depends upon the argument types as follows:

Argument type Function type
All arguments integer Integer
Numeric (some arguments may be integer) Numeric

B.64.1 General format

FUNCTION SUM ({ argument-1 }...)

B.64.2 Arguments

1) Argument-1 shall be class numeric.

B.64.3 Returned values

1) The equivalent arithmetic expression shall be as follows:

a) For one occurrence of argument-1,

(argument-1)

b) For two occurrences of argument-1,

(argument-1 1 + argument-1 2)

c) For n occurrences of argument-1,

(argument-1 1 + argument-1 2 + ... + argument-1 n)

B.64.4 Example

The following code fragments illustrate the use of this function.

01 SUMNUM PIC S9(6)V9(7).

COMPUTE SUMNUM = FUNCTION SUM(5, -2, -14, 0).
IF SUMNUM = -11 THEN
 PERFORM CORRECT-VALUE.
MOVE 41.5992 TO MINVAL.
MOVE 41.6008 TO MAXVAL.
COMPUTE SUMNUM = FUNCTION SUM(2.6 + 30, 4.5 * 2).
IF (SUMNUM >= MINVAL) AND
 (SUMNUM <= MAXVAL) THEN
 PERFORM CORRECT-VALUE.

EXAMPLE 91. SUM function

698

INTRINSIC FUNCTIONS (TAN)

01 TAN-NUM PIC S9(5)V9(7).

MOVE -0.000020 TO MINVAL.
MOVE 0.000020 TO MAXVAL.
COMPUTE TAN-NUM = FUNCTION TAN(0).
IF (TAN-NUM >= MINVAL) AND
 (TAN-NUM <= MAXVAL) THEN
 PERFORM CORRECT-VALUE.

MOVE 0.999960 TO MINVAL.
MOVE 1.00004 TO MAXVAL.
COMPUTE TAN-NUM = FUNCTION TAN(PI / 4).
IF (TAN-NUM >= MINVAL) AND
 (TAN-NUM <= MAXVAL) THEN
 PERFORM CORRECT-VALUE.

B.65. TAN

The TAN function returns a numeric value that approximates the tangent of an angle or arc, expressed in radians,
that is specified by argument-1.

The type of this function is numeric.

B.65.1 General format

FUNCTION TAN (argument-1)

B.65.2 Arguments

1) Argument-1 shall be class numeric.

B.65.3 Returned values

1) The returned value is the approximation of the tangent of argument-1.

B.65.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 92. TAN function

699

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.66. TEST-DATE-YYYYMMDD

The TEST-DATE-YYYYMMDD function tests whether a date in standard date form (YYYYMMDD) is a valid date
in the Gregorian calendar. Argument-1 of the INTEGER-OF-DATE function is required to be in standard date form.

The type of this function is integer.

B.66.1 General Format

FUNCTION TEST-DATE-YYYYMMDD (argument-1)

B.66.2 Arguments

1) Argument-1 shall be an integer.

B.66.3 Returned values

1) The returned value is:

a) If the value of argument-1 is less than 16010000 or greater than 99999999,

(1)

Note 1 — The year is not within the range 1601 to 9999.

a) Otherwise, if the value of FUNCTION MOD (argument-1 10000) is less than 100 or greater than
1299,

(2)

Note 2 — The month is not within the range 1 through 12.

c) Otherwise, if the value of FUNCTION MOD (argument-1 100) is less than 1 or greater than the
number of days in the month determined by FUNCTION INTEGER (FUNCTION MOD (argument-1
10000) / 100) of the year determined by FUNCTION INTEGER (argument-1 / 10000),

(3)

Note 3 — The day is not valid for the given year and month.

d) Otherwise,

(0)

Note 4 — The date is valid.

700

INTRINSIC FUNCTIONS (TEST-DATE-YYYYMMDD)

 01 DATE-VAL PIC 9.

 ACCEPT SYSTEM-DATE FROM DATE YYYYMMDD.
 COMPUTE DATE-VAL = FUNCTION TEST-DATE-YYYYMMDD (SYSTEM-DATE).
 IF DATE-VAL = 0 THEN
 PERFORM CORRECT-VALUE.

 *** year out of range.
 COMPUTE DATE-VAL = FUNCTION TEST-DATE-YYYYMMDD (14000000).
 IF DATE-VAL = 1 THEN
 PERFORM CORRECT-VALUE.

 *** month out of range.
 COMPUTE DATE-VAL = FUNCTION TEST-DATE-YYYYMMDD (20000000).
 IF DATE-VAL = 2 THEN
 PERFORM CORRECT-VALUE.

B.66.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 93. TEST-DATE-YYYYMMDD function

701

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.67. TEST-DAY-YYYYDDD

The TEST-DAY-YYYYDDD function tests whether a date in Julian date form (YYYYDDD) is a valid date in the
Gregorian calendar. Argument-1 of the INTEGER-OF-DAY function is required to be in Julian date form.

The type of this function is integer.

B.67.1 General Format

FUNCTION TEST-DAY-YYYYDDD (argument-1)

B.67.2 Arguments

1) Argument-1 shall be an integer.

B.67.3 Returned values

1) The returned value is:

a) If the value of argument-1 is less than 1601000 or greater than 9999999,

(1)

Note 1 — The year is not within the range 1601 to 9999.

b) Otherwise, if the value of FUNCTION MOD (argument-1 1000) is less than 1 or greater than the
number of days in the year determined by FUNCTION INTEGER (argument-1 / 1000),

(2)

Note 2 — The day is not valid in the given year.

c) Otherwise,

(0)

Note 3 — The date is valid.

702

INTRINSIC FUNCTIONS (TEST-DAY-YYYYDDD)

01 DAY-VAL PIC 9.

ACCEPT SYSTEM-DAY FROM DAY YYYYDDD.
COMPUTE DAY-VAL = FUNCTION TEST-DAY-YYYYDDD (SYSTEM-DAY)
IF DAY-VAL = 0 THEN
 PERFORM CORRECT-VALUE.

**** year out of range
COMPUTE DAY-VAL = FUNCTION TEST-DAY-YYYYDDD (1400000).
IF DAY-VAL = 1 THEN
 PERFORM CORRECT-VALUE.

**** day out of range
COMPUTE DAY-VAL = FUNCTION TEST-DAY-YYYYDDD (1700462).
IF DAY-VAL = 2 THEN
 PERFORM CORRECT-VALUE.

B.67.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 94. TEST-DAY-YYYYDDD function

703

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.68. TEST-NUMVAL

The TEST-NUMVAL function verifies that the contents of argument-1 conform to the specification for argument-1
of the NUMVAL function.

The type of this function is integer.

B.68.1 General Format

FUNCTION TEST-NUMVAL (argument-1)

B.68.2 Arguments

1) Argument-1 shall be an alphanumeric literal or an alphanumeric data item.

B.68.3 Returned values

1) The returned value is:

a) If the content of argument-1 does not conform to the argument rules for the NUMVAL function, the
returned value shall be the position of the first character in error, from (1) to (FUNCTION LENGTH
(argument-1) + 1)

b) Otherwise:

(0)

NOTES

1 — The returned value is (FUNCTION LENGTH (argument-1) + 1) if argument-1 is zero-length or
contains only spaces or a string such as “ +.”.

2 — The returned value is (3) if a three-character argument contains a string such as “0 1”.

3 — The returned value identifies the position of the 19th digit if the total number of digits exceeds 18.

B.68.4 Example

The following code fragments illustrate the use of this function.

01 TST-NUMV PIC 9.

COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL ("35").
IF TST-NUMV = 0 THEN
 PERFORM CORRECT-VALUE.
COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL ("$35").
IF TST-NUMV = 1
 PERFORM CORRECT-VALUE.
COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL ("35+").
IF TST-NUMV = 0
 PERFORM CORRECT-VALUE.
COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL ("35$").
IF TST-NUMV = 3
 PERFORM CORRECT-VALUE.

EXAMPLE 95. TEST-NUMVAL function

704

INTRINSIC FUNCTIONS (TEST-NUMVAL-C)

B.69. TEST-NUMVAL-C

The TEST-NUMVAL-C function verifies that the contents of argument-1 conform to the specification for
argument-1 of the NUMVAL-C function.

The type of this function is integer.

B.69.1 General Format

FUNCTION TEST-NUMVAL-C (argument-1 [, argument-2])

B.69.2 Arguments

1) Argument-1 shall be of class alphanumeric.

2) Argument-2, if specified, shall be of the same class as argument-1. Argument-2 shall contain exactly one
non-space character. Any leading or trailing spaces in argument-2 are ignored. Argument-2 shall not contain any of
the digits 0 through 9; the characters '*', '+', '–', ',' , and '.' or space. Argument-2 specifies a currency sign that may
appear in argument-1.

B.69.3 Returned values

1) The returned value is:

a) If the content of argument-1 does not conform to the argument rules for argument-1 of the NUMVAL-C
function, the returned value shall be the position of the first character in error, from (1) to (FUNCTION LENGTH (
argument-1) + 1)

b) Otherwise:

(0)

NOTES

1 — The returned value is (FUNCTION LENGTH (argument-1) + 1) if argument-1 is zero-length or
contains only spaces or a string such as “ +.”.

2 — The returned value is (3) if a three-character argument contains a string such as “0 1”.

3 — The returned value identifies the position of the 19th digit if the total number of digits exceeds 18.

705

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 TST-NUMV PIC 9.

COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL-C ("35").
IF TST-NUMV = 0 PERFORM CORRECT-VALUE.

COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL-C ("$35", "$").
IF TST-NUMV = 0 PERFORM CORRECT-VALUE.

COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL-C ("35E").
IF TST-NUMV = 3 PERFORM CORRECT-VALUE.

COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL-C ("3 E 3").
IF TST-NUMV = 3 PERFORM CORRECT-VALUE.

COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL-C ("35,433$", "$").
IF TST-NUMV = 7 PERFORM CORRECT-VALUE.

COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL-C (A).
IF TST-NUMV = 0 PERFORM CORRECT-VALUE.

B.69.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 96. TEST-NUMVAL-C function

706

INTRINSIC FUNCTIONS (TEST-NUMVAL-F)

B.70. TEST-NUMVAL-F

The TEST-NUMVAL-F function verifies that the contents of argument-1 conform to the specification for
argument-1 of the NUMVAL-F function.

The type of this function is integer.

B.70.1 General Format

FUNCTION TEST-NUMVAL-F (argument-1)

B.70.2 Arguments

1) Argument-1 shall be an alphanumeric literal or an alphanumeric data item.

B.70.3 Returned values

1) The returned value is:

a) If the content of argument-1 does not conform to the argument rules for the NUMVAL-F function, the
returned value shall be the position of the first character in error, from (1) to (FUNCTION LENGTH (argument-1)
+ 1)

b) Otherwise, if the numeric value represented by argument-1 cannot be represented in a floating-point data
item because of exponent overflow:

(–1)

c) Otherwise, if the numeric value represented by argument-1, cannot be represented in a floating-point data
item because of exponent underflow:

(–2)

d) Otherwise:

(0)

NOTES

1 — The returned value is (FUNCTION LENGTH (argument-1) + 1) if argument-1 is zero-
length or contains only spaces or a string such as “1.5E”.

2 — The returned value is (3) if a three-character argument contains a string such as “0 1”.

3 — If the total number of digits in the significand exceeds 18, the returned value identifies the
position of the 19th digit.

4 — If the total number of digits in the exponent exceeds 3, the returned value identifies the
position of the 4th digit.

5 — If the exponent has no sign, the returned value identifies the position of the first exponent
digit.

707

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 TST-NUMV PIC 9.

COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL-F ("35").
IF TST-NUMV = 0 THEN PERFORM CORRECT-VALUE.

COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL-F ("3E2").
IF TST-NUMV = 0 THEN PERFORM CORRECT-VALUE.

COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL-F ("3E-2").
IF TST-NUMV = 0 THEN PERFORM CORRECT-VALUE.

COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL-F ("35$").
IF TST-NUMV = 3 THEN PERFORM CORRECT-VALUE.

COMPUTE TST-NUMV = FUNCTION TEST-NUMVAL-F ("3,433").
IF TST-NUMV = 2 THEN PERFORM CORRECT-VALUE.

B.70.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 97. TEST-NUMVAL-F function

708

INTRINSIC FUNCTIONS (UPPER-CASE)

01 ANY-CHANGE-ANSWER PIC X(7).

MOVE "abcdefg" TO ANY-CHANGE-ANSWER.
MOVE FUNCTION UPPER-CASE (ANY-CHANGE-ANSWER)

TO ANY-CHANGE-ANSWER.
IF ANY-CHANGE-ANSWER = "ABCDEFG" THEN
 PERFORM CORRECT-VALUE.

B.71. UPPER-CASE

The UPPER-CASE function returns a character string that is the same length as argument-1 with each lowercase
letter replaced by the corresponding uppercase letter.

The type of the function depends on the argument type as follows:

Argument type Function type
Alphabetic Alphabetic
Alphanumeric Alphanumeric

B.71.1 General format

FUNCTION UPPER-CASE (argument-1)

B.71.2 Arguments

1) Argument-1 shall be of class alphabetic or alphanumeric and shall be at least one character position
in length.

B.71.3 Returned values

1) The same character string as argument-1 is returned, except that each lowercase letter is replaced by the
corresponding uppercase letter.

2) The character string returned has the same length as argument-1.

3) If the computer's character set does not include uppercase letters, no changes take place in the character
string.

B.71.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 98. UPPER-CASE function

709

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.72. VARIANCE

The VARIANCE function returns a numeric value that approximates the variance of its arguments.

The type of this function is numeric.

B.72.1 General format

FUNCTION VARIANCE ({ argument-1 }...)

B.72.2 Arguments

1) Argument-1 shall be class numeric.

B.72.3 Returned values

1) The equivalent arithmetic expression shall be as follows:

a) For one occurrence of argument-1,

(0)

b) For two occurrences of argument-1,

(((argument-1 1 – FUNCTION MEAN (argument-list)) ** 2 +
(argument-1 2 – FUNCTION MEAN (argument-list)) ** 2) / 2)

c) For n occurrences of argument-1,

(FUNCTION SUM (

((argument-1 1 – FUNCTION MEAN (argument-list)) ** 2)

...

((argument-1 n – FUNCTION MEAN (argument-list)) ** 2)) / n)

where argument-list is the argument-1 list for the VARIANCE function itself and argument-1 i is the ith
argument of the argument-1 list for the VARIANCE function itself.

710

INTRINSIC FUNCTIONS (VARIANCE)

01 VARNUM PIC S9(5)V9(6).

MOVE 48.6865 TO MINVAL.
MOVE 48.6885 TO MAXVAL.
COMPUTE VARNUM = FUNCTION VARIANCE(5, -2, -14, 0).
IF (VARNUM >= MINVAL) AND
 (VARNUM <= MAXVAL) THEN
 PERFORM CORRECT-VALUE.

MOVE 139.234 TO MINVAL.
MOVE 139.245 TO MAXVAL.
COMPUTE VARNUM = FUNCTION VARIANCE(2.6 + 30, 4.5 * 2).
IF (VARNUM >= MINVAL) AND
 (VARNUM <= MAXVAL) THEN
 PERFORM CORRECT-VALUE.

B.72.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 99. VARIANCE function

711

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.73. WHEN-COMPILED

The WHEN-COMPILED function returns the date and time the compilation unit was compiled as provided by the
system on which the compilation unit was compiled.

The type of this function is alphanumeric.

B.73.1 General format

FUNCTION WHEN-COMPILED

B.73.2 Returned values

1) The character positions returned, numbered from left to right, are:

Character
Positions Contents

1-4 Four numeric digits of the year in the Gregorian calendar.

5-6 Two numeric digits of the month of the year, in the range 01 through 12.

7-8 Two numeric digits of the day of the month, in the range 01 through 31.

9-10 Two numeric digits of the hours past midnight, in the range 00 through 23.

11-12 Two numeric digits of the minutes past the hour, in the range 00 through 59.

13-14 Two numeric digits of the seconds past the minute, in the range 00 through 59.

15-16 Two numeric digits of the hundredths of a second past the second, in the range
00 through 99.
The value 00 is returned if the system on which the compilation was done does
not have the
facility to provide the fractional part of a second.

17 Either the character '–', the character '+', or the character '0'. The character '–' is
returned if the
local time indicated in the previous character positions is behind Coordinated
Universal Time.
The character '+' is returned if the local time indicated is the same as or ahead of
Coordinated
Universal Time. The character '0' is returned if the system on which the compila-
tion was done
does not have the facility to provide the local time differential factor.

18-19 If character position 17 is '–', two numeric digits are returned in the range 00
through 12 indicating the number of hours that the reported time is behind
Coordinated Universal Time. If character position 17 is '+', two numeric digits are
returned in the range 00 through 13 indicating the number of hours that the
reported time is ahead of Coordinated Universal Time. If character position 17 is
'0', the value 00 is returned.

20-21 Two numeric digits are returned in the range 00 through 59 indicating the number
of additional
minutes that the reported time is ahead of or behind Coordinated Universal Time,
depending on
whether character position 17 is '+' or '–', respectively. If character position 17 is
'0', the value 00 is returned.

2) The returned value is the date and time of compilation of the compilation unit that contains this function. The
returned value in a contained source unit is the compilation date and time associated with the compilation unit in
which it is contained.

3) The returned value shall denote the same time as the compilation date and time if provided in the listing and
in the generated object code, although their representations and precision may differ.

712

INTRINSIC FUNCTIONS (WHEN-COMPILED)

01 TEMP1 PIC X(21).
01 WS-DATE.
 02 WS-YEAR PIC 9999.

88 COM-YEAR VALUE 1990 THRU 9999.
 02 WS-MONTH PIC 99.
 88 COM-MONTH VALUE 01 THRU 12.
 02 WS-DAY PIC 99.
 88 COM-DAY VALUE 01 THRU 31.
 02 WS-HOUR PIC 99.
 88 COM-HOUR VALUE 00 THRU 23.
 02 WS-MIN PIC 99.
 88 COM-MIN VALUE 00 THRU 59.
 02 WS-SECOND PIC 99.
 88 COM-SEC VALUE 00 THRU 59.
 02 WS-HUNDSEC PIC 99.
 88 COM-HUNDSEC VALUE 00 THRU 99.
 02 WS-GREENW PIC X.
 88 COM-GREENW VALUE "-", "+", "0".
 02 WS-OFFSET PIC 99.
 88 COM-OFFSET VALUE 00 THRU 13.

MOVE FUNCTION WHEN-COMPILED TO TEMP1.
MOVE TEMP1 TO WS-DATE.
IF COM-YEAR AND COM-MONTH AND COM-DAY AND
 COM-HOUR AND COM-MIN AND COM-SEC AND
 COM-HUNDSEC AND COM-GREENW AND COM-OFFSET THEN
 PERFORM CORRECT-VALUE.

B.73.3 Example

The following code fragments illustrate the use of this function.

EXAMPLE 100. WHEN-COMPILED function

713

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.74. YEAR-TO-YYYY

The YEAR-TO-YYYY function converts argument-1, the two low-order digits of a year, to a four-digit year.
Argument-2, when added to the year at the time of execution, defines the ending year of a 100-year interval, or
sliding window, into which the year of argument-1 falls.

The type of the function is integer.

B.74.1 General format

FUNCTION YEAR-TO-YYYY (argument-1 [, argument-2])

B.74.2 Arguments

1) Argument-1 shall be a nonnegative integer that is less than 100.

2) Argument-2 shall be an integer.

3) If argument-2 is omitted, the function shall be evaluated as though 50 were specified.

4) The sum of the year at the time of execution and the value of argument-2 shall be less than 10000 and greater
than 1699.

B.74.3 Returned values

1) Maximum-year shall be calculated as follows:

(FUNCTION NUMVAL (FUNCTION CURRENT-DATE (1:4)) + argument-2)

where argument-2 of the NUMVAL function is the same as argument-2 of the YEAR-TO-YYYY function
itself.

2) The equivalent arithmetic expression shall be as follows:

a) When the following condition is true

FUNCTION MOD (maximum-year, 100) >= argument-1

The equivalent arithmetic expression shall be

(argument-1 + 100 * (FUNCTION INTEGER (maximum-year/100)))

b) Otherwise, the equivalent arithmetic expression shall be

(argument-1 + 100 * (FUNCTION INTEGER (maximum-year/100) – 1))

NOTES

1 — In the year 1995, the returned value for FUNCTION YEAR-TO-YYYY (4, 23) is 2004. In the
year 2008 the returned value for FUNCTION YEAR-TO-YYYY (98, (–15)) is 1898.

2 — The YEAR-TO-YYYY function implements a sliding window algorithm. To use it for a fixed
window, argument-2 can be specified as follows, where fixed-maximum-year is the maximum year in
the fixed 100-year interval:

714

INTRINSIC FUNCTIONS (YEAR-TO-YYYY)

01 YEARVAL PIC 9(4).

DISPLAY "FUNCTION YEAR-TO-YYYY " NO ADVANCING.
COMPUTE YEARVAL = FUNCTION YEAR-TO-YYYY (4, 23).
IF YEARVAL = 2004 PERFORM CORRECT-VALUE.

COMPUTE YEARVAL = FUNCTION YEAR-TO-YYYY (98, (-15))
IF YEARVAL = 1898 PERFORM CORRECT-VALUE.

(fixed-maximum-year – FUNCTION NUMVAL (FUNCTION CURRENT-DATE (1:4)))

If the fixed window is 1973 through 2072, then in 2009 argument-2 shall have the value of 63 and in
2019, the value of 53.

B.74.4 Example

The following code fragments illustrate the use of this function.

EXAMPLE 101. YEAR-TO-YYYY function

715

Interactive COBOL Language Reference & Developer’s Guide - Part One

716

Screen Handler

IX. SCREEN HANDLER

A. General Description

The ICOBOL SCREEN HANDLER implements a subset of Threshold, Inc.'s SCREEN DEMON calls, which use
the CALL mechanism. ICSDMODE instructs ICOBOL how to enable the SCREEN HANDLER

A. 1. Enabling the SCREEN HANDLER

By default, the SCREEN HANDLER is disabled in the ICOBOL configuration file (.cfi). ICSDMODE is set by
using the configuration file (.cfi) or with an environment setting. Any ICSCMODE environment setting overrides
the setting in the Program Environment section of the configuration file (.cfi).

The syntax is:

ICSDMODE=disabled | underline | 0 | reverse | 1 | linedraw | 2

Where
disabled

Disables the SCREEN HANDLER
0 or underline

Run in standard SCREEN DEMON format, which is to underline the row above the box and underline the
last row in the box for the top and bottom lines, and use reverse video for the sides.

1 or reverse
Use reverse video for the entire box. This means that two (2) more lines than in standard mode are hidden
under the box.

2 or linedraw
Use the line-drawing character set of a terminal for the entire box. As with the previous setting, two (2)
more lines than in standard mode are hidden under the box. If a particular terminal does not have a
line-drawing character set, then “+”, “-”, and “|” are used for the corners, horizontal, and vertical portions of
the box, respectively. Currently, only the terminal types ibm, xenix, 386ix, pcbios, and pcwindow support
the line-drawing characters by default.

The ICSDMODE selection does not affect SD_DRAW_HLINE or SD_DRAW_VLINE or the value of the height of
a box or the value of the top-left-line entry.

SCREEN DEMON was an enhancement product for AOS/VS available from its developer, Threshold, Inc., Auburn,
AL.

717

Interactive COBOL Language Reference & Developer’s Guide - Part One

A. 2. Summary of Calls

The table below summarizes the ICOBOL SCREEN HANDLER calls that are available when the SCREEN
HANDLER feature is enabled. A description of each argument, as well as details for the calls, follow the table.

FUNCTION ARGUMENTS

SD_DRAW_BOX USING top-left-line, top-left-column, height, width [, label]

SD_DRAW_HLINE USING top-left-line, top-left-column, width

SD_DRAW_VLINE USING top-left-line, top-left-column, height

SD_ERROR_MESSAGE USING msg-string [, top-left-line, top-left-column]

SD_GET_IMAGE USING image-buffer

SD_GET_POS USING position

SD_MESSAGE USING msg-string [, top-left-line, top-left-column [, label]]

SD_MESSAGE_ONLY USING msg-string [, top-left-line, top-left-column [, label]]

SD_NEW_WINDOW [USING top-left-line, top-left-column, height, width [, label]]

SD_POP_UP_MENU USING menu-packet [, label]

SD_POP_UP_MENU2 USING menu-packet [, label]

SD_READ_CHAR USING char-field [, time-out-value]

SD_REDRAW (none)

SD_REMOVE_WINDOW (none)

SD_RETURN_INPUT USING data-string, string-size

SD_SET_ACCEPT_TIMEOUT USING time-out-value

SD_SYS_ERROR_MESSAGE USING error-code [, msg-string [, top-left-line, top-left-column]]

TABLE 38. Summary of Screen Handler Calls

NOTE: The following are included only for compatibility purposes, and executing them has no impact on how the
screen handler operates even though they may set or clear some flags which are otherwise not used. (If these calls
were implemented, as they are in the real Screen Demon, they would alter the performance characteristics of your
program.) These calls will fail if the ICSDMODE environment variable has not been set. They will also fail if the
call interface (i.e., number of arguments or argument size) is invalid. Otherwise, the calls will always succeed (and
do nothing).

CALL "SD_CONTROL" USING control
CALL "SD_DISABLE"
CALL "SD_ENABLE"
CALL "SD_FLUSH"
CALL "SD_GET_CONTROL USING control
CALL "SD_TURBO_FULL"
CALL "SD_TURBO_OFF"
CALL "SD_TURBO_PARTIAL"

NOTE: In SD_CONTROL and SD_GET_CONTROL, the data item control is defined as PIC 9(4) COMP.

718

Screen Handler (Error Handling)

A.3. Error Handling

The following Exception Status codes may be returned.

Exception
Code

Description

241 “The argument is too long to process”

203 "Program not found" if ICSDMODE is not set

076 "Device timeout" when SD_POP_UP_MENU exits due to a timeout
set by SD_SET_ACCEPT_TIMEOUT

013 "Invalid data" when a parameter is invalid; i.e., line or
column is out of range, string too long for box, etc.

008 "Insufficient memory" when there is no more memory available
for screen images.

001 "Invalid operation" when trying to perform an option that is
not currently valid; i.e., trying to do a SD_REMOVE_WINDOW
when nothing is pushed.

The ICOBOL SCREEN HANDLER runs in a mode similar to the SCREEN DEMON partial turbo, i.e., the user's
screen is updated at the end of every operation.

The ICOBOL SCREEN HANDLER cannot be disabled while under ICOBOL.

The calls SD_GET_IMAGE and SD_GET_POS are only defined for screens with 24 lines and 80 columns. If either
is called on a larger size screen, SD_GET_IMAGE will return the upper left 24 by 80 quadrant and SD_GET_POS
will generate an Exception Status 13.

For menu items there is a limit of 21 items otherwise an Invalid Data is given.

719

Interactive COBOL Language Reference & Developer’s Guide - Part One

B. Calls

B.1. SD_DRAW_BOX

This call provides the ability to draw a box on the terminal. The area inside the box is cleared to spaces.

The syntax is:

CALL "SD_DRAW_BOX" USING top-left-line, top-left-column, height, width
[, label]

Where
top-left-line

Specifies a PIC 9(4) COMP and defines the top left line position of a box or line. If <= 2, it will be
centered.

top-left-column
Specifies a PIC 9(4) COMP and defines the top left column position of a box or line. If <= 0, it will be
centered.

height
Specifies a PIC 9(4) COMP and defines how high (in lines) a box or line should extend from the top left
position. The height does not include the top line.

width
Specifies a PIC 9(4) COMP and defines how wide (in columns) a box or line should extend from the top
left position. The width includes the edges of the box which are one space wide.

label
Specifies a PIC X(n) and defines a label to be placed on the top line of a box underlined and bright. The
label must be terminated with a null (LOW-VALUE).

720

Screen Handler (SD_DRAW_HLINE and SD_DRAW_VLINE)

NOTE: SD_DRAW_HLINE is only useful to set the underline attribute.

B.2. SD_DRAW_HLINE and SD_DRAW_VLINE

These calls allow for either a horizontal line (SD_DRAW_HLINE) or a vertical line (SD_DRAW_VLINE) to be
drawn on the terminal.

The syntax is:

CALL "SD_DRAW_VLINE" USING top-left-line, top-left-column, height

CALL "SD_DRAW_HLINE" USING top-left-line, top-left-column, width

Where
 top-left-line

Specifies a PIC 9(4) COMP and defines the top left line position of a box or line. If <= 2, it will be
centered.

top-left-column
Specifies a PIC 9(4) COMP and defines the top left column position of a box or line. If <= 0, it will be
centered.

height
Specifies a PIC 9(4) COMP and defines how high (in lines) a box or line should extend from the top left
position. The height does not include the top line.

width
Specifies a PIC 9(4) COMP and defines how wide (in columns) a box or line should extend from the top
left position. The width includes the edges of the box which are one space wide.

721

Interactive COBOL Language Reference & Developer’s Guide - Part One

 01 IMAGE-BUFFER.
 05 SCREEN-LINE OCCURS 24 TIMES PIC X(80).
 05 FILLER OCCURS 24 TIMES.
 07 CHAR-ATTRIBUTE OCCURS 80 TIMES PIC 9(2) COMP.
 05 CURSOR-POSITION PIC 9(4) COMP.
 05 CURRENT-ATTRIBUTES PIC 9(4) COMP.
 05 SCREEN-BUFFER-RESERVED PIC X(252).

B.3. SD_GET_IMAGE

This call transfers a copy of the current image buffer to a buffer defined in the program's WORKING STORAGE.
This call is only defined for a 24 by 80 screen. If called on a larger screen only the first 24 rows by 80 columns will
be returned and the cursor position will be reported as (line-1)*80 + (column-1).

The syntax is:

CALL "SD_GET_IMAGE" USING image-buffer

Where
image-buffer

Specifies a structure of the following format:

char-attribute
Is defined as:

bit attribute
1 DIM
2 BLINK
4 UNDERSCORE
8 REVERSED
16 Alternate character set

722

Screen Handler (SD_GET_POS)

B.4. SD_GET_POS

This call provides the program the ability to determine the cursor's current position on the screen. This call is only
defined for a 24 by 80 screen. If called on a larger screen when the cursor is beyond the 24 by 80 area the call will
fail with an Exception Status 13.

The syntax is:

CALL "SD_GET_POS" USING cursor-position

Where
cursor-position

Specifies a PIC 9(4) COMP in which the cursor position is stored as (linenumber-1)*80 +
(columnnumber-1). Thus when positioned to the home position (line 1, col 1), the cursor-position would be
zero(0).

723

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.5. SD_MESSAGE, SD_ERROR_MESSAGE, SD_MESSAGE_ONLY

These calls provide the ability to display a message. SD_MESSAGE and SD_ERROR_MESSAGE wait for an
operator to acknowledge the message, but SD_MESSAGE_ONLY does not.

The syntax is:

CALL "SD_MESSAGE" USING msg-string [, top-left-line, top-left-column
[, label]]

CALL "SD_ERROR_MESSAGE" USING msg-string [, top-left-line,
top-left-column]

CALL "SD_MESSAGE_ONLY" USING msg-string [, top-left-line, top-left-column
[, label]]

Where
msg-string

Specifies a PIC X(n) and contains a message to be displayed within a box. The msg-string must be termi-
nated with a null (LOW-VALUE). A bar | symbol will cause the message to wrap to a new line.

 top-left-line
Specifies a PIC 9(4) COMP and defines the top left line position of a box or line. If <= 0, it will be
centered vertically.

top-left-column
Specifies a PIC 9(4) COMP and defines the top left column position of a box or line. If <= 0, it will be
centered horizontally.

label
Specifies a PIC X(n) and defines a label to be placed on the top line of a box underlined and bright. The
label must be terminated with a null (LOW-VALUE).

If neither line nor column is included or both are set to <= 0, the message box will be centered on the screen.

If label is not included, no label will be provided.

SD_ERROR_MESSAGE is equivalent to calling SD_MESSAGE with the label set to "Error!".

724

Screen Handler (SD_NEW_WINDOW)

B.6. SD_NEW_WINDOW

This call saves the current image in a push-down image stack that can later be restored with the
SD_REMOVE_WINDOW call. Each call to SD_NEW_WINDOW will cause the current image to be pushed onto
the image stack and a new image buffer will start to receive all subsequent output to the screen.

Calling SD_NEW_WINDOW with the optional parameters is short-hand for an SD_NEW_WINDOW followed by
an SD_DRAW_BOX.

The syntax is:

CALL "SD_NEW_WINDOW" [USING top-left-line, top-left-column, height, width
[, label]]

Where
top-left-line

Specifies a PIC 9(4) COMP and defines the top left line position of a box or line. If <= 2, it will be
centered.

top-left-column
Specifies a PIC 9(4) COMP and defines the top left column position of a box or line. If <= 0, it will be
centered.

height
Specifies a PIC 9(4) COMP and defines how high (in lines) a box or line should extend from the top left
position. The height does not include the top line.

width
Specifies a PIC 9(4) COMP and defines how wide (in columns) a box or line should extend from the top
left position. The width includes the edges of the box which are one space wide.

label
Specifies a PIC X(n) and defines a label to be placed on the top line of a box underlined and bright. The
label must be terminated with a null (LOW-VALUE).

725

Interactive COBOL Language Reference & Developer’s Guide - Part One

01 MENU-PACKET.
 05 MENU-LINE PIC 9(4) COMP.
 05 MENU-COLUMN PIC 9(4) COMP.
 05 DEFAULT-ITEM PIC 9(4) COMP.
 05 SELECTED-ITEM PIC 9(4) COMP.
 05 SELECTED-STRING PIC X(30).
 05 MENU-ITEMS-STRING PIC X(n).

B.7. SD_POP_UP_MENU

This call provides the ability to display a simple pop-up menu. The user can use the up-arrow and down-arrow keys
or the first letter of a selection to position to an item. A newline selects that item and exits the menu while an ESC
exits the menu with no selection. The screen area under the pop-up menu is restored upon exiting from the menu.

The syntax is:

CALL "SD_POP_UP_MENU" USING menu-packet [, label]

Where
menu-packet

Specifies a structure of the following format:

label
Specifies a PIC X(n) and defines a label to be placed on the top line of a box underlined and bright. The
label must be terminated with a null (LOW-VALUE).

The line and column arguments specify the top-left-line and top-left-column for the box containing the pop-up menu
(just as documented under SD_DRAW_BOX). If these are set to zero, the menu is centered. The menu-items-string
is the list of options to be displayed in the pop-up menu. This string should contain the string for each selection-item
separated by a vertical bar (|) and ending with two vertical bars (||). For example:

"First selection|Second selection|Third selection||".

The default-item specifies the default item, i.e., the item to which the cursor will be positioned initially. The
selected-item and selected-string are the returned item number and string when exiting the pop-up menu. If an ESC
was hit, a zero(0) and spaces will be returned.

Within the pop-up menu, the user can use the up-arrow and down-arrow keys to position to the previous or next
selection or the first letter of a selection to move to the next selection starting with that letter.

If a default timeout has been specified by SD_SET_ACCEPT_TIMEOUT and no input is entered within that time,
the CALL returns with an Exception Status 76 "Device timeout", and the SELECTED-ITEM and
SELECTED-STRING are set as if an ESC had been typed.

726

Screen Handler (SD_POP_UP_MENU2)

01 MENU-PACKET.
 05 MENU-LINE PIC 9(4) COMP.
 05 MENU-COLUMN PIC 9(4) COMP.
 05 DEFAULT-ITEM PIC 9(4) COMP.
 05 SELECTED-ITEM PIC 9(4) COMP.
 05 SELECTED-STRING PIC X(30).
 05 MENU-ITEMS-STRING PIC X(n).

B.8. SD_POP_UP_MENU2

This call provides the ability to display a simple pop-up menu and accepts function keys as terminators. The user
can use the up-arrow and down-arrow keys or the first letter of a selection to position to an item. A newline selects
that item and exits the menu while an ESC exits the menu with no selection. The screen area under the pop-up menu
is restored upon exiting from the menu. This function differs from SD_POP_UP_MENU in that it allows function
keys to successfully select and return a menu option. The value of ESCAPE KEY is set to indicate which terminator
was pressed. (The COBOL program can query this value with the “ACCEPT FROM ESCAPE KEY” statement.)
Pressing ESC exits the menu with no selection, but it also updates ESCAPE KEY.

The syntax is:

CALL "SD_POP_UP_MENU2" USING menu-packet [, label]

Where
menu-packet

Specifies a structure of the following format:

label
Specifies a PIC X(n) and defines a label to be placed on the top line of a box underlined and bright. The
label must be terminated with a null (LOW-VALUE).

The line and column arguments specify the top-left-line and top-left-column for the box containing the pop-up menu
(just as documented under SD_DRAW_BOX). The menu-items-string is the list of options to be displayed in the
pop-up menu. This string should contain the string for each selection-item separated by a vertical bar (|) and ending
with two vertical bars (||). For example:

"First selection|Second selection|Third selection||".

The default-item specifies the default item, i.e., the item to which the cursor will be positioned initially. The
selected-item and selected-string are the returned item number and string when exiting the pop-up menu. If an ESC
was hit, a zero(0) and spaces will be returned.

Within the pop-up menu, the user can use the up-arrow and down-arrow keys to position to the previous or next
selection or the first letter of a selection to move to the next selection starting with that letter.

If a default timeout has been specified by SD_SET_ACCEPT_TIMEOUT and no input is entered within that time,
the CALL returns with an Exception Status 76 "Device timeout", and the SELECTED-ITEM and
SELECTED-STRING are set as if an ESC had been typed. ESCAPE KEY is set to 99.

727

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.9. SD_READ_CHAR

This call allows the program to read a single keystroke with or without a timeout. Any 7-bit character read is passed
through unchanged. If a timeout is given and no keystroke is received within that time frame, the character 128 is
returned. If a function key is pressed a value from the following table is returned. Any 8-bit character has its high-
order bit stripped, and the 7-bit value is returned.

Key normal Shift Ctrl Ctrl-Shift

F1 241 225 177 161

F2 242 226 178 162

F3 243 227 179 163

F4 244 228 180 164

F5 245 229 181 165

F6 246 230 182 166

F7 247 231 183 167

F8 248 232 184 168

F9 249 233 185 169

F10 250 234 186 170

F11 251 235 187 171

F12 252 236 188 172

F13 253 237 189 173

F14 254 238 190 174

F15 240 224 176 160

C1 220 216

C2 221 217

C3 222 218

C4 223 219

right-arow 24 152

left-arrow 25 153

up-arrow 23 151

down-arrow 26 154

home 8 136

newline 10

ESC 27

The syntax is:

CALL "SD_READ_CHAR" USING char-field [, time-out-value]

Where
char-field

Specifies a PIC X(1) and returns the read character if less than 8-bit, a 128 if a timeout occurred, or a
number from the above table for a function key.

timeout-value
Specifies a PIC 9(4) COMP specifying the number of seconds to wait before terminating the READ. If not
specified, the READ will wait forever. If set to 0 or >= 65535 then the timeout is set to wait forever, if set
> 6300 it is set to 6300, otherwise if between 1 - 6300 it is set to that number of seconds.

728

Screen Handler (SD_READ_CHAR)

If a timeout had previously been specified by SD_SET_ACCEPT_TIMEOUT, the new value will override the
previous value for this call.

NOTE: The IC_GET_KEY builtin, page 548, 584, provides a more complete and terminal independent method of
reading individual keystrokes.

729

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.10. SD_REDRAW

This call instructs the SCREEN HANDLER to clear the screen and redisplay the entire contents of the current
image-buffer.

The syntax is:

CALL "SD_REDRAW"

730

Screen Handler (SD_REMOVE_WINDOW)

B.11. SD_REMOVE_WINDOW

This call restores the image-buffer that is on the top of the image-buffer stack. SD_REMOVE_WINDOW
effectively removes all data that had been displayed since the last SD_NEW_WINDOW call and replaces it with the
data that was on the screen at that time.

A STOP RUN or a CALL PROGRAM to a new program will always clear all pushed image buffers.

The syntax is:

CALL "SD_REMOVE_WINDOW"

731

Interactive COBOL Language Reference & Developer’s Guide - Part One

MOVE "1234567890" TO DATA-STRING.
MOVE 10 TO DATA-ARRAY(11).
MOVE 11 TO STRING-SIZE.
CALL "SD_RETURN_INPUT" USING DATA-STRING, STRING-SIZE.

B.12. SD_RETURN_INPUT

This call provides the ability to place keystrokes into the terminal's input buffer such that the next ACCEPT will read
them as if they had been typed from the keyboard.

Up to 256 characters can be returned, provided the internal input buffer is empty, i.e., characters are not still left
from previous SD_RETURN_INPUT calls. If all the data will not fit into the input buffer, an Exception Status 241
is returned.

A STOP RUN will empty the input buffer.

The syntax is:

CALL "SD_RETURN_INPUT" USING data-string, string-size

Where
data-string

Specifies a PIC X(n) and holds data to be placed into the input buffer for this terminal. This item cannot be
larger than 256 bytes. All entered data is treated like it came from a DG terminal. I.E., to enter a function
key enter the 2-byte DG sequence even when on a non-DG terminal.

string-size
Specifies a PIC 9(4) COMP that specifies the number of bytes to use out of data-string. It must be less than
or equal to the size of data-string.

To enter data into an empty 10 character field, the following could be used:

Where
DATA-STRING

Specifies a PIC X(256).
DATA-ARRAY

Specifies a PIC 99 COMP array defined over DATA-STRING.
STRING-SIZE

Specifies a PIC 9(4) COMP.

Which would enter the characters "1234567890" followed by a newline into the next ACCEPT from the keyboard.

NOTE: The SD_RETURN_INPUT function is useful for returning information from a hotkey program into the
field from which the hotkey was launched.

732

Screen Handler (SD_SET_ACCEPT_TIMEOUT)

NOTE: This call serves a different function than the SCREEN DEMON call.

B.13. SD_SET_ACCEPT_TIMEOUT

This call provides the ability to set a default timeout value for all subsequent SCREEN HANDLER calls that read
from the keyboard. These include SD_POP_UP_MENU, SD_POP_UP_MENU2, SD_READ_CHAR,
SD_MESSAGE, SD_ERROR_MESSAGE, and SD_SYS_ERROR_MESSAGE. If no input is done for the specified
number of seconds the input will be terminated with Exception Status set to 76. To disable timeout, a value of 65535
must be provided as the time-out-value. The initial default timeout value is forever (i.e., 65535).

This timeout only affects SCREEN HANDLER reads, normal I/O is not affected. The standard IC_SET_TIMEOUT
does not affect any SCREEN HANDLER reads.

The syntax is:

CALL "SD_SET_ACCEPT_TIMEOUT" USING time-out-value

Where
time-out-value

Specifies a PIC 9(4) COMP specifying the number of seconds to wait before terminating a read. If set to 0
or >= 65535 then the timeout is set to wait forever, if set > 6300 it is set to 6300, otherwise if between 1 -
6300 it is set to that number of seconds.

733

Interactive COBOL Language Reference & Developer’s Guide - Part One

B.14. SD_SYS_ERROR_MESSAGE

This call provides the ability to display a system error message as defined by the system. The message is displayed
in a box with an optional user message and an operator acknowledge is sought. The error-code should be a valid
Exception Status.

The syntax is:

CALL "SD_SYS_ERROR_MESSAGE" USING error-code [, msg-string
[, top-left-line, top-left-column]]

Where
error-code

Specifies a PIC 9(4) COMP and should be a valid system Exception Status code.
msg-string

Specifies a PIC X(n) and contains a message to be displayed within a box. The msg-string must be termi-
nated with a null (LOW-VALUE). A bar | symbol will cause the message to wrap to a new line.

 top-left-line
Specifies a PIC 9(4) COMP and defines the top left line position of a box or line. If <= 2, it will be
centered.

top-left-column
Specifies a PIC 9(4) COMP and defines the top left column position of a box or line. If <= 0, it will be
centered.

734

PART TWO - DEVELOPER’S GUIDE

735

Interactive COBOL Language Reference & Developer’s Guide - Part Two

736

Introduction (Overview)

X. INTRODUCTION TO THE DEVELOPER’S GUIDE

A. Overview

ICOBOL provides the ability to compile and execute COBOL programs in the Linux and Windows environments.
This allows the developer to use the most cost-effective platforms (Linux or Windows) for both program
development and program installation.

B. Operating Environment

B.1. General Concepts

The ICOBOL system has been designed to provide an application operating environment that works as consistently
as possible among several different operating system environments. This consistency is expressed in a few key
concepts that have their roots in the Linux and Windows operating systems. If you are using one of these operating
systems, the concepts may already be familiar to you.

B.1.1 Communication with the Operating System

The first concept is that programs communicate with their operating environment through three input/output streams
or files: standard input (stdin), standard output (stdout), and standard error (stderr). Programs can read data to be
processed from stdin, process it in some way, and write the results to stdout. They report errors to stderr. By
default, most systems connect stdin to the console keyboard and both stdout and stderr to the console display.

Many utilities, especially in the COBOL environment, must process complex data files that do not fit this simple
model and so they do not often use stdin for the data to process. However, the stdout and stderr files are still very
useful. They allow the utility to logically separate error reporting from reporting the results of processing. For
example, the ICSTAT utility reports statistics about an ICISAM files. It reports these statistics to stdout. If an error
occurs, for example one of the command arguments does not exist, the error is reported to stderr.

B.1.2 I-O Redirection

The second concept is the ability to redirect I-O files from the default files to another file or device. The Linux and
Windows systems provide a very simple way to redirect these standard files in the command processor by using the
special characters `<' and `>'. When stdout is redirected to a file, it provides a simple mechanism to capture the
output of a utility. See your operating system command processor documentation for more on this concept.

B.1.3 Environment Variables

The third major concept is the ability to customize the operation of specific programs by setting information in items
called Environment Variables. Environment variables have a name and a value like program variables or data items.
The difference is that these variables are managed by the command processor. The utility programs can ask the
operating system whether a particular environment variable is set or not, and what its value is. They are most often
used to set default operating options, or the locations of important files. For example, all ICOBOL command-line
programs look for the environment variable ICROOT as the base directory for finding the system files nd help files.
ICCONFIGDIR is also provided to find customized system files. Linux and Windows both provide environment
variables. ICROOT and other common environment variables used by ICOBOL are described in more detail
beginning on page 738.

737

Interactive COBOL Language Reference & Developer’s Guide - Part Two

Environment variables are maintained in the command processor (or shell). Environment variables are set up with a
command like:

On Windows On Linux
SET ICROOT=C:\Program Files\Icobol ICROOT=/usr/icobol.500

B.2. Directory Structure

On Linux, the ICOBOL software is installed in a directory with the name cobolnnn, where nnn corresponds to the
revision level. For example, ICOBOL Revision 5.00 will be in a directory named icobol.500 by default. This
directory can be installed wherever is most appropriate or convenient for your system and can be renamed as needed.
On Windows, the ICOBOL software is installed in a directory with the name icobol in the program files directory by
default..

The main directory contains: all of the command-line programs, the readme file(s), and supplied COBOL executable
programs. One subdirectory is called help. The help subdirectory contains help (.hf) files, for all the command-line
programs defined as <command>.hf. There may be additional directories with other miscellaneous files, see the
appropriate readme file(s) for a list of all the actual files.

Main Sub-
Directory Directories Description
icobol.<rev> - main executables and needed files

docs All documentation, readme files

examples Various examples
cgi Cgiruntime, scripts, examples
config various configuration files, .pti,

messages
icodbc sample ICISAM ocbd files
print various pdf sample backgrounds
programs Examples, login, sp2logon, isqltest, ...
scripts Various script files
terminfo Various terminfo source files

help Help files (.hf)

icnet Server surrogate files

install Various install scripts

x86 On a 64-bit os this holds all the
matching 32-bit executables

FIGURE 9. ICOBOL Directory Structure (Linux)

738

Introduction (Operating Environment)
Main Sub-
Directory Directories Description
icobol Main executables, .dlls, and needed files

docs All documentation, readme files

examples Various examples
cgi Cgiruntime, scripts, examples
config various configuration files, .pti,

messages
icodbc sample ICISAM odbc files
print various pdf sample backgrounds
programs Examples, login, sp2logon, isqltest, ...
qpr Formprint examples
sp2 Sp2 examples

help Help files (.hf)

icnet Server surrogate files

install Install information

qpr (Dev) Gui-printer development
(Formprint)(ICQPRW)

card qpr files in card format
crt qpr files in crt format

sentinel Rainbow sentinel device files

sp2 (Dev) Gui-screen development (ICSP2)
card sp2 files in card format
crt sp2 files in crt format

uninstall Uninstall information

x86 On a 64-bit os this holds all the
Matching 32-bit executables

FIGURE 10. ICOBOL Directory Structure (Windows)

Installs previous to 4.70 had a print sub-directory for printer translation (.pti) files and background .pdf files and a
term sub-directory for terminal description (.tdi) files. The default versions of .pti and .tdi files are now builtin to the
runtimes and any customized file(s) should be stored in a directory that is sought with the ICCONFIGDIR
environment entry.

Command-line programs require the corresponding help file to be available in order to display their help text. If it is
not available, an error message will be displayed that it could not find the help file. There are three methods for
finding the help file: by using the ICCONFIGDIR, by using ICROOT environment variables or by passing a partial
pathname to the operating system.

B.3. ICEXEC Control Program

The ICOBOL system uses a control program called ICEXEC to coordinate multi-user access to system resources.
The runtime system (ICRUN) along with the ICNETD servers require the ICEXEC program to be running in order to
operate. All other ICOBOL executables can operate with or without ICEXEC.

On Linux, ICEXEC is required to provide an exclusive open capability since Linux does not provide that capability.
When ICEXEC is not running, an exclusive open is emulated by posting a write-lock on the whole file. A non-
exclusive open posts a read-lock on the whole file. Thus, two programs can detect whether a file is opened or open-
exclusively by using this mechanism. Care should be exercised when moving from no-ICEXEC to ICEXEC-
running, as utilities that started in the no-ICEXEC mode will keep running in that mode until they terminate.

739

Interactive COBOL Language Reference & Developer’s Guide - Part Two

B.4. ICPERMIT License Program

The license manager, ICPERMIT, is used to provide licensing information to any executable that requires an
authorization either on a single machine or over a TCP/IP-based network. This includes the ICOBOL compiler
(ICOBOL), the runtime (ICRUN), ICNETD servers (ICIOS, ICRUNRS, ICLOGS, ICSQLS), the ICSP2 editor, the
ICQPRW editor, sp2 runtimes, ICODBC driver, programs built with the user library, and the ICIDE. ICPERMIT
must be running and authorizing the proper license before any of these programs can operate. Otherwise, an error
message occurs, stating the program could not connect with the license server and so is not authorized to execute.

C. Command-line Conventions

Another aspect of providing a consistent system across multiple operating platforms is in the command-line
interface. The command-line programs use a common command-line syntax across all platforms, and they adhere to
the following standard conventions:

C.1. Switches

1) all switches are composed of a single letter or digit preceded by a hyphen (-) (or optionally a forward slash (/)
on Windows);

2) the switches are order independent;
3) the switches ARE case sensitive;
4) lower-case switches imply an action or modification of an action, e.g., `-h' for help;
5) UPPER-CASE switches imply an action with a required argument that must follow with an intervening

space, e.g., `-A audit.log' for setting up an auditfile called audit.log.
6) multiple lower-case switches can be combined with one hyphen, e.g., `-aew' for `-a -e -w'.

C.2. Conventions for Defining Syntax

The following shows how the various conventions for defining syntax are represented in the ICOBOL documenta-
tion:

Convention Meaning

[] Brackets enclose optional portions of a format. One of the options
contained within the brackets may be explicitly specified or that
portion may be omitted.

{ } Braces enclosing a portion of a format means that one of the options
contained within the braces must be specified.

| Bar will be used to separate choices when multiple choices are
allowed.

... Ellipsis indicates that the previous item can be repeated one or more
times.

italic-lower-
case

Indicates a generic term representing a value that is defined as
indicated.

TABLE 39. Common Command-line Syntax Conventions

C.3. Filename Case (upper or lower)

Linux systems support case-sensitive filenames as opposed to Windows, where they are case-insensitive. All
released ICOBOL on Linux files are lower-case, which is in keeping with most Linux systems. By default, the
ICOBOL on Linux runtime will convert all COBOL filenames, including program names, to lower-case before
looking up that file in Linux. Although ICOBOL on Linux can support UPPER-CASE only or mixed-case, we

740

Introduction (Common Switches)

recommend using only one case for filenames to ease portability to case-insensitive environments.

With this in mind, this document will still use upper-case names in the text for specific programs but will always use
lower-case in examples and when showing what needs to be entered from the keyboard to run a program.

On Linux, all examples assume the Bourne shell is being run.

D. Common Switches

D.1. Overall

There are several switches that are common to all ICOBOL command-line programs except for ICINFO. These are
described in detail in the following sections and will be referenced later, in the discussions of each program.. The
ICOBOL command-line switch processor scans all the command-line switches, checking for errors. Any errors
display an abbreviated startup banner (the program name and revision) to stdout before displaying the error message
to stderr and then exiting with a non-zero exit code. If there are no errors to terminate processing prematurely, the
common switches are processed. First, if the Help switch is given, an abbreviated startup banner and help text are
displayed to stdout after which the program exits normally (i.e., no other switches or arguments are processed).
Next, if the Audit switch is given, auditing is enabled. Finally, the Quiet switch, if given, is processed. The program
then begins its specific processing by emitting a startup banner, consisting of the program name, revision level,
system, and the copyright notice. When it finishes processing, it will emit a trailer message indicating that it is done.

D.2. Audit Switch

The Audit switch will be shown in the syntax as:

-a[:a|b|d|p|t|u] | -A file|dir[:a|b|d|p|t|u]

Where
a Append. Do not truncate the file, just append to the current file.
b Backup. If a previous log file (.lg) exists, rename it to *.lgb and then open a new .lg file. On Linux, this

will break hard links.
d Date. Add date in the form of _YYYYMMDD before the .lg extension.
p PID. Add pid in the form of _NNNN before the .lg extension.
t Time. Add time in the form of _YYYYMMDDHHmmsshh before the .lg extension. (YYYY-year,

MM-month, DD-day of the month, HH-hour, mm-minute, ss-second, hh-hundredths of seconds.)
u Username. Add username in the form _name before the .lg extension.

NOTE:
1) On Windows, the option "-A c:a" will be treated as open file "c" in append mode in the current directory.

Previously this would have been open file "a" in the current directory of drive C:. To get the old behavior,
enter

"-A c:.\a"

The audit flags (a,b,d,p,t,u) instruct the Audit processing to take a different action then the default for the audit file.
The default action is the same as usual, truncate the file to zero on startup.

Note that:

-a Audit to the default file for this command.
-A file Audit to the specified file.
-A dir Audit to default file in the specified directory.

Audit files contain a copy of any output that was sent to either stdout or stderr, in the same order as it was emitted at

741

Interactive COBOL Language Reference & Developer’s Guide - Part Two

execution time (i.e., it may be interspersed). The programs handle this internally, so stdout and stderr can still be
redirected. The audit file can be specified to use the default name in the current directory (-a), a user specified name
(-A file), or the default name in a specified directory (-A dir). An audit file is always created if it does not already
exist. If it does exist, it is truncated to zero, unless the ‘a’ option on the audit switch is used (e.g., ‘-a:a’).

The default audit file name is <command>.lg.

D.3. Quiet Switch

The Quiet switch will be shown in the syntax as:

-q

The Quiet switch works by suppressing all output that is emitted to stdout. The most obvious effect is that it
suppresses the usual banner and trailer messages that are emitted to stdout as the program starts and terminates.
Because it is suppressing stdout, the Quiet switch may also suppress other parts of the usual output.

D.4. Help Switch

The Help switch will be shown in the syntax as:

-h|-?

The Help switch displays a summary of the command-line syntax, the switches and what they do, and the applicable
environment variables.

E. Filename Extensions

ICOBOL requires that extensions for certain types of files match those in the following table except for those
marked defacto. Those marked defacto are only the most commonly used extensions for these purposes and are not
required. All ICOBOL release files will conform to these defacto standards.

d Those extensions marked as this sentence is marked are extensions in some older revision of ICOBOL or ICHOST
d but are handled in some special cases by current ICOBOL utilities.

742

Introduction (Filename Extensions)

Common extensions used by ICOBOL include:

.cd Old ICHOST COBOL program file

.cf Old Configuration file (pre-3.30)

.cfi Configuration file

.cl Library file

.co COBOL Source program (ANSI card format) (defacto)

.cx COBOL Program file

.er Error file (defacto)

.fa File attribute file

.fp Failsafe protection file

.gsy global symbol file for the ide

.hf ICOBOL help files

.icp ICIDE project files

.lg Audit / Log file (defacto)

.lgb previous Audit / Log file

.lk Link file

.ls List file (defacto)

.ms Message file

.od,.nt Pair of files, ICPACK data and index temporary files

.pd,.dd Pair of files, older revision COBOL program file (program
and data)(pre-ICOBOL 2)

.pq Printer control file

.pt Old Printer translation file (pre-3.30)

.pti Printer translation file (.ini format)

.sd ICRUN Sort data file (temporary)

.sr COBOL Source program (free-form format) (defacto)

.st ICRUN Sort tag file (temporary)

.sy COBOL Symbol table file

.td Old Terminal description file (pre-3.30)

.tdi Terminal description file (.ini format)

.tmp Temporary file (defacto)

.xco COBOL Source program (Extended card format) (defacto)

.xd,.nx Pair of files, COBOL ICISAM file (date and index portion)

.xdb ICODBC database definition file (.ini format)

.xdt ICODBC table definition file (.ini format)

.xl Log file (pre-5.40)

.xlg Generation log file(pre-5.40)

TABLE 40. Common Filename Extensions used by ICOBOL

On Linux, all ICOBOL utilities support mixed-case filenames. If a utility needs to add an extension, e.g., .xd/.nx,
etc., it searches back from the end of the simple filename for the first alphabetic character. If it finds an upper-case
alphabetic, it will use an upper-case extension, otherwise a lower-case extension is used. For example
"iccheck DATAbase1" and "iccheck 12345" would use the lower-case extensions `.xd' and `.nx' for the ICISAM
file, while "iccheck dataBASE52" would use the upper-case extensions `.XD' and `.NX'.

743

Interactive COBOL Language Reference & Developer’s Guide - Part Two

F. Exit Codes

All command-line programs return exit codes that provide an indication of the success or failure of the program.
These are returned through the appropriate OS-specific mechanism (e.g., into ERRORLEVEL on Windows and the
exit code on Linux). In general, the following codes will be returned:

Exit
code

Description

0 The program completed without errors.

1 The program ran, but some items it processed had
errors. For example, ICCHECK checked a series of
files, and some of them were corrupt.

2 The program was running, but was terminated by an
operator interrupt or external abort.

3 The program was running, but was terminated by some
fatal internal error. For example, the compiler was
running but detected that its virtual memory manager
had run out of memory unexpectedly.

4 There were command-line errors and so the program did
not perform any of the requested function(s).

5 The user was not authorized to execute the program or
perform a requested operation, so the program did not
run.

6 The program experienced an error during its initial-
ization phrase and could not execute. For example,
it could not allocate sufficient memory to perform
its function.

7 Help was requested

8-9 Reserved for future `common' errors.

10 These codes are specific to each program and will be
documented with each program.

NOTE: All of the programs support exit codes 0 through 9
with the meaning described above.

G. Common Environment Variables

G.1. Overall

There are several common environment entries that most command-line programs use. These are described in detail
in this section, which will be referenced in each section describing the ICOBOL command-line programs. Other
environment variables that are more program specific will be described under each ICOBOL command-line
program.

All ICOBOL command-line programs accept an environment variable specific to themselves called uppercase-
command-line-program-name. These specific environment variables can be used to set up options that are always
used.

744

Introduction (Common Environment Variables)

G.2. ICROOT

ICROOT specifies the ICOBOL root directory. ICROOT is used to find needed files and subdirectories like the
help directory, print directory, and the term directory.

The syntax is:

ICROOT=dir

Where
dir

Specifies the directory where to find the ICOBOL help and term directories. Usually this should be set the
current revision directory.

If ICROOT is not set, the current directory is used.

G.3. ICCONFIGDIR (Added in 4.70)

ICCONFIGDIR specifies a directory for customized system files. If ICCONFIGDIR is specified it will be searched
for any customized help, messages, print, or term files. If not found then ICROOT will be used. Since ICROOT
usually points to the ICOBOL installation directory, this provides a mechanism to have customized versions of
system files that are not affected by the installation of a new version of ICOBOL.

The syntax is:

ICCONFIGDIR=dir

Where
dir

Specifies the directory where to find the user-customized system directories help, messages, print, and term.

If ICCONFIGDIR is not set, then ICROOT is used. This would be the same as version before 4.70.

G.4. Executable-Name Environment Variable

All command-line utilities support an environment variable of the same name as the utility in upper-case. For
example, the 'iccheck' utility will recognize the variable ICCHECK. The environment variable can contain command
line options for the utility which will be processed prior to any options actually present on the command line. If such
an environment variable is present, the utility will display the complete set of options at startup.

G.5. TZ (Windows only)

On Windows, TZ specifies the time zone and number of hours past Greenwich mean time (GMT) for this location.

The syntax is:

TZ=tttn[ttt]

Where
ttt

Specifies a time zone of three letters. The second time zone should be given if daylight-saving time applies
at this location.

n
Specifies a positive (west) or negative (east) integer number of hours difference from Greenwich mean time
(GMT). Up to two digits can be specified.

745

Interactive COBOL Language Reference & Developer’s Guide - Part Two

If no TZ is specified, ICOBOL assumes all times are Greenwich mean time (GMT). If the second time zone is
specified, ICOBOL assumes that daylight-saving time starts and stops based on the same schedule as used in the
USA.

An example for Raleigh, North Carolina, USA would be:

SET TZ=EST5EDT

TZ is used for the command-line programs to accurately report date and time, and to accurately set date and time
information in file headers. It sets the time zone and number of hours past Greenwich mean time (GMT) for this
location.

746

COMPILER (ICOBOL)

XI. COMPILER (ICOBOL)

A. Overview

The ICOBOL Compiler (ICOBOL) is available for the Linux and Windows environments. The compiler works the
same in all environments except as stated in this manual. The following sections describe the requirements for the
various operating environments.

The ICOBOL compiler provides the following features:

! a number of compile-time optimizations, including the detection and elimination of unreferenced data
and unused code

! warnings about non-standard features or misuse of ANSI 85 features when compiling for ANSI COBOL
74

! the ability to select the ICOBOL dialect (ANSI 74, ANSI 85, or VXCOBOL)

! enhanced compilation performance

! the ability to create a cross-reference listing

The ICOBOL compiler requires an ICOBOL Development license to be available from the license manager
(ICPERMIT). Please see your Installing and Configuring ICOBOL on Linux, or Installing and Configuring
ICOBOL on Windows manuals on how to install and use ICPERMIT to allow the ICOBOL compiler to be
authorized.

The ICOBOL compiler generates a COBOL executable file with the .cx extension. This .cx file when used in
conjunction with the runtime system (icrun) allows the COBOL program to be executed in any environment in which
the runtime is available.

B. Syntax

The syntax for the ICOBOL compiler is:

icobol [-a[:aflag]|-A file|dir[:aflag]] [-B 1|2|4] [-c] [-C copydir]...
[-D ic|vx|85] [-e|-E erdir] [-F f|c] [-G {a|b|d|e|g|h|i|n|p|q|s}...]
[-h|-?] [-H cnt] [-i] [-I {g|m|p|x}...] [-l|-L lsdir] [-M dddir]
[-N {h|p|s|u}...] [-o|-O rev] [-P cxdir] [-q] [-R rev] [-s] [-S num]
[-w] [-X “string”] [-Z sydir] { infile }...

Where
-a[:aflag] or -A file|dir[:aflag] (Audit)

Enables auditing (default icobol.lg). Where aflag is a|b|d|p|t|u. Aflags are a-append, b-backup, d-date,
p-pid, t-time, u-username.

-B 1|2|4 (Byte alignment)
Where to align 01 & 77 level items. Options are: 1-byte, 2-byte, or 4-byte. Default is 2.

-c (Copy source directory)
Add the directory of the main source file to the COPY list.

-C copydir (Copy directory)
Add copydir to COPY searchlist. A maximum of 16 directories can be added this way.

-D ic|vx|85 (Dialact)
Select ICOBOL dialect. Dialects are:

ic-icobol (traditional ANSI 74 with extensions),
vx-icobolvx (VXCOBOL),
85-strict (ANSI 85).

747

Interactive COBOL Language Reference & Developer’s Guide - Part Two

Default is ic.
-e | -E erdir (Error)

Specify error file. Redirect messages to infile.er for -e, or to erdir/infile.er for -E.
-F c|f|x (Format source)

Select source format. Options are c-card, f-free-form, or x-extended card. Default is f.
-G {a|b|d|e|g|h|i|n|p|q|s}... (General)

General switch allows various options to be specified. Multiple options may be specified. Options are:
a-ANSI (VXCOBOL)
b-COMP size check by bytes (ANSI 85 and VXCOBOL)
d-compile debug lines
e-ISO screen behavior
g-GO TO from/to/among declaratives is warning
h-require ANSI SEARCH ALL rules (VXCOBOL)
i-imply DUPLICATES
n-allow <nnn> lits
p-COMP size check by PIC (ANSI 74)
q-allow ISQL support
s-single-key is ICISAM (VXCOBOL)

-h | -? (Help)
Display help text.

-H cnt (Hard error limit)
Halt compile of each program after cnt errors. Default is to compile till end-of-file or a Fatal Error.

-i (Info)
Put out messages of category “information”

-I {g|m|p|x}... (Include in listing)
Include in listing options. Multiple options may be specified. Options are:

g-use global line numbers,
m-show metacode & pc,
p-show only the pc,
x-cross reference.

-l | -L lsdir (Listing file)
Specify listing file. Produce a listing in infile.ls for -l, or to lsdir/infile.ls for -L.

-M dddir (Make ICODBC data definition files)
Create ICODBC definition files: dddir*.xd[t|b]. Works with the ICODBC options (-X string) switch.

-N {h|i|p|s|u}... (NO)
NO options. Multiple options may be specified. Options are:

h-No - to $ translation
i-No ic-xxx intrinsic functions
p-No check or recovery for missing period
s-No space needed in comma or semicolon separators
u-No USE, INVALID KEY or AT END required.

-o|-O rev (OEM version)
 Set OEM version in .cx to be the compiler's version(-o) or 'rev' (limit 8 characters).
-P cxdir (Program files)

Specify location of .where to place the generated .cx program files as cxdir\infile.cx
-q (Quiet)

Specify quiet operation.
-R rev (Revision)

Specify the code revision to be compiled. Valid revisions are 1 (3.0x), 2 (3.2x), 3 (3.4x), 4 (3.5x), 5
(4.4x), 6 (4.5x), or 7 (5.xx). The default is always the maximum revision supported, which is 7.

-s (Stats)
Put out statistics.

-S num (compiler Source lines)
Set the maximum number of compiler source lines. The absolute maximum is 200,000. The default is
60000.

-w (Warnings)
Put out Warning messages.

748

COMPILER (Syntax)

-X "string" (ICODBC options)
Options for ICODBC definition file creation.

-Z sydir (Debug)
Causes the symbol files needed for debugging to be generated. The program symbol file (infile.sy) will be
created in the directory given by sydir. The path for the symbol file(s) will also need to be passed to the
runtime using the same switch value or -z for the current directory.

infile
is one or more COBOL source files or a template representing source files to compile.

Options for -X “string” above:

-F 1|2|3|4 (ICODBC Format)
Column format:

1-exactly as in source,
2-exactly as in source with '_' replacing hyphen,
3-initial caps after hyphens with hyphens removed,
4-initial caps after hyphens with '_' replacing hyphen. (default is 3)

-G p (ICODBC General)
General options: p-COMP items have precision based on size.

-I f (ICODBC Include)
Include options: f-filler items are included.

-L min:max (ICODBC Level numbers)
Include only items with level numbers between min and max.

-n (ICODBC Not overwrite)
Do not overwrite existing .xdb and .xdt files.

-N {g|n|r|s}... (ICODBC No)
NO options:

g-no group items are included,
n-no RENAMES (level 66) items included,
r-no REDEFINES items included,
s-no secondary record definitions included.

{-P old[:new]}... (ICODBC Prefix)
Replace the prefix 'old-' with 'new-' in column names. If 'new' is not specified, remove 'old-' . Multiple
ICODBC Prefix (-P) switches may be specified.

B.1. Rules

(a) The compile switches may be specified in any order.

(b) For the General switch (-G) and No switch (-N), one or more of the option values may be specified and they
may be specified in any order.

(c) On Windows, the `/' can be used in place of the `-' as long as it is used consistently throughout the
command-line.

(d) For infile, if the source name does not have an extension and a file by that name is NOT found, an extension
of the appropriate case is appended. First, a `.co' or `.CO' extension (`.cob’ or `.COB’ if using VXCOBOL)
is appended and sought, but if that name is NOT found, a `.sr' or `.SR' extension is appended to the original
filename and sought.

NOTE: If both foo.co and foo.sr exist in the same directory, specifying

icobol foo

will only compile 'foo.co' since the .co extension is sought first.

(e) On Linux, the extension case is determined based on the last alphabetic character in the simple part of the

749

Interactive COBOL Language Reference & Developer’s Guide - Part Two

filename. If the last alphabetic character is upper-case, then the extension will be upper-case, otherwise a
lower-case extension will be used. The recommendation is to always use lowercase filenames.

(f) If multiple source files are given, each file is compiled separately as though it was the only source file
given.

(g) The input filename can specify awildcard template. The valid template characters are `?' and `*' and match
any one character or series of characters, respectively.

(h) If the ICOBOL compiler detects an error while compiling, no program file (.CX) is generated and the
compiler returns with a non-zero exit code when it terminates. If there is an existing program file, it is not
modified.

(i) On Linux, copy files are always sought in lower-case. If files must be converted from upper-case to lower-
case the makelow script, in the examples sub-directory of the release, can be used.

B.2. Environment Variables

The ICOBOL compiler looks for the following environment variables in addition to ICROOT and ICCONFIGDIR:

ICOBOL sets standard switches. The contents of ICOBOL are treated like switches from the command
line that are processed before the command line. The environment variable may only contain
switches, no input file arguments. Since the contents of the environment variable contains
spaces, it must be enclosed in quotes in most Linux shells.

For example to compile using the strict ANSI 85 dialect (-D 85), always produce a listing (-l), include warnings (-w),
and search copy_dir for COPY files, the environment variable ICOBOL can be set as follows:

On Windows:

> SET ICOBOL=-D 85 -l -w -C copy_dir

On Linux with the Bourne shell:

$ ICOBOL="-D 85 -l -w -C copy_dir"
$ export ICOBOL

This setup of the ICOBOL environment variable can be included in the ‘Environment’ tab of the System Properties
sheet on Windows or in your .profile file on Linux.

C. Switches

C.1. Overview

All ICOBOL compiler switches start with a dash `-' followed by the switch with no spaces. Each individual switch
must be separated by a space or spaces from the other switches. Switches are case-sensitive. On Windows , the
slash `/' can be used in place of the dash as long as it is used consistently throughout the command line.

The general standard for switches is that a lower-case switch is only an ON or OFF switch. An UPPER-CASE
switch implies that an additional argument, delimited by spaces, follows this switch.

In addition to the following switches, which are unique to the ICOBOL compiler, also see the Common Switches
section, beginning on page 735.

750

COMPILER (Switches)

C.2. Byte Alignment Switch (-B 1|2|4)

This switch instructs the compiler to align 01 level and 77 level items on a specific boundary. The valid values are
1, 2, and 4. A value of 1 causes the compiler to allocate 01 or 77 level items on a byte boundary, i.e., there is no
specific alignment. A value of 2, the default, causes the compiler to allocate the items on a 2-byte (word) boundary.
A value of 4 causes the compiler to allocate the items on a 4-byte (double-word) boundary. As a general rule, the
default value is recommended unless a specific alignment is needed in order to interface with a linked-in routine.

C.3. COPY Sourcedir Switch (-c)

This switch specifies to the compiler to add the source directory for the main source file to the list of directories that
will be searched for COPY files if the file is NOT found in the current working directory. This directory is added IN
FRONT of the directories specified by the -C dir switch.

C.4. COPY Path Switch (-C copydir)

This switch specifies to the compiler that, in addition to the current directory, the specified copydir directory will be
searched for any COPY files with non-full pathnames (simple or relative). I.E., both the names “source1" and
“dir1\source1" would be sought using the extra copydir’s, but “\dir1\source1" would not since it has a full-
pathname. Up to sixteen directories can be specified in this manner with the -C switch in front of each directory.
For example:

-C directory1 -C directory2 -C directory3 -C directory4

would specify four additional directories to search for COPY files after looking in the current directory. The
directories will be searched in the order specified on the command line.

The name specified as the input file is not sought along the COPY Path set of directories.

C.5. Dialect Switch (-D ic|vx|85)

This switch selects the ICOBOL dialect. Valid dialects are:

ic
The fundamental dialect. It is consistent with traditional ICOBOL, and uses ANSI 74 file status codes and
file-handling semantics. This is the default.

vx
This dialect is consistent with the syntax and semantics used by Data General’s AOS/VS COBOL and by
Envyr Corporation’s VXCOBOL.

85
This is the stricter ANSI 85 dialect. It is consistent with ICOBOL2 code compiled with the (now obsolete)
-M 85 option. It uses ANSI 85 file status codes and file handling semantics.

C.6. Error File Switch (-e | -E erdir)

The -e and -E switches are mutually exclusive.

The -e switch specifies that the name of the error file is to be the name of the source program (infile) with the `.er'
extension (i.e., infile.er). If infile has an extension, the extension is removed before `.er' is appended. When used
with multiple source files or a template, each individual source program will have its own error file.

The -E erdir switch specifies that the error file should be the source file with the `.er' extension and that the file
should be placed in the directory specified by erdir.

751

Interactive COBOL Language Reference & Developer’s Guide - Part Two

C.7. Format Switch (-F c | f | x)

This switch specifies the format of the source program being compiled.

Where
c specifies ANSI Card format
f specifies Free-form format (also known as CRT format)
x specifies Extended Card format (also known as xcard)

All COPY files in the program must have the same format as the program that uses them.

C.8. General Switch (-G {a|b|d|e|g|h|i|k|n|p|q|s}...)

This switch provides a mechanism to enable a particular enhanced feature of the ICOBOL compiler. The switch
options that are available are:

a (ANSI) (VXCOBOL). Causes COMP items to be stored based on picture, IS NUMERIC test is strict
ANSI (item must be USAGE DISPLAY and spaces are not allowed), and OPEN OUTPUT of a
sequential file will delete and recreate.

b (COMP size check by bytes) (ANSI 85 and VXCOBOL) This is the default for ANSI 74. By default,
ANSI 85 and VXCOBOL size checks by picture.

d (With DEBUGGING) causes the compiler compile all debugging lines. If not given, debugging lines are
treated as comment lines.

e (ISO screen behavior) causes the compiler to invoke ISO screen behavior. This option is useful when
migrating to ICOBOL from certain other COBOL products. When specified on the compilation,
runtime behavior is altered as follows: (1) BLANK LINE erases the entire line, (2) ERASE LINE
erases from the cursor to the end of the line, and (3) ERASE SCREEN erases from the cursor to the end
of the screen.

g (GO TO from/to/among declaratives is warning) Normally this is an error and we recommend against the
use of this option.

h (Require ANSI SEARCH ALL rules) (VXCOBOL) Requires that the SEARCH ALL statement conform to
ANSI syntax. Without this switch, SEARCH ALL syntax is identical to SEARCH.

i (Imply DUPLICATES) Specifies that the ALTERNATE KEY clause should ALWAYS imply the WITH
DUPLICATES phrase.

n (Numbers) (VXCOBOL) allow the constructs <nnn> or <onnn> or (ANSI 74/85) allow the constructs
<nnn>, <onnn>, <dnnn>, and <xnn> in nonnumeric literals to specify a byte value represented by the
nnn or nn numbers. In the case of <nnn> and <onnn>, nnn represents an octal value, in <dnnn> nnn
represents a decimal value, and in <xnn> nn represents a hex value. Upper and lower case `o', `d', and
`x' can be used to specify octal, decimal, or hex. In hex mode, upper and lower case `a' - `f' can be
used. The value for any byte must be in the range 0 - 255 (decimal). For octal and decimal no more
than three digits can be specified and for hex no more than two digits can be specified. <1> is treated
as <001>. The construct << can be used to enter a single < when the General number switch (-G n) has
been specified. Only one byte can be specified per <> pair.

p (COMP size check by PIC) (ANSI 74) This is the default for ANSI 85 and VXCOBOL. ANSI 74 size
check by bytes.

q (ISQL Support) Allow Integrated SQL support, including SQL data types and SQL statements. Enables
the ISQL feature-set.

s (Single-key is ICISAM) (VXCOBOL) For VXCOBOL, the default for a single-key indexed file is to use
INFOS. Specifying this switch will cause ICISAM files to be used.

752

COMPILER (Switches)

C.9. Hard Error Limit Switch (-H cnt)

This switch provides a mechanism to instruct the compiler to stop compiling a file after a certain number of errors
are encountered. Normally the compiler continues to process the file until a Fatal Error is encountered or the end-of-
file is reached. Valid values for cnt can be from 1 to 65535.

For example, if "-H 10" were given on the compile line then after the tenth error is encountered a message would be
given that the maximum number of errors has been reached and that this compile is terminating.

Cnt is only for a single compile. If multiple compiles are being done, the error counter is reset at the start of each
compilation.

C.10. Information Switch (-i)

This switch causes the compiler to display all information messages. The default is to not display information
messages.

C.11. Include listing options Switch (-I {g|m|p|x}...)

This switch allows the programmer to select from the following options to include in the compiler output listing.
One or more options may be specified in any order.

Where
g Specifies that global line numbers be included in the output listing. By default, each copy file starts a new

set of line numbers for that source.
m Specifies that metacode and pc be included in the output listing.
p Specifies that the pc be included in the output listing.
x Specifies that a cross-reference be included in the output listing.

If not specified, none of the above is done. If the Listing File Switch is not specified, it is implied.

C.12. Listing File Switch (-l | -L lsdir)

The -l and -L switches are mutually exclusive.

The -l switch specifies that the name of the list file is to be the name of the source program (infile) with the `.ls'
extension (i.e., infile.ls). When used with multiple source files or a template, each individual source program will
have its own list file.

The -L lsdir switch specifies that the list file should be the source file with the `.ls' extension and that the file should
be placed in the directory specified by lsdir. When used with multiple source files or a template each individual
source program will have its own list file in the lsdir directory.

The listing file will show any dialect, format source, or compile options. Each source line will be shown with its line
number, whether the line came from a COPY file (c), a flag character (<, >, or *), and a space preceding each actual
source line.

The results of a COPY ... REPLACING statement are clearly shown. Lines (or parts of lines) which are removed are
indicated with a < next to the line number. Lines (or parts of lines) which are being inserted are marked with a >
next to the line number. For each replacement, the listing will show the text word or words being removed (<) and
those, if any, being inserted (>).

The following example shows a COPY file included without any replacement (at line 23) and the same copy file
(included at line 25) with 3 items replaced. Note that the positions of the inserted text are displayed at the location in
which they appeared in the COPY statement.

753

Interactive COBOL Language Reference & Developer’s Guide - Part Two
23 < COPY "TESTFILE.FD".
 1c FD TESTFILE.
 2c 01 TESTFILE-REC.
 3c 04 FILLER PIC X(25).
 4c 04 TESTFILE-STUFF PIC X(25).
24
25 < COPY "TESTFILE.FD" REPLACING TESTFILE BY TESTFILE2
26 < TESTFILE-REC BY TESTFILE2-REC
27 < TESTFILE-STUFF BY TESTFILE2-STUFF.
 1c FD
 1c< TESTFILE
 > TESTFILE2
 1c .
 2c 01
 2c< TESTFILE-REC
 > TESTFILE2-REC
 2c .
 3c 04 FILLER PIC X(25).
 4c 04
 4c< TESTFILE-STUFF
 > TESTFILE2-STUFF
 4c PIC X(25).

C.13. Make ICODBC Data Definition Files Switch (-M dddir)

This switch creates ICODBC definition files: dddir\ *.xdt and dddir*.xdb. The -X string switch is used to pass
options for creating ICODBC definition files. See the ICODBC Section later in this chapter (starting on page 758),
for more information on this support. This option requires symbol files so if no Debug Switch is specified, the
symbol files (.sy) are placed in the same dddir directory.

C.14. No Switch (-N {h|p|s|u}...)

This switch provides a mechanism to disable particular default features of the ICOBOL compiler. Valid option
values for the No switch are:

h (No dollar signs) do not replace “-“ with “$” for a generated external name as specified in the Language
Reference manual, in the Default Filenames table that is included in the section describing the ASSIGN
clause of the SELECT statement.

I (No ic-xxx intrinsic functions). The compiler will omit the ic-xxx instrinsic functions, which are an
extension to standard COBOL.

p (No check or recovery for missing Periods). In certain cases, the compiler attempts to recover from missing
periods. This option suppresses that behavior.

s (No check for Space) no space needed in comma or semicolon separators.
u (No USE, INVALID KEY, or AT END required). Certain statements require a coded method of error

checking. Use this option only if you code error checks in-line after each statement.

To disable any of these features, use the No switch (-N) followed by a space and then the switch values, in any order,
of the features to be disabled (without spaces).

For example, ‘ -N hp’:

(1) will NOT replace “-“ with “$” in generated external filenames, and
(2) will NOT check for or fix missing periods.

754

COMPILER (Switches)

C.15. OEM Version Switch (-o | -O rev)

The -o switch instructs the compiler to set the OEM version in the .cx file to be the compiler’s version.

The -O switch instructs the compiler to set the OEM version in the .cx file to be ‘rev’ (limited to 3 characters).

C.16. Program Output File Switch (-P cxdir)

This switch specifies that the .cx program output file(s) should be placed in the directory specified by cxdir.

C.17. Revision Switch (-R 1|2|3|4|5|6|7)

The -R x switch instructs the compiler to allow only syntax that generates code of the specified .CX revision or less.
The compiler will not allow syntax that generates code above the revision level specified. This switch is useful to
generate program files to run on older systems. The compiler will set the .CX revision to the specified value when
generating code.

The -R 1 switch instructs the compiler to produce revision 1 .cx files (ICOBOL 3.00).

The -R 2 switch instructs the compiler to produce revision 2 .cx files (ICOBOL 3.20). Revision 2 supports new
functionality for ACCEPT and DISPLAY.

The -R 3 switch instructs the compiler to produce revision 3 .cx files (ICOBOL 3.40). Revision 3 supports the
ISQL data types and statements (when used with the -G q switch) along with some minor performance enhancement
opcodes. Programs compiled at this level require at least a 3.40 runtime in order to execute, even if no new opcodes
are generated.

The -R 4 switch instructs the compiler to produce revision 4 .cx files (ICOBOL 3.50). Revision 4 supports up to
255 operands in a FETCH statement. This will allow 255 columns to be fetched. The previous limit was 100. A
3.50 or higher revision runtime is required to execute revision 4 .cx files.

The -R 5 switch instructs the compiler to produce revision 5 .cx files (ICOBOL 4.40). Revision 5 supports the
Intrinsic Functions added in 4.40. A 4.40 or higher runtime is required to execute revision 5 .cx files.

The -R 6 switch instructs the compiler to produce revision 6 .cx files (ICOBOL 4.50). Revision 6 supports the new
Intrinsic Functions added in 4.50, SQL-ADD-ESCAPES and SQL-REMOVE-ESCAPES, along with the two new
statements GET COLUMNS and GET TABLES. A 4.50 or higher runtime is required to execute revision 6 .cx files.

The -R 7 switch instructs the compiler to produce revision 7 .cx files (ICOBOL 5.00). Revision 7 allocates 64-bits
(8 bytes) for USAGE IS POINTER instead of 32-bits (4 bytes). If a -R 6 or below .cx file is run on a 32-bit runtime
it will run as expected. If run on a 64-bit runtime it can generate a fatal runtime error when trying to store an address
into an item with USAGE IS POINTER. Error will be 2131 “The allocated storage for USAGE IS POINTER is too
small.” You will need to recompile with -R 7 or greater. A 5.00 or higher runtime is required to execute revision 7
.cx files.

If no -R switch is given, -R 7 is the default.

C.18. Statistics Switch (-s)

This switch instructs the compiler to put out statistics that include the a) start and stop time, b) number of lines and
lines per minute, c) the number of errors, warnings, and information messages encountered, and d) a blank line for
each individual source compiled.

755

Interactive COBOL Language Reference & Developer’s Guide - Part Two

C.19. Source lines Switch (-S)

This switch instructs the compiler on how many lines to compile. If not specified, the default is 60000 lines.
The absolute maximum lines allowed is 200,000 lines for the whole compile including COPY files and 65534 lines
per individual file.

C.20. Warnings Switch (-w)

This switch instructs the compiler to put out Warning messages. The default is no Warnings.

C.21. ICODBC Options Switch (-X “string”)

Options for ICODBC definition files are in “string”. Valid options are:

-F 1|2|3|4 (ICODBC Column format)
This option specifies how column names are to be created from the COBOL data names. Options are:

1-exactly as in source,
2-exactly as in source with '_' replacing hyphen,
3-initial caps after hyphens with hyphens removed,
4-initial caps after hyphens with '_' replacing hyphen
(default is 3)

-G p (ICODBC General options)
p-COMP items have precision based on size, rather than picture

-I f (ICODBC Include options)
 f-filler items are included (i.e., a column definition is created for each FILLER item)

-L min:max (ICODBC Level)
Only include column definitions for data items with level numbers between min and max: 1 <= min <=
max <= 49. (Level 66 items must be explicitly excluded with the -N n option.) If no -L is specified, all
levels are included.

-n (ICODBC No overwrite)
Do not overwrite existing .xdb and .xdt files

-N {g|n|r|s}... (ICODBC NO options)
Specifies data items which are NOT to be included in the column definitions. Valid options are:

g-no group items are included,
n-no RENAMES (level 66) items included,
r-no REDEFINES items included,
s-no secondary record definitions included

{-P old[:new]}... (ICODBC Prefix)
Replace the prefix 'old-' with 'new-' in column names. If 'new' is not specified, remove 'old-'. Multiple
ICODBC Prefix (-P) switches may be specified.

These options are only used if the Make ICODBC Definition files switch (-M) is given. See the ICODBC Section
later in this chapter (starting on page 758), for more information on this support.

C.22. Debug Switch (-Z sydir)

This switch instructs the compiler to generate the needed symbol file(s) for use when debugging. The symbol file
(infile.sy) will be generated in the directory sydir. The symbol file information must be specified to the runtime
using its -Z or -z switch also.

756

COMPILER (Messages - Overview)

D. Messages

D.1. Overview

The ICOBOL compiler generates four levels of messages. These are:

(1) Fatal errors, which cause the compilation to halt.
(2) Errors, which cause the compiler to attempt to continue the compilation but no program files will be

generated.
(3) Warnings, which will generally imply a construct that:

a) will not compile under 1.xx ICOBOL compilers,
b) is not standard in comparison to the ANSI COBOL 85 standard, or
c) is ignored or has behavior which might not be expected.
Warnings will not suppress the creation of a program file.

(4) Information messages which will help the programmer to clean up his program. For example to indicate
that a data item is never referenced or a piece of code is never executed.

D.1.1 Format

Messages from the compiler are shown in three different formats depending on where the message is being placed:
the screen (stdout), the error file, or the listing file.

When coming to the screen (stdout) messages are displayed in a one line format as shown below :

** source-file (line-number, col-num): Msg-type: Msg-text

Where
source-file

is the fully resolved name of the appropriate source filename
line-num

is the local line number in the source-file of the condition.
col-num

is the column of the start of the token that caused the condition.
Msg-type

Is Fatal, Error, Warning, or Info.
Msg-text

Is the actual text for this particular message.

When going to the error file, messages are displayed in a five line format as shown below:

Line # of filename
<actual COBOL line from the source file>
a circumflex (^) is positioned at the place which caused the message to be generated
Msg-type: Msg text
 (blank line)

Where
#

Is the appropriate local line number.
filename

Is the fully resolved name of the appropriate source file.
Msg-type

Is Fatal, Error, Warning, or Info.

757

Interactive COBOL Language Reference & Developer’s Guide - Part Two

Msg-text
Is the actual text for this particular message.

When going to the listing file, messages are displayed after the affected line of text in a three-line format as shown
below:

<actual COBOL line from the source file>
a circumflex (^) is positioned at the place which caused the message to be generated
Msg-type: Msg text
 (blank line)

Where
Msg-type

Is Fatal, Error, Warning, or Info.
Msg-text

Is the actual text for this particular message.

A blank line is always inserted to more easily allow the messages to be viewed.

D.1.2 Examples

Two examples of the messages are given below:

Example 1 to screen:

** C:\test200\logon.sr (1662,1): Info: This item is never referenced.

Example 2 to screen:

** C:\test200\logon.sr (1185,24): Info: Code was generated the same as 1.xx ICOBOL (which
resets the TALLY variable to zero).

Example 1 to error file:

Line 1662 of C:\test200\logon.sr
DETERMINE-TERMINAL.
^
Info: This item is never referenced.

Example 2 to error file:

Line 1185 of C:\test200\logon.sr
INSPECT F-STR TALLYING LOW-CTR FOR ALL LOW-VALUES.
 ^
Info: Code was generated the same as 1.xx ICOBOL (which resets the TALLY variable to zero).

D.1.3. Rules

(1) Information messages are displayed only when the Info switch (-i) is given.

(2) Warning messages are displayed only when the Warning switch (-w) is given.

(3) Fatal Errors and Errors are always displayed.

758

COMPILER (Error Messages)

D.2. Error Messages

The ICOBOL compiler provides a level of messages for those features of ICOBOL that are in error. Generally
errors result from improperly coded COBOL code where either a syntax rule or general rule has been violated.

There are some errors that can occur on a file that compiles correctly with previous (usually Data General) ICOBOL
compilers. These generally are places where the previous ICOBOL compiler did not check for the error. This
compiler will give an error in these cases and will not generate a program file. These must be fixed in order to
compile successfully.

Some examples of these types of error are given below with the Message text that you will see on the Error line
followed by a description of what causes the message:

1. This option may only be used with a group, TO clause, or USING clause.

Some previous compilers allowed the AUTO clause on a FROM clause, although it makes no sense and was
prohibited in the documentation.

2. The JUSTIFIED clause may only be specified with a FROM clause or USING clause.

In the SCREEN Section, previous compilers ignored the JUSTIFIED clause on items with the TO clause
even though it was prohibited in the documentation.

3. The JUSTIFIED clause may not be specified for a numeric or edited item.

Some previous compilers ignored the JUSTIFIED clause on a numeric or edited item even though it was
prohibited in the documentation and by the ANSI COBOL 74 and ANSI COBOL 85 standards.

4. A GO TO statement may not branch between declarative and non-declarative procedures.

Previous compilers allowed this construct, even though it was prohibited in the documentation and by the
ANSI COBOL 74 and ANSI COBOL 85 standards. This construct can eventually lead to a "Perform
stack overflow" error at runtime, since a perform is pushed onto the stack when the declarative section is
executed, but is never popped off again. (This error can be turned into a warning with the -G w switch, but
this is not recommended.)

5. Syntax error. (on a PICTURE in a level 88)

Previous compilers ignored the PICTURE clause on a level 88 even though it is prohibited in the
documentation and by the ANSI COBOL 74 and ANSI COBOL 85 standards. The PICTURE clause
should be removed.

6. This item must refer to an elementary integer data item.

Previous compilers allowed an alphanumeric item to be used in a GO TO DEPENDING ON, even though it
was prohibited in the documentation and by the ANSI COBOL 74 and ANSI COBOL 85 standards. This
must be changed to an integer.

D.3. Warning Messages

When not running in ANSI 85 mode (-D 85), the ICOBOL compiler provides a level of warning messages for those
features of ICOBOL that do not meet the ANSI COBOL 85 standard. These warnings are provided to encourage
the programmer to clean-up and/or fix these areas such that the code will still work in the ICOBOL environment but
do not meet ANSI 85 requirements.

Some examples of these types of warnings are given below with the Message text that you will see on the Warning
line, followed by a description of what causes the warning:

759

Interactive COBOL Language Reference & Developer’s Guide - Part Two

1. This item must be an elementary item, not a group item.

In the flagged statement this particular item must be an elementary item. ICOBOL allows group items here
if they are only 1-byte in length.

2. The RECORDING MODE clause is valid only for a SEQUENTIAL file. (Self explanatory.)

3. The composite of operands is greater than 18 digits.

Previous compilers did not detect when more than 18 digits of total precision are used in an ADD,
SUBTRACT, MULTIPLY, or DIVIDE statement. This compiler detects this. These should either be fixed
or changed to COMPUTE statements, which do not check the precision.

Example: An ADD of a PIC 9.9 to a PIC 9(18) would create a 19 digit precision. (i.e., PIC 9(18).9).

Previous compilers treated index-names and index data items just like a PIC 9(5) COMPUTATIONAL item. As
a result, index-names and index data items can be totally misused from what the standard allows. The next
several messages all pertain to the use (or misuse) of index-names, index data items, and/or the SET and MOVE
statements.

4. The value must be an integer value greater than zero.

Previous compilers allowed a SET index-name to 0. This is prohibited by the ANSI COBOL 74 and ANSI
COBOL 85 standards since 0 is NEVER a valid occurrence number.

5. This index-name is not listed in a corresponding INDEXED BY list.

Previous compilers allowed any index-name to be used to subscript any table. The ANSI COBOL 74 and
ANSI COBOL 85 standards only allow the index-name to be used with the table with which it is associated
in the INDEXED BY phrase.

6. The operand is the wrong class or type for the operation.

The ANSI COBOL 74 and ANSI COBOL 85 standards define index-names and index data items to be
separate types that are NOT numeric. The SET statement only allows specific combinations of index-name,
index data item, and numeric data items or literals.

7. This is an invalid use of an index-name or index data item.

Previous compilers allowed index-names and index data items to be used in arithmetic and MOVE
statements. This is prohibited by the ANSI COBOL 74 and ANSI COBOL 85 standards.

8. A numeric item or index-name is required.

This message usually appears in a PERFORM VARYING using an index data item, which previous
compilers allowed, but which is prohibited by the ANSI COBOL 74 and ANSI COBOL 85 standards.

9. This item must refer to an elementary integer data item.

Previous compilers allowed index-names and index data items to be used in a GO TO DEPENDING ON,
even though it was prohibited in the documentation and by the ANSI COBOL 74 and ANSI COBOL 85
standards.

D.4. Information Messages

The ICOBOL compiler provides a level of messages that inform the programmer about certain aspects of the code or
data of which he may not otherwise be aware. These messages also may indicate what the compiler is doing about a

760

COMPILER (Information Messages)

NOTE: This does not occur when the -G s switch is used, since size check is then based on the number of
digits, not the binary value.

particular data item or code sequence. In most cases, these messages are about unreferenced data items and
unexecutable code.

Some examples of these types of messages are given below, with the Message text that you will see on the Info line
followed by a description of what causes the message:

1. This item is never referenced.

This message indicates that the level 01 data name (and every sub-item) or 77 data name or the paragraph
name is never referenced. The compiler will not include these items in the program file.

2. This section is unreachable; the entire section has been eliminated.

3. This paragraph is unreachable; the entire paragraph has been eliminated.

4. This statement is unreachable; it (and possibly others following) has been eliminated.

5. This paragraph is the end of a PERFORM range, but the end of the paragraph is unreachable.

6. This word is a reserved word in some other compatibility mode.

This message is given when a user-defined word has been defined that will conflict with the VXCOBOL
Reserved Word list or with a Reserved Word in another COBOL compiler. Changing this word to a new
name will allow for an easier future migration.

The first five of these messages say the particular piece of code can never be executed and thus is being eliminated
from the program file. These messages can be used as a guide to detect unexecutable portions of code.

In addition, #5 implies that you could use a GO TO statement rather than a PERFORM, since the PERFORM will
never return.

The following messages are generated as part of detecting invalid code versus the ANSI COBOL 74 or ANSI
COBOL 85 standards. These messages can be moved to warnings by using the General Bad code switch (-G b).

1. Code was generated the same as 1.xx ICOBOL.

On storing into a Signed COMPUTATIONAL item, ICOBOL does not account for the sign bit when
detecting size error.

Example: For a PIC S9(2) COMPUTATIONAL item (i.e., 1 byte) a store of 129 will succeed, but give
the value -127. It should have been a size error since the value 129 will not fit in the item.

2. Code was generated the same as 1.xx ICOBOL (which generates incorrect code).

This message is generated in the following cases:

(a) on a comparison between a numeric integer and a figurative constant other than ZEROS (i.e.,
HIGH-VALUES, LOW-VALUES), 1.xx ICOBOL generates an alphanumeric to alphanumeric
comparison, and the proper operation is to generate a numeric to alphanumeric comparison.

(b) on a MOVE of a figurative constant other than ZEROS (i.e., HIGH-VALUES or LOW-VALUES)
to a numeric or numeric edited item 1.xx ICOBOL generates an alphanumeric move. The proper
operation is to generate a numeric to numeric or numeric edited move, treating the alphanumeric
items as an unsigned integer.

3. Code was generated the same as 1.xx ICOBOL (which resets the TALLY variable to zero)

761

Interactive COBOL Language Reference & Developer’s Guide - Part Two

$ icobol logon
icobol Revision 5.40 (Linux for x86 (ln7 64-bit))
Copyright (C) 1987-2020, Envyr Corporation. All rights
reserved.
Options: -G n
Compiling /ictests/cobolsrc/logon.sr
1 file/argument was processed
No files/arguments had errors
icobol is finished
$

$ icobol -s logon
icobol Revision 5.40 (Linux for x86 (ln7 64-bit))
Copyright (C) 1987-2020, Envyr Corporation. All rights
reserved.
Options: -G n -s
Compiling /ictests/cobolsrc/logon.sr
Start: Mar-07-2020 13:44:49.03 Stop: Mar-07-2020 13:44:49.04
3448 lines compiled in 0.01 seconds (20688000 lines per
minute)
No errors, 2 warnings, 47 info messages

1 file/argument was processed
No files/arguments had errors
icobol is finished
$

ICOBOL (in ANSI 74 mode) always resets the tallying counter in an INSPECT statement to zero before it
starts tallying. The standard says that the tallying counter is ONLY incremented, i.e., if a zero was in the
variable when the INSPECT started it would execute just like 1.xx ICOBOL, otherwise the variable would
come out with a different result.

4. Code was generated the same as 1.xx ICOBOL (which ignores S in the picture)

ICOBOL accepts an S in the PICTURE clause of Screen Section entries and ignores it unless the SIGN IS
clause is also specified. If the SIGN IS clause is absent, it is preferable to either remove the S, thereby
making the entry unsigned, or to use the plus (+) or minus (-) PICTURE characters.

E. Example Output

Two examples of what the output of an ICOBOL compiler invocation looks like are given below:

Example 1

Example 2

762

COMPILER (Cross Reference Output)

F. Cross Reference Output

The cross reference output at attached at the end of the listing file and will have the following format:

Start of Cross Reference

IDENTIFICATION DIVISION Symbols:
...

ENVIRONMENT DIVISION (CONFIGURATION SECTION) Symbols:
...

ENVIRONMENT DIVISION (INPUT-OUTPUT SECTION) Symbols:
...

DATA DIVISION (FILE SECTION) Symbols:
...

DATA DIVISION (WORKING-STORAGE SECTION) Symbols:
...

DATA DIVISION (LINKAGE SECTION) Symbols:
...

DATA DIVISION (SCREEN SECTION) Symbols:
...

PROCEDURE DIVISION Symbols:
...

End of Cross Reference

Each symbol is displayed in the following format:

 SYMBOLNAME symbol-type, symbol-type-info,
 level number (when needed), address (in data) or pc (in code), size (bytes), and occurs (for

tables), segment count, also count, and occurs for key-names.

[sourcename] xxx <howused>

Where
sourcename

Is the simple filename to which the following line numbers belong and is only given when there are COPY
files.

symbol-type and
symbol-type-info

Are defined below in TABLE 41.
xxx

Is the line number in the source where this entry is used.
<howused>

763

Interactive COBOL Language Reference & Developer’s Guide - Part Two

How the symbol is used at this linenumber can include any of the following:

(dead) Usage occurs in dead code
(implied) Usage is implied by an operation
Begin Procedure referenced as beginning of PERFORM range
CLOSE File referenced in a CLOSE statement
Definition Item is defined.
DELETE FILE File referenced in a DELETE FILE statement
End Procedure referenced as end of PERFORM range
GO TO Procedure referenced in GO TO
Modified Data item is modified and then the statement type (ACCEPT, ...)
OPEN File referenced in an OPEN statement
READ File referenced in a READ statement
Referenced Data item is referenced and then the statement type (ACCEPT, ...)
REWRITE File referenced in a REWRITE statement
Used Item is used in another item's definition
WRITE File referenced in a WRITE statement

The Used is given for an item used for example with a REDEFINES, a SCREEN TO/FROM/USING clause, a
SCREEN LINE/COL, FILE STATUS clause in the FD, file-name in SELECT statement, KEY clause and
ALTERNATE KEY clause.

The definition is the first line shown and then the remaining numbers are in the same order the source was processed.

symbol-type symbol-type-info

 file-name SEQUENTIAL, RELATIVE, INDEXED

 data-name group, alphabetic, alphanumeric,
numeric-edited, numeric integer
[USAGE COMP [3|5]], numeric
[USAGE COMP [3|5]], POINTER

 screen-name group, alphabetic, alphanumeric,
numeric-edited

 section-name [declaratives] pc

 paragraph-name [declaratives] pc

 program-name

 index-name

 key-name

 condition-name

TABLE 41. Cross Reference Symbol Types

Filenames; Primary-, Alternate-, and Relative- Keys; and File Status symbols that are used in a SELECT show the
line number of the FD instead of the SELECT.

G. ICODBC Support

By using the Make ICODBC Definition Files switch (-M) the compiler can be used to create a Database Definition
File (.XDB) and one or more Table Definition Files (.XDT) for use with the ICODBC Driver. The compiler creates
a single Database Definition File (.XDB) and a Table Definition File (.XDT) for each Indexed File that is contained
in the corresponding source program.

As each indexed file described in the program is processed, a column definition will be created for every data item
described in the record definition or definitions. This will be a complete picture of the indexed file, and via the
ICODBC Driver, it will enable an ODBC-enabled application (Microsoft Access, Crystal Reports, etc.) to select,
read, and format any data in the indexed file. However, this may be more capability than is required and the .XDT
and .XDB files can be edited with a text editor to remove and/or modify any columns that are not needed.

Several options for ICODBC definition files are supported via the -X switch to assist in narrowing the number of

764

COMPILER (ICODBC Support)

columns created for each table and formatting options that allow table names and column names to be created from
identifiers in the COBOL program in a variety of forms.

Using the Make ICODBC Definition Files switch does not necessarily create what you would like as a finished set of
Database Definition Files or Table Definition Files. However, it does remove the drudgery of mapping data types
and of determining the positions and lengths of each data item required as a column in the table. The output from
this option should be considered as a good starting point from which to create your definition files with a text editor.

For each source file that includes indexed file definitions, a single Database Definition File (.XDB) and one or more
Table Definition File (.XDT) will be created. Each of these files is created in the directory specified by the -M
switch. If the -n switch is given in the -X switch, then an error will be generated if it needs to create a file and the
file already exists. If the -n switch is NOT given in the -X switch, any existing file(s) will be overwritten.

The name of the Database Definition File (.xdb) is derived from the simple name of the source file and adding the
.XDB extension. The name of each Table Definition File (.xdt) is derived from information in the original COBOL
program in the following manner:

(1) If the indexed file's external filename was specified as a literal, then a .XDT extension is appended to the
simple name of the file specified by the literal.

(2) If the indexed file's external filename was specified as an identifier and that identifier has a VALUE clause,
then a .XDT extension is appended to the simple name of the file specified by the contents of the VALUE
clause.

(3) Otherwise, the internal (COBOL) filename is used with every hyphen (-) being converted to a dollar sign ($).

Table and column names are created from identifier names. There are two steps involved in the name creation. The
first step is to apply prefix replacement. The second step is to apply the formatting option.

When ICODBC Prefix replacement (-P switch) is specified, each prefix specified is compared against each data item
in the record. If the prefix matches, it is replaced with the new prefix specified or removed if no new prefix was
specified. If it does not match, the next prefix specified on the command line is compared to the data item and so on.
Only the first matching prefix is applied. For example, if the command line specified the switch -P AR:AP and the
data item AR-TOTAL was a field in the data record being processed, AR-TOTAL would be converted to
AP-TOTAL. If the command line option was -P AR, the AR-TOTAL would be converted to TOTAL. Any
replacement is done prior to application of formatting options.

If an ICODBC Formatting option (-F switch) is specified, each data item from the record is formatted according to
fixed rules as described above in the syntax. Consider the following examples starting with the data item
AR-TOTAL-ON-ORDER:

-F value Column Name Generated With -P AR:ACCOUNT also

 1 AR-TOTAL-ON-ORDER ACCOUNT-TOTAL-ON-ORDER
 2 AR_TOTAL_ON_ORDER ACCOUNT_TOTAL_ON_ORDER
 3 ArTotalOnOrder AccountTotalOnOrder
 4 Ar_Total_On_Order Account_Total_On_Order

The following rules apply with regard to the inclusion or exclusion of data items when columns are being generated:

(1) FILLER items are included only if requested with the -I f switch. When included, their column name is
generated as if the FILLER item had been named ICMAKEDB-FILLER-n where n is an integer increasing
in value by one for each FILLER encountered.

(2) The primary key for the file is always included. This includes all segments for a suffixed key. No option
may override this rule.

(3) Secondary record definitions, group items, data items with a REDEFINES clause, data items with a
RENAMES clause, and data items with level numbers outside of a specific range may be excluded by
specifying one of the -N switch options or the -L switch. These items are included unless explicitly
excluded with a switch.

(4) No data item which has an OCCURS clause or which is subordinate to an OCCURS clause will be included.

765

Interactive COBOL Language Reference & Developer’s Guide - Part Two

No option may override this rule.
(5) No item whose PICTURE includes the P character will be included. No option may override this rule.

For each column, a section in the .XDT file is created containing the data type, position in the record, and length of
the data. For numeric types it will also generate the precision and scale of the data item. For any column which is an
alternate record key, segment of an alternate record key or an ALSO key, a Suppress directive will be generated
using the same character defined in the SUPPRESS WHEN clause for the alternate key.

ICOBOL data types are mapped to those used by the ICODBC Driver according to the following table.

Data Description Type Length Precision Scale

PIC A(n) ALPHABETIC n n/a n/a

PIC X(n) ALPHANUMERIC n n/a n/a

group item ALPHANUMERIC varies n/a n/a

alphanumeric edited items ALPHANUMERIC varies n/a n/a

numeric edited items ALPHANUMERIC varies n/a n/a

PIC X(n) or group used in a
key or key-segment with sub-
ordinated items of non-
DISPLAY usage

BYTE n n/a n/a

PIC 9(l)V9(r) USAGE DISPLAY UNSIGNED DISPLAY l+r l+r r

PIC S9(l)V9(r) USAGE DISPLAY DISPLAY l+r l+r r

PIC S9(l)V9(r) USAGE DISPLAY
SIGN LEADING

LEADING OVERPUNCH l+r l+r r

PIC S9(l)V9(r) USAGE DISPLAY
SIGN LEADING SEPARATE

LEADING SEPARATE l+r+1 l+r r

PIC S9(l)V9(r) USAGE DISPLAY
SIGN TRAILING

TRAILING OVERPUNCH l+r l+r r

PIC S9(l)V9(r) USAGE DISPLAY
SIGN TRAILING SEPARATE

TRAILING SEPARATE l+r+1 l+r r

PIC 9(l)V9(r) USAGE COMP UNSIGNED COMP varies l+r r

PIC 9(l)V9(r) USAGE COMP-3 UNSIGNED COMP-3 varies l+r r

PIC 9(l)V9(r) USAGE COMP-5 UNSIGNED COMP-5 varies l+r r

PIC 9(l)V9(r) USAGE BINARY UNSIGNED COMP varies l+r r

PIC 9(l)V9(r) USAGE PACKED UNSIGNED COMP-3 varies l+r r

PIC S9(l)V9(r) USAGE COMP COMP varies l+r r

PIC S9(l)V9(r) USAGE COMP-3 COMP-3 varies l+r r

PIC S9(l)V9(r) USAGE COMP-5 COMP-5 varies l+r r

PIC S9(l)V9(r) USAGE BINARY COMP varies l+r r

PIC S9(l)V9(r) USAGE PACKED COMP-3 varies l+r r

USAGE INDEX COMP 4 9 0

USAGE POINTER COMP-5 4* 10 0

TABLE 42. ICOBOL Data Types to ODBC Data Types

More on ICODBC can be found in the ICODBC Driver Chapter starting on page 813.

Note for USAGE IS POINTER for revision 7 and up .cx files this is 8 bytes.

766

Debugging

XII. DEBUGGING

A. Introduction

The ICOBOL runtime system incorporates a high-level (source code) debugger. This high-level debugger is
available whenever a symbol file (.sy) can be accessed for a particular COBOL program. Sources are available in
this mode if the source file(s) can be accessed. The ICOBOL compiler generates symbol files through the use of the
-Z switch. To start the runtime in debug mode use the -z or -Z switch.

ICOBOL programs are compiled into a pseudo-code (p-code) that corresponds to the types of operations found in
the COBOL language. The runtime system `executes' this pseudo-code when it runs the COBOL programs.

The debugger supports the following features:

Breakpoints can be set on a particular type of instruction or operation. Several examples are: Break Perform
will set a breakpoint on all PERFORM statements; Break I-o will set a breakpoint on all non-screen I/O;
and Break I-o Screen will set a breakpoint on all screen I/O.

Breakpoints can be set at the start or end of particular programs. Thus, if an application has hundreds of
programs, but only a certain program has a problem, the debugger can be set to stop only when a particular
program is executed allowing just that program to be debugged.

Breakpoints are remembered for individual programs. If a program is canceled or is exited, the breakpoints are
remembered. Thus, if the program is ever reactivated by a CALL or CALL PROGRAM, the breakpoints
are reset before the program begins running.

The current status of active and inactive CALLs and PERFORMs can be displayed.
The number of open files, their names, file type, and open mode can be displayed.
The debugger keeps two screen images, the debug screen and the COBOL screen. The debugger automatically

switches to the COBOL screen when the COBOL program is run and back to the debug screen when re-
entering the debugger. While in the debugger you can switch to the COBOL screen and back again to view
the output from the COBOL program. You can also select a portion of the COBOL screen to always have
displayed in the debugger screen.

The ICOBOL compiler generates individual symbol files (.sy) for each compiled program for debugging by using
the -Z switch (-Z). The symbol file includes all line offsets that have code, all information about data items, and the
names of source files used in the compilation. The debugger requires the symbol file to support the following
additional features:

Breakpoints can be set at a line number, at the beginning or end of a procedure, and whether a particular data-
item has been changed.

Data-items can be viewed and set to new values using their names.
Up to 8 breakpoints (with no more than 1KB of data) can be set to test if particular data items change their

values. (Some other debuggers refer to this type of breakpoint as a "watchpoint").
If sources are available, the actual COBOL programs can be viewed as needed to track the program. In

addition, the Find command can be used to search for a particular <string> in the COBOL source.

Symbol files (.sy) used by the debugger must be in the correct byte order for the machine on which the debugger is
running. (i.e., they must have been compiled on the same type of machine (big-endian versus little-endian.)

Sources are sought as specified in the .sy file, in the current directory, or as specified with the -z or -Z switch..

B. Invocation

To start the debugger enter ICRUN with the -Z or -z switch. The -Z sydir switch specifies the location of the symbol
files(.sy) that were created by the ICOBOL compiler using the same switch. If -z is given, the current directory is
used. For example, the following would start ICOBOL in the debugger and instruct the debugger to look for symbol
files in the symboldir directory.

767

Interactive COBOL Language Reference & Developer’s Guide - Part Two

 1084 END DECLARATIVES
 1085
 1086 MAIN-LOGIC SECTION.
 1087 ONLY-AT-START.
 1088 * PD/DD Revision 7 feature
**> 1089+ ACCEPT ENVIR-STRUCTURE FROM ENVIRONMENT.
 1090+ INSPECT OEM-REV-STRING REPLACING ALL LOW-VALUES BY SPACES.
 1091+ ACCEPT LINE-NUMBER FROM LINE.
 1092+ ACCEPT USERNAME FROM USER NAME.
icrun Revision 5.00 (os)
Stopped at line 1089 in "logon": The initial program is loaded.

> _

 1084 END DECLARATIVES
 1085
 1086 MAIN-LOGIC SECTION.
 1087 ONLY-AT-START.
 1088 * PD/DD Revision 7 feature
**> 1089+ ACCEPT ENVIR-STRUCTURE FROM ENVIRONMENT.

icrun Revision 5.00 (os)
Stopped at line 1089 in "logon": The initial program is loaded.

> _

Source view is not available for this program
icrun Revision 4.70 (os)
Error: Unable to open symbol file for logon: The file was not found.
Stopped at line unknown in "logon": The initial program is loaded.

> _

icrun -Z symboldir

If not enabled, the SCREEN OPTIMIZER will automatically be placed in partial mode (ICSCROPT=partial).

C. Usage

A snapshot of the default debug screen when loading LOGON whose source files(s) and symbol file are present is
shown in SCREEN 1.

SCREEN 1. Default Debugging SCREEN

A snapshot of the same debug screen with the display view enabled is shown in SCREEN 2.

SCREEN 2. Debugging SCREEN (all views enabled)

A snapshot of the same initial debug screen with no symbol file available for LOGON is shown in SCREEN 3.

SCREEN 3. Debugging SCREEN (no symbol file)

768

Debugging

 1084 ??
 1085 ??
 1086 ??
 1087 ??
 1088 ??
**> 1089+ ??
 1090+ ??
 1091+ ??
 1092+ ??
icrun Revision 5.00 (os)
Error: The file was not found: logon.sr
Stopped at line 1089 in "logon": The initial program is loaded.

> _

A snapshot of the default debug screen when loading LOGON where the symbol file is available but the initial
source file is not available is shown in SCREEN 4.

SCREEN 4. Debugging SCREEN (symbols but no source)

The `??' symbols in the source window indicate for this line number the source line is not available.

The debug screen is split into up to four(4) windows. The number of lines within each window is determined
dynamically based on the number of lines supported by the console and the number of enabled windows. The
command window is always present with two lines.

Source window (the top)

If the symbol file is not found, the source window will shrink to one line, and no debugger commands that use source
will be allowed.

If the symbol file is found and the source for the current program can be opened, the actual program source with line
numbers is shown. If the source can not be found, a message indicating that will be displayed in the output window
and in the source window a `??' will be used to indicated that no source is available for this line. In scrolling through
the source a COPY file may be encountered whose source is available and then the actual source lines will be
displayed.

If a source line has code associated with it a `+' will be displayed after the line number. Location breakpoints can
only be set on lines marked with a `+'. Location breakpoints are indicated by a `B' after the line number. A `==>' to
the left of the line number indicates the current execution line. A `-->' to the left of the line number is the current
location of the cursor in the source file. A `**>' to the left of the line number indicates that the current execution line
and the current line in the source file are the same.

The source window is enabled by default.

The source window is scrollable with the View and Zoom commands. The View and Zoom commands can be used
even if the window is not enabled.

Display window

The display window shows lines from the current COBOL program screen output.

The display window is not enabled by default, it must be enabled with the View ON Display command.

The display window is scrollable (within the content of one screen) with the View and Zoom commands. The View
and Zoom commands can be used even if the window is not enabled.

769

Interactive COBOL Language Reference & Developer’s Guide - Part Two

Output window

All user commands and debugger responses are shown in the output window. The output window is scrollable by
using the View and Zoom commands, allowing positioning anywhere in the current output from the start of this debug
session to the last displayed message.

The output window is the main work area for the debugger and is enabled by default.

Command window (bottom two lines)

The bottom two lines of the debug screen form the command window. The command window is always enabled.
The first line holds the debugger prompt `> ', while the second line provides a message text string. The debugger
keeps a circular `history' of the last twenty (20) commands that have been entered. These are accessible by using the
up- and down-arrow keys. This makes it fairly easy to repeat a sequence of commands. One-character commands
are not saved.

Whenever the debugger is entered, an appropriate reason will be displayed in the output window just above the
command window. The reason will include the current line number and program name.

Several possible reasons are given below:

The run unit is finished:
The runtime is ready to exit back to the operating system with the incoming reason code. If the reason is
cleared, the system will restart with a Run. If the reason is not cleared, it will be returned as the error code and
the system terminated with a Run.

Break:
The program has stopped for a breakpoint. There is no incoming reason code. Exception Status may be set.

Interrupt:
The program has stopped for a program interrupt. The interrupt code is the reason code, it is what will happen
with a Run or Step unless cleared. The Exception Status is not set to this code. An Error Reset will clear the
reason code.

The initial program is loaded:
Break After "name":
Break Before "name":

The program has stopped for the beginning of a statement for the initial startup, the before or after "name"
breakpoint, or single-stepping. There is no incoming reason code.

Break Global Perform (Use):
The program has stopped at the start of a perform operation. There is no incoming reason code.

Break Global eXit:
The program has stopped at the start of an exit perform operation. There is no incoming reason code.

Break Call "name" (program or |):
The program has stopped at the start of a call [|] operation. There is no incoming reason code.

Break Call Program "name" (program or #):
The program has stopped at the start of call program [#] operation. There is no incoming reason code.

Break eXit Program:
The program has stopped at the start of a exit perform operation. There is no incoming reason code.

770

Debugging

Break I-o:
Break I-o Screen:

The program has stopped at the start of an I/O or Screen I/O operation. There is no incoming reason code.

Break Stop:
The program has stopped at some type of stop-run situation. The incoming reason code should indicate the
reason.

Break Error Call:
The program has stopped for an error from Call to a COBOL program. Exception Status is the same as
incoming reason code. A failure will always still be in the original program.

Break Error I-o:
Break Error I-o Screen:

The program has stopped for an I/O or Screen I/O error. Exception Status is the same as incoming reason code.
The File Status has been set up according to the error (unless ACCEPT or DISPLAY).

Break Error Stop:
The program has stopped for a fatal error. Exception Status is not set to the fatal error although the reason code
is.

On Windows, a Ctrl-C will show an Exception Status 193 "Program terminated by console interrupt".

On Linux, the Linux Quit key will show an Exception Status 255 "The process was terminated" here. The Linux Intr
will show an Exception Status 193 "Program terminated by console interrupt".

The incoming reason code is important when using the Break Error features, since it is the error that will be used
when resuming execution with the Run command, unless cleared with Error Reset.

For the Break Call type breakpoints, the reason shows the call argument as a quoted string. If the string is too long
to fit, it is followed by an ellipsis (...).

When first started, the debugger is entered after loading the initial program. The message "The initial program
`name' is loaded" is displayed in the Output window. For other cases of when the debugger is entered please see the
section on the Break command.

771

Interactive COBOL Language Reference & Developer’s Guide - Part Two

D. Commands

D.1. Overview

At the debugger prompt the following commands are available:

Audit Echo commands to a command file
Break Manage breakpoints
Command Execute a host operating system command
Dump Display data values
Error Reset Reset the incoming reason code
eXecute Execute a command file
Find Search for a specific string in a source file
Go Go to a different pc in the program
Help or ? Show help information
Info Provide information on various items
List List a text file
Move Allow data values to be changed
Quit Quit the debugger and exit the runtime
RERUN Run the program again from the beginning
Run Run the program
Step Single-step source into CALL/PERFORM
Type Formatted breakdown of the contents of data items
View View a particular window or enabled/disable a particular window
Zoom Zoom a particular window to full size

All commands and keywords can be abbreviated as indicated by the uppercase letters, typically the first letter of the
command or keyword. If a keyword is all uppercase, it cannot be abbreviated. Words that are completely in
lowercase and italic represent generic items, like a number or a string of text.

The command syntax below uses the following conventions:

{} for required choices and
[] for optional choices.

D.2. AUDIT

The Audit command controls the echoing of commands to an audit file. It provides a simple mechanism for creating
command files that can then be run with the eXecute command. You can look at command files with the List
command.

The syntax is:

 > Audit

Where
"filename" specifies a text file.

Below is a description for each valid syntax.

Audit "filename" Recreates an existing file or creates a new one to echo debugger commands.
Audit Extend "filename" Appends to an existing file or creates a new one to echo debugger commands.
Audit Close Closes the audit file.

There can be at most one audit file active at a time. All debugger commands that pass the syntax checks and are

772

Debugging

executed will be audited to the file except the Audit Close command and the eXecute command. While the eXecute
command itself is not audited, the commands from the eXecute file are audited as they are processed.

D.3. BREAK

The Break command encompasses all aspects of breakpoint management including setting, deleting, listing, and
temporarily disabling and reenabling breakpoints.

Unless specific breakpoints are set the debugger is entered in one of four ways:

1) The debugger is entered after loading the initial program. The message "The initial program `name' is
loaded" will be displayed in the Output window.

2) The debugger is entered after the last program terminates. The message `The run unit is finished` will be
displayed in the Output window. Entering Run or Quit will cause the runtime to terminate.

3) If program interrupts are enabled, pressing Ctrl-C (on Windows) or the Intr or Quit keys (on Linux) while
running the COBOL program will cause the debugger to be entered. The message "Interrupt at . . . in
`program-name'" will be displayed in the Output window along with the appropriate Exception Status.

4) The debugger is entered after an ICEXEC command Abort has been done on the pid or a `kill -15' or
`kill -SIGUSR1' on the pid. The message "Interrupt at . . . in `program-name'" will be displayed in the
Output window along with the appropriate Exception Status.

If the program was in an ACCEPT operation when one of the interrupts in #3 or #4 occurs, the debugger is entered
with the reason "Console Interrupt in screen read". Execution will resume in the screen read. Only a Run can be
done at this point to continue the program.

When breakpoints are enabled, the debugger is usually entered because of a breakpoint. The reason information will
show which breakpoint caused entry into the debugger.

The following descriptions are grouped into several categories. Note that location and test breakpoints can only be
set for the current active program

The syntax is:

Setting location breakpoints:

 > Break [COUNT=counter [RESET]]

Setting global breakpoints:

 > Break [COUNT=counter [RESET]]

773

Interactive COBOL Language Reference & Developer’s Guide - Part Two

Setting data change breakpoint (only one allowed):

 > Break Test identifier [COUNT=counter [RESET]]

Setting error breakpoints:

 > Break Error [COUNT=counter [RESET]]

Deleting, Enabling/Disabling, Listing Breakpoints:

 > Break

 > Break [List]

Where
breaknumber is a specific breakpoint number. Each breakpoint has a unique breakpoint number assigned.
counter is an integer and represents the number of times this breakpoint must be encountered before

executing the breakpoint.
exception is valid exception value to watch for.
identifier is a valid data-item in this program. The default format is the storage type of the item.

(Requires a symbol file.)
line must be a valid line number in the current program. (Requires a symbol file.)
"name" must be a simple program name enclosed in double-quotes.
procedure must be a valid section or paragraph name in this COBOL program. (Requires a symbol file.)

Below is a description for each type of breakpoint that can be set with the command on the left and the action on the
right.

Location Breakpoints

Break AT procedure Set a breakpoint at the first executable line in the given paragraph or section
Break END procedure Set a breakpoint at the end of the given paragraph or section if it ends a PERFORM or at

the first line of the next paragraph for a paragraph that is not an ending paragraph.
Break line Set a breakpoint at the specified linenumber

Location breakpoints are indicated in the source window by a `B' following the line number.

Global Breakpoints

Break After "name" Break after subprogram "name" has finished and returned to the calling program.
Break After Any Break after every subprogram has finished and returned to its calling program. The Any

form overrides all "name" form breakpoints, but the "name" ones are remembered, so if

774

Debugging

Any is cleared, the "name" breakpoints will be reset.
Break Before "name" Break before program "name" begins execution each time it is started by a CALL or

CALL PROGRAM.
Break Before Any Break before every program or subprogram begins execution. The Any form overrides all

"name" form breakpoints, but the "name" ones are remembered, so if Any is cleared, the
"name" breakpoints will be reset.

Break Call Break at every CALL of a subprogram or builtin function.
Break Call | Break at every CALL of an operating system call.
Break Call Program Break at every CALL PROGRAM of a COBOL program.
Break Call Program # Break at every CALL PROGRAM # system call.
Break eXit Break at every exit from a PERFORM that will exit, i.e., for PERFORM n TIMES, it

breaks at the exit from the last of the n times.
Break eXit Program Break at every EXIT PROGRAM in a subprogram.
Break Perform Break at every PERFORM statement, including the implicit perform of a USE

PROCEDURE, although excluding in-line PERFORMs other than an in-line
PERFORM n TIMES.

Break I-o Break at every I/O operation, excluding ACCEPT and DISPLAY.
Break I-o Screen Break at every screen I/O operation (ACCEPT and DISPLAY).
Break I-o Indexed Break at every indexed I/O operation (CLOSE, DELETE, OPEN, READ, REWRITE,

START, UNLOCK, and WRITE).
Break I-o Relative Break at every relative I/O operation (CLOSE, DELETE, OPEN, READ, REWRITE,

START, UNLOCK, and WRITE).
Break I-o seQuential Break at every sequential I/O operation (CLOSE, OPEN, READ, REWRITE, START,

and WRITE).
Break I-o iNfos Break at every INFOS I/O operation (CLOSE, DELETE, EXPUNGE, OPEN,

READ, RETRIEVE, REWRITE, START, SUB-INDEX operations, UNLOCK, and
WRITE).

Break I-o sqL Break at every ISQL statement (COMMIT, CONNECT, DEALLOCATE, DISCON-
NECT, EXECUTE, EXECUTE IMMEDIATE, FETCH, PREPARE, ROLLBACK, and
SET CONNECTION).

Break Stop Break at every STOP RUN and at every STOP "lit" in which the user has chosen to stop
(i.e., hit ESC).

Data Change Breakpoint

Break Test identifier Break if the storage associated with identifier has changed.

Error Breakpoints

Break Error exception Break after every operation that returns the Exception Status specified by `exception'.
Only one Break Error exception is allowed; exception cannot be 0.

Break Error Any Break after every operation that returns a non-zero exception code.
Break Error Call Break after every CALL of a subprogram that returns with an error.
Break Error Call | Break after every CALL of an operating system call that returns an error.
Break Error Call Program Break after every CALL PROGRAM of a COBOL program that returns an error.
Break Error Call Program # Break after every CALL PROGRAM # system call that returns an error.
Break Error I-o Break after every I/O operation that returns an error, excluding ACCEPT and

DISPLAY), including DELETE FILE, EXPUNGE, START, UNDELETE,
UNLOCK, and STOP "lit".

Break Error I-o Screen Break after every screen I/O operation that returns an error (ACCEPT and
DISPLAY).

Break Error I-o sqL Break after any ISQL statement that returns an error (SQLSTATE not = 0).

Miscellaneous

Break [List [ALL]] List ALL breakpoints.
Break Delete breaknumber Clears the given breakpoint number.
Break Delete "name" Clears all Location type breakpoints in the program specified by "name".

775

Interactive COBOL Language Reference & Developer’s Guide - Part Two

Break Delete ALL Clears ALL breakpoints in the debugger!!
Break OFF ALL Temporarily disable ALL breakpoints.
Break ON ALL Reenable ALL temporarily disabled breakpoints.
Break OFF breaknumber Temporarily disable the given breakpoint number.

The keywords AT, END, OFF, ON, and ALL cannot be abbreviated.

All breakpoints are persistent. The debugger remembers breakpoints even when a program has been CANCELed
from the run-unit or replaced by a CALL PROGRAM. If the program ever becomes part of the run-unit again
through a CALL or CALL PROGRAM, the debugger resets the breakpoints. In order to delete breakpoints, use the
Break Delete command.

Location and Test breakpoints can only be set while in the applicable program.

Up to 8 Break Test breakpoints can be set.

D.4. COMMAND

The Command command is used to process commands through to the host operating system command line processor
or shell.

The syntax is:

 > Command ["string"]

Where
string is a particular string of commands to pass to the host command processor to be executed, after

which it returns automatically. If no string is given, the debugger pushes to the command
processor in interactive mode.

When the host operating system command line processor returns to the debugger, the prompt "Press any key to
continue" is given. If an error is returned from the command processor an Info message is given showing the actual
error returned.

D.5. DUMP

The Dump command displays storage for particular data items. It can show the data in one of several formats.

The syntax is:

 > Dump [identifier]

Where
identifier is a valid data-item in this program. The default format is the storage type of the item.

Below is a description for several valid syntaxes:

Dump identifier Displays the content of the data-item in a format appropriate to the type of the data-
item.

Dump identifier Hex Displays the data at the address and length as specified for the given identifier in hex.
Dump Display the next data area in the same format as the previous area if the identifier was a

table element. The address immediately follows the item from the previous display and
the length used is the same.

776

Debugging

The Decimal, Hex, or Octal format specifiers display data in a dump format that has the address in the left margin,
followed by a numeric decoding of ten-bytes of data in the selected numeric format, followed by a decoding of the
ten-bytes as ASCII characters. In the ASCII dump, unprintable characters are shown as periods.

Unsigned numeric items are shown with no sign. Signed numeric items are shown with either a `+' or `-'. In an
identifier numeric dump, a decimal point is displayed when appropriate based on the PICTURE and actual value of
the item.

The Alphanumeric type will display data as a quoted string, using the <nnn> octal notation for unprintable
characters.

If the data item is a table element, you must supply valid subscripts the first time entered. After that a Dump with no
arguments will increment the subscript(s) as needed to dump the next value..

D.6. ERROR RESET

The Error Reset command is used to clear the incoming reason code, which will be used by the program when it
resumes.

The syntax is:

 > Error Reset

See the Step and Run commands for the implications of using Error Reset.

D.7. EXECUTE

The eXecute command is used to run a series of debugger commands stored in a text file.

The syntax is:

 > eXecute "filename"

Where
"filename" is a text file that holds valid debugger commands to be executed. The commands from "filename"

are echoed to the screen as they are executed. If the Audit command is active, the eXecute
command itself is not echoed, but the commands are.

D.8. FIND

The Find command is used to find a string of text in the source of the current program. Find requires that the source
file be available for the current program.

The syntax is:

 > Find [“string”]

Where
"string" is a string of text to search for in the current program source.

The First specifier indicates that the search is to start at the beginning of the program and proceed in the forward
direction.

The Last specifier indicates that the search is to start at the end of the program and proceed backwards.

777

Interactive COBOL Language Reference & Developer’s Guide - Part Two

The Next and Previous specifiers start at the location of the last find and proceeds forward or backward respectively.

The string argument is required for the first Find command. If not specified on subsequent Find commands, the
most recently specified value is used.

Find without any arguments repeats the most recent Find command.

D.9. GO

The Go command moves the COBOL PC to a new location. It does not start execution.

The syntax is:

 > Go

Where
procedure must be a valid section or paragraph name in the current COBOL program. (Requires a symbol

file.)
line must be a valid line number in the current COBOL program. (Requires a symbol file.)

Below is a description of valid combinations:

Go TO procedure The current PC is moved to the first executable line in the given procedure.
Go line The current PC is moved to the start of the given linenumber.
Go eXit The current PC is moved to the return address in the current (topmost) perform, and

the perform stack is popped a level.

This command does not cause the program to run, but it does change the location where execution will occur the next
time that execution resumes with a Run or Step.

The view in the source window will be adjusted appropriately.

You should be careful about moving the location from within a PERFORM or into a PERFORM as it could confuse
the runtime with its PERFORM stack.

D.10. HELP

The Help command provides general help or help for a specific debugger command.

The syntax is:

 > Help [command]
 > ? [command]
 > command ?

Where
command must be a valid debugger command

If no command is given, a general help is given showing all possible debugger commands.

If command is given, detailed help will be displayed for that particular debugger command only.

Help is also available from the command-line by pressing F1. If the command name (or its abbreviation) has already
been typed in, help will be provided for that command.

778

Debugging

All help information is shown is a separate zoomed help window. While in the zoomed window, the cursor up,
cursor down, F2 (page up), and F3 (page down) can be used to position up and down in the window to view the
contents.

Pressing ESC will cause the command to exit.

Help information is provided via help files that start with icdeb in the standard help directory.

D.11. INFO

The Info command is used to display specific information about the state of the program or various program
elements.

The syntax is:

 > Info

Where
qualified-name is a valid item in the current COBOL program. (Requires a symbol file.)
count is an integer value indicating to only show the topmost count items of the selected values.
exception is a valid Exception Status.

Each particular Info command provides specific information about the indicated item.

Info On qualified-name provides a description of the item including its class and category, size, and address.

Info Call displays the active call list. If count is given only the topmost count programs will be displayed.

Info Detail provides detailed information about the internal state of the runtime system that provides the following:
A. (line 1) the Program name and dialect compiled with,
B. (line 2) the ESCAPE KEY, the Exception Status, the File Status, the INFOS Status,
C. (Optional) if the exception status has an embedded os error message and extra line showing

“Exception register [INFO on:] OS-err:
Along with any severity of the error will be given.

D. (line 3/4) the number of Performs active (for this program); Open files (for this program); number of Active
programs; the number of Inactive programs (for this process), and the program counter (PC);

A sample for Info Detail is shown below:

Name: ussteel Dialect: icobol
ESC: 00 EXC: 00000 FileStatus: '00' InfosStatus: '000000000000'
Perform: 01 Open: 01 Active: 01 Inactive: 00 PC: 13523

Info Error displays the text associated with the current Exception Status or if a particular exception code it given
then the text for that exception is displayed.

Info Open displays a list of the files currently open by this program with their name, type, and open mode.

Info Perform displays the Perform stack. If count is given only the topmost count performs will be displayed.

Info eXit displays the inactive call list. If count is given only the topmost count programs will be displayed.

779

Interactive COBOL Language Reference & Developer’s Guide - Part Two

Info sqL displays ISQL information about active SQL connections. A sample would look like:

SQLState: 02000 SQLText: [Envyr Corporation][icrun] No data was affected by..
Connection: TestDSN
 String: TestDSN
 Statement: 1
 Cols: 3 PREPAREd: Y EXECUTEd: Y

D.12. LIST

The List command is used to list the contents of any text file.

The syntax is:

 > List "filename"

Where
"filename" is a valid text file to be opened and listed.
line is a valid line number in the given file.

The First, Last, and line options provide a default starting position in the file.

The indicated text file is listed in a zoomed list window. The First, Last, and line options provide a default starting
position in the file. If no default starting position is given the First line is used.

While in a zoomed window the cursor up, cursor down, F2 (page up), and F3 (page down) can be used to position up
and down in the window to view the contents.

Pressing ESC will cause the command to exit.

D.13. MOVE

The Move command allows storage to be changed to a new value.

The syntax is:

> Move TO identifier

Where
identifier must be a valid identifier in this COBOL program. (Requires the symbol file.)
literal must be a valid COBOL literal.

The Move is just like the MOVE statement in COBOL.

String literals may have imbedded octal, decimal, or hex values using the construct <nnn>, <onnn>, <dnnn>, and
<xnn> to specify a byte value represented by the nnn or nn numbers. In the case of <nnn> and <onnn>, nnn
represents an octal value, in <dnnn>, nnn represents a decimal value, and in <xnn>, nn represents a hex value.
Upper and lower case `o', `d', and `x' can be used to specify octal, decimal, or hex. In hex mode, upper and lower
case `a' - `f' can be used. The value for any byte must be in the range 0 - 255 (decimal). For octal and decimal, no
more than three digits can be specified and for hex no more than two digits can be specified. <1> is treated as
<001>. The construct << can be used to enter a single <. Only one byte can be specified per <> pair.

780

Debugging

D.14. QUIT

The Quit command performs an implicit STOP RUN (closing all files) and exits the debugger.

The syntax is:

 > Quit

After a STOP RUN, only Quit and Rerun are allowed.

D.15. RERUN

The RERUN command is used to restart the debug session. An implicit STOP RUN (closing all files) is done and
the initial program is reloaded. All breakpoint information is retained, and all the programs that had become part of
the memory image are retained in a canceled state.

The syntax is:

 > RERUN

After a STOP RUN, only Quit and RERUN are allowed.

D.16. RUN

The Run command resumes program execution and optionally set a temporary location breakpoint.

The syntax is:

 > Run

Where
procedure must be a valid section or paragraph in the current COBOL program. (Requires a symbol file.)
line must be a valid line number in the current COBOL program. (Requires a symbol file.)

A more detailed description for each combination is given below:

Run Resumes program execution.
Run TO procedure Sets a temporary breakpoint at the first executable line in the given paragraph or section and

then Resumes program execution
Run line Sets a temporary breakpoint at the given line number and then Resumes program execution.

The Run command is used to resume program execution. The program resumes execution with the incoming reason
code, as shown in the Output window, unless the Error Reset command was used to clear the reason code. In cases
where the debugger was entered on a Break Error type breakpoint, it is usually better to run with the incoming
reason code so that the program continues as it would normally. In some cases, resetting the reason code can lead to
erroneous program behavior, e.g., if a READ statement failed, the record area may be corrupt. However, if the
program was entered by an external interrupt, e.g., the Intr key, it is often advantageous to reset the error so that the
program will continue to run rather than terminating, as is the normal result.

If the debugger had been entered by pressing the Interrupt key, the Error Reset command must be used before
resuming, or else the program will be terminated with a console interrupt.

If you are in an ACCEPT operation, the ACCEPT will be resumed when Run is entered. (The reason is "Console
Interrupt within a screen read".)

781

Interactive COBOL Language Reference & Developer’s Guide - Part Two

If the run-unit has terminated, issuing an Error Reset followed by Run will start the original program over again.
This can also be done with a RERUN.

If after setting a temporary breakpoint, any other breakpoints are encountered during the course of running other than
the temporary breakpoint, the debugger will stop at that breakpoint and the temporary breakpoint will be cleared.

The Run command automatically switches to the COBOL screen before starting execution.

D.17. STEP

The Step command single steps to the next statement. Step follows CALL and out-of-line PERFORM's to their
targets.

The syntax is:

 > Step [count]

Where
count is the number of steps to be performed.

If any other breakpoints are encountered during the course of stepping, the debugger will stop at that breakpoint and
the Step operation will be canceled.

Instead of using the count option it is often better to use the "RUN xxx" form of the Run command where xxx is the
line-number.

Step Single steps by one statement. If the current instruction is a CALL or PERFORM the debugger
will stop at the first statement or instruction in the target of the CALL or PERFORM.

Step 10 Single steps by 10 statements. If the current statement is a CALL or PERFORM the debugger will
stop at the 10th statement inside the CALL or PERFORM.

Step, just like Run, continues execution with the incoming reason code unless it has been cleared with the Error
Reset command. See the Run command for additional information on how this affects program behavior.

D.18. TYPE

The Type command is used to show the contents of data items. It breaks down group items into their composite data
items. Type requires that a symbol file be available.

The syntax is:

 > Type [identifier]

Where
identifier is a valid data-item in the program.

This command displays a formatted breakdown of the contents of identifier. The output contains the level number,
identifier name, and its current value. For a group item, it shows the contents of each elementary data item in a
format appropriate for the data type.

When no arguments are supplied, the results depend on the identifier of the previously executed Type command. If
the preceding Type command was a display of a table item, the next element of the table is displayed. The debugger
will automatically increment the subscripts. If the preceding Type was of a simple data item, the command will
return an error.

An example of the output from this command follows:

782

Debugging

> type group-item
01 GROUP-ITEM
 05 EMP-NAME
 10 EMP-NAME-FIRST = "Joe "
 10 EMP-NAME-LAST = "Programmer "
 05 EMP-AGE = 47
 05 EMP-PHONE = 8005551212

D.19. VIEW

The View command is used to control which windows are active on the screen and to position to a particular window
to browse.

The syntax is:

 > View

 > View Reset

 > View Compress

When the debugger initially starts the source, output, and command windows are enabled by default. The View
command can be used to enable others or disable current windows. In addition with the Compress option if the
screen supports compressed mode it can be toggled on and off.

The windows are always positioned in order from the top of the screen, with Source first, Display second, Output
third, and Command fourth. The View ON and View OFF commands can have multiple arguments to change
multiple windows at the same time. When ON or OFF is omitted, only a single window is allowed. A View
command with no arguments positions to the Output view by default.

When positioned to a window, the cursor up, cursor down, F2 (page up), and F3 (page down) can be used to position
up and down in the data displayed in the window. ESC will return you to the command prompt.

The View Reset command resets the source window to be positioned around the current program execution location.
It is useful for quickly returning these views to their default state after using the View or Zoom commands to look at
some other areas of the program.

D.20. ZOOM

The Zoom command is used to zoom a particular window to full size.

The syntax is:

 > Zoom

The Zoom command without any argument zooms the Output window. A zoomed window expands to the whole
screen minus the 2-line command window.

While in a zoomed window the cursor up, cursor down, F2 (page up), and F3 (page down) can be used to position up
and down in the window to view the contents.

Pressing ESC will cause the command to exit.

783

Interactive COBOL Language Reference & Developer’s Guide - Part Two

E. Performance Considerations

When running programs in the debugger, performance is degraded. The degradation is in the 10 to 25% range. Use
of the Break Test breakpoint causes a dramatic performance degradation as this test must be performed at the start of
every opcode to detect changes from a preceding opcode.

Setting ICSCROPT=full instead of ICSCROPT=partial will provide for better screen optimization as the screens will
not actually be re-painted unless there is an actual change to the screen. This is especially helpful when using the
Step command.

F. Quick Reference

? [command]
command ?

Audit

Break [COUNT=counter [RESET]]

Break [COUNT=counter [RESET]]

Break Test identifier [COUNT=counter [RESET]]

Break Error [COUNT=counter [RESET]]

Break [List]

Break

Command ["string"]

784

Debugging

Dump [identifier]

Error Reset

eXecute "filename"

Find [“string”]

Go

Help [command]

Info

List "filename"

Move TO identifier

Quit

RERUN

Run

Step [count]
Type identifier

View

View Reset

View Compress

Zoom

Where
breaknumber is a specific breakpoint number. Each breakpoint has a unique breakpoint number assigned.
command is a valid debugger command.
count is an integer.
counter is an integer that represents the number of times this breakpoint must be encountered before

executing the breakpoint.
exception is a valid Exception Status.
"filename" is a text filename enclosed in double-quotes.

785

Interactive COBOL Language Reference & Developer’s Guide - Part Two

identifier is a valid data-item in the current COBOL program. (Requires a symbol file.)
line is a valid line number in the current COBOL program. (Requires a symbol file.)
"name" is a simple program name enclosed in double-quotes.
procedure is a valid section or paragraph name in the current COBOL program. (Requires a symbol

file.)
"string" is an alphanumeric string enclosed in double quotes.

786

ICREVSET

XIII. ICREVSET

A. Introduction

The ICREVSET utility is used to set the programmer (or supplier) revision field in a file. This utility is separate
from the ICREV utility so that it can be removed from the end-user's system, thereby preventing the end-user from
modifying his revision information. This utility can set the programmer revision field in any type of standard-header
file.

The OEM Version switch (-o|-O rev) of the compiler can also be used to set the OEM revision of .cx files at file
creation.

The ACCEPT FROM ENVIRONMENT statement can be used in a COBOL program to extract the programmer
revision field from the executing program.

B. Syntax

The standard syntax is:

icrevset [-a[:aflag]|-A file|dir[:aflag]] [-h|-?] [-L file] [-q] [-v] rev
{ infile }...

Where
-a[:aflag]|-A path[:aflag] (audit)

Audit to icrevset.lg, aflag: a-append, b-backup, d-datestamp, p-process-id, t-timestamp, u-username
-A path[:flag] (audit)

Audit to path, or path\icrevset.lg if path is a directory
-h|-? (Help)

Display help text.
-L file (Library)

Use the specified COBOL library to find the specified files.
-q (Quiet)

Enables quiet operation.
-v (Verbose)

The name of each file will be displayed as it is processed, as well as the file type and the prior value of the
revision field. Otherwise, a simple summary of the number of files processed is displayed.

rev
Specifies a string of up to 8 characters containing the text the programmer (or supplier) desires in the
programmer revision field.

infile
Specifies a filename or template. The filenames or templates must specify an extension to determine the
type of file to modify. If the filename argument specifies a library file, the revision field is set in the library
file itself.

C. General Rules

ICREVSET looks for the common environment variables ICROOT and ICCONFIGDIR.

On Linux, when using the library switch, if a template is to be specified for infile, it may need to be quoted to
prevent it from being expanded by the shell.

787

Interactive COBOL Language Reference & Developer’s Guide - Part Two

788

ICDUMP

XIV. ICDUMP

A. Introduction

The Dump utility (ICDUMP) allows the user (usually the programmer) to dump a .CX file or a .PD file to look at a
particular COBOL PC for debugging purposes.

B. Syntax

The syntax is:

icdump [-a[:aflag]|-A path[:aflag]] [-c] [-d] [-f] [-h|-?] [-l] [-n] [-o]
[-q] [-r] [-x] { filename }...

Where
-a[:aflag]|-A path[:aflag] (audit)

Audit to icdump.lg, aflag: a-append, b-backup, d-datestamp, p-process-id, t-timestamp, u-username
-A path[:flag] (audit)

Audit to path, or path\icdump.lg if path is a directory
-c (Code)

Display a dump of the Code area
-d (Data)

Display a dump of the Data area
-f (File)

Display a dump of the file info
-h|-? (Help)

Display help text
-l (Literal)

Display a dump of the literal area
-n (No-header)

Do not display the header dump
-o (One-line)

Dump a one-line format only (file, code-rev., program-id, oem-rev)
-q (Quiet)

Enable quiet operation.
-r (Reference)

Display a dump of the reference table
-x (External)

Display a dump of the external area
filename

Specifies the file to be dumped.

C. Rules

ICDUMP looks for the common environment variables ICROOT and ICCONFIGDIR.

D. Example

The example below shows the output from an ICDUMP of f_pi.sr, a simple program. It shows the information from
the file headers, the program code, the reference table, and the program data segment.

The command line for this example is:

icdump -crdfx f_pi

789

Interactive COBOL Language Reference & Developer’s Guide - Part Two

icdump Revision 5.40 (Windows (64-bit))
Copyright (C) 1987-2020, Envyr Corporation. All rights reserved.

Processing f_pi.cx

Decoding of File Headers

Standard Header:
 ICOBOL Executable File Revision 5.00 (byteswapped)
 Created: Jun-30-2000 08:01:29.00 by icobol 3.00 (Windows 9X/NT/2000)
 Modified: Jun-30-2000 08:01:29.00 by icobol 3.00 (Windows 9X/NT/2000)
 Supplier Revision: none

File Header:
 Revision: 5.00
 PROGRAM-ID: F-PI
 Currency Char: $
 Decimal Char: .
 Comma Char: ,
 Is Initial: No
 COBOL Type: ANSI-74+
 Source Format: Free format
 Parse options: (00000000) None
 Start PC: 1 End PC: 21
 Use Input Beg: 0 Use Input End: 0
 Use Output Beg: 0 Use Output End: 0
 Use IO Beg: 0 Use IO End: 0
 Use Extend Beg: 0 Use Extend End: 0
 Code Start: 268 Code Size: 22
 PicLits Offset: 22
 Init Start: 292 Init Size: 2
 Ref Start: 296 Ref Count: 2
 D-V Start: 312 D-V Count: 0
 File Start: 0 File Count: 0
 Using Start: 0 Using Count: 0
 External Start: 0 External Size: 0
 Data Size: 24 CONTENT Size: 0
 External Count: 0 Total Using: 0

Decoding of Program Code

 PC Operation Operands

%00001 Compute x ->y... FUNCTION PI @0
%00007 Display Data Adv @0
%00011 Compute x ->y... FUNCTION PI @1
%00017 Display Data Adv @1
%00021 STOP RUN

The output for this example is shown in four different frames only for explanatory purposes. The above command
line produces one stream of output that includes all of the output.

The first frame shows the ICDUMP banner and the dump of the file headers.

EXAMPLE 102. ICDUMP of the Header (default)

This frame shows the dump of the program code segment.

EXAMPLE 103. ICDUMP of the Program Code (using the -c switch)

790

ICDUMP (Example)

Decoding of Program Reference Table

Ref # File or Data Type Type-specific Information
 Address (Relocation Information)

 0 Unsigned Display len: 18, cnt: 18, l: 1, r: 17
 0 (Data Segment)
 1 Unsigned Display len: 6, cnt: 6, l: 1, r: 5
 18 (Data Segment)
There are no files defined in this program.

Decoding of Program Data Segment

 The data segment is 24 bytes long
 Offset Hex Dump Char Dump

 0 00 00 00 00 00 00 00 00 00 00
 10 00 00 00 00 00 00 00 00 00 00
 20 00 00 00 00

There are no external data items
icdump is finished

This frame shows the dump of the program reference table.

EXAMPLE 104. ICDUMP of the Reference Table (using the -r switch)

This frame shows the dump of the program data segment.

EXAMPLE 105. ICDUMP of the Data (using the -d switch)

791

Interactive COBOL Language Reference & Developer’s Guide - Part Two

792

ICRUN

XV. RUNTIME (ICRUN)

A. Introduction

The ICOBOL runtime (ICRUN) is the environment (or soft machine) provided by the ICOBOL product that
executes COBOL programs. This chapter describes how the runtime works.

ICRUN insulates the COBOL program from many machine and operating system differences. However, where
differences are noted one should try to code for the least common denominator of the features. When that is not
possible, use the ACCEPT FROM ENVIRONMENT statement to allow the program to know exactly which machine
it is running on.

The command line and environment settings for ICRUN are described in the appropriate Installing and Configuring
manuals (for Linux or Windows).

B. Printer Control Utility

The Printer Control utility is provided when enabled from the configuration file (.cfi). The Printer Control utility
provides for the spooling and separate printing of files. The Printer Control utility uses the printer control file to
hold the filenames that are currently in the printer control queue. By default, the printer control file is system.pq.
The printer control file can handle up to 1024 files based on what the configuration file (.cfi) has allowed. Once that
maximum is reached, an OPEN of a file that would have been placed in the printer control file will fail with a File
Status 99 (Exception Status 44).

The Printer Control subsystem can be configured to automatically print a file once it has been entered into the printer
control file or to allow each file to be queued separately to a printer by a user. To manually queue files to be printed,
the IC_PRINT_STAT builtin must be executed to start the Printer Control Utility. To automatically have files
printed, the AUTO option must be set in the configuration file (.cfi) for the particular queue.

At startup time, the printer control file is scanned and if an entry or file no longer exists on the disk, the entry is
removed from the system.pq file and the printer control queue.

On Linux

The printer control file is read at ICEXEC startup to load the queue and it is kept updated while running.

The Linux print spooler, lp, is used to provide the actual printing of jobs. The following Linux command is executed
to print a job:

lp -dpcqdest -tsimple-filename filename

where pcqdest is the destination defined for the particular printer control queue in the configuration file (.cfi),
simple-filename is the simple part of the filename as the title, and then the file to be printed. If the destination field
is blank the default queue is used.

On Windows

The Windows print spooler is used to provide the actual printing of jobs. ICEXEC reads the configuration file (.cfi)
and determines available print queues and matching Windows printers (except for a default (blank name) which is
still setup by the runtime system when it starts.

793

Interactive COBOL Language Reference & Developer’s Guide - Part Two

C. Program Termination

C.1. Overview

The runtime is running in one of two modes: Logon mode or Program mode. Each mode handles program
termination differently. These are described below.

C.2. Logon mode Termination

Two types of COBOL program termination are provided under ICOBOL when running in Logon mode.

C.2.1 Return to LOGON as Inactive

 The first type of program termination stops the COBOL program and returns control to the program LOGON as an
inactive terminal. This is done by:

Action Status

1) CALL "IC_LOGON" Set to Inactive

2) STOP RUN and then
press ENTER

 Set to Stopped
 Set to Inactive

3) Pressing the Intr key (if allowed by the configuration
file (.cfi)) and then press ENTER

 Set to Stopped
 Set to Inactive

4) Program errors that terminate the program, e.g., Fatal
COBOL I/O errors, and then press ENTER

 Set to Stopped
 Set to Inactive

NOTE: If a fatal I/O error is encountered and the program terminates, the current Exception Status is
displayed right after the COBOL PC as E=nnn.

C.2.2 Return to Parent Process

The second type of program termination terminates the ICOBOL process for that terminal and returns the user to the
parent process. This is done by one of the following:

CALL "IC_HANGUP"
CALL "IC_SHUTDOWN"

Under Windows, if the parent process was ICEXEC, then ICEXEC will cause the initial logon prompt to be re-
displayed if so configured.

C.3. Program mode Termination

If running in Program mode, ICOBOL will return to the shell (or parent process) on any of the following:

1) STOP RUN
2) CALL“IC_HANGUP”, “IC_SHUTDOWN”
3) CALL PROGRAM #H, #S, ##U
4) console interrupt
5) Fatal error.

794

ICRUN (Device Support)

D. Device Support

D.1. Overview

The mapping from an ICOBOL logical device to a particular hardware device can be configured in the configuration
file (.cfi) under the Device Configuration menu.

It is recommended that only logical devices be used in a COBOL program so that it will be insulated from a
particular operating system and/or a particular hardware configuration.

The ICOBOL logical devices are:

• console devices (@CON0, @CON1, @CON2, and up),
• printer devices (@PRN0 through @PRN127),
• printer control queues (@PCQ0 through @PCQ127),
• serial devices (@SER0 through @SER127).

There are eight generic logical devices:

• @NUL always maps to the internal null device,
• @CON always maps to the current console,
• @PTS always maps to the current console with printer pass thru mode enabled for each WRITE operation,
• @PCQ, @PRN, and @SER can be configured, on a per console basis with the PCQ, PRN, or SER entries,

to point to any of their respective logical devices, e.g., PCQ=1 is used to set the generic @PCQ to point to
@PCQ1. If no entry is specified, the default values for @PCQ, @PRN, and @SER are @PCQ0, @PRN0,
and @SER0 respectively. (These can be set as environment variable(s) to override those defined in the
configuration file (.cfi).)

• @DATA maps to the current contents of the environment variable DATAFILE at runtime.
• @LIST maps to the current contents of the environment variable LISTFILE at runtime.

D.2. General Rules

(1) If ICOBOL detects any operating system name from the table below, it is replaced with the corresponding
ICOBOL name as shown. This replacement is not done if the name was mapped using the link file.

Operating
System Name

ICOBOL
Name

Operating
System Name

ICOBOL
Name

NUL @NUL @INPUT @CON

CON @CON @OUTPUT @CON

$TTI @CON @CONSOLE @CON

$TTO @CON @LPT @PCQ0

PRN @PRN0 @LPT1 @PCQ1

LPT1 @PRN0 @LPT2 @PCQ2

LPT2 @PRN1 @LPT3 @PCQ3

LPT3 @PRN2 @LPT4 @PCQ4

$LPT @PRN0 @LPT5 @PCQ5

$LPT1 @PRN1 @LPT6 @PCQ6

AUX @SER0 @LPT7 @PCQ7

COM1 @SER0 @LPT8 @PCQ8

COM2 @SER1 @LPT9 @PCQ9

COM3 @SER2

COM4 @SER3 @LPT2048 @OCQ2048

QTY:0 @CON1

QTY:1 @CON2

QTY:2 @CON3

... ...

TABLE 43. Device Mappings

795

Interactive COBOL Language Reference & Developer’s Guide - Part Two

All the device names in TABLE 43 are mapped in a case insensitive manner; i.e., `con', `CON', `Con', and `cOn' all
specify the same device name to ICOBOL. To override an ICOBOL name specify a pathname, i.e., `=con', `./CON'
or `./con', in which case ICOBOL will not find it as a device but will pass the name on through to the operating
system.

(2) ICOBOL does not open hardware devices it controls with the EXCLUSIVE option unless explicitly set.

(3) The logical filename @NUL is a special internal device. If you use @NUL as an input device, a read will
always generate an immediate end-of-file. As an output device, the write operations are simulated, but no data is
actually written.

(4) Each logical console device (@CONn) is either enabled or not. If enabled, the logical console device has a
character device (on Linux ‘from /dev’), a blank for use with the Terminal number switch (-T) or when terminal
devices are not defined in the configuration file (.cfi), or a null for use with the IC_DETACH_PROGRAM builtin.
Logical consoles also have the ability to Run Programs if the Run Program option is set to Yes. If Run Programs is
set to Yes, the Program environment options are used. The line-number returned by the ACCEPT LINE statement of
a COBOL program is the number n of the @CONn logical console name. When ICOBOL starts if the ttyname for
the console cannot be found in the the configuration file (.cfi) Console table or if it is already in use, it will scan the
console table for an entry that is enabled, has a blank device, and is currently not in use as its console.

(5) Each logical printer control queue (@PCQn) has associated with it a standard Linux print queue (on Linux)
or a standard Windows printer (on Windows). These must be defined and enabled before ICOBOL can make use
of the @PCQn devices. Whenever an @PCQn logical device is opened, the output is routed to the particular print
queue (on Linux) or printer (on Windows) defined for the destination as setup in the configuration file (.cfi). This
is known as intercept spooling.

On Linux, this is done using the Linux print spooler (lp). Thus if the COBOL filename opened was `@PCQ1',
ICOBOL would pipe the written output to

lp -dpcq1destination.

On Windows, this is done using standard Windows print routines to place the file in the Windows printer subsystem.

(6) Each logical printer device (@PRNn) has associated with it some printer options such as form-feed on open
and/or close upon printing.

On Linux, you should be very careful when printing directly to a device that the Linux print spooler is using because
there is no standard way to provide EXCLUSIVE access to that output device. You should either use printer control
queues (@PCQn), the Printer Control Utility, or use a device that is not being used by the Linux print spooler.

(7) The logical serial devices (@SERn) are serial communication ports on which no programs can be run, but
serial input and/or output can be performed.

(8) If the hardware for a particular device is not installed in the system, not enabled, or set to None; a File
Status 91 is returned on the OPEN.

(9) On Linux, standard Linux character devices that reside in /dev can be used as appropriate for files.

D.3. Parallel Printer Ports

(1) Parallel printer ports are generally the lp0, lp1, and lp2 devices.

(2) On output to a parallel port, if a timeout value was not specified on the OPEN, the write will try forever. If
the timeout and message options are both set on an extended device open, the message displayed on the user's screen
will show the actual reason (like offline, out of paper, I/O error, etc.) that is causing the write to wait.

796

ICRUN (Filenaming Conventions)

(3) On a CLOSE of a parallel port, if its buffer still has characters waiting to be written, the CLOSE will delay
up to 5 minutes to enable the buffer to be flushed. After that time the parallel port will be closed and the buffer reset.

D.4. Serial Ports

(1) The serial ports are generally the tty01, tty02, . . . or tty1a, tty1b, . . . devices.

(2) If an OPEN specifies a device with modem control enabled, the OPEN will wait until Data Carrier Detect
(DCD) is detected before preceding (this could wait forever). For all other operations, if DCD is not detected, a File
Status 30 (Exception Status 122) will be returned.

(3) If hardware errors, such as parity, are detected, a File Status 30 (Exception Status 13) is returned for the
operation in progress.

(4) Program lines cannot be opened by a program on another terminal. The other program will get a File Status
94 (file is exclusively opened).

(5) On output to a serial line that is not the current console, if a timeout value was not specified on the OPEN,
the write will try forever. A timeout option along with a possible message option can be specified as an extended
device open option on the OPEN to change this behavior.

(6) On a CLOSE of a serial line, if a timeout value was not specified on the OPEN, the CLOSE will try forever.
If a timeout had been specified the CLOSE will complete in that time, the line closed, and the buffer reset.

E. Filenaming Conventions

E.1. Internal Filenames

An internal filename is assigned to an external file by using the SELECT clause in a COBOL program. The I/O
statements in the program then refer to this file by its internal name, as in OPEN INPUT FILE-ONE.

E.2. External Filenames

An external filename is the name by which a file is known to the operating system and/or ICOBOL environment.
This section, describes how ICOBOL handles COBOL external filenames. Also see the sections in the ICOBOL
Language Reference that discuss the COBOL builtins IC_RENAME_FILE, IC_GET_DISK_SPACE,
IC_DIR_LIST, IC_MOVE_FILE_DATA).

In the SELECT clause of a COBOL program, the external filename can be specified. If no external filename is
specified for a SELECT, the ICOBOL compiler generates a default external filename based on the ASSIGN TO
<device> clause as defined in Table 1 on page 106 Default External Filenames.

797

Interactive COBOL Language Reference & Developer’s Guide - Part Two

ICOBOL considers the following as legal characters in a filename:

Characters Description

a-z Lower-case letters

A-Z Upper-case letters

0-9 Digits

. Period

_ Underscore

$ Dollar sign

- Hyphen

! Exclamation

% Percent

& Ampersand

{} Left- and right-brace

() Left- and right-parenthesis

~ Tilde

TABLE 44. Legal characters in a filename

ICOBOL treats the following characters as illegal characters in a filename:

Character Description

‘ ’ Open- and close-single-quote

“ Double quote

[] Left- and right-bracket

* Asterisk

Pound-sign

+ Plus-sign

| Vertical-bar

< > Left- and right-angle-bracket

; Semicolon

? Question-mark

ALSO: Embedded spaces (only if the -N e option is used),
characters less than space, and characters greater than tilde.

TABLE 45. Illegal Characters in a Filename

In certain contexts, the following characters are allowed in a filename:

Character Description

equal (=) As the first character of a filename, an equal is replaced with the current directory

caret (^) As the first character of a filename, a caret is replaced with the parent directory

colon (:) All occurrences are converted to the appropriate directory separator
 - `\' on Windows - `/' on Linux
NOTE: On Windows, : is not converted if immediately following a single letter

at the beginning of the name. (Drive-letter)

backslash (\) All occurrences are converted to the appropriate directory separator
 - `\' on Windows - `/' on Linux)

forwardslash (/) Treated as a directory separator and converted to the appropriate directory separator
 - `\' on Windows
 - `/' on Linux; except when given on a program name when single-character program
switches are stripped off the program name by scanning from the end

at-sign (@) As the first character of an ICOBOL logical device name specifier

TABLE 46. Characters Allowed in a Filename, in Certain Contexts

798

ICRUN (Filenaming Conventions)

E.2.1 Rules

(1) ICOBOL always trims leading and trailing spaces before any other processing is done to a filename.

(2) A simple filename cannot be longer than 255 characters, and the pathname cannot be longer than 255 on
Windows and 1023 on Linux. If it is, an error is given.

E.2.2 Program names

E.2.2.1 Overview

The simple portion of a program name in ICOBOL must be 30 characters or less; otherwise, an error is given.

In addition to length, there are other things ICOBOL considers when processing a program name, and the processing
is different for each of the operations that use program name:

• CALL statement
• CALL PROGRAM statement
• CANCEL statement
• IC_DETACH_PROGRAM builtin

The table below defines processes that are used in some of the operations listed above, as ICOBOL processes a
program name. The section that follows the table will describe how ICOBOL processes a program name for each of
the operations and will use the name of the definition from the table (e.g., Strip program switches) to simplify the
explanation.

Strip program switches:

When searching for program switches, the runtime first checks to see if the switches were delimited by a space, in
which case the switches are stripped to the right of the space with no other embedded space allowed. For example,
"/usr/a/b /c/d" would treat c and d as switches with the program name being "/usr/a/b". If not delimited by a space,
ICOBOL scans backward from the end of the string picking off "/character" pairs until either no more valid pairs
exist or the beginning of the name. For example, "/usr/a/b/c/d" would treat a, b, c, and d as switches with the
program name being "/usr". See page 310 for a complete description on program switch processing.

CALL check:

When searching for an active or inactive program during a CALL, ICOBOL uses the simple part of the filename in a
case-insensitive fashion. If there is already an active program with that name, it is an error (recursion). If there is
already an inactive program with that name, the program is activated. Otherwise, ICOBOL uses the name to activate
a new program.

Check ICCODEPATH:

ICCODEPATH specifies a list of directories and/or COBOL library files in which to look for COBOL programs
with simple names. If ICCODEPATH is not specified, the simple name is passed to the operating system. Which
will look in the current directory. If ICCODEPATH is specified, each directory and/or COBOL library is searched
sequentially to find the given program file.

799

Interactive COBOL Language Reference & Developer’s Guide - Part Two

E.2.2.2 CALL Statement

Program name is processed as follows for a CALL statement:

1) Check if this is a call to the operating system (`|' as the first character) and process accordingly;
2) Strip program switches;
3) Convert the name to the case specified by ICOBOL (default lower-case);
4) Search for name in the link file and replace with new name if found;
5) If a simple name;

a) check for user-defined subroutines (calls added with the Link Kit) or builtins and process if found;
c) CALL check;
d) check for invalid characters;
e) append `.cx' and check ICCODEPATH. If not found, give an error.

6) If not a simple name;
a) CALL check;
b) check for invalid characters;
c) append `.cx', resolve the name, and look up the file in the operating system. If not found, give an error.

E.2.2.3 CALL PROGRAM Statement

Program name is processed as follows for a CALL PROGRAM statement:

1) Check if this is a system call (prefix of # or ##), process if so
2) Strip program switches
3) Convert the name to the case specified by ICOBOL (default lower-case)
4) Search for name in the link file and replace with new name if found
5) Check for invalid characters
6) If a simple name, append `.cx' and check ICCODEPATH. If not found, give an error.
7) If not a simple name, append `.cx', resolve the name, and look up the file in the operating system. If not

found, give an error.

E.2.2.4 CANCEL Statement

Program name is processed as follows for a CANCEL statement:

1) Strip program switches
2) Convert the name to the case specified by ICOBOL (default lower-case)
3) Search for name in the link file and replace with new name if found
4) Extract the simple name and check to see if there is already an active program with that name, if so give an

error (active), next check to see if there is an inactive program with that name, if so, CANCEL the program
5) Otherwise ignore.

E.2.2.5 IC_DETACH_PROGRAM builtin

Program name is processed as follows for an IC_DETACH_PROGRAM builtin:

1) Extract the program part of the name, (up to the first space),
2) Strip program switches
3) Convert the name to the case specified by ICOBOL (default lower-case)
4) Search for name in the link file and replace with new name if found
5) Check for invalid characters
6) If a simple name, append `.cx' and check ICCODEPATH. If not found, give an error.
7) If not a simple name, append `.cx', resolve the name, and look up the file in the operating system. If not

found, give an error.

800

ICRUN - Filenaming Conventions (Sequential & ICISAM Filenames)

E.2.3 Sequential and ICISAM Filenames

E.2.3.1 Overview

There are several different operations for which ICOBOL needs to process a filename for a sequential or ICISAM
file, and for each operation the process is different. Here are the operations that use a sequential or ICISAM
filename:

• OPEN Statement
• DELETE FILE Statement, along with the IC_DIR_LIST, IC_GET_DISK_SPACE,

IC_MOVE_FILE_DATA builtins
• IC_RENAME builtin

The table below defines a process that is used in some of the operations listed above, as ICOBOL processes a
sequential or ICISAM filename. The section that follows the table will describe how ICOBOL processes a filename
for each of the operations and will use the name of the definition from the table (i.e., Check ICDATAPATH) to
simplify the explanation.

Check ICDATAPATH:

ICDATAPATH specifies a list of directories in which to look for COBOL data files with simple names. If
ICDATAPATH is not specified, the simple name is passed to the operating system, which will look in the current
directory. If ICDATAPATH is specified, each directory is searched sequentially to find the given file. If not found,
and the creation attribute is specified, the file will always be created in the current directory regardless of
ICDATAPATH.

E.2.3.2 OPEN Statement

Filename is processed as follows for an OPEN statement:

1) Check for a pipe open ('|' as the first character); if so, process the OPEN.
2) Strip any extended open options (i.e., the comma-separated list)
3) Convert name to the case specified by ICOBOL (default lower-case)
4) Search for name in the link file and, if found, replace with new name, otherwise, map all RDOS, AOS/VS,

and MS-DOS names to their ICOBOL logical name as defined in TABLE 42 on page 789.
5) Check for a pipe open ('|' as the first character) if so process the OPEN.
6) Check for invalid characters
7) If a simple name, check ICDATAPATH appending ICISAM extensions if needed. If not found, give an error

or create in the current directory as required by the OPEN.
8) If not a simple name, append ICISAM extensions if needed, resolve the name, and look up the file in the

operating system. If not found, give an error or create in the specified directory as required by the OPEN.
9) Process the OPEN.

NOTE: A pipe open does not allow extended open options. Extended open options are discussed beginning on
page 796.

801

Interactive COBOL Language Reference & Developer’s Guide - Part Two

E.2.3.3 DELETE FILE Statement along with IC_DIR_LIST, IC_GET_DISK_SPACE, IC_MOVE_FILE_DATA
builtins

Filename is processed as follows for a DELETE FILE statement and the above named builtins and system calls:

1) Convert name to the case specified by ICOBOL (default lower-case)
2) Search for name in the link file and replace with new name if found
3) Check for invalid characters
4) Append ICISAM extensions if needed, resolve the name, and look up the file in the operating system. If not

found, give an error.
5) Process as specified.

E.2.3.4 IC_RENAME builtin

Filename is processed as follows for IC_RENAME builtin:

1) Convert the name to the case specified by ICOBOL (default lower-case)
2) Check for invalid characters
3) Rename.

E.2.3.5 IC_DETACH_PROGRAM builtin (for the output file)

Filename is processed as follows for IC_DETACH_PROGRAM builtin:

1) If specified, extract the output filename
2) Convert the name to the case specified by ICOBOL (default lower-case)
3) Search for name in the link file and, if found, replace with new name, otherwise, map all RDOS, AOS/VS,

and MS-DOS names to their ICOBOL logical name as defined in TABLE 42 on page 789.
4) Check for invalid characters
5) Resolve name to a fully qualified name
6) Process the OPEN.

F. Extended OPEN options

F.1. Overview

Extended open options are available to allow specification of certain items at open time that may not be known when
the COBOL program is written. The extended open options are a comma-separated list of options that allow the
COBOL programmer to tailor the reads, writes, rewrites, and closes based on information known only at runtime.
Within the extended open options, spaces are ignored.

The extended open options are specific to the file organization (sequential, relative, indexed or infos) and are
described in the following sections. ICOBOL checks the options for validity and will return an error for invalid
options or option value.

The case extended open option, c=l|n|u was added in 5.20, it is NOT supported for programs running in IC2X mode.
It must be the first extended open option and is processed during the filename case conversion.

802

ICRUN - Extended OPEN Options (Sequential)

F.2. Extended Sequential Open

The extended open options for sequential files can be further sub-divided into the following four categories:

OPEN OPTION DESCRIPTION

Extended Device
Open

For all opens that resolve to direct access to a
hardware device.

Extended PDF opens For opens that generate a .PDF file (,x=pdf)

Extended PCQ Open For all opens that will either be explicitly (OPEN
"@PCQn") or implicitly (ASSIGN TO PRINTER or
PRINTER-1) placed into the printer control file.

Extended Disk Open All other cases.

TABLE 47. Four Categories of Extended Open for Sequential Files

F.2.1 (Sequential) Extended Device Open

Extended device open options are allowed for all opens that resolve to direct access to a hardware device. The
attributes for any hardware device, including the current console, can be reset at open by using the extended device
open options.

F.2.1.1 ANSI 74 and ANSI 85 syntax is:

device [,t=timeout] [,e=retries] [,m=y|n] [,r=record-size] [,b=baud]
[,p=n|o|e] [,d=8|7] [,s=1|2] [,f=b|n|i|o]

F.2.1.2 VXCOBOL syntax:

device [,t=timeout] [,b=baud] [,p=n|o|e] [,d=8|7] [,s=1|2] [,f=b|n|i|o]

Where
device

Is any name that resolves to direct access to a hardware device. These can include the logical console,
serial, and printer devices of @CONn, @SERn, or @PRNn.

t=timeout
Sets the timeout in tenths of seconds. This is the maximum inter-character time to wait for the device to
respond before returning an exception on the I/O operation. For a CLOSE, it is the amount of time to wait
to flush buffers before closing the line and resetting the buffers. Valid values are 65535 to wait forever, and
0 - 63000 for that number of tenths of seconds. A File Status 9T (Exception Status 76 "Device timeout")
will be returned if the timeout is taken.

e=retries (ANSI 74 and ANSI 85)
Sets a retry count when writing data-sensitive records. Valid values are 0 - 63. If any one of the Exception
Status values above occurs on the write, the specified number of retries will be performed before the
exception is returned to the COBOL program.

m=y|n (ANSI 74 and ANSI 85)
Specifies that when performing an exception retry to display a message (with a beep) indicating which
exception occurred followed by "Retrying. . ." on the bottom of the user's screen. If the exception condition
is overcome before the retry count is exhausted, the message is erased. Otherwise, a "Retry failure. . ."
message will be displayed.

r=record-size (ANSI 74 and ANSI 85)
Overrides the record size specified at compile time for this FD. The new record-size must be less than or
equal to that specified in the COBOL FD. May not be specified for an EXTERNAL file. For variable-
length files the maximum record size is set.

803

Interactive COBOL Language Reference & Developer’s Guide - Part Two

b=baud
Sets the baud to one of following legal values, 110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400,
56000.

p=n|o|e
Sets the parity to none, odd, or even

d=8|7
Sets the number of data bits to 8 or 7

s=1|2
Sets the number of stop bits to 1 or 2

f=b|n|i|o
Sets both Software Input Flow Control (SIFC) and Software Output Flow Control (SOFC), neither SIFC nor
SOFC, SIFC only, or SOFC only, respectively. When used on a program line, the console interrupt option
will be disabled.

F.2.1.3 Rules

(1) If an attribute is not given, its value is taken from the default set by the operating system.

(2) If a particular option is not applicable for the final hardware device, it is ignored, e.g., baud rate for a
parallel port.

(3) The timeout (t=), retries (e=), message (m=), and record-size (r=) are set on a per COBOL FD basis.

(4) The remaining options, baud (b=), parity (p=), data-bits (d=), stop-bits (s=) and flow control (f=), are the
hardware options and will affect all subsequent I/O on this device until a close is done, at which time the device is
reset to its default value. All closes of a device will reset it to its default state. Thus if you re-open your console
with a new baud rate, the new baud will be in effect until you close the file. Also if you re-open your console with a
flow-control option set the console interrupt option will be disabled until you close the file. For example
"@con,f=n" will open the current console with the current baud, parity, data-bits, and stop-bits while disabling
console interrupt and having both software flow control (SIFC and SOFC) options disabled. This is useful for doing
file transfer via a terminal emulator.

(5) A STOP RUN or any other program termination will do a CLOSE, forcing a reset of the options on the
current console to the default state.

(6) Mdm Ctl (modem control) and Hrd OFS (hardware output flow control) options are never reset due to an
extended device open.

(7) An example of the message retry count would be "...,t=3000,e=10" which specifies that the timeout be set to
5 minutes and the retry count set to 10. Thus before the program gets an error the WRITE will delay for 10 times 5
minutes or 50 minutes. While retrying, if the WRITE can continue, the message will be erased.

F.2.2 (Sequential) Extended PDF Open

The extended PDF open for sequential files has the following syntax:

filename ,[c=l|n|u,] x=pdf [,f=pdf-format] [,p=userpw[|ownerpw]]

Where
filename

Is any disk filename.
c=l|n|u

Allows the case of the filename to be overridden: l for lowercase, n for no case change, u for uppercase.
This must be the first extended open option specified.

804

ICRUN - Extended OPEN Options (Sequential)

x=pdf
Specifies that the data sent to this file should resolve to a generated .PDF file. This option can only be
specified for OUTPUT files. If the .pdf extension is NOT given in filename it is appended.

f=pdf-format
Specifies a defined PDF-format to use for the file. If not specified, a PDF-format of 0 is selected.

p=userpw[|ownerpw] (Added in 5.00)
specifies a user or user and owner password for the resulting .pdf file. When only the userpw is specified, it
is used as both the user and owner password. When both passwords are supplied, the rights are controlled
by which password is used. The owner password has all rights, which includes the ability to change the
password. The user password has the following rights:

Printing: Yes
Changing the document: No
Document assembly: No
Content Copying: Yes
Content Copying for Accessibility: Yes
Page Extractions: No
Commenting: Yes
Filling Form fields: Yes
Signing: Yes
Creation of Template Pages: No

More information can be found under PDF Generation on page 806.

F.2.3 (Sequential) Extended PCQ Open (ANSI 74 and ANSI 85)

For all opens that will have entries either explicitly, with an OPEN "@PCQn", or implicitly, using an ASSIGN TO
PRINTER or PRINTER-1, placed into the printer control file, allow extended pcq open options to be specified.

The syntax is:

filename [,c=l|n|u][,r=record-size] [,i=position] [,q=n] [,d=k|r|d]
[,p=priority] [,c=copies] [,n=y|n] [,a=y|n]

Where
filename

Is any disk filename or @PCQn.
c=l|n|u

Allows the case of the filename to be overridden: l for lowercase, n for no case change, u for uppercase.
This must be the first extended open option specified.

r=record-size
Overrides the record size specified at compile time for this FD. The new record-size must be less than or
equal to that specified at compile time.

i=position
Overrides the initial position to start performing I/O operations. With this option you can start reading at
any byte in the file. For example, "tmp,i=1024" would allow you to start reading or writing at the 1024th
byte. Zero is the beginning of file. If not specified, the default is beginning-of-file for all OPENs except
OPEN EXTEND, in which case it is end-of-file. This option may not be specified for an EXTERNAL file.

q=n
Places this file in the printer control file with its default queue set to n. n must be an enabled printer control
queue (0-2047) or else an error will be raised - file status 91, Exception Status 81 "Device is not available
or does not exist". (The QUEUE IS phrase of the file control entry may be used for the same purpose.)

d=k|r|d
Sets the disposition option to keep (k), remove (r), or delete (d) when this file is placed into the printer
control file.

p=priority
Sets the priority to this value when this file is placed into the printer control file. Valid values are 1 - 255.

805

Interactive COBOL Language Reference & Developer’s Guide - Part Two

c=copies
Sets the copies option to this value when this file is placed into the printer control file.

n=y|n
Sets the notify option to yes or no when this file is placed into the printer control file.

a=y|n
Sets the auto print option to yes or no when this file is placed into the printer control file.

F.2.4 (Sequential) Extended Disk Open (ANSI 74 and ANSI 85)

The extended disk open for all other sequential files has the following syntax:

filename [,c=l|n|u] [,r=record-size] [,i=position]

Where
filename

Is any disk filename.
c=l|n|u

Allows the case of the filename to be overridden. L for lowercase, n for no case change, u for uppercase.
This must be the first extended open option specified.

r=record-size
Overrides the record size specified at compile time for this FD. The new record-size must be less than or
equal to that specified at compile time. This option may not be specified for an EXTERNAL file. For
variable-length files the maximum record size is set.

i=position
Overrides the initial position to start performing I/O operations. With this option you can start reading at
any byte in the file. For example, "tmp,i=1024" would allow you to start reading or writing at the 1024th
byte. Zero is the beginning of file. If not specified, the default is beginning-of-file for all OPENs except
OPEN EXTEND, in which case it is end-of-file.

F.3. Extended Relative Open (ANSI 74 and ANSI 85)

The extended open for relative files has the following syntax:

filename [,c=l|n|u] [,v=7|8] [,p=y|n] [,r=record-size]

Where
filename

Is any disk filename.
c=l|n|u

Allows the case of the filename to be overridden: l for lowercase, n for no case change, u for uppercase.
This must be the first extended open option specified.

v=7|8
Specifies that if this particular file is to be created it should be created as an ICISAM version 7 or 8 file.

p=y|n
Specifies the delete-is-physical attribute for files. The default is n(o), if not specified. This option may not
be specified for an EXTERNAL file.

r=record-size
Overrides the record size specified at compile time for this FD. The new record-size must be less than or
equal to that specified at compile time. This option may not be specified for an EXTERNAL file. For
variable-length files the maximum record size is set.

If an existing file is being opened, all of the specified new parameters must match the attributes of the current file.

806

ICRUN - Extended OPEN Options (Indexed)

F.4. Extended Indexed Open

The extended open for indexed files has the following syntax:

ANSI 74 and ANSI 85

filename [,c=l|n|u] [,v=7|8] [,b=i] [,r=record-size] [,n=number-keys]
[,p=y|n] [,o=offset]... [,l=length]... [,d=y|n]... [,u=y|n]...

VXCOBOL

filename [,c=l|n|u] [,b=i]

Where
filename

Is any disk filename.
c=l|n|u

Allows the case of the filename to be overridden: l for lowercase, n for no case change, u for uppercase.
This must be the first extended open option specified.

b=i
Specifies the record manager to use. To use ICISAM (which is always available) use i.

v=7|8
Specifies that if this particular file is to be created it should be created as an ICISAM version 7 or 8 file.

r=record-size
Overrides the record size specified at compile time for this FD. The new record-size must be less than or
equal to that specified at compile time. This option may not be specified for an EXTERNAL file. For
variable-length files the maximum record size is set.

n=keys
Overrides the number of keys specified at compile time for this FD. The new number of keys must be less
than or equal to that specified at compile time. This option may not be specified for an EXTERNAL file.

p=y|n
Specifies the delete-is-physical attribute for files. The default is n(o), if not specified. This option may not
be specified for an EXTERNAL file.

o=offset
Overrides the offset for each of the keys specified in the order primary, alternate-1, alternate-2, etc. Offset
is zero(0) based, thus o=0 means the first byte in the record. The new offset must be within the old record
size and within the new record size, if specified. This option may not be specified for an EXTERNAL file.

l=length
Overrides the length of each of the keys in the specified order primary, alternate-1, alternate-2, etc. The
length must not be larger than 100 and the key area must be completely contained within the old and new
record areas. This option may not be specified for an EXTERNAL file.

d=y|n
Overrides whether duplicates are allowed or not for a key. No duplicates are allowed indexed files. This
option may not be specified for an EXTERNAL file.

u=y|n
Specifies whether to convert all key entries for this key to upper-case. The default is no. This option may
not be specified for an EXTERNAL file.

807

Interactive COBOL Language Reference & Developer’s Guide - Part Two

NOTES:
1. The o, l, d, and u options can be repeated for the number of keys specified by the n option, or by the

number of keys defined in the FD at compile time.

2. The o, l, d, and u options may also be specified as:

[,o=offset,l=length,d=y|n,u=y|n]...

It is easier to see what is being done with this syntax.

3. The offset (o) and length (l) options may not be used with keys whose file control entry specifies the
PLUS, ALSO, or OCCURS clause.

With these options, it is possible to write programs that do not know the format of a particular file. The format can
be entered or read from a table to allow a generic program to read an ICISAM file and create a report. The first key
offset, length, duplicate is the primary key, the second key offset, length, duplicate, is the first alternate, the third set
is the second alternate, and so on. There is NO re-ordering of the alternate keys like the compiler performs.

If an existing file is being opened, all of the specified new parameters must match the attributes of the current file.

G. ICISAM Information

G.1. Overview

ICOBOL 5 supports two versions of indexed and relative files (7 and 8). Revision 5 and 6 files can be imported and
exported via the ICREORG utility. All ICISAM files consist of two separate files. The .XD file contains a header
along with all the actual data. The .NX file contains a header along with all the index b-trees for the specified keys
to look up records in the .XD part of the file. These two files are both required to successfully use an ICISAM file.

All ICISAM files are created as version 8 files unless the extended open option is used to explicitly specify version 7
or the System Configuration is set to Create version 7 by default..

Version 7 files are limited to 4GB (.xd and .nx) and version 8 files have a limit of 4G (4 billion) records (.xd) and a
16TB index (.nx).

G.2. ICISAM Versions

Version 7 indexed files are compatible with revisions 3.30 and higher of ICHOST and ICOBOL 2.0. Indexed blocks
are allocated as 2048-byte entries. Version 8 indexed files are compatible with ICOBOL 5.00 and higher.

The headers in the .XD and the .NX contain duplicated data allowing for verification at open time and allow the
entire file to be rebuilt using only the .XD portion. Indexed files support the ability to physically delete records, i.e.,
a DELETE places the record on a reuse chain such that the next WRITE will use that record position rather than
allocate a new record area. UNDELETEs cannot be performed when a record has been physically deleted. The
default for indexed file is for delete-is-physical to be disabled.

Indexed files support up to 16 alternate keys, each alternate can allow or not allow duplicates, have a maximum
record size of 16384 bytes (16KB), and a maximum key size of 255 bytes. Indexed files also allow a particular key
path to be set to only add and lookup key entries in upper-case. When set to upper-case mode, all key entries for this
key are converted to upper-case before being added or looked up in the index. Indexed files also support descending
keys, suffixed keys, multiple locations per key, suppressed key values, etc. Indexed files keep a deleted record count
in the header.

808

ICRUN (ICISAM Information)

Version 8 indexed files and relative files are the recommended versions to use unless a compatibility issue is
involved. By default, ICOBOL5 creates version 8 files but can access version 7. The ICREORG utility can be
used to read/create files of any version.

NOTE: VXCOBOL always uses ICISAM for ANSI alternate keyed indexed files and for relative files.
VXCOBOL uses ICISAM for single-keyed files if the -G s switch is specified to ICOBOL when using the
VXCOBOL dialect (-D vx).

G.3. ICISAM Reliability

ICOBOL’s file reliability system helps to insure the logical structure of ICISAM files.

The .XD header of each ICISAM file contains two flag bits, one for the .XD file and one for the .NX file. For an
open ICISAM file, the appropriate flag is set by ICOBOL when that portion of the ICISAM file has been modified
and the modification has not been flushed to disk. These reliability flags are only cleared by ICOBOL when it is
sure the disk image for the file is logically correct. This is done whenever the file is CLOSE’d by any program, an
index root node splits, or a WRITE or REWRITE with the IMMEDIATE option is performed.

If for some reason the system terminates while either one or both of the reliability flags are set, neither ICOBOL nor
most of its utilities will be allowed to OPEN the ICISAM file. The ICCHECK utility must be run on the file to
determine if there really is a problem and if so what the problem is. If no problem exists, ICCHECK will clear the
reliability flags.

G.4. ICISAM Key Ordering

If upgrading from a version 5 or 6 file with alternate keys the order of the duplicate keys that have been rewritten is
different. The order for version 5 and 6 files is always the order of the record in the file. For version 7 and 8 files
the order is always the order in which the duplicate key was written.

In ICISAM files, the order of alternate keys with the same key is the order in which the key-itself was written to the
file. It has nothing to do with the order in which the record physically resides in the data portion of the file. So a
REWRITE that changes an alternate key such that it is a duplicate is created will position that record at the end of
that duplicate key path.

ICREORG's on any ICISAM file has the possibility to CHANGE the order that alternate keys with the same value
will be positioned in the alternate key path since the record and the key will have been rewritten in the order
specified by the ICREORG. (Default is primary key order which is not necessarily the original order.)

Example

Record-A (primary=1 alternate=dave)
Record-B (primary=3 alternate=mary)
Record-C (primary=5 alternate=dave)
Record-D (primary=7 alternate=albert)
Record-E (primary=9 alternate=mary)

** EXAMPLE 1 **

Write records A, B, C, D, E (to an empty file)
Read next on alternate: records D, A, C, B, E

Rewrite record D changing alternate to mary
Read next on alternate: records A, C, B, E, D

809

Interactive COBOL Language Reference & Developer’s Guide - Part Two

ICREORG the above file to a new file using just the defaults will re-order the alternates as such:

icreorg filea fileb

Read next on alternate: records A, C, B, D, E (using fileb)

** EXAMPLE 2 **

Write records C, A, B, D, E (to an empty file)
Read next on alternate: records D, C, A, B, E

Rewrite record D changing alternate to mary
Read next on alternate: records C, A, B, E, D

ICREORG the above file to a new file using just the defaults will re-order the alternates as such:

icreorg filea fileb

Read next on alternate: records A, C, B, D, E (using fileb)

In ICOBOL 5, to create a version 7 the extended open option of ",v=7" must be added to the filename at OPEN.
Version 5 and 6 files are not supported directly by the runtime. ICREORG can be used to convert to a newer format.

H. Notes and Warnings

Many early versions of ICOBOL detect SIZE ERROR incorrectly when the receiving item is SIGNED COMP (and
the ANSI switch was NOT used on the 1.xx Interactive COBOL compiler). Current versions of ICOBOL determine
SIZE ERROR based on whether the binary value of the absolute value of the result will fit in the number of bytes.
For example, a PIC S99 COMP takes 1-byte and can store (in binary) -128 to 127.

On Linux

ICOBOL handles the following Linux signals with the given action:

Linux signal Action

SIGHUP (01) Terminate ICOBOL
SIGINT (02) ICOBOL console interrupt Linux Intr key (usually Ctrl-Del)
SIGQUIT(03) Terminate ICOBOL Linux Quit key (usually Ctrl-\)
SIGPIPE(13) Terminate ICOBOL
SIGTERM(15) Terminate ICOBOL
SIGUSR1(16) Abort the ICOBOL program
SIGPWR (19) Terminate ICOBOL

The Linux Intr and Quit keys can be viewed or changed to different values by using the Linux stty command.

810

ICRUN (Pipe Opens)

I. Pipe Opens

I.1. Overview

A sequential OPEN INPUT, OPEN I-O, or OPEN OUTPUT/EXTEND can accept pipelines to and from the Linux
shell or Windows operating system (added in 4.10) when opening sequential files. The format for specifying a
pipeline as a filename is:

"|>command" (pipe to a command - OPEN OUTPUT/EXTEND)
"|<command" (pipe from a command - OPEN INPUT)
"|<>command" (pipe from and to a command - OPEN I-O) (Added in 4.10)

Where
command

Is any valid Bourne shell or Windows operating system syntax.

The particular command must be able to accept input on standard-in if it is being opened for output, extend, or I/O
and it must be able to return data via its standard-out if it is being opened for input or I/O.

I.2. Rules

(1) If a file is sequentially organized, OPEN can be directed to open a pipe to either standard input, standard
output, or both standard input and standard output of the command. When the runtime system encounters the pipe
command format while a COBOL OPEN statement is executing, the system opens a pipe for that command. Under
Linux, the shell then interprets the command as though you had entered the string sh -c command. Under Windows,
the command is given directly to the operating system to be executed. Each pipe open requires the creation of an
additional process.

(2) If the first three characters of the pipeline are "|<>", then the OPEN mode must be I-O and the output
written to the COBOL file by the runtime system becomes standard input of command and the standard output of
command becomes the data read from the COBOL file by the runtime system. If the first two characters of the
pipeline are "|>", then the OPEN mode must be OUTPUT or EXTEND and the output written to the COBOL file by
the runtime system becomes standard input of command. If the first two characters of the pipeline are "|<", then the
OPEN mode must be INPUT and the standard output of command becomes the data read from the COBOL file by
the runtime system. If the correct open mode is not used, the OPEN fails with a FILE STATUS 91.

(3) When opening a pipe to or from a shell command, the shell looks for the command in the PATH variable,
not ICCODEPATH.

(4) The DELETE FILE statement has no effect in these cases. When a file is closed that has been opened this
way, the CLOSE statement halts the writing to the pipe and tells the runtime system to wait for the process on the
other end of the pipe to terminate.

(5) This syntax is allowed on the right hand side in the linkfile produced by ICLINK. Thus, the following
syntax could be used to open a pipe to the Linux print spooler.

In the linktextfile:

$lpt |>lp -dprinter1 -onobanner

(6) On the CLOSE, the Exception Status is set and the ON EXCEPTION clause, if specified, will be performed.
Otherwise, the returned exit code is placed into Exception Status, but the ON EXCEPTION clause is not executed.
Thus both error and non-error cases can be tested.

811

Interactive COBOL Language Reference & Developer’s Guide - Part Two

J. PDF GENERATION (Added in 4.10)

J.1. Introduction

Starting in 4.10 the runtime can generate .PDF files.

This can be done either thru the use of the extended open options (x=pdf) and writing to the newly opened file, by
using the IC_PDF_PRINT builtin to create one from an existing file, or from the Printer Control Utility using an
existing file in printer control.

The extended PDF open for sequential files has the following syntax:

filename ,x=pdf [,f=pdf-format] [,p=userpw[|ownerpw]]

Where
filename

Is any disk filename.
x=pdf

Specifies that the data sent to this file should resolve to a generated .PDF file. This option can only be
specified for OUTPUT files. If the .pdf extension is NOT given in filename it is appended.

f=pdf-format
Specifies a defined PDF-format to use for the file. If not specified, a PDF-format of 0 is selected.

p=userpw[|ownerpw]
Specifies a user or user and owner password for the resulting .pdf file. When only the userpw is specified,
it is used as both the user and owner password. When both passwords are supplied, the rights are controlled
by which password is used. The owner password has all rights, which includes the ability to change the
password. The user password has the following rights:

Printing: Yes
Changing the document: No
Document assembly: No
Content Copying: Yes
Content Copying for Accessibility: Yes
Page Extractions: No
Commenting: Yes
Filling Form fields: Yes
Signing: Yes
Creation of Template Pages: No

PDF files are generated based on a particular PDF Format. These formats must be pre configured by ICCONFIG or
ICEDCFW in the configuration file. An overview of a PDF Format is shown in the following Section M.2.

Each particular PDF Format specifies how a new .PDF file should be created as data is written to the file. The
particular items include the page size, margins, font, font-size, etc. In addition, a background form can be imposed
on each page, including the ability to generate multi-part forms.

Any errors generated when sending data to a .PDF file will be logged in the audit log if specified.

When a pdf file is generated, the following properties are set in the .PDF file.

Filename,
Author (current user),
Created date/time,
Application set to icrun with its revision,
PDF Producer is set to Envyr Corporation,
PDF Version is set to 1.5,
Location is set to the directory,
File Size,

812

ICRUN (PDF Generation)

Page Size.

Properties that are not set include: Title, Subject, Keywords, and Modified.

The use of a Background form allows a Form to be imposed as the background to the characters that are to be
printed. This allows for special forms to no longer be purchased. These Background forms can be any .PDF file.
Several methods of creating these background .PDF form files are: A) scan an image, B) create a .ps file from a
program and then use something like Adobe Acrobat, C) use a program that can generate a .PDF directly like many
newer word processors. Background forms are found using either ICCONFIGDIR or the current directory.

The support of multipage images's allows for the logical printing of multiple part forms. For example, you could
have a multipage image that is an Invoice and at the bottom of page one it will say "Customer Copy", at the bottom
of page 2 it will say "Company Copy", at the bottom of page 3 it will say "Receipt", and finally at the bottom of page
4 it says "File Copy". The multipart count must be set to the number of pages in the image.

Now when a single "page" is printed using that form, 4 physical pages will be sent to the .pdf file with each page of
the background being different.

When using PDF creation, some possible errors at open include:

276 PDF writing facility is not available (need a pdf licemse)
277 PDF format requested is not configured or enabled.
280 The required form for PDF writing had errors
281 The background form uses features that are not implemented yet
282 The background form reader encountered unexpected errors with the file
283 The background form has attribute values that are not supported

Only OPEN OUTPUT is supported when generating a PDF file. PDF files cannot be read or appended by ICOBOL.

Some sample background image files are provided in the examples directory. These include:

pastdue_bw.pdf
pastdue_color.pdf
preliminary_watermark.pdf
four_page_sample.pdf
sampleinvoice1.pdf

J.2. PDF Format

This section provides a brief overview of a PDF format that can be set in either ICCONFIG or ICEDCFW. Below
shows a PDF Format setting screen.

813

Interactive COBOL Language Reference & Developer’s Guide - Part Two

 PDF Format Configuration
 Format Number: 0___

 Enable? Y Comment: ____________________

 Paper: Letter Width: 612 (8.5) Height: 792 (11)
 Background Form: ___________________________
 UseOnce: N Multipart: N Scale: N Center: Y FitMargins: N

 Margins: Top: 36 (0.5)
 Left: 18 (0.25) Right: 18 (0.25)
 Bottom: 36 (0.5)

 Font Name: Courier Alignment: None
 Font Size: 12 Line Spacing: 0 (0)

 Autowrap: N Landscape: N Multipart Count: 1

 Summary: Page Size: 612 x 792 units (8.5 x 11 inches)
 Printable Area: 576 x 720 units (8 x 10 inches)
 Approximately 80 characters by 60 lines

 Page Dimensions and Margins are in 1/72 inch units. Parentheses show inches.
 Press <up>, <down> or Enter, F3 previous, F4 next, F5 to copy, ESC to exit.

SCREEN 5. ICCONFIG PDF FORMATS CONFIGURATION

Where:
Format Number

is the particular format description to be configured. The range of values is as specified in the System
Parameters configuration. Currently up to 256 formats can be specified.

Enable
set to Yes allows this PDF Format to be used.

Comment
provides an optional brief description of this format. This description is stored in the shared area and is
viewable by ICSMVIEW or in the Printer Control Utility.

Paper
allows for a particular paper size to be entered by scrolling through the various predefined sizes or by
entering a custom size which allows for the specific size to be set. Valid selections include A5, A4,
Executive, Lineprinter, Tabloid, Ledger, Legal, Letter, and Custom.

Background Form
is optional and allows a background image file (in .pdf format) to be specified that will be imposed on the
pdf image to be created. At runtime this form must be present in the print subdirectory under ICROOT or
via ICCONFIGDIR.

The following selections only apply if a background image is specified:

UseOnce: Y/N (Default is N)
Y=use the background form one time (ReuseLastPage appears)
N=old behavior (MultiPart appears)

ReuseLastPage: Y/N (Appears only when UseOnce=Y)
Y=once the form has been used, reuse the last page of the form for all the remaining pages.

When used with a 1-page form, the effect is the same as UseOnce=N.
N=once the form is used, print remaining pages with no form.

ReuseLastPage is useful to have a unique first page.

Multipart
specifies whether this background image is a multi-page document. When set, the runtime will
generate a logical page multiple times for each page in the image. The default is No.

Scale
specifies whether to scale the background image. When set to Yes, the image will be scaled to either
the paper size or margin size. The aspect ratio is kept intact. The default is No.

Center

814

ICRUN (PDF Generation)

specifies whether the background image should be centered. When set to Yes, the image will be
centered to either the paper size or margin setting. The default is Yes.

Fit Margins
specifies whether to use the margin settings or the paper size should be used when scaling or centering
the image. The default is the No (use paper size).

Margins
allows the specific inside margins (Top, Left, Right, Bottom) to be specified for this format. Units are in
points, which are 1/72 inch units. The defaults are 36 (.5 in) for Top and Bottom and 18 (.25 in) for Left
and Right.

Font Name
allows for a specific supported font to be entered. Currently supported fonts include: Courier,
Courier-Oblique, Courier-Bold, Courier-BoldOblique, Helvetica, Helvetica-Oblique, Helvetica-Bold,
Helvetica-BoldOblique, Times-Roman, Times-Italic, Times-Bold, and Times-BoldItalic. These are 12 of
the 14 standard Adobe fonts. The default is Courier. (Oblique is commonly known as Italic.)

Alignment
is shown when a proportional font is specified and instructs how characters are to be placed on a page.
Valid selections are: None, Character, Word. None is the default. Character will treat the font like a fixed
font and place each character is a fixed position on the line. Word will set each word into a calculated fixed
position.

Font Size
is the specified size in points. Size can range from 2 to 72. For example, a 12-point Courier font provides
10 characters per inch. The 10 is usually referred to a the pitch for fixed fonts.. A 10-point Courier
provides 12 characters per inch, i.e., 12 pitch. The default is 12.

Line Spacing
specifies the default spacing between lines in points. The line height is the sum of font size and line
spacing. The default is 0.

Autowrap
specifies whether to wrap lines that are too long or truncate the lines. The default is No (truncate).

Landscape
specifies whether this page should be treated as landscape or portrait. (Swaps width and height.) The
default is No (portrait).

Multipart Count
specifies whether to generate multiple pages for each page. If this value is greater than 1, then a multi-part
form will be generated. If a multi-page image is specified and Multipart is set to Y then this value MUST
match the number of pages in the image. If a multi-page image file was specified, but Multipart is set to N,
then this file will be used in a modulo fashion as logical pages are presented. The default is 1.

The Summary section at the bottom of the screen shows a summary of the pdf page specifics. This is kept constantly
updated as selections are made in the screen.

All page dimensions and margins are in points which are 1/72 inch units. The values in parenthesis (x) show inches.

J.3. PDF Sample

A sample program, (pdfsample.sr, .cx) is provided in the examples subdirectory along a with a sample background
.PDF invoice (sampleinvoice1.pdf) in the examples subdirectory. A final sample output is provided as
Finalinvoice.pdf in the examples subdirectory.

The sample program can be used to create a basic .PDF file, provide alignment information when using a
background .PDF, and shows an actual printing of a basic Invoice using the sample invoice background .PDF
provided.

The sampleinvoice1.pdf is provided assumes margins are .5 on all sides, and a Courier font of size 10. The source
code in pdfsample.sr shows the specific lines and columns that are available to be filled in.

815

Interactive COBOL Language Reference & Developer’s Guide - Part Two

Two additional sample background .PDF file are also provided as sampleinvoicep.pdf and sampleinvoice1pd.pdf
that have a PAID and PAST DUE watermark respectively added to the base invoice. The PAST DUE water mark is
provided in Red to highlight the invoice.

K. HOT KEYS

K.1. Introduction

Hot keys are available in Interactive COBOL to allow a specific program (a hotkey program) to be run when a
particular key is pressed without changing the currently running program. For example, to provide a pop-up
calculator or calendar.

Hot keys are defined in the terminal description file (.tdi). Enter the Configure Keyboard selection under Terminal
Descriptions and change the Type for an input key to "Hot Key Function" and the Code to the particular hotkey
program to be run. Available hotkey programs are "hotkey00" thru "hotkey99".

Keys that are described as "Hot Key Function" can never be seen by an application. For this reason, although there
are no restrictions imposed by Interactive COBOL, printable characters, standard delimiter keys (newline,
carriage-return, ESC, Tab (used by Print Utility), F1 - F3, and screen edit keys (Ctrl-A, Ctrl-R, Ctrl-V, etc.) should
be avoided. Particular function keys needed by the current COBOL application should also be avoided.

If the particular hotkey program is not available or otherwise gets an error while loading, a beep will be given.

To link a particular program to a hotkey program you can either rename the program to the particular hotkey name,
"hotkey00", "hotkey01", etc. or use the linking facility (ICLINK) to provide for runtime linking of the hotkey
program name to the actual COBOL program.

K.2. Construction

Hotkey programs are most useful when they use the SCREEN HANDLER functions to save and restore screens,
even though hotkey programs do not require the SCREEN HANDLER. Hotkey programs should be designed to
detect whether the SCREEN HANDLER is running and perform the appropriate functions.

We suggest that the hotkey program should perform an SD_NEW_WINDOW when it first starts and an
SD_REMOVE_WINDOW just before it exits. It can then freely use the screen to interact with the user. When it
exits, the screen will be restored. The hotkey program can also be used to perform lookups and return data to the
ACCEPT field with the SD_RETURN_INPUT call.

If your application uses an initial program to allow the user to logon via a username and password type scheme, you
should make sure that any hotkey program that is installed disallows its use if the user has not properly logged on.

Hotkey programs should also insure that they do not do a STOP RUN or CALL PROGRAM or get a Fatal Error
since that will stop the entire run unit. A hotkey program should be written like a CALL subprogram such that it will
always return to its calling program.

The builtin functions IC_ENABLE_HOTKEY and IC_DISABLE_HOTKEY provide the ability to selectively allow
or disallow access to hotkey programs.

K.3. Restrictions

Hot keys cannot be used while in a builtin or system call.

Hotkey programs must abide by the same subprogram rules (recursion) as normal subprograms.

816

ICRUN (Hot Keys)

Hot keys are only recognized during an ACCEPT operation on the current console.

If the hotkey program was started initially by a hot key then it is automatically CANCEL'ed on exit. If the hotkey
program was already loaded (via a CALL) it is not CANCEL'ed on exit. I.E., a hotkey
 program will always start in its initial state if it was not previously loaded with a CALL.

If a hotkey program CALL's a program that was not already loaded it will not be automatically CANCEL'ed when it
exits. The hotkey program must explicitly cancel subprograms that it initiates.

Up to 100 unique hotkey programs can be configured, "hotkey00" thru "hotkey99".

There is no mechanism to pass parameters to a hotkey program.

Hotkey programs can be any program (including builtins) that can be CALL'ed from a COBOL program, but not an
operating system program although you can build a COBOL stub program that in turn calls an operating system
program.

K.4. Example

The program sysserve in the examples directory in the Runtime release is a sample HotKey program that provides a
System Services screen. If the SCREEN HANDLER is available it uses it to save the initial screen that will be
restored when it exits. If no SCREEN HANDLER is available the screen is blanked when it exits.

817

Interactive COBOL Language Reference & Developer’s Guide - Part Two

818

ICODBC Driver

XVI. ICODBC Driver

A. Introduction

The Interactive COBOL ODBC Driver (ICODBC32.DLL) for Windows is available as both a 32-bit and 64-bit
ODBC Driver that provides an ODBC-compliant interface via icodbc32.dll. It is accessible from both 32-bit and
64-bit ODBC-enabled applications.

The Interactive COBOL ODBC Driver (ICODBC.SO) for Linux is available as both a 32-bit and 64-bit ODBC
Driver that provides an ODBC-compliant interface via icodbc.so. This interface can be used with the unixODBC
Driver Manager. One program in particular that makes use of this interface is the JDBC-ODBC Bridge under the
Java Runtime.

ICODBC is a fully functional ODBC Driver (SQL-92 Entry level compliant) providing access to Interactive COBOL
data records stored in INDEXED ORGANIZATION files. Through this mechanism it is possible for ODBC-enabled
programs (e.g., Crystal Reports, Visual Basic, PowerBuilder, Microsoft Access, etc...) to use SQL to access legacy
Interactive COBOL INDEXED file data records as if they were rows of a table in an SQL relational database.

B. General Information

On Windows, for the purpose of buffering file data within an application, multiple opens of the same local/redirected
file are commoned by using the lower case rendition of the file name supplied to the driver. It is important to always
specify the identical filename (or alias) and not a different alias to refer to a particular file. This applies to database
and table definition files as well as data (INDEXED) file names. On Linux, the inode number is used so the name is
not important for buffering.

The ICODBC Driver optionally connects to the shared memory area created and initialized by the Interactive
COBOL System Executive Program (ICEXEC). Multi-user file sharing, buffering, and record locking are handled
more efficiently through this mechanism as opposed to a stand-alone (single-user) environment.

C. Using the Driver

In order for the ICODBC driver to provide for the INDEXED to SQL data translation, the application builder must
supply information regarding the database, the tables comprising the database, and the rows and columns comprising
each table. Simply speaking, an INDEXED file can be viewed as a table (or tables) comprised of a set of rows
(records), each one specifying a value for a column (field).

The ICODBC driver utilizes two ASCII text files, which are formatted according to Microsoft Windows
initialization (.ini) file conventions, to describe the appropriate view of a database and the tables which it contains.
The two files are the .xdb (Database definition) file, which describes a database; and the .xdt (Table Definition) file,
which describes a table. The key names are case-sensitive and must appear in the file exactly as specified
below.

For a given database, the .xdb file explicitly specifies the number of tables comprising that database, defining the
name, the INDEXED file, and the Table definition file for each one. Although there is an obvious relationship
between an INDEXED file and a Table Definition file, there is no forced association required by the driver. Thus, it
is possible to describe different databases using the same Table Definitions paired with different instances of
INDEXED files.

For a table, the .xdt file explicitly specifies the number of columns comprising the table, defining the name, the
position, size, and type of the data field corresponding to each. Although there may be obvious relationships
between the data fields of a record and the columns of a table, the driver does not enforce a particular correspon-
dence. Thus it is possible to describe different columns of a table using the same data field, or to describe the
columns of a table using only some of the data fields available. In many cases it may be necessary to have one

819

Interactive COBOL Language Reference & Developer’s Guide - Part Two

column that is the whole row (record), along with individual columns that may or may not duplicate other columns in
the row (record).

D. Creating .XDB and XDT Files

The ICOBOL compiler (when started with the Make ICODBC Definition Files switch (-M)) can be used to create a
preliminary Database Definition file (.xdb) and Table Definition File(s) (.xdt) as it compiles a source program.
These preliminary files can provide a starting point for tailoring the definitions of your database and tables. The
ICODBC Options switch (-X string) on the compiler can be used to set specific ICODBC generation options. See
page 750 in the Compiler Chapter for more on the compiler ICODBC Options switch.

For the Database Definition file (.xdb), the compiler will create the [Database] section with the NumTables key and
then will generate the [Tables] section and individual [<table-names>] sections based on the number of Indexed files
found in the program.

For the Table Definition file(s) (.xdt), the compiler will create the [Table] section with NumColumns,
MaxRecordSize, and MinRecordSize keys, the [Primary Key] section, the [Columns] section, and finally the
[<column-names>] sections with Type, Position, Length keys along with any other key that is needed for the
particular Type, for each of the columns that were detected in the record definition of the COBOL program..

In the descriptions below, the characters ‘[‘ and ‘]’ are required (they are not part of an optional definition). These
define “Section Names” in the file. Within Sections are “keys” which have a value associated with them. Leading
spaces are ignored and blank lines are ignored. A semi-colon (;) starts a comment.

The Database Definition File (.xdb)

XDB Syntax (Bold lines are required.)

[Database]
NumTables=<number-of-tables>
OpenMode=<open-mode>
BaseYear=<base-year-value>
BaseYearPivot=<base-year-pivot-value>
EpochYear=<epoch-year-value>
EpochDay=<epoch-day-value>
EpochTick=<epoch-tick-value>
ProxyDate=<date-value>
ProxyTime=<time-value>
ProxyTimestamp=<timestamp-value>
Username=<username-value>
Password=<password-value>

[Tables]
<table-name-1>
...
<table-name-n>

[<table-name-1>]
TableFile=<table-definition-file-name>
DataFile=<data-file-name>
...

[<table-name-n>]
TableFile=<table-definition-file-name>
DataFile=<data-file-name>

820

ICODBC Driver (Creating .XDB and .XDT Files)

XDB General Rules

* "NumTables" key is required and the value of <number-of-tables> must match the number of table names listed
in the [Tables] section and the number of [<table-name-i>] sections.

* "OpenMode" key is optional and specifies the open mode for the data files comprising the database. The value of
<open-mode> must be one of either "INPUT", "OUTPUT", "I-O", or "EXTEND". If this key is not specified, a
default value of "INPUT" is implied. This value can be overridden by the presence of an "OpenMode" key in
the [Table] section of the individual Table Definition files (see below).

* "BaseYear" key is optional and specifies the century year to be added to the two or three digit year values of the
DAY and DATE data types described below. The value of <base-year-value> must be a valid numeric edited
string literal, and must specify a year greater than or equal to 1600 (up to 32700) that is a century (i.e., divisible
by 100). If this key is not specified, a default value of 1900 is implied.

* "BaseYearPivot" key is optional and specifies the two-digit year value of the DAY and DATE data types
described below, to which, if less than, a century (i.e., 100 years) will be added, in addition to the value of
<base-year-value>. The value of <base-year-pivot-value> must be a valid numeric edited string literal, and
must be greater than 0 and less than 99. If this key is not specified, a default value of 0 is implied.

* "EpochYear" key is optional and specifies the starting year of time (as represented by a zero value) for the
corresponding epoch data types described below. The value of <epoch-year-value> must be a valid numeric
edited string literal, and must specify a year greater than (up to 32767) or equal to 1601. If this key is not
specified, a default value of 1601 is implied.

* "EpochDay" key is optional and specifies the starting day of time (as represented by a zero value) for the
corresponding epoch data types described below. The value of <epoch-day-value> must be a valid numeric
edited string literal, and must specify a day greater than or equal to 1 and less than or equal to 365 (or 366 if
<epoch-year-value> represents a leap year). If this key is not specified, a default value of '01-01' (i.e.,
January 1) is implied.

* "EpochTick" key is optional and specifies the discrete unit of time that passes between single value increments of
epoch data types described below. The value of <epoch-tick-value> must be must be one of either "SECOND",
"BISECOND", "MINUTE", or "DAY". If this key is not specified, a default value of "SECOND" is implied.

* "ProxyDate" key is optional and specifies a particular value to be substituted for otherwise invalid values when
retrieving SQL_DATE data. The value of <date-value> must be of the form 'yyyy-mm-dd' (e.g. "0001-01-01").

* "ProxyTime" key is optional and specifies a particular value to be substituted for otherwise invalid values for
SQL_TIME data. The value of <time-value> must be of the form 'hh:mm:ss' (e.g. "00:00:00").

* "ProxyTimestamp" key is optional and specifies a particular value to be substituted for otherwise invalid values
for SQL_TIMESTAMP data. The value of <timestamp-value> must be of the form 'yyyy-mm-dd hh:mm:ss.ff'
(e.g. "0001-01-01 00:00:00.00").

* There must be an identically named section for each <table-name-i> specified in the [Tables] section. At least
one Table is required.

* <table-definition-file-name> must be a valid pathname specifying a valid Table Definition (.xdt) file, the ".xdt"
extension is not required. It may be a 'relative' (as opposed to 'absolute') pathname, in which case the pathname
specifier for the Database Definition (.xdb) file in the Data Source will be automatically prefixed to it. It may
also be a URL specification as documented for ICNETD in the Interactive COBOL Utilities Manual. It may
contain a single variable name reference to be substituted with an assigned value when a connection to the
database is established. Variable names are delimited by a leading and trailing percent character ('%').

* <data-file-name> must be a valid pathname specifying an ICOBOL INDEXED file. It may be a 'relative' (as
opposed to 'absolute') pathname, in which case the pathname specifier for the Database Definition (.xdb) file in
the Data Source will be automatically prefixed to it. It may also be a URL specification as documented for

821

Interactive COBOL Language Reference & Developer’s Guide - Part Two

ICNETD in the Interactive COBOL Utilities Manual. It may contain a single variable name reference to be
substituted with an assigned value when a connection to the database is established. Variable names are
delimited by a leading and trailing percent character ('%').

The Table Definition File (.xdt)

XDT Syntax (Basic Structure) (Bold lines are required.)

[Table]
NumColumns=<number-of-columns>
MaxRecordSize=<maximum-data-record-size>
MinRecordSize=<minimum-data-record-size>
OpenMode=<open-mode>
PrimaryKeyName=<primary-key-name>
NumSelectors=<number-of-selectors>

[Primary Key]
<column-name-p1>
...
<column-name-pN>

[Columns]
<column-name-1>
...
<column-name-n>

[<column-name-1>]
Type=<data-storage-type>
Position=<data-byte-position>
Length=<data-byte-length>
Precision=<data-digits-of-precision>
Scale=<data-digits-of-scale>
Picture=<data-storage-picture>
Suppress=<data-byte-suppress-when-value>
Padding=<data-byte-padding-value>
Default=<data-value>

...

[<column-name-n>]
Type=<data-storage-type>
Position=<data-byte-position>
Length=<data-byte-length>
Precision=<data-digits-of-precision>
Scale=<data-digits-of-scale>
Picture=<data-storage-picture>
Suppress=<data-byte-suppress-when-value>
Padding=<data-byte-padding-value>
Default=<data-value>

XDT Syntax (Advanced Structure) (Bold lines are required.)

[Selector]
Type=<data-storage-type>
Position=<data-byte-position>
Length=<data-byte-length>
Precision=<data-digits-of-precision>
Scale=<data-digits-of-scale>
Value=<data-value>
Relation=<data-record-selector-relation>

[Selectors]
<selector-name-1>

822

ICODBC Driver (Creating .XDB and .XDT Files)
...
<selector-name-n>

[<selector-name-1>]
Type=<data-storage-type>
Position=<data-byte-position>
Length=<data-byte-length>
Precision=<data-digits-of-precision>
Scale=<data-digits-of-scale>
Value=<data-value>
Relation=<data-record-selector-relation>

...

[<selector-name-n>]
Type=<data-storage-type>
Position=<data-byte-position>
Length=<data-byte-length>
Precision=<data-digits-of-precision>
Scale=<data-digits-of-scale>
Value=<data-value>
Relation=<data-record-selector-relation>

[Foreign Keys]
<foreign-key-table-name-f1>=<foreign-key-name-1>
...
<foreign-key-table-name-fN>=<foreign-key-name-n>

[<foreign-key-name-j>]
<column-name-fj0>
...
<column-name-fjN>

General Rules

* "NumColumns" key is required and specifies the number of columns in the table. The value of
<number-of-columns> must match the number of column names listed in the [Columns] section and the number
of [<column-name-i>] sections.

* “MaxRecordSize” and “MinRecordSize” keys are required. <maximum-data-record-size> and
<minimum-data- record-size> values must respectively match the actual maximum and minimum record sizes
of the INDEXED file; and they must be the same if the records are fixed-length.

* "OpenMode" key is optional and specifies the open mode for the data file of the table. The value of
<open-mode> must be one of either "INPUT", "OUTPUT", "I-O", or "EXTEND". If this key is not specified,
the value specified by the "OpenMode" key in the [Database] section of the Database Definition file is implied.

* "PrimaryKeyName" key is optional and specifies the primary key for the purposes of foreign key reference.

* "NumSelectors" key is optional and specifies the number of record selectors for the table. A record selector
specifies a subset of the records in the INDEXED file which are to be considered as rows in the table. The value
of <number-of-selectors> must match the number of selector names listed in the [Selectors] section and the
number of [<selector-name-i>] sections.

* [Primary Key] section is optional and specifies the column(s) of the table which comprise the primary key. In
general specifying this column will allow faster access to the data. In order for the Microsoft Jet Database
Engine (see more later in the Usage section) to be able to create a dynaset over rows of the table, this section
must be specified, and all of the columns specified must be either "ALPHABETIC" or "ALPHANUMERIC",

823

Interactive COBOL Language Reference & Developer’s Guide - Part Two

* There must be an identically named section for each <column- name-i> specified in the [Columns] section.

* "Type" key is required for the [<column-name-I>], [Selector], or [<selector-name-i>] section if specified, and
specifies the data storage type of the item.

* <data-storage-type> value must be one of either "BYTE", "ALPHABETIC", "ALPHANUMERIC",
"DISPLAY", "TRAILING OVERPUNCH", "TRAILING SEPARATE", "LEADING OVERPUNCH",
"LEADING SEPARATE", "UNSIGNED DISPLAY", "COMP", "UNSIGNED COMP", "COMP-3",
"UNSIGNED COMP-3", "COMP-5", "UNSIGNED COMP-5", "DAY", "COMP DAY", "DATE",
"COMP DATE", "COMP DATE GROUP", "TIME", "COMP TIME", "COMP TIME GROUP",
"FULLDATE", "EPOCH TIMESTAMP", or "COMP EPOCH TIMESTAMP", matching the ICOBOL data
type of the corresponding field.

* <data-value> value may be any character string literal (unquoted) if the <data-storage-type> of the item is
"ALPHABETIC" or "ALPHANUMERIC". Otherwise, if the <data-storage-type> of the item is "BYTE", the
value of <data-value> must be a valid hexadecimal string literal (unquoted). Otherwise, if the
<data-storage-type> of the item is "DISPLAY", "TRAILING OVERPUNCH", "TRAILING SEPARATE",
"LEADING OVERPUNCH", "LEADING SEPARATE", "UNSIGNED DISPLAY", "COMP",
"UNSIGNED COMP", "COMP-3", "UNSIGNED COMP-3", "COMP-5", or "UNSIGNED COMP-5", the value
of <data-value> must be a valid numeric edited string literal. Otherwise, if the <data-storage-type> of the item
is "DAY", "COMP DAY", "DATE", "COMP DATE", or "COMP DATE GROUP", the value of <data-value>
must be a character string literal (unquoted) of the form 'yyyy-mm-dd'. Otherwise, if the <data-storage-type>
of the item is "TIME", "COMP TIME", or "COMP TIME GROUP", the value of <data-value> must be a
character string literal (unquoted) of the form 'hh:mm:ss'. Otherwise, if the <data-storage-type> of the item is
"FULLDATE", "EPOCH TIMESTAMP", or "COMP EPOCH TIMESTAMP", the value of <data-value> must
be a character string literal (unquoted) of the form 'yyyy-mm-dd hh:mm:ss.ff'.

* "Position" key is required for the [<column-name-I>], [Selector], or [<selector-name-i>] section if specified,
and specifies the data byte position of the item.

* <data-byte-position> value must be the byte position (one-based) within a record to the data field corresponding
to the column.

* "Length" key is required for the [<column-name-I>] or [Selector] section if specified, and specifies the data byte
length of the item.

* <data-byte-length> value must be the length in bytes within a record of the data field corresponding to the
column.

* For a section where the value of <data-storage-type> is "BYTE", "ALPHABETIC" or "ALPHANUMERIC",
neither the "Precision" key nor the "Scale" key may be present.

* For a section where the value of <data-storage-type> is not "BYTE", "ALPHABETIC" or "ALPHANUMERIC",
the "Precision" key must be present.

* For a section where the value of <data-storage-type> is "DAY", "COMP DAY", "DATE", "COMP DATE",
"COMP DATE GROUP", "TIME", "COMP TIME", "COMP TIME GROUP", "FULLDATE",
"EPOCH TIMESTAMP", or "COMP EPOCH TIMESTAMP" the "Scale" key must not be present.

* For a section where the value of <data-storage-type> is "COMP DATE GROUP" or "COMP TIME GROUP",
the value of <data-digits-of-precision> must be the total number of decimal digits in all the elementary items of
the group.

* <data-digits-of-precision> value must be the total number of decimal digits to the left and right of the decimal
point defined for the data field corresponding to the column. (e.g., if the field is defined as "PIC 9999V99", the
value is 6).

824

ICODBC Driver (Creating .XDB and .XDT Files)

* <data-digits-of-scale> value must be the number of decimal digits to the right of the decimal point defined for
the data field corresponding to the column. (e.g., if the field is defined as "PIC 9999V99", the value is 2).

* "Picture" key is optional and may be present only for a section where the value of <data-storage-type> is
"DATE", "COMP DATE" or "COMP DATE GROUP". The value of <data-storage-picture> must be one of
either "YYYYMMDD", "YYYYDDMM", "MMDDYYYY", "MMYYYYDD", "DDMMYYYY",
"DDYYYYMM", "CCYYMMDD", "CCYYDDMM", "MMDDCCYY", "MMCCYYDD", "DDMMCCYY", or
"DDCCYYMM" if the value of <data-digits-of-precision> is 8; it must be one of either "YYYMMDD",
"YYYDDMM", "MMDDYYY", "MMYYYDD", "DDMMYYY", or "DDYYYMM" if the value is 7; and it
must be one of either "YYMMDD", "YYDDMM", "MMDDYY", "MMYYDD", "DDMMYY", or
"DDYYMM" if the value is 6.

* "Suppress" key is optional; but if present, the value of <data-byte-suppress-when-value> must be the numeric
value (0 to 255) which when present in all bytes of the data field indicates that the value of the column is
considered empty or null.

* "Padding" key is optional; but if present, the value of <data-byte-padding-value> must be the numeric value (0
to 255) which will be used to pad the value of the column to its full length of <data-byte-length> when a shorter
value is specified.

* For a section where the value of <data-storage-type> is not "ALPHABETIC" or "ALPHANUMERIC", the
"Padding" key must not be present.

* "Default" key is optional and specifies the default value to be stored for the column if no value is provided as part
of the INSERT statement.

IIMPORTANT NOTE: If you plan on adding records (rows) to a database then consider setting this value
especially for DATE / TIME columns as on an INSERT sometimes a "null" record is inserted and then
the values that the user had specified are individually PUT into the columns, thus the INSERT would
fail with an Invalid data-type-value for a DATE/TIME column if the "Default" is NOT specified.

(Advanced Structure)

* [Selector] section is optional and specifies the simple definition of only one record selector for the table. It may
not be present when the "NumSelectors" key is present.

* "Value" key is required for the [Selector] or [<selector-name-i>] section if specified, and specifies the value to
be used in determining the desired subset.

* "Relation" key is optional for the [Selector] or [<selector-name-i>] section if specified, and specifies the a
comparison operation to be applied in determining the desired subset. The value of
<data-record-selector-relation> must be one of either "EQ", "NE", "GT", "GE", "LT", or "LE" and specifies
the relationship between the value of the selector in a record and <data-record-selector-value> which must be
true for a record to be included in the desired subset. If this key is not specified, a default value of "EQ" is
implied (i.e., records for which the value of their selector field is equal to the value of
<data-record-selector-value> are included in the subset).

* [Foreign Keys] section is optional and identifies the tables whose primary keys are referenced by foreign keys
from the table.

* There must be an identically named <table-name-j> key in the [Tables] section of the Database Definition (.xdb)
file be for each <foreign-key-table-name-i>.

* There must be an identically named section in the Table Definition (.xdt) file for each <foreign-key-name-i>.
These sections serve to identify the columns of the table which comprise the foreign key.

825

Interactive COBOL Language Reference & Developer’s Guide - Part Two

Example XDB

[Database]
NumTables=4
OpenMode=I-O
; AOS/VS uses biseconds since 1968-01-01 00:00:00
; EpochYear=1968
; EpochTick=BISECOND
; UNIX uses seconds since 1970-01-01 00:00:00
; EpochYear=1970
; EpochTick=SECOND
; MacOS uses seconds since 1903-01-01 00:00:00
; EpochYear=1904
; EpochTick=SECOND
; CBS uses days since 1876-12-31 00:00:00
; EpochYear=1876
; EpochDay=366
; EpochTick=DAY

[Tables]
Customers
Companies
Orders
Products

[Customers]
TableFile=c:\application\odbcdesc\anycust
DataFile=c:\application\livedata\%this%cust

[Companies]
TableFile=c:\application\odbcdesc\anycomp
DataFile=c:\application\livedata\%this%comps

[Orders]
TableFile=c:\application\odbcdesc\anyorder
DataFile=c:\application\livedata\%this%order

[Products]
TableFile=c:\application\odbcdesc\product
DataFile=c:\application\livedata\products

Example XDT

[Table]
NumColumns=6
MinRecordSize=100
MaxRecordSize=100
PrimaryKeyName=CustomerKey

[Columns]
CustomerId
Company
Address
City
State
ZipCode

[Primary Key]
CustomerId

[Foreign Keys]
Companies=CompanyKey

[CompanyKey]
Company

[CustomerId]
Type=UNSIGNED DISPLAY

826

ICODBC Driver (Managing Data Sources (On Windows))
Position=1
Length=10
Precision=10
Scale=0

[Company]
Type=ALPHANUMERIC
Position=11
Length=20

[Address]
Type=ALPHANUMERIC
Position=31
Length=40

[City]
Type=ALPHANUMERIC
Position=71
Length=20

[State]
Type=ALPHABETIC
Position=91
Length=2

[ZipCode]
Type=UNSIGNED DISPLAY
Position=93
Length=5
Precision=5
Scale=0

E. Managing Data Sources (On Windows)

1. Run the ODBC Administrator. Typically, you should be able to do this by double-clicking the appropriate ODBC
Administrator icon in the Control Panel, or by selecting ODBC Administrator from the programs folder created by
the driver installation procedure. Note that on a Windows 64-bit operating system there are TWO ODBC
Administrators, a 32-bit and a 64-bit version. You must make sure you are working with the correct program.

2. To ADD (i.e., create) a new data source from any of the DSN panels (User, System, or File) in the ODBC Data
Source Administrator dialog box, click the "Add" button. The dialog box below will be shown.

827

Interactive COBOL Language Reference & Developer’s Guide - Part Two

From this Create New Data Source dialog box, select the "Interactive COBOL ODBC Driver" and click the "Finish"
button. The Setup dialog below will be shown.

From the ICODBC Setup dialog box you may specify the name of the data source and enter the name of the database
to be associated with it. The browse selection ... is available to find the file if needed. The Database field must
contain the absolute (i.e., fully qualified) pathname of a Database definition (.xdb) file, the ".xdb" extension is not
required. It may be a URL specification as documented for the Interactive COBOL Runtime System. Additionally,
it may contain a comma-list of value assignments to be used to dynamically substitute for variable names referenced
in table definition or data file names when establishing a connection to the database. Click OK. The ODBC Data
Source Administrator dialog box will be reactivated. See below for a description of the Database definition (.xdb)
file.

3. To DELETE (i.e., remove) a data source from the Data Sources dialog box, select the one you want to eliminate
and click the "Delete" button.

4. To CHANGE the setup for a data source from the Data Sources dialog box, select the one you want to eliminate
and click the "Configure" button. From the ICODBC Setup dialog box you may change the name of the data source
and/or the name of the database to be associated with it. See the description above for adding a new data source.

5. Click Close.

Example

 Data Source name: ABC Company Database
 Database: (.xdb) c:\application\odbcdesc\anycust,this=ABC

From your favorite ODBC-enabled program there will typically be a SQL/ODBC option available when you select
the data to access. Choosing this option will allow you to connect to any one of the data sources available to you.
For details, please read the documentation and/or online Help for the particular program you are using.

828

ICODBC Driver (Managing Data Sources (On Linux))

F. Managing Data Sources (On Linux)

The ICODBC Driver on Linux is intended to provide an ODBC interface to those Linux applications that can make
use of a shared object interface to ODBC. One of those type applications is the unixODBC project. unixODBC is
available from www.unixodbc.org and must be installed before using the ICODBC Linux driver (icodbc.so).

UnixODBC is not so much an end user program, but rather an intermediary between a program and one or
more databases. In this case the database is ICISAM files.

The isql program that comes with unixODBC can be used to perform simple connections and queries to test that
ICODBC is installed correctly.

Getting Started with unixODBC

UnixODBC is available in source code only. This means that you download a tar file (or zipped tar file) from
http://www.unixODBC.org, extract it, compile it, and install it.

Installing unixODBC

As mentioned before, get the source tar file from http://www.unixodbc.org. As root, move the tar file to /op or
/usr/local or where ever you want the source to reside. If zipped, then unzip the file. Untar the file and run the
following commands from the command line in the unixODBC source directory:

 ./configure
 make
 make install

Assuming that you have all the libraries and tools that it needs, you should be breezing through this compile.
UnixODBC takes quite a while to compile, actually all of these packages do. Relax and enjoy it. After installing
you will probably have to set the path for shared objects (LD_LIBRARY_PATH on Linux).

Installing

Prerequisets:

On Linux, there is no ODBC Administrator so the data-sources must be configured in a text file.

System versus User

ODBC distingushes between two types of ini files. System ini files are designed to be accessable but not modifable
by any user, and user files are private to a particular user, and may be modified by that user. The system files are
odbcinst.ini and odbc.ini (note no leading dot), and the user file is ~/.odbc.ini in each user's home directory (note the
leading dot).

The system file odbcinst.ini contains information about ODBC drivers available to all users, and the odbc.ini file
contains information about DSN's available to all users. These "System DSN's" are useful for application such as
web servers that may not be running as a real user and so will not have a home directory to contain a .odbc.ini file.

A good example of this is Apache and PHP with ODBC support. When the http server is first started it calls
SQLAllocEnv as root. It then at a later time changes to the specified user (in my case nobody) and calls
SQLConnect. If the DSN's was not a system DSN then this fails.

The ~/.odbc.ini in the user's home directory are "User DSN's". These are only useful for cases of testing or when
you do not need to share datasets.

829

http://www.unixodbc.org.

Interactive COBOL Language Reference & Developer’s Guide - Part Two

The unixODBC library uses the odbcinst.ini file to administrator the driver manager. Again this file is in a .ini
format and has the following format.

odbcinst.ini

This ini file simply lists all installed drivers. It is located in /usr/local/etc/odbcinst.ini. The syntax is simple; a name
followed by a property which tells us the drivers file name.

For example;

 [Sybase 11]
 Comment = Super Duper Sybase Server
 Driver = /usr/lib/libsybase.so
 Setup = /usr/lib/libsybaseS.so
 FileUsage = 1

The Driver file name (i.e., /usr/lib/libsybase.so) should be unique. The friendly name (i.e., Sybase 11) must also
be unique.

The Setup property points to a shared object containing functions to be called by ODBC Config. ODBC Config will
call this share to get driver specific property names during data source configuration. If ODBC Config can not
find/use this file it will assume some defaults such as; Data Source Name, Host, and default Database. (Setup is
NOT SUPPORTED BY ICODBC at this time.)

One can modify this file either using the ODBCINST shared object, by using the command line equivalent odbcinst,
or a standard Linux editor.

The odbcinst command can be used to add ICODBC to this file.

Enter the following into a temp file:

 [ICODBC]
 Comment = Interactive COBOL ISAM ODBC Driver for Linux
 Driver = /usr/lib/icodbc.so
 FileUsage = 1

Now invoke odbcinst with the following arguments assuming you have created a file template_icodbc:

 odbcinst -i -d -f template_icodbc

The args to odbcinst are as follows:

 -i (install)
 -d (driver name)
 -f (name of template)

Make sure you copy or link the released file, icodbc.so, to icodbc.so in /usr/lib. If you had specified a simple name
in the Driver line above, then the path for shared objects can be used to find the icodbc driver.
(LD_LIBRARY_PATH under Linux.) The installic script in the examples sub-directory of the icobol release can be
used to install icodbc.so.

Just execute:

examples/installic icodbc

If you wish to turn on ODBC tracing then the following needs to be added to the odbcinst.ini file:

 [ODBC]
 Trace = Yes

830

ICODBC Driver (Managing Data Sources (On Linux))
 Trace File = filename

If not specified, Trace defaults to NO and Trace File defaults to /tmp/sql.log.

odbc.ini or ~/.odbc.ini

These files describe the data-set to be used. They have the same format but refer to SystemDSN and UserDSN's
respectively.

The environment variable ODBCSYSINI can be used to find the system odbc.ini file and the environment variable
HOME is used to find the user .odbc.ini file. If the system file is not found then the "$HOME"/.odbc.ini file is tried.
If it is not found then the unixODBC will fail on the DriverConnect. Thus you must have ODBCSYSINI set if you
are not using UserDSN's.

The contents of the odbc.ini files give a section that is the data-set name, then a description, driver, and the DBQ
(database) entry. Generally each driver requires different entries. The entries may be added in the same way using
odbcinst, or a text editor. A sample entry to match the above driver could be:

 [TESTDSN]
 Description = Test IC Dataset
 Driver = ICODBC
 DBQ = /home/data/datfile89
 UID = user-id
 PWD = user-password
 Threading = 3

And this may be written to a template file, and inserted in the ini file for the current user by:

 odbcinst -i -s -f template_file

The individual entries of course may vary.

The Driver line is used to match the [section] entry in the odbcinst.ini file and the Driver line in the odbcinst file and
is used to find the path for the driver library, and this is loaded and the connection is then established. It's possible to
replace the driver entry with a path to the driver itself. This can be used, for example if the user can't get root access
to setup anything in /etc (less important now because of the movable etc path).

The DBQ line specifies the actual ICISAM database file to open. UID/PWD specify the user-id and password if any
required to access the database.

The Threading line instructs unixODBC to not allow any threading. This should be the default.

Currently the icodbc.so driver has auditing in effect. An audit log "icodbc_<pid>.lg" will be created in the current
directory for all connections.

The isql command that comes with unixODBC can be used to connect to a dataset and execute some simple SQL
commands.

Java

One application that makes use of the unixODBC project is the JDBC-ODBC Bridge that is provided with the Java 2
Runtime environment. A java runtime can be downloaded from www.java.sun.com/products. The JDBC-ODBC
Bridge enable java programs to access ODBC data when a JDBC compliant interface is not available to access the
same data.

Under Java, the JDBC-ODBC Driver can be loaded with the ClassforName("sun.jdbc.odbc.JdbcodbcDriver")

831

Interactive COBOL Language Reference & Developer’s Guide - Part Two

A Connection to an ICOBOL Isam database can be made via:

Connect con = DriverManager.getConnection(jdbc.odbc.<datasource>,
<username>, <userpassword>);

where <datasource> is the DataSetName for the ICOBOL database.

ERROR CONDITIONS

A. You get:

 Error: Connection refused (oserr=111) Connecting to localhost:7334
java.sql.SQLException:[unixODBC]

Icpermit is not running.

B. You get:

 java.sql.SQLException: No suitable driver

The unixODBC driver(s) cannot be found. Make sure the load path for .so files is set. (Under Linux,
LD_LIBRARY_PATH=/usr/local/lib).

C. You get:

 java.sql.SQLException: [unixODBC]

The icodbc.so driver cannot find "$ODBCSYSINI"/odbc.ini or "$HOME"/.odbc.ini to find the data set name.

An ICODBC license must be available from the license manager.

G. Data Types Supported

Currently the ICODBC driver provides for the following mapping of ICODBC data types to ODBC SQL data types
as shown in the following table. Examples of ICOBOL data types are also shown.

832

ICODBC Driver (Data Types)

ICODBC Type SQL Type Length Precision Scale ICOBOL Data Description

ALPHABETIC SQL_CHAR n n/a n/a PIC A(n)

ALPHANUMERIC SQL_CHAR n n/a n/a PIC X(n)

varies n/a n/a group item

varies n/a n/a alphanumeric edited items

varies n/a n/a numeric edited items

BYTE SQL_BINARY n n/a n/a PIC X(n) or group used in a
key/key-segment with subordi-
nated items of non-DISPLAY
usage

UNSIGNED DISPLAY SQL_NUMERIC l+r l+r r PIC 9(l)V9(r) USAGE DISPLAY

DISPLAY SQL_NUMERIC l+r l+r r PIC S9(l)V9(r) USAGE DISPLAY

LEADING OVERPUNCH SQL_NUMERIC l+r l+r r PIC S9(l)V9(r) USAGE DISPLAY
SIGN LEADING

LEADING SEPARATE SQL_NUMERIC l+r+1 l+r r PIC S9(l)V9(r) USAGE DISPLAY
SIGN LEADING SEPARATE

TRAILING OVERPUNCH SQL_NUMERIC l+r l+r r PIC S9(l)V9(r) USAGE DISPLAY
SIGN TRAILING

TRAILING SEPARATE SQL_NUMERIC l+r+1 l+r r PIC S9(l)V9(r) USAGE DISPLAY
SIGN TRAILING SEPARATE

UNSIGNED COMP SQL_NUMERIC varies l+r r PIC 9(l)V9(r) USAGE COMP

varies l+r r PIC 9(l)V9(r) USAGE BINARY

UNSIGNED COMP-3 SQL_NUMERIC varies l+r r PIC 9(l)V9(r) USAGE COMP-3

varies l+r r PIC 9(l)V9(r) USAGE PACKED

UNSIGNED COMP-5 SQL_NUMERIC varies l+r r PIC 9(l)V9(r) USAGE COMP-5

COMP SQL_NUMERIC varies l+r r PIC S9(l)V9(r) USAGE COMP

varies l+r r PIC S9(l)V9(r) USAGE BINARY

4 9 0 USAGE INDEX

COMP-3 SQL_NUMERIC varies l+r r PIC S9(l)V9(r) USAGE COMP-3

varies l+r r PIC S9(l)V9(r) USAGE PACKED

COMP-5 SQL_NUMERIC varies l+r r PIC S9(l)V9(r) USAGE COMP-5

4 10 0 USAGE POINTER

DAY SQL_DATE n n n/a PIC 9(n) where n=5,7
([YY]YYdd)

COMP DAY SQL_DATE varies n n/a PIC 9(n) COMP where n=5,7
([YY]YYddd)

DATE SQL_DATE n n n/a PIC 9(n) where n=6,7,8
([[Y]Y]YYMMDD)

COMP DATE SQL_DATE varies n n/a PIC 9(n) COMP where n=6,7,8
([[Y]Y]YYMMDD)

COMP DATE GROUP SQL_DATE varies n=6 or 8 n/a see note aa

TIME SQL_TIME n n n/a PIC 9(n) where n=4,6,8
(hhmm[ss[ff]])

COMP TIME SQL_TIME varies n n/a PIC 9(n) COMP where n=4,6,8
(hhmm[ss[ff]])

COMP TIME GROUP SQL_TIME 2,3,4 n=4,6,or 8 n/a see note bb

EPOCH TIMESTAMP SQL_TIMESTAMP varies n!= 0 n/a PIC [S]9(n)

COMP EPOCH TIMESTAMP SQL_TIMESTAMP varies n!=0 n/a PIC [S]9(n) COMP

FULLDATE SQL_TIMESTAMP 20 n/a n/a PIC X(20) where n=20
(YYYYdddMMDDhhmmssffw)

TABLE 48. ICODBC Data Types to ODBC SQL Data Types

833

Interactive COBOL Language Reference & Developer’s Guide - Part Two

Note aa:
 01 DATE-GROUP.
 02 YY PIC 9(2) COMP
 02 MM PIC 9(2) COMP
 02 DD PIC 9(2) COMP
 n=6 (default Picture=YYMMDD)
 01 DATE-GROUP.
 02 YYYY PIC 9(4) COMP
 02 MM PIC 9(2) COMP
 02 DD PIC 9(2) COMP
 n=8 (default Picture=YYYYMMDD)
 01 DATE-GROUP.
 02 CC PIC 9(2) COMP
 02 YY PIC 9(2) COMP
 02 MM PIC 9(2) COMP
 02 DD PIC 9(2) COMP
 n=8 (CCYYMMDD)

Note bb:
 01 TIME-GROUP.
 02 HH PIC 9(2) COMP
 02 MM PIC 9(2) COMP
 01 TIME-GROUP.
 02 HH PIC 9(2) COMP
 02 MM PIC 9(2) COMP
 02 SS PIC 9(2) COMP
 01 TIME-GROUP.
 02 HH PIC 9(2) COMP
 02 MM PIC 9(2) COMP
 02 SS PIC 9(2) COMP
 02 FF PIC 9(2) COMP

It is intended that eventually other ODBC SQL data types will be supported through either implicit or explicit
column descriptions in the table definition file. Suggestions are welcome.

H. Driver Limitations

* Entry level SQL-92 compliant, with some additional Intermediate and/or Full level functionality. See the SQL
grammar section at the end of this file for the SQL grammar supported. Some modification statements
(CREATE or DROP) are not supported semantically, although they are supported syntactically.

* SQLBrowseConnect, SQLTablePrivileges, SQLColumnPrivileges, SQLProcedures, and SQLProcedureColumns
are not supported. These ODBC API calls are not SQL-92 compliant CLI Calls and are not commonly used.

* Character and binary values supplied for parameterized queries (SELECT * FROM EMPLOYEE WHERE
NAME = ?) are limited to 255 bytes.

* Interval types are not supported.

* Qualifiers or owners are not allowed on databases, tables, etc.

* Transactions are not supported.

* Only SQL_CHAR, SQL_NUMERIC, SQL_BINARY, SQL_TIME, SQL_DATE, and SQL_TIMESTAMP are
supported.

* Queries that specify columns which are components of an INDEXED key are satisfied based on the internal
ordering of the key, which may not be equivalent to the external ordering.

834

ICODBC Driver (SQL Grammar)

* The following are the (maximum) limits of various implementation defined elements:

Character Literal Length 255 Binary Literal Length 255
Database Name Length 27 Column Name Length 63
Index Name Length 63 Table Name Length 63
Key Name Length 63 User Name Length 63
Password Length 63 Number of Columns in Order By 20
Number of Columns in a Key 15 Number of Columns in Index 15
Number of Foreign Keys in a Table 15

I. SQL Grammar Supported

statement ::= CREATE create | DROP drop | SELECT select orderby | INSERT insert | DELETE delete |
UPDATE update

create ::= TABLE tablename (createcols) | INDEX indexname ON tablename (indexcolumns)

indexcolumns ::= indexcolumn | indexcolumn , indexcolumns

indexcolumn ::= columnname asc

createcols ::= createcol , createcols | createcol

createcol ::= columnname datatype | columnname datatype (integer) |
columnname datatype (integer , integer)

drop ::= TABLE tablename | INDEX indexname

select ::= selectcols FROM tablelist where groupby having

delete ::= FROM tablename where

insert ::= INTO tablename insertvals

update ::= tablename SET setlist where

setlist ::= set | setlist , set

set ::= columnname = NULL | columnname = expression

insertvals ::= (columnlist) VALUES (valuelist) | VALUES (valuelist) |
(columnlist) VALUES (SELECT select) | VALUES (SELECT select)

columnlist ::= columname , columnlist | columname

valuelist ::= NULL , valuelist | expression , valuelist | expression | NULL

selectcols ::= selectallcols * | selectallcols selectlist

selectallcols ::= | ALL | DISTINCT

selectlist ::= selectlistitem , selectlist | selectlistitem

selectlistitem ::= expression | expression aliasname | expression AS aliasname | aliasname.*

where ::= | WHERE boolean

835

Interactive COBOL Language Reference & Developer’s Guide - Part Two

having ::= | HAVING boolean

boolean ::= and | and OR boolean

and ::= not | not AND and

not ::= comparison | NOT comparison

comparison ::= (boolean) | colref IS NULL | colref IS NOT NULL | expression LIKE pattern |
expression NOT LIKE pattern | expression IN (valuelist) | expression NOT IN (valuelist) |
expression op expression | EXISTS (SELECT select) |
expression op selectop (SELECT select) | expression IN (SELECT select) |
expression NOT IN (SELECT select) expression BETWEEN expression AND expression
expression NOT BETWEEN expression AND expression

selectop ::= | ALL | ANY

op ::= > | >= | < | <= | = | <>

pattern ::= string | ? | USER

expression ::= expression + times | expression - times | times

times ::= times * neg | times / neg | neg

neg ::= term | + term | - term

term ::= (expression) | colref | simpleterm | aggterm | scalar

scalar ::= scalarescape | scalarshorthand

scalarescape ::= --*(VENDOR(MICROSOFT),PRODUCT(ODBC) FN fn)*--

scalarshorthand ::= { FN fn }

fn ::= functionname (valuelist) | functionname () | POSITION (expression IN expression) |
EXTRACT (expression FROM expression)

aggterm ::= COUNT (*) | AVG (expression) | MAX (expression) | MIN (expression) |
SUM (expression) | COUNT (expression)

simpleterm ::= string | realnumber | ? | USER | date | time | timestamp

groupby ::= | GROUP BY groupbyterms

groupbyterms ::= colref | colref , groupbyterms

orderby ::= | ORDER BY orderbyterms

orderbyterms ::= orderbyterm | orderbyterm , orderbyterms

orderbyterm ::= colref asc | integer asc

asc ::= | ASC | DESC

colref ::= aliasname . columnname | columnname

tablelist ::= tablelistitem , tablelist | tablelistitem

836

ICODBC Driver (SQL Grammar)

tablelistitem ::= tableref | outerjoin

outerjoin ::= ojescape | ojshorthand

ojescape ::= --*(VENDOR(MICROSOFT),PRODUCT(ODBC) OJ oj)*--

ojshorthand ::= { OJ oj }

oj ::= tableref LEFT OUTER JOIN tableref ON boolean |
tableref LEFT OUTER JOIN oj ON boolean | tableref INNER JOIN tableref ON boolean |
tableref INNER JOIN oj ON boolean

tableref ::= tablename | tablename aliasname

indexname ::= identifier

functionname ::= identifier

tablename ::= identifier

datatype ::= identifier

columnname ::= identifier

aliasname ::= identifier

identifier ::= an identifier (identifiers containing spaces must be enclosed in double quotes)

string ::= a string (enclosed in single quotes)

realnumber ::= a non-negative real number (including E notation)

integer ::= a non-negative integer

date ::= dateescape | dateshorthand

dateescape ::= --*(VENDOR(MICROSOFT),PRODUCT(ODBC) d dateval)*--

dateshorthand ::= { d dateval }

dateval ::= a date in yyyy-mm-dd format in single quotes (for example, '1996-02-05')

time ::= timeescape | timeshorthand

timeescape ::= --*(VENDOR(MICROSOFT),PRODUCT(ODBC) t timeval)*--

timeshorthand ::= { t timeval }

timeval ::= a time in hh:mm:ss format in single quotes (for example, '10:19:48')

timestamp ::= timestampescape | timestampshorthand

timestampescape ::= --*(*VENDOR(MICROSOFT),PRODUCT(ODBC) ts timestampval)*--

timestampshorthand ::= { ts timestampval }

timestampval ::= a timestamp in yyyy-mm-dd hh:mm:ss[.ffffff] format in single quotes (for example,
'1996-02-05 10:19:48.529')

837

Interactive COBOL Language Reference & Developer’s Guide - Part Two

J. Usage Notes

Jet Database Engine

The Microsoft Jet Database Engine ("Jet") is the advanced relational database engine built into Microsoft Access(R)
and Visual Basic(R). Jet is intended to provide transparent access to data, regardless of the data's location and
format, and therefore deals with ODBC data. Any error returned by Jet that falls in the range -7700 to -7799 is an
ODBC Specification Compliance Error. The error indicates that an ODBC driver has failed to comply with the
ODBC specification and represents a bug in the driver. Please report all such errors to us with as much detail as
possible.

In Microsoft Access, links to tables in an ODBC data source can be created; these links are called attached tables.
Attaching ODBC tables allows you to use them transparently within Microsoft Access, but to implement this
transparency, Jet must ask the ODBC driver for a great deal of information about the table and cache it locally. This
process can be expensive and complex. After establishing a connection to the desired data source, Jet calls the
ODBC API function SQLTables to obtain a list of tables (and other similar objects) in the ODBC data source. When
you select a table, Jet calls SQLColumns, SQLStatistics, SQLSpecialColumns, and various ODBC Info functions to
acquire information about the selected table.

To allow updating of attached ODBC tables, Jet creates dynasets over them. There must be a unique (primary key)
value for each row in the table and it must be of type character and treatable as a null-terminated string. The
unique key values of a row are also called the row's bookmark because they uniquely identify and allow direct access
to the row.

Because data sources vary in their use of binary data, sometimes data loss can occur. Character data is generally
considered to be in the form of a null-terminated string, so values may lose some accuracy when being transferred
to Jet. If this data forms part of a table's bookmark, Jet might think the row has been deleted ("#Deleted" will appear
in a Microsoft Access datasheet/form). This is because Jet asked for the row by its key values, but no exact match
was found. Jet cannot distinguish this situation from that of a genuine record deletion by another user.

Microsoft Access and Visual Basic

Errors can occur while an application is running, either from the Visual Basic environment or as a stand-alone
executable. In particular, Visual Basic reserves a portion of the first 1000 error numbers, and other error numbers
are reserved by the Microsoft Jet Database Engine, or are available for defining custom errors. More information
concerning these errors is available in online help facility in the "Trappable Errors" and "Trappable Data Access
Errors" topics from Microsoft Access Help Topics.

Microsoft Access

Microsoft Access appears to be stricter than earlier versions of that product regarding its adherence to the declared
precision of numeric fields. The ODBC Driver responds to a request for information concerning a column of a table
by Microsoft Access with, among other things, the display size, scale, and precision of the column. For the
precision, the driver dutifully returns the value of <data-digits-of-precision> specified in the column definition of the
table definition file. Because it is possible with Interactive COBOL COMPUTATIONAL data types to store a value
whose actual precision exceeds the declared precision of a data item, strict enforcement of the declared precision
has, in some cases, led to a problem whereby Microsoft Access reports that "The decimal field's precision is too
small to accept the numeric you attempted to add". Further complicating this situation, the ICOBOL compiler sets
the value of <data-digits-of-precision> as determined from the picture describing the data item in the COBOL
program.

Depending on the intent of the application, there are a number of ways to correct this problem. If the value of the
field is meant to be limited by the declared precision then the application should assure that no data is stored with a
greater precision; and steps should be taken to eliminate the corrupt data from the data file. The application can be

838

ICODBC Driver

compiled with the "-G p" to enable size checking based on the picture; or it can perform data entry validation. If the
value of the field can legitimately have more digits of precision than declared then the declared precision of the item
in the COBOL source program of the application should be increased to properly reflect that fact. The value of
<data-digits-of-precision> in the column definition then needs to be modified, either automatically with the compiler
or manually with a text editor.

It is also possible to coerce the generated value of <data-digits-of-precision> to be the maximum for
COMPUTATIONAL items through the use of the ICODBC option "-G p" command line option. Please reference
page 195, 198, 233 for information regarding the storage of COMPUTATIONAL data items.

K. Debugging

Several points for starting to use the ICODBC Driver.

1. Start in read-only mode to lessen the likely hood of corrupting your data.

2. Start with just a few columns and get it working.

3. Enable SQL tracing and see what is passed into the SQL call and what the actual SQL calls return by looking at
the output from the trace. This may give you a hint as to the real problem. NOTE: Remember to turn off tracing
when it is no longer needed!!

4. Under Access start with an import and not a link.

5. Look in the readodbc.txt file for more debugging information.

L. SYWARE

The ICODBC Driver was built using the SYWARE Dr. DeeBee ODBC Driver Kit (Gold Edition). Portions of the
product are copyrighted by SYWARE Inc. and Microsoft.

839

Interactive COBOL Language Reference & Developer’s Guide - Part Two

840

ICIDE

XVII. ICIDE

A. Introduction

The ICOBOL Integrated Development Environment (ICIDE) is available with ICOBOL on Windows. The ICIDE
provides a GUI interface to define the project, run the compiler, perform queries, tailor reports, browse sources and
reports, and edit sources. To use the ICIDE, an ICOBOL Development license must be available from the license
manager.

The ICIDE provides a project-based framework for editing, managing, and compiling the ICOBOL source files that
make up your application. A project encompasses a set of source files plus the associated COPY files, compiler
settings, and directory information necessary to organize and build your application. You determine what set of files
to include in a project. You can, for example, create a project that contains all of the source files for your "Acme
Accounting System." Or you can create a project that contains a subset of a larger system's source files; for an
"Accounts Payable Subsystem," for example.

Editing a file is as simple as double clicking a filename. Compiling a file (or a group of files) takes just a keystroke.
Compiling all of a project's files takes just a few mouse clicks. If an error occurs during compilation, the offending
source line can be automatically displayed in an editing window with the click of a mouse.

Once you’ve defined a project and performed the initial build, the ICIDE opens up a whole new set of tools for
traversing your application. As an integral part of the build process, the ICIDE creates a symbol file for each
program and it integrates information from each of those symbol files into a global symbol table. This allows the
ICIDE to efficiently perform operations such as a global cross-reference of a symbol. A simple right click operation
on a symbol allows you to see all the places where that symbol is used in the entire application.

B. Use

When the ICIDE is first started a screen like below will be shown. To the left is the Project Window (where “No
Project is Open” is shown. To the right (in the grey area) is the Source Window. At the bottom is the Output
Window used for Search, Cross Reference, and Building.

The syntax for starting the ICIDE from the command line is:

icide Start icide
icide filename Start icide with filename opened
icide /p filename Print filename to the default printer
icide /pt filename printer driver port Print filename to the specified printer

To get started, Select Help, Welcome and then go through the Start Here section for a short tutorial about the
ICIDE. After that you can use the Command Reference section to get help on different subjects as needed.

841

Interactive COBOL Language Reference & Developer’s Guide

842

Glossary

XVIII. GLOSSARY

A. Introduction

The terms in this section are defined in accordance with their meaning in COBOL, and may not have the same
meaning for other languages.

These definitions are also intended as either reference or introductory material to be reviewed prior to reading the
detailed language specifications that follow. For this reason, these definitions are, in most instances, brief and do not
include detailed syntactical rules.

B. Definitions

Abbreviated Combined Relation Condition. The combined condition that results from the explicit omission of a
common subject or a common subject and common relational operator in a consecutive sequence of relation
conditions.

Access Mode. The manner in which records are to be operated upon within a file.

Actual Decimal Point. The physical representation, using the decimal point characters period (.) or comma (,), of the
decimal point position in a data item.

Alphabet-Name. A user-defined word, in the SPECIAL-NAMES paragraph of the Environment Division, that
assigns a name to a specific character set and/or collating sequence.

Alphabetic Character. A letter or a space character.

Alphanumeric Character. Any character in the computer's character set.

Alternate Record Key. A key, other than the primary record key, whose contents identify a record within an indexed
file.

Arithmetic Expression. An identifier of a numeric elementary item, a numeric literal, such identifiers and literals
separated by arithmetic operators, two arithmetic expressions separated by an arithmetic operator, or an arithmetic
expression enclosed in parentheses.

Arithmetic Operation. The process caused by the execution of an arithmetic statement, or the evaluation of an
arithmetic expression, that results in a mathematically correct solution to the arguments presented.

Arithmetic Operator. A single character or fixed two-character combination which belongs to the following set:

 Character Meaning
+ addition
- subtraction
* multiplication
/ division
** exponentiation

Arithmetic Statement. A statement that causes an arithmetic operation to be executed. The arithmetic statements are
the ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements.

Ascending Key. A key upon the values of which data is ordered starting with the lowest value of key up to the
highest value of key in accordance with the rules for comparing data items.

ASCII character set. The 96-character ASCII character set is composed of the 96 characters from space (decimal
32) through DEL (decimal 127).

843

Interactive COBOL Language Reference & Developer’s Guide

Note: Except when used in nonnumeric literals and some PICTURE symbols, each lowercase letter is equivalent to the
corresponding uppercase letter.

Assumed Decimal Point. A decimal point position which does not involve the existence of an actual character in a
data item. The assumed decimal point has logical meaning with no physical representation.

At End Condition. A condition caused during the execution of a READ statement for a sequentially accessed file,
when no next logical record exists in the file, or when the number of significant digits in the relative record number
is larger than the size of the relative key data item, or when an optional input file is not present.

Block. A physical unit of data that is normally composed of one or more logical records. For disk files, a block may
contain a portion of a logical record. The size of a block has no direct relationship to the size of the file within
which the block is contained or to the size of the logical record(s) that are either contained within the block or that
overlap the block. The term is synonymous with physical record.

Called Program. A program which is the object of a CALL statement combined at object time with the calling
program to produce a run unit or a program which is the object of a CALL PROGRAM statement which produces a
new run unit.

Calling Program. A program which executes a CALL or CALL PROGRAM to another program.

Character. The basic indivisible unit of the language.

Character Position. A character position is the amount of physical storage required to store a single standard data
format character whose usage is DISPLAY.

Character-String. A sequence of contiguous characters which form a COBOL word, a literal, a PICTURE
character-string, or a comment-entry.

Class Condition. The proposition, for which a truth value can be determined, that the content of an item is wholly
alphabetic or is wholly numeric or consists exclusively of those characters listed in the definition of a class-name.

Class-Name. A user-defined word defined in the SPECIAL-NAMES paragraph of the Environment Division that
assigns a name to the proposition for which a truth value can be defined, that the content of a data item consists
exclusively of those characters listed in the definition of the class-name. NOT SUPPORTED BY VXCOBOL.

Clause. A clause is an ordered set of consecutive COBOL character-strings whose purpose is to specify an attribute
of an entry.

COBOL Character Set. The complete COBOL character set consists of the characters listed below.

Character Meaning
0, 1, ... , 9 digit
A, B, ... , Z uppercase letter
a, b, ... , z lowercase letter

space
+ plus sign
- minus Sign (hyphen)
* asterisk
/ slant (solidus)
= equal sign
$ currency sign (represented as # in the International Reference Version of International Standard ISO 646-1973)
, comma (decimal point)
; semicolon
. period (decimal point, full stop)
" quotation mark
(left parenthesis
) right parenthesis
> greater than symbol
< less than symbol
: colon

844

Glossary

COBOL Word. A character-string of not more than 30 characters which forms a user-defined word, a system-name,
or a reserved word.

Collating Sequence. The sequence in which the characters that are acceptable to a computer are ordered for
purposes of sorting, merging, comparing, and for processing indexed files sequentially.

Column. A character position within a print or display line. The columns are numbered from 1, by 1, starting at the
left-most character position of the print line and extending to the right-most position of the line.

Combined Condition. A condition that is the result of connecting two or more conditions with the `AND' or the `OR'
logical operator.

Comment-Entry. An entry in the Identification Division that may be any combination of characters from the
computer's character set.

Comment Line. A source program line represented by an asterisk (*) in the indicator area of the line and any
characters from the computer's character set in area A and area B of that line. The comment line serves only for
documentation in a program. A special form of comment line represented by a slant (/) in the indicator area of the
line and any characters from the computer's character set in area A and area B of that line causes page ejection prior
to printing the comment.

Compile Time. The time at which a COBOL source program is translated, by a COBOL compiler, to a COBOL
object program.

Compiler Directing Statement. A statement, beginning with a compiler directing verb, that causes the compiler to
take a specific action during compilation. The compiler directing statement is the COPY statement.

Complex condition. A condition in which one or more logical operators act upon one or more conditions.

Computer-Name. A system-name that identifies the computer upon which the program is to be compiled or run.

Computer's character set. The computer's character set for all computers on which ICOBOL is currently supported
is the complete 8-bit ASCII table from decimal 0-255; i.e., the entire range of 8-bit (1-byte) values.

Condition. A status of a program at execution time for which a truth value can be determined. Where the term
`condition' (condition-1, condition-2, ...) appears in these language specifications in or in reference to `condition'
(condition-1, condition-2, ...) of a general format, it is a conditional expression consisting of either a simple
condition optionally parenthesized, or a single combined condition consisting of the syntactically correct
combination of simple conditions, logical operators, and parentheses, for which a truth value can be determined.

Condition-Name. A user-defined word that assigns a name to a subset of values that a conditional variable may
assume; or a user-defined word assigned to a status of a switch or device. When `condition-name' is used in the
general formats, it represents a unique data item reference consisting of a syntactically correct combination of a
condition-name, together with qualifiers and subscripts, as required for uniqueness of reference.

Condition-Name Condition. The proposition, for which a truth value can be determined, that the value of a
conditional variable is a member of the set of values attributed to a condition-name associated with the conditional
variable.

Conditional Expression. A simple condition or a complex condition specified in an EVALUATE, IF, PERFORM or
SEARCH statement.

Conditional Phrase. A conditional phrase specifies the action to be taken upon determination of the truth value of a
condition resulting from the execution of a conditional statement.

Conditional statement. A conditional statement specifies that the truth value of a condition is to be determined and
that the subsequent action of the object program is dependent on this truth value.

845

Interactive COBOL Language Reference & Developer’s Guide

Conditional Variable. A data item one or more values of which has a condition-name assigned to it.

Configuration Section. A section of the Environment Division that describes overall specifications of source and
object programs.

Contiguous Items. Items that are described by consecutive entries in the Data Division, and that bear a definite
hierarchical relationship to each other.

Coordinated Universal Time (UTC). Time scale, based on the second (SI), as defined and recommended by the
CCIR, and maintained by the Bureau International des Poids et Mesures (BIPM). For most practical purposes
associated with the Radio Regulations, UTC is equivalent to mean solar time at the prime meridian (0E° longitude),
formerly expressed in GMT. [NTIA] [RR] Note 1: The maintenance by BIPM includes cooperation among various
national laboratories around the world. Note 2: The full definition of UTC is contained in CCIR Recommendation
460-4. (188) Note 3 : The second was formerly defined in terms of astronomical phenomena. When this practice
was abandoned in order to take advantage of atomic resonance phenomena ("atomic time") to define the second
more precisely, it became necessary to make occasional adjustments in the "atomic" time scale to coordinate it with
the workaday mean solar time scale, UT-1, which is based on the somewhat irregular rotation of the Earth.
Rotational irregularities usually result in a net decrease in the Earth's average rotational velocity, and ensuing lags of
UT-1 with respect to UTC. Note 4: Adjustments to the atomic, i.e., UTC, time scale consist of an occasional
addition or deletion of one full second, which is called a leap second. Twice yearly, during the last minute of the day
of June 30 and December 31, Universal Time, adjustments may be made to ensure that the accumulated difference
between UTC and UT-1 will not exceed 0.9 s before the next scheduled adjustment. Historically, adjustments, when
necessary, have usually consisted of adding an extra second to the UTC time scale in order to allow the rotation of
the Earth to "catch up." Therefore, the last minute of the UTC time scale, on the day when an adjustment is made,
will have 59 or 61 seconds. Synonyms World Time, Z Time, Zulu Time. (Source: www.its.bldrdoc.gov)

Counter. A data item used for storing numbers or number representations in a manner that permits these numbers to
be increased or decreased by the value of another number, or to be changed or reset to zero or to an arbitrary positive
or negative value.

CRC. See Cyclic Redundancy Check.

Currency Sign. The character `$' of the COBOL character set.

Currency Symbol. The character defined by the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph. If
no CURRENCY SIGN clause is present in a COBOL source program, the currency symbol is identical to the
currency sign.

Current Record. In file processing, the record which is available in the record area associated with a file.

Current Volume Pointer. A conceptual entity that points to the current volume of a sequential file.

Cyclic Redundancy Check. A sophisticated checksum, which is based on the algebra of polynomials over the
integers (mod 2). It is substantially more reliable in detecting transmission errors, and is one common error-checking
protocol used in modems. (Source: http://mathworld.wolfram.com/CyclicRedundancyCheck.html)

Data Clause. A clause, appearing in a data description entry in the Data, Division of a COBOL program, that
provides information describing a particular attribute of a data item.

Data Description Entry. An entry, in the Data Division of a COBOL program, that is composed of a level-number
followed by a data-name, if required, and then followed by a set of data clauses, as required.

Data Item. A unit of data (excluding literals) defined by the COBOL program.

Data-Name. A user-defined word that names a data item described in a data description entry. When used in the
general formats, `data-name' represents a word which must not be reference-modified, subscripted, or qualified
unless specifically permitted by the rules of the format.

846

Glossary

Debugging Line. A debugging line is any line with a `d' or `D' in the indicator area of the line.

Declarative Sentence. A compiler directing sentence consisting of a single USE statement terminated by the
separator period.

Declaratives. A set of one or more special purpose sections, written at the beginning of the Procedure Division, the
first of which is preceded by the keyword DECLARATIVES and the last of which is followed by the keywords END
DECLARATIVES. A declarative is composed of a section header, followed by a USE compiler directing sentence,
followed by a set of zero, one, or more associated paragraphs.

De-Edit. The logical removal of all editing characters from a numeric edited data item in order to determine that
item's unedited numeric value.

Delimited Scope Statement. Any statement which includes its explicit scope terminator.

Delimiter. A character or a sequence of contiguous characters that identify the end of a string of characters and
separates that string of characters from the following string of characters. A delimiter is not part of the string of
characters that it delimits.

Descending Key. A key upon the values of which data is ordered starting with the highest value of key down to the
lowest value of key, in accordance with the rules for comparing data items.

Destination. The symbolic identification of the receiver of a transmission from a queue.

Digit Position. A digit position is the amount of physical storage required to store a single digit. This amount may
vary depending on the usage specified in the data description entry that defines the data item. If the data description
entry specifies that usage is DISPLAY, then a digit position is synonymous with a character position.

Division. A collection of zero, one, or more sections or paragraphs, called the division body, that are formed and
combined in accordance with a specific set of rules. Each division consists of the division header and the related
division body. There are four divisions in a COBOL program: Identification, Environment, Data, and Procedure.

Division Header. A combination of words, followed by a separator period, that indicates the beginning of a division.
The division headers in a COBOL program are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION [USING { data-name-1 }...] .

Dynamic Access. An access mode in which specific logical records can be obtained from or placed into a disk file in
a non-sequential manner and obtained from a file in a sequential manner during the scope of the same OPEN
statement.

Editing Character. A single character or a fixed two-character combination belonging to the following set:

 Character Meaning
B space
0 zero
+ plus
- minus
CR credit
DB debit
z zero suppress
* check protect
$ currency sign
. (decimal point) period
/ slant (solidus)

Elementary Item. A data item that is described as not being further logically subdivided.

847

Interactive COBOL Language Reference & Developer’s Guide

End of Procedure Division. The physical position of a COBOL source program after which no further procedures
appear.

Entry. Any descriptive set of consecutive clauses terminated by a separator period and written in the Identification
Division, Environment Division, or Data Division of a COBOL program.

Environment Clause. A clause that appears as part of an Environment Division entry.

Execution Time. The time at which an object program is executed. The term is synonymous with object time.

Explicit Scope Terminator. A reserved word which terminates the scope of a particular Procedure Division
statement.

Expression. An arithmetic or conditional expression.

Extend Mode. The state of a file after execution of an OPEN statement, with the EXTEND phrase specified, for that
file and before the execution of a CLOSE statement.

External Data. The data that is described in a program as external data items and external file connectors.

External Data Item. A data item which is described as part of an external record of a run unit and which itself may
be referenced from any program in which it is described.

External Data Record. A logical record which is described in one or more programs of a run unit and whose
constituent data items may be referenced from any program in which they are described.

External File Connector. A file connector which is accessible to one or more object programs in the run unit.

External Switch. A software device that can be specified when invoking a run unit. It is defined in the
SPECIAL-NAMES paragraph and can be used to indicate that one of two alternate states exists (ON or OFF).

Field. A contiguous row of character positions on a display screen. These characters form a logical unit that can be
filled with data, moved, displayed, etc.

Figurative Constant. A compiler generated value referenced through the use of certain reserved words.

File. A collection of logical records.

File Attribute Conflict Condition. An unsuccessful attempt has been made to execute an input-output operation on a
file and the file attributes, as specified for that file in the program, do not match the fixed attributes for that file.

File Clause. A clause that appears as part of any of the following Data Division entries: file description entry (FD
entry) and sort-merge file description entry (SD entry.)

File Connector. A storage area which contains information about a file and is used as the linkage between a
file-name and a physical file and between a file-name and its associated record area.

FILE-CONTROL. The name of an Environment Division paragraph, in which the data files are declared for a given
source program.

File Control Entry. A SELECT clause and all its subordinate clauses which declare the relevant physical attributes
of a file.

File Description Entry. An entry in the File Section of the Data Division that is composed of the level indicator FD,
followed by a file-name, and then followed by a set of file clauses as required.

File-Name. A user-defined word that names a file connector that is described in a file description entry or a
sort-merge file description entry within the File Section of the Data Division.

848

Glossary

File Organization. The permanent logical file structure established at the time that a file is created.

File Position Indicator. A conceptual entity that contains the value of the current key within the key of reference for
an indexed file, or the record number of the current record for a sequential file, or the relative record number of the
current record for a relative file, or indicates that no next logical record exists, or that the number of significant digits
in the relative record number is larger than the size of the relative key data item, or that an optional input file is not
present, or that the at end condition already exists, or that no valid next record has been established.

File Section. The section of the Data Division that contains file description entries and sort-merge file description
entries together with their associated record descriptions.

File System. An input-output control system that directs, or controls, the processing of mass storage files.

Fixed File Attributes. Information about a file which is established when a file is created and cannot subsequently be
changed during the existence of the file. These attributes include the organization of the file (sequential, relative, or
indexed), the primary record key, the alternate record keys, the code set, the minimum and maximum record size, the
record type (fixed or variable), the collating sequence of the keys for indexed files, the blocking factor, the padding
character, and the record delimiter.

Fixed Length Record. A record associated with a file whose file description or sort-merge description entry requires
that all records contain the same number of character positions.

Format. A specific arrangement of a set of data.

Global Name. A name which is declared in only one program but which may be referenced from that program and
from any program contained within that program. Condition-names, data-names, file-names, record-names, and
some special registers may be global names. NOT SUPPORTED BY ICOBOL.

Group Item. A data item that is composed of subordinate data items.

High Order End. The left-most character of a string of characters.

I-O-CONTROL. The name of an Environment Division paragraph in which object program requirements for rerun
points, sharing of same areas by several data files, and multiple file storage on a single input-output device are
specified.

I-O-CONTROL Entry. An entry in the I-O-CONTROL paragraph of the Environment Division which contains
clauses which provide information required for the transmission and handling of data on named files during the
execution of a program.

I-O Mode. The state of a file after execution of an OPEN statement, with the I-O phrase specified, for that file and
before the execution of a CLOSE statement.

I-O Status. A conceptual entity which contains the two-character value indicating the resulting status of an
input-output operation. This value is made available to the program through the use of the FILE STATUS clause in
the file control entry for the file.

Identifier. A syntactically correct combination of a data-name, with its qualifiers, subscripts, and reference
modifiers, as required for uniqueness of reference, that names a data item. The rules for `identifier' associated with
the general formats may, however, specifically prohibit qualification, subscripting, or reference modification.

Imperative Statement. A statement that either begins with an imperative verb and specifies an unconditional action
to be taken or is a conditional statement that is delimited by its explicit scope terminator (delimited scope statement).
An imperative statement may consist of a sequence of imperative statements.

Implicit Scope Terminator. A separator period which terminates the scope of any preceding unterminated statement,
or a phrase of a statement which by its occurrence indicates the end of the scope of any statement contained within
the preceding phrase.

849

Interactive COBOL Language Reference & Developer’s Guide

Index. A computer storage area or register, the content of which represents the identification of a particular element
in a table.

Index Data Item. A data item in which the values associated with an index-name can be stored.

Index-Name. A user-defined word that names an index associated with a specific table.

Indexed File. A file with indexed organization.

Indexed Organization. The permanent logical file structure in which each record is identified by the value of one or
more keys within that record.

Initial Program. A program that is placed into an initial state every time the program is called in a run unit.

Initial State. The state of a program when it is first called in a run unit.

Input File. A file that is opened in the input mode.

Input Mode. The state of a file after execution of an OPEN statement, with the INPUT phrase specified, for that file
and before the execution of a CLOSE statement.

Input-Output File. A file that is opened in the I-O mode.

Input-Output Section. The section of the Environment Division that names the files and the external media required
by an object program and which provides information required for transmission and handling of data during
execution of the object program.

Input-Output Statement. A statement that causes files to be processed by performing operations upon individual
records or upon the file as a unit. The input-output statements are: ACCEPT (with the identifier phrase), CLOSE,
DELETE, DISPLAY, OPEN, PURGE, READ, REWRITE, SET (with the TO ON or TO OFF phrase), START,
UNDELETE, UNLOCK, and WRITE.

Input Procedure. A set of statements, to which control is given during the execution of a SORT statement, for the
purpose of controlling the release of specified records to be sorted.

Integer. A numeric literal or a numeric data item that does not include any digit position to the right of the assumed
decimal point. When the term `integer' appears in general formats, integer must not be a numeric data item, and must
not be signed, nor zero unless explicitly allowed by the rules of that format.

Internal Data. The data that is described in a program excluding all external data items and external file connectors.
Items described in the Linkage Section of a program are treated as internal data.

Internal Data Item. A data item which is described in one program in a run unit.

Internal File Connector. A file connector which is accessible to only one object program in the run unit.

Intra-Record Data Structure. The entire collection of groups and elementary data items from a logical record which
is defined by a contiguous subset of the data description entries which describe that record. These data description
entries include all entries whose level-number is greater than the level-number of the first data description entry
describing the intra-record data structure.

Invalid Key Condition. A condition, at object time, caused when a specific value of the key associated with an
indexed or relative file is determined to be invalid.

ISAM. Indexed Sequential Access Method. The term ISAM file commonly refers to a relative or indexed file.

Key. A data item which identifies the location of a record, or a set of data items which serve to identify the ordering
of data.

850

Glossary

Key of Reference. The key, either primary or alternate, currently being used to access records within an indexed file.

Key Word. A reserved word whose presence is required when the format in which the word appears is used in a
source program.

Language-Name. A system-name that specifies a particular programming language.

Letter. A character belonging to one of the following two sets:

(1) uppercase letters: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z;
(2) lowercase letters: a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z.

Level Indicator. Two alphabetic characters that identify a specific type of file or a position in a hierarchy. The level
indicators in the Data Division are: FD and SD.

Level-Number. A user-defined word, expressed as a one or two digit number, which indicates the hierarchical
position of a data item or the special properties of a data description entry. Level-numbers in the range 1 through 49
indicate the position of a data item in the hierarchical structure of a logical record. Level-numbers in the range 1
through 9 may be written either as a single digit or as a zero followed by a significant digit. Level-numbers 66, 77,
and 88 identify special properties of a data description entry.

Line Number. An integer that denotes the vertical position of a report line on a page.

Line Terminator. The line terminator for data-sensitive files for a particular operating system.

Linkage Section. The section in the Data Division of the called program that describes data items available from the
calling program. These data items may be referred to by both the calling and the called program.

Literal. A character-string whose value is implied by the ordered set of characters comprising the string.

Logical Operator. One of the reserved words AND, OR, or NOT. In the formation of a condition, either AND, or
OR, or both, can be used as logical connectives. NOT can be used for logical negation.

Logical Record. The most inclusive data item. The level-number for a record is 01. A record may be either an
elementary item or a group item. The term is synonymous with record.

Longitudinal Redundancy Check The LRC algorithm is an extremely simple error detection method which yields
any character from 00h (0) through 0FFh (255). LRC stands for Longitudinal Redundancy Check, an old method
based on longitudinal parity. There are two major disadvantages of this method. The first problem is that the
resulting check character may be a control character which could interfere with data communications. The second
problem is that it is not highly effective, particularly with long transmissions. (Source:
http://www.smartronics.com/ref/checksum.html)

Low Order End. The right-most character of a string of characters.

LRC. See Longitudinal Redundancy Check

Mass Storage. A storage medium in which data may be organized and maintained in both a sequential and non-
sequential manner.

Mass Storage Control System (MSCS). An input-output control system that directs, or controls, the processing of
mass storage files. Generally referred to as the file system.

Mass Storage File. A collection of records that is assigned to a mass storage medium.

Merge File. A collection of records to be merged by a MERGE statement. The file is created and can be used only
by the merge function.

851

Interactive COBOL Language Reference & Developer’s Guide

Mnemonic-Name. A user-defined word that is associated in the Environment Division with a specific switch name.

Native Character Set. The character set associated with the computer specified in the OBJECT-COMPUTER
paragraph.

Native Collating Sequence. The collating sequence associated with the computer specified in the
OBJECT-COMPUTER paragraph.

Negated Combined Condition. The `NOT' logical operator immediately followed by a parenthesize combined
condition.

Negated Simple Condition. The `NOT' logical operator immediately followed by a simple condition.

Next Executable Sentence. The next sentence to which control will be transferred after execution of the current
statement is complete.

Next Executable Statement. The next statement to which control will be transferred after execution of the current
statement is complete.

Next Record. The record which logically follows the current record of a file.

Noncontiguous item. Elementary data items, in the Working-Storage and Linkage Sections, which bear no hierarchic
relationship to other data items.

Nonnumeric Item. A data item whose description permits its content to be composed of any combination of
characters taken from the computer's character set. Certain categories of nonnumeric items may be formed from
more restricted character sets.

Nonnumeric Literal. A literal bounded by quotation marks. The string of characters may include any character in
the computer's character set.

Numeric Character. A character that belongs to the following set of digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Numeric Item. A data item whose description restricts its content to a value represented by characters chosen from
the digits `0' through `9'; if signed, the item may also contain a `+', `-' or other representation of an operational sign.

Numeric Literal. A literal composed of one or more numeric characters that may contain either a decimal point, or
an algebraic sign, or both. The decimal point must not be the right-most character. The algebraic sign, if present,
must be the left-most character.

OBJECT-COMPUTER. The name of an Environment Division paragraph in which the computer environment,
within which the object program is executed, is described.

Object Computer Entry. An entry in the OBJECT-COMPUTER paragraph of the Environment Division which
contains clauses which describe the computer environment in which the object program is to be executed.

Object of Entry. A set of operands and reserved words, within a Data Division entry of a COBOL program, that
immediately follows the subject of the entry.

Object Program. A set or group of executable machine language instructions and other material designed to interact
with data to provide problem solutions. In this context, an object program is generally the machine language result
of the operation of a COBOL compiler on a source program. Where there is no danger of ambiguity, the word
`program' alone may be used in place of the phrase `object program'.

Object Time. The time at which an object program is executed. The term is synonymous with execution time.

Obsolete Element. A COBOL language element in Standard COBOL that is to be deleted from the next revision of
Standard COBOL.

852

Glossary

Open Mode. The state of a file after execution of an OPEN statement for that file and before the execution of a
CLOSE statement for that file. The particular open mode is specified in the OPEN statement as either INPUT,
OUTPUT, I-O, or EXTEND.

Operand. Whereas the general definition of operand is `that component which is operated upon', for the purposes of
this document, any lowercase word (or words) that appears in a statement or entry format may be considered to be an
operand and, as such, is an implied reference to the data indicated by the operand.

Operational Sign. An algebraic sign, associated with a numeric data item or a numeric literal, to indicate whether its
value is positive or negative.

Optional File. A file which is declared as being not necessarily present each time the object program is executed.
The object program causes an interrogation for the presence or absence of the file.

Optional Word. A reserved word that is included in a specific format only to improve the readability of the language
and whose presence is optional to the user when the format in which the word appears is used in a source program.

Ordinal Number. A number that show the order or succession in which names, objects, periods of time, or the like,
are considered; as, first, second, third, fourth, and so on.

Output File. A file that is opened in either the output mode or extend mode.

Output Mode. The state of a file after execution of an OPEN statement, with the OUTPUT or EXTEND phrase
specified, for that file and before the execution of a CLOSE statement for that file.

Output Procedure. A set of statements to which control is given during execution of a SORT statement after the sort
function is completed, or during execution of a MERGE statement after the merge function reaches a point at which
it can select the next record in merged order when requested.

Padding Character. An alphanumeric character used to fill the unused character positions in a physical record.

Paragraph. In the Procedure Division, a paragraph-name followed by a separator period and by zero, one, or more
sentences. In the Identification and Environment Divisions, a paragraph header followed by zero, one, or more
entries.

Paragraph Header. A reserved word, followed by the separator period, that indicates the beginning of a paragraph in
the Identification and Environment Divisions. The permissible paragraph headers in the Identification Division are:

PROGRAM-ID.
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

The permissible paragraph headers in the Environment Division are:

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
FILE-CONTROL.
I-O-CONTROL.

Paragraph-Name. A user-defined word that identifies and begins a paragraph in the Procedure Division.

Pathname. A file-name that represents the unique path through the file system to a specific file.

853

Interactive COBOL Language Reference & Developer’s Guide

Phrase. A phrase is an ordered set of one or more consecutive COBOL character-strings that form a portion of a
COBOL procedural statement or of a COBOL clause.

Physical Record. The term is synonymous with block.

Primary Record Key. A key whose contents uniquely identify a record within an indexed file.

Procedure. A paragraph or group of logically successive paragraphs, or a section or group of logically successive
sections, within the Procedure Division.

Procedure Branching Statement. A statement that causes the explicit transfer of control to a statement other than the
next executable statement in the sequence in which the statements are written in the source program. The procedure
branching statements are: CALL, EXIT, EXIT PROGRAM, GO TO, MERGE (with the OUTPUT PROCEDURE
phrase), PERFORM and SORT (with the INPUT PROCEDURE or OUTPUT PROCEDURE phrase).

Procedure-Name. A user-defined word which is used to name a paragraph or section in the Procedure Division. It
consists of a paragraph-name (which may be qualified), or a section-name.

Program Identification Entry. An entry in the PROGRAM-ID paragraph of the Identification Division which
contains clauses that specify the program-name and assign selected program attributes to the program.

Program-Name. In the Identification Division, a user-defined word that identifies a COBOL source program.

Pseudo-Text. A sequence of text words, comment lines, or the separator space in a source program or COBOL
library bounded by, but not including, pseudo-text delimiters.

Pseudo-Text delimiter. Two contiguous equal sign (=) characters used to delimit pseudo-text.

Punctuation Character. A character that belongs to the following set:

 Character Meaning
, comma
; semicolon
: colon
. period (full stop)
" quotation mark
(left parenthesis
) right parenthesis
 space
= equal sign

Qualified Data-Name. An identifier that is composed of a data-name followed by one or more sets of either of the
connectives OF and IN followed by a data-name qualifier.

Qualifier.
(1) A data-name or a name associated with a level indicator which is used in a reference either together with

another data-name which is the name of an item that is subordinate to the qualifier or together with a
condition-name.

(2) A section-name which is used in a reference together with a paragraph-name specified in that section.

Random Access. An access mode in which the program-specified value of a key data item identifies the logical
record that is obtained from, deleted from, or placed into a relative or indexed file.

Record. The most inclusive data item. The level-number for a record is 01. A record may be either an elementary
item or a group item. The term is synonymous with logical record.

Record Area. A storage area allocated for the purpose of processing the record described in a record description
entry in the File Section of the Data Division. In the File Section, the current number of character positions in the
record area is determined by the explicit or implicit RECORD clause.

854

Glossary

Record Description. The total set of data description entries associated with a particular record. The term is
synonymous with record description entry.

Record Description Entry. The total set of data description entries associated with a particular record. The term is
synonymous with record description.

Record Key. A key whose contents identify a record within an indexed file. Within an indexed file, a record key is
either the primary record key or an alternate record key.

Record-Name. A user-defined word that names a record described in a record description entry ln the Data Division
of a COBOL program.

Record Number. The ordinal number of a record in the file whose organization is sequential.

Reference Format. A format that provides a standard method for describing COBOL source programs.

Reference Modifier. The left-most-character-position and length used to establish and reference a data item.

Relation. The term is synonymous with relational operator.

Relation Character. A character that belongs to the following set:

 Character Meaning
> greater than
< less than
= equal to

Relation Condition. The proposition, for which a truth value can be determined, that the value of an arithmetic
expression, data item, nonnumeric literal, or index-name has a specific relationship to the value of another arithmetic
expression, data item, nonnumeric literal, or index-name.

Relational Operator. A reserved word, a relation character, a group of consecutive reserved words, or a group of
consecutive reserved words and relation characters used in the construction of a relation condition. The permissible
operators and their meanings are:

Relational Operator Meaning

IS [NOT] GREATER THAN
IS [NOT] >

Greater than OR
not greater than

IS [NOT] LESS THAN
IS [NOT] <

Less than OR
not less than

IS [NOT] EQUAL TO
IS [NOT] =

Equal to OR
not equal to

IS [NOT] GREATER THAN OR
EQUAL TO
IS [NOT] >=

Greater than or equal to OR
not greater than or equal to

IS [NOT] LESS THAN OR EQUAL
TO
IS [NOT] <=

Less than or equal to OR
not less than or equal to

Relative File. A file with relative organization.

Relative Key. A key whose contents identify a logical record in a relative file.

Relative Organization. The permanent logical file structure in which each record is uniquely identified by an integer
value greater than zero, which specifies the record's logical ordinal position in the file.

Relative Record Number. The ordinal number of a record in a file whose organization is relative. This number is
treated as a numeric literal which is an integer.

855

Interactive COBOL Language Reference & Developer’s Guide

Reserved Word. A COBOL word specified in the list of words which may be used in a COBOL source program, but
which must not appear in the program as user-defined words or system-names.

Resource. A facility or service, controlled by the operating system, that may be used by an executing program.

Resultant Identifier. A user-defined data item that is to contain the result of an arithmetic operation.

Routine-Name. A user-defined word that identifies a procedure written in a language other than COBOL.

Run Unit. One or more object programs which interact with one another and which function, at object time, as an
entity to provide problem solutions.

Screen-name. A data name that identifies an item in the Screen Section of the Data Division.

Screen Section. The section of the Data Division where items to be used in screen ACCEPTs and DISPLAYs are
defined.

Section. A set of zero, one, or more paragraphs or entries, called a section body, the first of which is preceded by a
section header. Each section consists of the section header and the related section body.

Section Header. A combination of words followed by a separator period that indicates the beginning of a section in
the Environment, Data, and Procedure Division. In the Environment and Data Divisions, a section header is
composed of reserved words followed by a separator period. The permissible section headers in the Environment
Division are:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

The permissible section headers in the Data Division are:

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
SCREEN SECTION.

In the Procedure Division, a section header is composed of a section-name, followed by the reserved word
SECTION, followed by a segment-number (optional), followed by a separator period.

Section-Name. A user-defined word which names a section in the Procedure Division.

Sentence. A sequence of one or more statements, the last of which is terminated by a separator period.

Separately Compiled Program. A program which, together with its contained programs, is compiled separately from
all other programs.

Separator. A character or two contiguous characters used to delimit character-strings.

Sequential Access. An access mode in which logical records are obtained from or placed into a file in a consecutive
predecessor-to-successor logical record sequence determined by the order of records in the file.

Sequential File. A file with sequential organization.

Sequential Organization. The permanent logical file structure in which a record is identified by a predeces-
sor-successor relationship established when the record is placed into the file

Sign Condition. The proposition, for which a truth value can be determined, that the algebraic value of a data item
or an arithmetic expression is either less than, greater than, or equal to zero.

856

Glossary

Significand. In floating-point representation, the fixed-point numeral that represents the significant digits of the
number.

Simple Condition. Any single condition chosen from the set:

relation condition
class condition
condition-name condition
switch-status condition
sign condition
(simple-condition)

Sort File. A collection of records to be sorted by a SORT statement. The sort file is created and can be used by the
sort function only.

Sort-Merge File Description Entry. An entry in the File Section of the Data Division that is composed of the level
indicator SD, followed by a file-name, and then followed by a set of file clauses as required.

Source. The symbolic identification of the originator of a transmission to a queue.

SOURCE-COMPUTER. The name of an Environment Division paragraph in which the computer environment,
within which the source program is compiled, is described.

Source Computer Entry. An entry in the SOURCE-COMPUTER paragraph of the Environment Division which
contains clauses which describe the computer environment in which the source program is to be compiled.

Source Item. An identifier designated by a SOURCE clause that provides the value of a printable item.

Source Program. Although it is recognized that a source program may be represented by other forms and symbols, in
this document it always refers to a syntactically correct set of COBOL statements. A COBOL source program
commences with the Identification Division or a COPY statement. A COBOL source program is terminated by the
absence of additional source program lines.

Special Character. A character that belongs to the following set:

 Character Meaning
+ plus sign
- minus sign
* asterisk
/ slant (solidus)
= equal sign
$ currency sign
, comma (decimal point)
; semicolon
. period (decimal point, full stop)
" quotation mark
(left parenthesis
) right parenthesis
> greater than symbol
< less than symbol
: colon

Special Character Word. A reserved word which is an arithmetic operator or a relation character.

SPECIAL-NAMES. The name of an Environment Division paragraph in which ICOBOL-specific names (switch
name) are related to user-specified mnemonic-names.

Special Names Entry. An entry in the SPECIAL-NAMES paragraph of the Environment Division which provides
means for specifying the currency sign; choosing the decimal point; specifying symbolic characters; relating
switch-names to user-specified mnemonic-names; relating alphabet-names to character sets or collating sequences;
and relating class-names to sets of characters.

857

Interactive COBOL Language Reference & Developer’s Guide

Special Registers. Certain compiler generated storage areas whose primary use is to store information produced in
conjunction with the use of specific COBOL features.

Standard Data Format. The concept used in describing data in a COBOL Data Division under which the
characteristics or properties of the data are expressed in a form oriented to the appearance of the data on a printed
page of infinite length and breadth, rather than a form oriented to the manner in which the data is stored internally in
the computer or on a particular medium.

Statement. A syntactically valid combination of words, literals, and separators, beginning with a verb, written in a
COBOL source program.

Sub-Queue. A logical hierarchical division of a queue.

Subject of Entry. An operand or reserved word that appears immediately following the level indicator or the
level-number in a Data Division entry.

Subprogram. A program which is the object of a CALL statement combined at object time with the calling program
to produce a run unit. The term is synonymous with called program.

Subscript. An occurrence number represented by either an integer, a data-name optionally followed by an integer
with the operator + or -, or an index-name optionally followed by an integer with the operator + or -, which identifies
a particular element in a table.

Subscripted Data-Name. An identifier that is composed of a data-name followed by one or more subscripts enclosed
in parentheses.

Switch. A switch to a COBOL program is a character string that can be appended to the program-name when a
program is started and defined in the SPECIAL-NAMES paragraph of the Environment Division.

Switch-Status Condition. The proposition, for which a truth value can be determined, that a switch, capable of being
set to an `on' or `off' status, has been set to a specific status.

Symbolic-Character. A user-defined word that specifies a user-defined figurative constant.

System-Name. A COBOL word which is used to communicate with the operating environment.

Table. A set of logically consecutive items of data that are defined in the Data Division of a COBOL program by
means of the OCCURS clause.

Table Element. A data item that belongs to the set of repeated items comprising a table.

Text-Name. A user-defined word which identifies library text.

Text Word. A character or a sequence of contiguous characters between margin A and margin R in a COBOL
library, source program, or in pseudo-text which is:

(1) A separator, except for: space; a pseudo-text delimiter; and the opening and closing delimiters for
nonnumeric literals. The right parenthesis and left parenthesis characters, regardless of context within the
library, pseudo-text, are always considered text words.

(2) A literal including, in the case of nonnumeric literals, the opening quotation mark and the closing quotation
mark which bound the literal.

(3) Any other sequence of contiguous COBOL characters except comment lines and the word `COPY', bounded
by separators, which is neither a separator nor a literal.

Truth Value. The representation of the result of the evaluation of a condition in terms of one of two values: true,
false.

858

Glossary

Unary Operator. A plus (+) or a minus (-) sign, which precedes a variable or a left parenthesis in an arithmetic
expression and which has the effect of multiplying the expression by +1 or -1 respectively.

Unit. A discrete portion of a storage medium, the dimensions of which are determined by each the particular
operating environment, that contains part of a file, all of a file, or any number of files. The term is synonymous with
reel and volume.

Unsuccessful Execution. The attempted execution of a statement that does not result in the execution of all the
operations specified by that statement. The unsuccessful execution of a statement does not affect any data referenced
by that statement, but may affect status indicators.

User-Defined Word. A COBOL word that must be supplied by the user to satisfy the format of a clause or statement.

Variable. A data item whose value may be changed by execution of the object program. A variable used in an
arithmetic-expression must be a numeric elementary item.

Variable Length Record. A record associated with a file whose file description or sort-merge description entry
permits records to contain a varying number of character positions.

Variable Occurrence Data Item. A variable occurrence data item is a table element which is repeated a variable
number of times. Such an item must contain an OCCURS DEPENDING ON clause in its data description entry, or
be subordinate to such an item.

Variable origin (screen). The LINE phrase and COLUMN phrase in DISPLAY and ACCEPT statements allow the
entire screen description referenced by screen-name to be moved to a different starting position on the user's display
device than the starting position defined in the screen description. This capability is called variable origin.

Verb. A word that expresses an action to be taken by a COBOL compiler or object program.

Volume. A discrete portion of a storage medium, the dimensions of which are determined by each operating
environment, that contains part of a file, all of a file, or any number of files. The term is synonymous with reel and
unit.

Word. A character-string of not more than 30 characters which forms a user-defined word, a system-name, or a
reserved word.

Working-Storage Section. The section of the Data Division that describes working storage data items, composed
either of noncontiguous items or working storage records or of both.

77-Level-Description-Entry. A data description entry that describes a noncontiguous data item with the
level-number 77.

859

Interactive COBOL Language Reference & Developer’s Guide

860

APPENDICES

APPENDICES
A. IMPLEMENTATION LIMITS . 857
B. ESCAPE KEY TABLE . 859
C. ANSI 74 FILE STATUS CODES . 861
D. ANSI 85 FILE STATUS CODES . 863
E. VXCOBOL FILE STATUS CODES . 865
F. EXCEPTION STATUS AND FILE STATUS CODES . 867
G. Linux Errno . 875
H. RUNTIME ERRORS. 877
I. ASCII CODES . 899
J. EBCDIC CODES. 901
K. COBOL RESERVED WORDS . 903
L. SYSTEM CALLS . 907

861

Interactive COBOL Language Reference & Developer’s Guide

862

APPENDIX A - IMPLEMENTATION LIMITS

APPENDIX A. IMPLEMENTATION LIMITS

Compiler and Runtime Implementation Limits

1. The maximum length of user-defined words (data-names, condition-names, file-names, index-names, etc.) kept
to determine uniqueness is 30 for ANSI 74 and ANSI 85 and 50 for VXCOBOL.

2. The maximum length of an elementary data item is 65535 characters.

3. The maximum number of subscripts for a table is 7.

4. The maximum number of occurrences for a table is 16,777,215; storage limitations will effectively cause a lower
limit.

5. The maximum number of items in the USING phrase of a CALL statement or a Procedure Division header is 32.

6. The maximum length of literals is 256.

7. The maximum number of entries in a GO TO DEPENDING ON is 254.

8. The maximum number of corresponding items in a MOVE CORRESPONDING statement is 126, while the
maximum number of corresponding items in an ADD or SUBTRACT CORRESPONDING statement is 63.

9. File I/O

For a sequential data-sensitive file the maximum record size is 2048 bytes, otherwise the maximum record
size for sequential files is 32,768 bytes..

ICISAM files

For a relative file, the maximum record size is 16,384 bytes (16KB) .
For a relative file, the maximum number of keys (relative key) is 4,294,967,296 (232) (version 7). Version 8

supports 4GB (4 billion) of records.

For an indexed file, the maximum record size is 16,384 bytes (16KB).
For an indexed file, the maximum number of alternate keys is 16.
For an indexed file, the maximum size of a key is 255 bytes.

The maximum file size is 4GB for data and 4GB for index (Version 7) but is dependent on the operating
system support on a particular platform.

The maximum file size is upto 4 billion records for data and 16TB for index (Version 8) but is dependent
on the operating system support on a particular platform.

The maximum number of alternate keys is 16.

10. The maximum number of COPY files for a given multi-file compile in an IDE project is 6000.

11. The maximum number of lines per compile is 200,000. The default maximum is 60,000. The maximum for an
individual source file is 65,535.

12. The maximum code size per program is 16,777,215 bytes.

13. The maximum data size per program is 16,777,215 bytes.

14. The maximum number of STRING/UNSTRING operands is 63.

15. The maximum number of level 88 values is 100.

16. The maximum number of KEY IS clauses on an OCCURS clause is 10.

863

Interactive COBOL Language Reference & Developer’s Guide

17. The maximum number of sort/merge keys is 20.

18. The maximum number of DISPLAY arguments is 63.

19. The maximum number of file description entries (FDs) allowed per compile is 255.

20. The maximum size of an EXTERNAL item is 1MB and there is a limit of 1023 EXTERNAL items per program.

Runtime Implementation Limits

1. The maximum depth of a PERFORM is 31.

2. The maximum number for PERFORM x TIMES is 4,294,967,294 (232 -2).

INFOS Implementation Limits (VXCOBOL dialect)

The U/FOS™ product from Transoft®, can be used to provide INFOS functionality.

NOTE: U/FOS™ is no longer supported.

1. The maximum number of key volumes is 16.

2. The maximum number of data volumes is 16.

3. The maximum volume size is 1053MB with large pages and 526MB with small pages.

4. The maximum key size is 255 bytes.

5. The maximum total key path including nulls between keys is 255 bytes.

6. The maximum data length is 4074 bytes for large pages and 2026 bytes for small pages.

7. The maximum number of levels is 8.

864

APPENDIX B - ESCAPE KEY TABLE

APPENDIX B. ESCAPE KEY TABLE

This is the default ESCAPE KEY table for a Data General D2xx compatible terminal which had 15 function keys
(F1 - F15) with four states (alone, SHIFT, CTRL, and CTRL-SHIFT), 4 function keys (C1 - C4) with two states,
along with the arrow keys with two states and two special keys.

Key Key
alone

Key +
SHIFT

Key +
CTRL

Key +
SHIFT+CTRL

 CR 00 00 00 00

 NEWLINE 00 00 00 00

 ESC 01 01 01 01

 F1 02 10 18 26

 F2 03 11 19 27

 F3 04 12 20 28

 F4 05 13 21 29

 F5 06 14 22 30

 F6 07 15 23 31

 F7 08 16 24 32

 F8 09 17 25 33

 F9 34 41 48 55

 F10 35 42 49 56

 F11 36 43 50 57

 F12 37 44 51 58

 F13 38 45 52 59

 F14 39 46 53 60

 F15 40 47 54 61

 C1 62 66 62 66

 C2 63 67 63 67

 C3 64 68 64 68

 C4 65 69 65 69

 Down-arrow *d 77 *d 77

 Up-arrow *u 70 *u 70

 Right-arrow n/a 71 n/a 71

 Left-arrow n/a 72 n/a 72

 CMD-Print 73 74 73 74

 Home n/a 75 n/a 75

*d In a multi-field screen ACCEPT, goes to the next field (down-arrow), unless on the last field. On the last
field (or only field) a 00 is returned. (See Next Field definition under Terminal Description).

*u In a multi-field screen ACCEPT, goes to the previous field (up-arrow), unless on the first field. On the first
field (or only field) a beep is sounded. (See Previous Field definition under Terminal Description).

In all operating environments, ICOBOL supports terminal types other than Data General terminals with a different
number of function keys. For more on those terminals supported and their supported function key values see the
Installing and Configuring Interactive COBOL Manual for your operating environment.

If using pc’s, either native or with a terminal emulator, the standard PC keyboard has twelve function keys (F1 -
F12). With the pcwindow terminal type, four states are available with F1 - F12.

865

Interactive COBOL Language Reference & Developer’s Guide

866

APPENDIX C - ANSI 74 File Status Codes

APPENDIX C. ANSI 74 FILE STATUS CODES

Code Meaning
00 Successful I/O operation.
02 Successful I/O operation but a duplicated key was detected.
04 Successful read but length of record does not conform to that specified for file.
10 AT END condition.
11 During a READ NEXT or READ PREVIOUS of an ISAM or relative file, another program added a record

to the file. Use the START statement to reposition the record pointer.
21 RECORD KEY error. For an ISAM or relative file in sequential access mode, a WRITE statement used a

RECORD KEY value that was not greater than the value used in the previous WRITE.
22 INVALID KEY error.

(1) An attempt has been made to write or rewrite a record that would create a duplicate primary key.
(2) An attempt has been made to UNDELETE a record that was not deleted.

23 No record exists with the specified RECORD KEY value.
24 Index structure is full. Writing a new record would create a new index level beyond the allowable levels.
30 Hardware error or other undefined error like a print device was aborted by the user.
34 Out of disk space to write a new record.
91 OPEN error.

(1) An OPEN statement referred to a file that was nonexistent, already open, or had an illegal name.
(2) A CLOSE statement referred to a file that had not been opened.
(3) On OPEN, the filename already existed.
(4) On OPEN, a nondirectory argument was in the pathname.
(5) On OPEN, a zero-length filename was specified.
(6) On OPEN, no more files could be opened by the operating system.
(7) On OPEN, for devices the hardware is not present.
(8) On a data-sensitive READ, the line is too long for the record.

92 Access mode error.
(1) File not opened.
(2) WRITE or DELETE attempted to file opened for input.
(3) READ attempted for file opened for output.
(4) OPEN attempted for file closed with lock.
(5) DELETE or REWRITE statement not preceded by a READ statement for a file in sequential

access mode.
(6) OPEN attempted on a file with insufficient access rights for OPEN mode.

94 In Use Error.
(1) File cannot be accessed because it is in use.
(2) Record cannot be accessed because it is locked.
(3) DELETE FILE attempted for an opened file.

96 A directory named by the program does not exist.
97 Maximum number of open files exceeded.
98 Attempt to write more than 65,535 records to a relative file.
99 Printer control file is full.
9A File description inconsistency. Record length, key length, or key positions specified in program does not

agree with the data file. Invalid ICISAM version.
9B Corruption error.

(1) After a successful OPEN of an ICISAM file, the runtime system has detected possible corruption in
the file. Closing the file sets the ICISAM reliability flags and prevents further access to the file.

(2) Data (.XD) portion of an ICISAM or relative file is full. The ICISAM reliability flags are set.
(3) On an attempted OPEN of an ICISAM file, ICOBOL has detected that the file is possibly corrupt

although the ICISAM reliability flags are clear. The appropriate reliability flag(s) are set and the
file is not opened.

9C Index (.NX) portion of an ICISAM or relative file is full. The ICISAM reliability flags are not set.
9E Record lock limit has been exceeded.
9F Possible corruption of an ICISAM file has been detected on an attempted OPEN of the file; i.e., one or both

of the ICISAM reliability flags had previously been set.
9T Device Timeout.

867

Interactive COBOL Language Reference & Developer’s Guide

868

APPENDIX D - ANSI 85 File Status Codes

APPENDIX D. ANSI 85 FILE STATUS CODES

Code Meaning
00 Successful I/O operation.
02 Successful I/O operation but a duplicated key was detected.
04 Successful READ operation but the length of the record does not conform to that specified for the file.
05 Successful OPEN operation but the referenced optional file was not present, it was created if an OPEN I-O

or EXTEND.
10 AT END condition.
11 During a READ NEXT or READ PREVIOUS of an ISAM or relative file, another program added a record

to the file. Use the START statement to reposition the record pointer.
21 RECORD KEY error. For an ISAM or relative file in sequential access mode, a WRITE statement used a

RECORD KEY value that was not greater than the value used in the previous WRITE.
22 INVALID KEY error.

(1) An attempt has been made to write/rewrite a record that would create a duplicate key on a key that
does not support duplicates.

(2) An attempt has been made to UNDELETE a record that was not deleted.
23 No record exists with the specified RECORD KEY value.
24 Index structure is full. Writing a new record would necessitate creating a new index level beyond the

allowable levels for an indexed file.
30 Hardware error or other undefined error.
34 Boundary error.

(1) Out of space to write a new record (Out of disk space).
(2) Out of space to READ a record (record area is too small).

35 File not found. On OPEN with INPUT, I-O, or EXTEND a non optional file was not present.
37 Access error. On OPEN the specified file does not support the open mode specified.
38 On OPEN the specified file was previously closed with lock.
39 On OPEN a File description inconsistency was detected. Record length, key length, or key positions

specified in program does not agree with the data file.
41 An OPEN was attempted for a file that was already open.
42 A CLOSE was attempted for a file that was not open.
43 DELETE or REWRITE statement not preceded by a READ statement for a file in sequential access mode.
44 On a WRITE or REWRITE a record that is larger or smaller than what the file allows was attempted or on a

REWRITE the record is not the same size.
46 On a sequential READ no valid next record is available.
47 A READ or START was attempted for file not opened for input or I-O.
48 A WRITE was attempted on a file not open in I-O, output, or extend mode.
49 A DELETE, REWRITE, or UNDELETE was attempted for a file not opened in I-O mode.
91 OPEN error.

(1) An OPEN statement referred to a file that was nonexistent or had an illegal name.
(2) On OPEN, the filename already existed.
(3) On OPEN, a nondirectory argument was in the pathname.
(4) On OPEN, a zero-length filename was specified.
(5) On OPEN, no more files could be opened from the operating system.
(6) On OPEN, for devices the hardware is not present.

92 Access mode error.
(1) File not opened.

94 In Use Error.
(1) File cannot be accessed because it is in use.
(2) Record cannot be accessed because it is locked.
(3) DELETE FILE attempted for an opened file.

96 A directory named by the program does not exist.
97 Maximum number of open files exceeded.
99 Printer control file is full.

869

Interactive COBOL Language Reference & Developer’s Guide

9A Invalid ICISAM file version.
9B Corruption error.

(1) After a successful OPEN of an ICISAM file, the runtime system has detected possible corruption in
the file. Closing the file sets the ICISAM reliability flags and prevents further access to the file.

(2) Data (.XD) portion of an ICISAM or relative file is full. The ICISAM reliability flags are set.
(3) On an attempted OPEN of an ICISAM file, ICOBOL has detected that the file is possibly corrupt

although the ICISAM reliability flags are clear. The appropriate reliability flag(s) are set and the
file is not opened.

9C Index (.NX) portion of an ICISAM or relative file is full. The ICISAM reliability flags are not set.
9E Record lock limit has been exceeded.
9F Possible corruption of an ICISAM file has been detected on an attempted OPEN of the file; i.e., one or both

of the ICISAM reliability flags had previously been set.
9T Device Timeout.

870

APPENDIX E - VXCOBOL File Status Codes

APPENDIX E. VXCOBOL FILE STATUS CODES

Code Meaning
00 Successful I/O operation.
02 Successful I/O operation but a duplicated key was detected.
10 AT END condition. (end-of-file or end of subindex)
11 During a READ NEXT or READ PREVIOUS of an ICISAM indexed or relative file, another program

added a record to the file. Use the START statement to reposition the record pointer.
21 RECORD KEY error. For an ICISAM indexed or relative file in sequential access mode, a WRITE

statement used a RECORD KEY value that was not greater than the value used in the previous WRITE.
22 INVALID KEY error.

(1) An attempt has been made to write or rewrite a record that would create a duplicate primary key.
(2) An attempt has been made to UNDELETE a record that was not deleted.

23 No record exists with the specified RECORD KEY value.
24 Index structure is full. Writing a new record would necessitate creating a new index level beyond the

allowable levels. (ICISAM only)
30 Hardware error or other undefined error like a print device was aborted by the user.
34 Out of disk space to write a new record.
91 OPEN error.

(1) An OPEN statement referred to a file that was nonexistent, already open, or had an illegal name.
(2) A CLOSE statement referred to a file that had not been opened.
(3) On OPEN, the filename already existed.
(4) On OPEN, a nondirectory argument was in the pathname.
(5) On OPEN, a zero-length filename was specified.
(6) On OPEN, no more files could be opened by the operating system.
(7) On OPEN, for devices the hardware is not present.
(8) On a data-sensitive READ, the line is too long for the record.

92 Access mode error.
(1) File not opened.
(2) WRITE or DELETE attempted to file opened for input.
(3) READ attempted for file opened for output.
(4) OPEN attempted for file closed with lock.
(5) DELETE or REWRITE statement not preceded by a READ statement for a file in sequential

access mode.
(6) OPEN attempted on a file with insufficient access rights for OPEN mode.

93 Write Verification error.
94 In Use Error.

(1) File cannot be accessed because it is in use.
(2) Record cannot be accessed because it is locked.
(3) DELETE FILE or EXPUNGE attempted for an opened file.

96 A directory named by the program does not exist or with INFOS the record the program is trying to access
has been previously marked as logically deleted, either locally or globaly.

97 Maximum number of open files exceeded or with INFOS a REWRITE or DELETE was attempted without
executing a previous READ statement for an indexed file with sequential access.

98 Attempt to write more than 65,535 records to a relative file or with INFOS while attempting to delete a
primary key, the program was:

(1) unable to access an alternate key associated with that primary key and/or
(2) was unable to restore the file to the condition it was in before the program deleted the primary key

and/or
(3) was unable to restore the file position.pointer to its locayion prior to the delete if RETAIN

POSITION was specified; the prior position may be locked.
99 A U/FOS error has occurred for which there is no corresponding File Status code. The U/FOS error code is

in the INFOS Status item, if specified in the file's SELECT clause.
9A File description inconsistency. Record length, key length, or key positions specified in program does not

agree with the data file. Invalid ICISAM version.

871

Interactive COBOL Language Reference & Developer’s Guide

9B Corruption error.
(1) After a successful OPEN of an ICISAM file, the runtime system has detected possible corruption in

the file. Closing the file sets the ICISAM reliability flags and prevents further access to the file.
(2) Data (.XD) portion of an ICISAM indexed or relative file is full. The ICISAM reliability flags are

set.
(3) On an attempted OPEN of an ICISAM file, VXCOBOL has detected that the file is possibly corrupt

although the ICISAM reliability flags are clear. The appropriate reliability flag(s) are set and the
file is not opened.

9C Index (.NX) portion of an ICISAM indexed or relative file is full. The ICISAM reliability flags are not set.
9E Record lock limit has been exceeded.
9F Possible corruption of an ICISAM file has been detected on an attempted OPEN of the file; i.e., one or both

of the ICISAM reliability flags had previously been set.
9T Device Timeout.

872

APPENDIX F - ANSI 74 and ANSI 85 Exception Status Codes

APPENDIX F. EXCEPTION STATUS AND FILE STATUS CODES

Following is a list of System Exception Status codes along with the File Status and INFOS Status that will be set, if
appropriate. File Status values that are blank under ANSI 85 or VXCOBOL are the same as for ANSI 74. If no
value appears under ANSI 74 it is an exception status that arises outside of the i/o subsystem and a file status of 30 is
returned. For the entries under INFOS Status that are blank, the value returned has X as the leftmost character,
followed by the exception status value as a decimal number.

On Windows, errors 1 - 31 map directly to Exception Status 1 - 31, while errors 32 - 92 map to Exception Status
288 - 347, i.e., add 256 to Microsoft errors greater than 31.

On Linux, errno maps to an Exception Status as documented in APPENDIX G.

Exception
Status

ANSI 74 ANSI 85 VX INFOS
Status Message

1 30 001 Invalid operation

2 91 35 91 025 File not found
3 96 96 91 023 Path not found

4 91 035 No more handles available

5 92 37 91 0102 Access denied

6 92 0147 Invalid handle

7 30 Memory control blocks bad

8 30 005 Insufficient memory

9 30 Invalid memory control block address

10 30 Invalid environment

11 30 Invalid format

12 30 Invalid access code

13 30 0221207 Invalid data

14 30 Insufficient memory to complete this operation

15 96 96 30 Invalid drive specifier

16 92 92 91 031 Attempt to remove current directory

17 91 0221222 Not the same device

18 91 0221227 No more files

19 30 37 30 0122 Write protected disk

20 30 Unknown hardware unit

21 30 0121 Drive is not ready

22 30 Unknown hardware command

23 30 070 CRC error in data

24 30 Hardware drive request is bad

25 30 0155 Disk seek error

26 30 0104 Unknown disk media type

27 30 Sector not found

28 30 Printer out of paper

29 30 0121 Write fault

30 30 075 Read fault

31 30 General failure

32 94 94 91 026 The file already exists

33 94 0204 The file is exclusively opened

34 34 0146 The file size is too big

35 94 41 94 063 Attempt to exclusively open an open file

36 91 024 The filename is not valid

37 10 030 End of file

38 98 24 23 015101 Invalid relative key

39 34 021 Out of (disk) space

40 91 34 99 067 Readline argument is too long

41 91 41 92 03 Attempt to open an open file

42 91 42 92 065 Attempt to close a closed file

43 92 38 92 Attempt to open a locked file

44 99 99 30 Printer control file is full

45 92 077 Invalid operation for open mode

46 92 02 Handle is not open

47 94 0356 Attempt to delete an open file

48 92 34 99 015022 Record area size too small for record

873

Interactive COBOL Language Reference & Developer’s Guide
Exception
Status

ANSI 74 ANSI 85 VX INFOS
Status Message

49 92 44 97 Record size mismatch on rewrite

50 9A 39 9A Record too long

51 9A 39 9A Too many keys requested

52 9A 39 9A Invalid key packet length

53 9A 39 9A Key is too long

54 9A 39 9A Invalid key definition (not in record)

55 9A 39 9A Record size mismatch on open

56 9A 39 9A Number of keys mismatch on open

57 9A 39 9A Key size mismatch on open

58 9A 39 9A Key offset mismatch on open

59 9A .NX file version is not valid

60 9A .XD file version is not valid

61 9E 07034 Out of record locks

62 94 07015 Record is locked

63 23 46 23 Invalid current record pointer

64 23 96 015017 Record is deleted

65 22 22 23 07030 Record is not deleted

66 21 Not rewriting the current record

67 23 Key not found

68 22 07013 Attempt to write a duplicate key

69 24 .NX file B-tree is full (node depth or full node)

70 21 Not writing in ascending order

71 9B The .NX file is corrupt

72 9B The .XD file is corrupt

73 9F Reliability flag indicates .NX file is corrupt

74 9F Reliability flag indicates .XD file is corrupt

75 94 Attempt to rename an open file

76 9T 076 Device timeout

77 30 070 Device I/O error

78 30 Printer is offline

79 30 Printer is out of paper

80 30 0221205 I/O operation aborted by console interrupt

81 91 0221026 Device is not available or does not exist

82 9B The file format is not valid

83 9B The file does not have the correct revision

84 9B Record size is zero

85 9B Record position is too small

86 9B Record position is not aligned

87 9B Record position is too big

88 9B Record position is past EOF

89 9B Node block number is not zero

90 9B Node block number is zero

91 9B Node block number is too big

92 9B Duplicates are permitted

93 9B Duplicates are not permitted

94 9B Key size is zero

95 9B Node block number is past EOF

96 9B .XD file size is too small

97 9B .NX file size is too small

98 9B Key entry is deleted

99 9B Record position does not match

100 9B File version does not match

101 9B Node block number is inconsistent

102 9B Node entry count is zero

103 9B Node entry count is too big

104 9B Node entry count is the maximum

105 9B Node level is inconsistent

106 9B Node key number is inconsistent

107 9B Node leaf indicator is inconsistent

108 9B Position is not aligned on a node boundary

109 9B Relative key value is inconsistent

110 9B key value is inconsistent

111 00 0 Reliability flag(s) have been cleared

112 9B Internal error - invalid use of buffer manager

113 9B Attempt to release buffer not in use

874

APPENDIX F - ANSI 74 and ANSI 85 Exception Status Codes

Exception
Status

ANSI 74 ANSI 85 VX INFOS
Status Message

114 9B No buffers were available

115 9B Attempt to destroy buffer still in use

116 9B The object definition is in use (internal error)

117 97 91 No more files may be OPENed

118 97 91 No more OPEN resources are available

119 97 91 No more SEQUENTIAL files may be OPENed

120 97 91 No more RELATIVE files may be OPENed

121 97 91 No more INDEXED files may be OPENed

122 30 Data Carrier Detect (DCD) has been lost

123 30 The requested object definition is not registered (internal error)

124 30 The path does not specify a directory

125 30 I/O aborted by WATCH interrupt

126 30 This terminal has too few lines to watch the selected terminal

127 30 The object does not match the expected object type (internal error)

128 30 Console interrupts are disabled

129 30 Aborted by DUMP interrupt

130 97 Object handle or index entry is NULL (internal error)

131 9B No data is available

132 9A Named item is the wrong type to perform this operation

133 91 The parameter string is not valid for this object

134 91 Invalid configuration parameter

135 97 91 Not enough resources to complete request

136 30 Internal system error

137 30 Invalid argument to system call

138 92 A remote computer can not be specified for this operation

139 02 0 A duplicate key value has been written

140 02 0 A duplicate key value has been read

141 30 9B 30 File standard header is not valid

142 30 9B 30 File standard header checksum is bad

143 30 9B 30 File type does not match required type

144 30 9B 30 File header length, offset, or checksum is bad

145 30 9B 30 File has wrong byte order

146 9A 39 9A Key with duplicates specification does not match

147 9A 39 9A ICISAM file format does not match

148 9A 39 9A ICISAM file version does not match

149 92 39 91 The .NX and .XD files are not properly paired

150 9A 39 9A Purge deleted records mismatch on open

151 9A 39 9A Key null value suppression specification does not match

152 9A 39 9A Key uppercase conversion specification does not match

153 00 05 00 0 File was created

154 00 05 00 0 The optional file was not available

155 92 47 92 Invalid operation for file without input access

156 92 48 92 Invalid operation for file without output access

157 92 49 92 Invalid operation for file without I-O access

158 92 43 97 015020 DELETE or REWRITE not preceded by a successful READ

159 9B The header information from the .XD and .NX file is not consistent

160 30 A Sort or Merge operation is already active

161 92 10 10 030 Optional file was unavailable for sequential READ

162 92 23 23 Optional file was unavailable for random READ or START

163 30 14 30 The relative key value exceeds the size of the relative key on READ

164 30 24 30 The relative key value exceeds the size of the relative key on WRITE

165 9B Position is not aligned on a shared page boundary

166 22 Attempt to modify an unmodifiable key

167 94 Attempt to rewrite a record which has been modified since it was read

168 94 Attempt to perform an operation which would lead to a deadlock
situation

169 9B 061 Invalid record length value in record header

170 9A 39 9A Too many key occurs requested

171 9A 39 9A Too many key suffixes requested

172 9A 39 9A Too many key alsos requested

173 9A 39 9A Key occurs/also specification does not match

174 9A 39 9A Key occurs/also count does not match

175 9A 39 9A Key occurs span specification does not match

176 9A 39 9A Key suffix count specification does not match

875

Interactive COBOL Language Reference & Developer’s Guide
Exception
Status

ANSI 74 ANSI 85 VX INFOS
Status Message

177 9A 39 9A Key reverse order specification does not match

178 30 The .XL and .XD files are not properly paired

179 30 Begin/end transition is not in sequence

180 30 Invalid combination of open options

181 30 An invalid or corrupted network packet was received

182 30 Data value is not a valid data-type-value

183 30 Data does not fit in the data area provided

184 9A 39 9A 4GB maximum file specification does not match

185 92 44 92 Record size specified exceeds the maximum or is less than the minimum
for the file

186 *ERROR:

187 Conversion error (index register overflow)

188 An index is out of range

189 The perform count is too large

190 The perform stack has overflowed

191 30 Fatal I/O error

192 04 Length of record does not conform to that specified for the file

193 The program was terminated by a console interrupt

194 **stop run**

195 Fatal Runtime System Error

196 Fatal Runtime System Error: invalid operation code

197 The system is ready. Press Newline to begin LOGON

198 The system is currently unavailable

199 The program was terminated by another console

200 The program is too big

201

202 The program file is not valid

203 The program was not found

204

205

206

207 The program is already active

208 Attempt to call too many programs

209 Parameter mismatch in call

210

211

212 No more programs are available

213 The program file could not be loaded

214

215 The program had been disabled

216

217

218

219 Invalid task number

220 There are no more entries in the table

221 This operation is not permitted

222 The item is currently in use

223 The item was removed

224 The requested page is not in the file

225 The operation was cancelled by the user

226

227

228 The terminal is not logged on

229 The terminal is not configured into the system

230 The configuration file is not valid

231 Unsupported feature for the current terminal type

232

233 The user has not been granted the requested logon type at this computer

234 The abort request was sent to terminal

235 The message was sent to terminal

236 The maximum number of users are already running

237 The option is not a valid option

238 Shared Library load error (no more information available)

239 Process initialization error

240 The option requires an argument

876

APPENDIX F - ANSI 74 and ANSI 85 Exception Status Codes

Exception
Status

ANSI 74 ANSI 85 VX INFOS
Status Message

241 The argument is too long to process

242 There are no more options to process

243 Out of processes, system resources, or no data available

244 Shared memory initialization error

245 Shared area revision does not match

246 The shared area is not ready for use

247 The file size is greater 32-bits and requires 64-bit i/o interfaces

248 No more processes can be run

249

250 The Shared Resource Executive Agent (icexec) is required

251 Process termination (Quit/Logoff)

252 Program not authorized

253 Process termination (Modem Hangup)

254 The process was terminated by a global timeout

255 Process Termination (Shutdown)

256 Super user privilege is required

257 Detaching from login session

258 Detached from login session

259 icexec was abnormally terminated

260 The (.ini) file section or value was not found

261 Unable to initialize standard input file

262 Unable to initialize standard output file

263 Unable to initialize standard error file

264 Invalid type for stdio

265 Locking Open/close semaphore

266 Unknown terminal type from terminfo

267 Terminal Description keyboard table

268 Unsupported terminal type

269 Screen Control Area

270 Too many directories in path list

271 Insufficient memory for pathlist names

272 Too many libraries have been requested

273 The environment argument is not valid

274 The following environment argument was not present (default value
used)

275 Using default

276 The PDF writing facility is not available

277 The requested PDF format descriptor is not configured or not enabled

278 The required network packet format revision is not supported

279 The required network command revision level is not supported

280 The required form for PDF writing had errors

281 The background form uses features that are not implemented yet

282 The background form reader encountered unexpected errors with the file
format

283 The background form has attribute values that are not supported

284

285 The PDF writing facility cannot specify a remote filename

286 The path list only allows directories

287 The path list only allows directories and non-empty libraries

288 92 Sharing violation

289 94 Lock violation

290 30 (Unused) Invalid disk change

291 30 (Unused) FCB unavailable

292 30 (Unused) Sharing buffer overflow

293

294 30 (Unused) Out of Input

295 34 Insufficient disk space

296-305

306 30 Network request not supported

307 30 Remote computer is not available

308 30 Duplicate name on network

309 30 Network path not found

310 30 Network busy

877

Interactive COBOL Language Reference & Developer’s Guide
Exception
Status

ANSI 74 ANSI 85 VX INFOS
Status Message

311 30 Network device no longer exists

312 30 (Unused) Net BIOS command limit exceeded

313 30 Network adapter hardware error

314 30 The specified server cannot perform the requested operation

315 30 Unexpected network error

316 30 (Unused) Incompatible remote adapter

317 30 (Unused) Print queue full

318 30 (Unused) Not enough space for print file

319 30 (Unused) Print file was deleted

320 30 The specified network name is no longer available

321 92 37 91 0102 Network access denied

322 30 (Unused) Network resource type incorrect

323 30 (Unused) Network name not found

324 30 (Unused) Network name limit exceeded

325 30 Net BIOS session limit exceeded

326 30 (Unused) Temporarily paused

327 30 No more connections can be made to this remote computer at this time

328 30 (Unused) Print or disk redirection is paused

329-333 30

334 30 Not logged in or Network name not valid

335 30

336 94 File exists

337 30

338 30 (Unused) Cannot make directory entry

339 30 (Unused) Fail on INT 24

340 30 Too many redirections

341 30 (Unused) Duplicate redirection

342 30 (Unused) Invalid password

343 30 Invalid parameter

344 30 Network data fault

345 30 (Unused) The system cannot start another process at this time

346 30 Required system component not installed

347-364 30

365 Connection broken

366-377

378 The data area passed to a system call is too small.

379-415

416 Record Manager initialization failed

417 The Record Manager or Requester is inactive

418 The Record Manager or Requester interface is invalid

419 Record Manager does not implement the required capability

420 Record Manager returned a reserved status code

421 Record Manager returned a generic status code

422 Record Manager returned an undefined status code

423 The reconnection key does not match an connection

424 The attempt to reconnect has failed while processing in icnetd

425 The attempt to reconnect has failed to resynchronize

426 The connection was broken. Attempting to reconnect...

427 The network heartbeat has failed to respond

428 The attempt to reconnect has failed; the surrogate process has terminated

429 The attempt to reconnect failed or was canceled by the user

430 The receive operation was cancelled

431 The server response indicates that the request failed

432 The terminal is already being WATCH’ed

433 Cannot watch a pushed terminal

434 Cannot watch a watching terminal

435 A watched terminal cannot watch another

436 Cannot interrupt the terminal to watch

437 Watched terminal has logged off

438 Watched terminal has pushed to CLI. Press Interrupt to discontinue
watching.

439 Invalid operation for your own terminal

440 Watched terminal terminated itself with an error

441 Watched terminal terminated by interrupt

442 The process is defunct

878

APPENDIX F - ANSI 74 and ANSI 85 Exception Status Codes

Exception
Status

ANSI 74 ANSI 85 VX INFOS
Status Message

443 The watched terminals program process has terminated

444 Cannot watch an SP2 or CGI server process

445 Client/Server protocol packet or parameter mismatch

446 The Logging feature is no longer supported

448 Operation would block

449 Operation now in progress

450 Operation already in progress

451 Socket operation on non-socket

452 Destination address required

453 Message too long

454 Protocol wrong type for socket

455 Protocol not available

456 Protocol not supported

457 Socket type not supported

458 Operation not supported on socket

459 Protocol family not supported

460 Address family not supported

461 Address already in use

462 Cannot assign requested address

463 Network is down

464 Network is unreachable

465 Network dropped connection on reset

466 Software caused connection abort

467 Connection reset by peer

468 Out of stream resources

469 Socket is already connected

470 Socket not connected

471 Cannot send after socket shutdown

472 Too many connection, cannot splice

473 Connection timed out

474 Connection refused

475 Too many symbolic links in path

476 Filename too long

477 Host is down

478 No route to host

479 Host not found

480

481 No more streams resources available

482 The user account already exists

483 The password is too short or fails some other restriction

484 This beta release expired

485 This beta release will run until

486 Open/close semaphore could not be created

487 Open/close semaphore setup has failed

488 Buffer manager semaphore could not be created

489 Buffer manager semaphore setup failed

490 Record lock semaphore could not be created

491 Record lock semaphore setup has failed

492 Logon/Logoff semaphore could not be created

493 Logon/Logoff semaphore setup has failed

494 Open/close semaphore could not be removed

495 Buffer manager semaphore could not be removed

496 Record lock semaphore could not be removed

497 Logon/Logoff semaphore could not be removed

498

499

500 ExitCode 0: Processing completed successfully

501 ExitCode 1: Processing occurred, but had errors

502 ExitCode 2: Processing occurred, but was interrupted or aborted

503 ExitCode 3: Processing occurred, but was halted by a fatal internal error

504 ExitCode 4: Processing failed because of command-line errors

505 ExitCode 5: Processing failed because of an authorization failure

879

Interactive COBOL Language Reference & Developer’s Guide
Exception
Status

ANSI 74 ANSI 85 VX INFOS
Status Message

506 ExitCode 6: Processing failed because of program initialization errors

507 ExitCode 7: Processing did not occur because command-line help was
requested instead

508 ExitCode 8: Processing did not occur because a command-line status
request ran instead

509 ExitCode 9: reserved

510 Unimplemented operating system function

511 Unexpected operating system error

880

APPENDIX G - Linux Errno

APPENDIX G. Linux Errno

The following is a mapping of Linux errors (errno) to Exception Status codes.

Any errno not listed generates a 511

E2BIG 241
EACCES 5
EADDRINUSE 461
EADDRNOTAVAIL 462
EADV 315
EAFNOSUPPORT 460
EAGAIN 243
EALREADY 315
EBADF 6
EBADFD 6
EBADMSG 344
EBUSY 33
ECHILD 1
ECHRNG 6
ECOMM 313
ECONNABORTED 466
ECONNREFUSED 474
ECONNRESET 467
EDEADLK 168
EDEADLOCK 168
EDESTADDRREQ 452
EDOM 137
EDOTDOT 315
EDQUOT 295
EEXIST 32
EFAULT 9
EFBIG 34
EHOSTDOWN 477
EHOSTUNREACH 478
EIDRM 223
EINPROGRESS 315
EINTR 80
EINVAL 137
EIO 77
EISCONN 469
EISDIR 5
ELBIN 315
ELOOP 475
EMFILE 4
EMLINK 340
EMSGSIZE 453
EMULTIHOP 340
ENAMETOOLONE 476
ENETDOWN 463
ENETRESET 465
ENETUNREACH 464
ENFILE 18

ENOBUFS 468
ENODATA 131
ENODEV 81
ENOENT 2
ENOEXEC 137
ENOLCK 61
ENOLINK 311
ENOMEM 8
ENOMSG 131
ENONET 307
ENOPKG 346
ENOPROTOOPT 455
ENOSPC 39
ENOSR 481
ENOSTR 5
ENOSYS 511
ENOTBLK 11
ENOTCONN 470
ENOTDIR 3
ENOTSOCK 451
ENOTTY 5
ENOTUNIQ 308
ENXIO 81
EOPNOTSUPP 458
EOVERFLOW 34
EPERM 5
EPFNOSUPPORT 459
EPIPE 365
EPROTO 314
EPROTONOSUPPORT 456
EPROTOTYPE 454
ERANGE 136
EREMCHG 320
EREMOTE 138
EROFS 29
ESHUTDOWN 471
ESOCKTNOSUPPORT 457
ESPIPE 25
ESRCH 219
ESRMNT 315
ETIME 76
ETIMEDOUT 473
ETOOMANYREFS 472
ETXTBSY 5
EWOULDBLOCK 448
EXDEV 17

881

Interactive COBOL Language Reference & Developer’s Guide

882

APPENDIX H - Runtime Errors

APPENDIX H. RUNTIME ERRORS

The following are Runtime error codes with their messages. These can all be retrieved with IC_MSG_TEXT..

Exception Message
-------- --
 2048 System-defined builtin call table initialization
 2049 User-defined builtin call table initialization
 2050 Screen Handler call table initialization
 2051 Invalid DATE data value
 2052 Invalid TIME data value
 2053 Invalid TIMESTAMP data value
 2054 Invalid INTERVAL data value
 2055 The required shared library symbol was not found
 2056 Terminal is already in use
 2057 (trying to reassign)
 2058 There are no more unassigned consoles available
 2059 The specified terminal is not configured to run ICRUN

 2060 The character must be alphabetic
 2061 The character must be alphanumeric
 2062 The character must be numeric
 2063 The sign must be the rightmost character
 2064 Too many signs have been entered
 2065 The sign must be the leftmost character
 2066 The field does not permit a decimal point
 2067 Too many decimal points have been entered
 2068 No digits were entered
 2069 Data entry is required
 2070 A full field is required
 2071 The field does not permit a sign
 2072 Too many integer digits were entered
 2073 Too many decimal digits were entered
 2074 There are illegal imbedded blanks
 2075 String/Unstring Overflow
 2076 External item in called program does not match existing item
 2077 The code file checksum is bad; possible corrupt file
 2078 The structure of the code file does not match what the loader expects
 2079 SMTP Authorization successful
 2080 The process termination request was sent to terminal:
 2081 A mail recipient must be specified (mail To: field)
 2082 A mail sender must be specified (mail From: field)
 2083 A message subject must be specified (mail Subject: field)
 2084 No mail server was specified (ICSMTPSERVER environment variable)
 2085 The mail server port was not valid (ICSMTPPORT environment variable)
 2086 SMTP System or Help message
 2087 The SMTP service is ready
 2088 The SMTP service is closing
 2089 The SMTP action completed OK
 2090 The recipient is nonlocal, message is being forwarded
 2091 The recipient was not verified but message was accepted
 2092 Start message input and end with <CRLF>.<CRLF>
 2093 The SMTP service is not available - closing connection
 2094 The command failed because the user's mailbox was unavailable
 2095 The command failed because of a server error
 2096 The command failed because of insufficient server storage
 2097 Record manager brand selected is not available

883

Interactive COBOL Language Reference & Developer’s Guide

 2098 The SMTP command failed with a 500 level error
 2099 The SMTP command failed because mailbox was unavailable
 2100 A STOP RUN or builtin function set the exit code to
 2101 An incompatible version of ICBLTN.DLL has been found
 2102 Press any key to continue...
 2103 <NL> to select
 2104 The filename association is incomplete or invalid
 2105 The DDE transaction could not be completed because other DDE transactions were being processed
 2106 An error occurred in sending the command to the application
 2107 The DDE transaction could not be completed because the request timed out
 2108 The specified dynamic-link library was not found
 2109 No application is associated with the specified file for this operation
 2110 Reference modification position out of range
 2111 Reference modification length out of range
 2112 SMTP Authorization in progress
 2113 SMTP Authorization required
 2114 SMTP Authorization failed
 2115 No pop3 server was specified (ICPOP3SERVER environment variable)
 2116 The pop3 server port was not valid (ICPOP3PORT environment variable)
 2117 A new pop3 session cannot begin while the previous session is still active
 2118 There is no pop3 session active; this call is not allowed
 2119 An improperly formatted response was received from the POP3 server
 2120 The POP3 server returned an ERR response
 2121 Authentication of the specified user and password returned an error
 2122 The username or password argument is too long or empty
 2123 There is no active POP3 session
 2124 The POP3 session is in the wrong state for the requested operation
 2125 The POP3 LIST command did not supply the correct number of list entries
 2126 The specified message number was not found
 2127 The secure mail server port was not valid (ICSMTPSSLPORT environment variable)
 2128 The STARTTLS command failed because TSL was temporarily unavailable
 2129 The smtp/pop3 server connection could not be secured with SLL or TLS
 2130 SMTP Authorization doesn't support the available methods
 2131 The allocated storage for USAGE POINTER is too small: recompile with -R 7 or up
 2132 The mail server timeout was not valid (ICSMTPTIMEOUT environment variable)
 2133 The authorization mechanism is too weak
 2134 The SMTP command failed with a 400 level error
 2135 The SMTP command had a 300 level status
 2136 The SMTP command had a 200 level status
 2137 The SMTP command had an unknown error

 2304 28001: Authorization failure: ICSQL License could not be opened
 2305 IC001: General error: SQL is not loaded
 2306 IC002: Unable to load ODBC
 2307 IC003: Unable to load ODBC symbols
 2308 IC004: The ISQL subsystem is not properly initialized
 2309 IC005: Get Diagnostics exception number is out of range
 2310 IC006: Unable to allocate ODBC environment
 2311 IC007: Memory allocation error
 2312 08002: Connection name in use
 2313 08003: Connection does not exist
 2314 IC008: Internal error
 2315 IC009: Unexpected Error from ODBC
 2316 IC010: Invalid Handle error from ODBC
 2317 HY010: Function sequence error
 2318 01503: The number of result columns is larger than the number of INTO items
 2319 22002: Indicator variable required but not supplied
 2320 HY090: Invalid string or buffer length

884

APPENDIX H - Runtime Errors

 2321 22018: Invalid character value for cast specification
 2322 22003: Numeric value out of range
 2323 22007: Invalid datetime format
 2324 22015: Interval field overflow
 2325 07006: Restricted data type attribute violation
 2326 26501: The statement identifier does not exist
 2327 07004: The USING clause is required for dynamic parameters
 2328 07001: The number of USING items is not the same as the number of parameter markers
 2329 07500: Numeric parameter conversion error
 2330 07501: Date parameter conversion error
 2331 07502: Time parameter conversion error
 2332 07503: Timestamp parameter conversion error
 2333 07504: Interval parameter conversion error
 2334 02000: No data was affected by the operation
 2335 07001: More data is needed
 2336 HY004: Invalid SQL type
 2337 24000: Invalid cursor state
 2338 01000: General Warning: The statement identifier does not exist

 2400 No Program
 2401 Global USE Procedures:
 2402 none
 2403 <beginning of code>
 2404 <end of code>
 2405 End of line expected
 2406 'name' or Any expected
 2407 number must be > 0
 2408 Invalid command
 2409 No active program
 2410 Not a valid PC
 2411 No more breakpoints are available
 2412 Error not set
 2413 No such breakpoint
 2414 No previous command
 2415 Not a valid &address
 2416 length expected
 2417 Not a valid length
 2418 Not a valid @refnum
 2419 count must be <= 18
 2420 count must be <= 19
 2421 count must be <= 8
 2422 count must be <= 10
 2423 count must be 2
 2424 Not at a Call
 2425 Not at Perform
 2426 'String' expected
 2427 Expect &address or @refnum
 2428 SIZE ERROR on store
 2429 Argument expected
 2430 Reset expected
 2431 Bad command input
 2432 Invalid type
 2433 No files are open
 2434 Inactive Programs:
 2435 Active programs:
 2436 There are no active performs
 2437 A digit is expected here
 2438 Unrecognized command line element

885

Interactive COBOL Language Reference & Developer’s Guide

 2439 Literal is too long
 2440 Literal not closed before end of line
 2441 Item is too long
 2442 Invalid numeric specifier in literal
 2443 Expect 'name' or Any
 2444 Invalid command argument
 2445 LAST or line number expected
 2446 Next item or data area is not a valid data location
 2447 Parse stack overflow, simplify expressions
 2448 Internal parser error - endrule reached
 2449 Internal parser error - parse stack underflow
 2450 Internal parser error - invalid parse op
 2451 Breakpoint
 2452 has been added
 2453 Invalid breakpoint number
 2454 Breakpoint is already selected
 2455 Breakpoint already exists
 2456 has been changed
 2457 The audit file is not open
 2458 The audit file is already open
 2459 A command file is already active
 2460 Internal Error: Screen optimization not enabled for icdeb
 2461 Error opening debugger temp files
 2462 Press any key to continue
 2463 The symbol file does not match the code file
 2464 There are no more symbol-file handles available
 2465 The source file/line table is not available
 2466 Unable to open symbol file for
 2467 The specified line is not executable. Line changed to
 2468 The run unit is finished
 2469 Console Interrupt
 2470 The initial program is loaded
 2471 The program is not part of the run unit
 2472 The symbol table is not available
 2473 The source file is newer than the one compiled
 2474 The source file is older than the one compiled
 2475 Source viewing is not available for this program
 2476 locking or reading symbol file
 2477 locking or reading source file
 2478 Press ESC to exit, cursor up/down, F2 (page up) or F3 (page down)
 2479 No search path is set
 2480 This data item is not allocated
 2481 Symbol unavailable - error on symbol file
 2482 Internal error - bad arithemetic expression
 2483 Internal error - operator stack underflow
 2484 Internal error - operand stack underflow
 2485 Internal error - invalid expression operator
 2486 Internal error - bad numeric level 88 expression
 2487 Internal error - bad alphanumeric level 88 expression
 2488 Size Error occured while evaluating this operation
 2489 Invalid type of argument for dump
 2490 TRUE
 2491 FALSE
 2492 The paragraph/section was never used as the end of a perform range
 2493 No more test breakpoints are available
 2394 No more space left for test breakpoints
 2495 Invalid argument for Test
 2496 Old data value (alphanumeric format):

886

APPENDIX H - Runtime Errors

 2497 New data value:
 2498 There is no find string to use
 2499 There is no find position to start from for Find Next/Previous
 2500 The string was not found
 2501 A (qualified) symbol name is expected here
 2502 Unable to build reference info or address for this data item
 2503 This command is disabled when stopped for the current reason
 2504 Console Interrupt within a screen read
 2505 count must be 4
 2506 Expected a reference of the form @refnum
 2507 Not a valid file organization
 2508 The previous Dump command was for a file name or file reference
 2509 Internal error - invalid or unexpected reference type
 2510 Internal error - symbol unavailable
 2511 The following element was expected here
 2512 A numeric identifier or literal is required
 2513 The operand is the wrong class or type for the operation
 2514 The item is not USAGE DISPLAY
 2515 A condition is expected here
 2516 A numeric expression is not allowed here
 2517 This item must refer to an elementary integer data item
 2518 This item is not a data-item
 2519 The level 88, arithmetic, or conditional expression is too complex
 2520 The symbol is not defined
 2521 The symbol (as qualified) was not found
 2522 Symbol is not uniquely qualified
 2523 The item is not a paragraph or section name
 2524 This item is not a data item or literal
 2525 Illegal combination of data items in MOVE
 2526 Too many levels of qualification have been specified
 2527 This item may not be subscripted
 2528 The element 'data-name' is expected here
 2529 The element 'integer' is expected here
 2530 Figurative constant or nonnumeric literal is expected here
 2531 The element 'identifier' or 'id' is expected here
 2532 The element 'id-lit' is expected here
 2533 Subscript specifier expected here
 2534 A section or paragraph is expected here
 2535 An arithmetic expression is expected here
 2536 A Unary + or -, 'id-lit', or '(' is expected here
 2537 The element 'id-lit' or '(' is expected here
 2538 A relation, class test, or sign test is expected here
 2539 A condition or conditional expression is expected here
 2540 A NOT or simple condition is expected here
 2541 A simple condition or '(' is expected here
 2542 Not enough subscripts were specified; supplying 1's
 2543 This item must be subscripted
 2544 The item must be a numeric integer, USAGE INDEX, or an index-name
 2545 Too many subscripts have been specified for this item
 2546 Unbalanced parentheses; right parenthesis is being ignored
 2547 The start or end of an interval is expected here
 2548 This is not a valid DATE, TIME, or TIMESTAMP literal
 2549 This is not a valid INTERVAL literal

 2560 -0001 Positioned above main index
 2561 -0002 'ufos_verify' found errors
 2562 -0003 Invalid current position
 2563 -0074 Indicates alternate index

887

Interactive COBOL Language Reference & Developer’s Guide

 2564 -0075 Function not implemented
 2565 -0076 Software has expired
 2566 -0077 User interrupt

 2567 -0100 Start of fatal messages (request is aborted)
 2568 -0101 Not a U/FOS database
 2569 -0102 Unable to access the key volume(s)
 2570 -0103 Unable to access the data volume(s)
 2571 -0104 Unable to access the logging file
 2572 -0105 Unable to access the shadow volume
 2573 -0106 Unable to access the database directory
 2574 -0107 Exceeded maximum volume size
 2575 -0110 Database is exclusively open, cannot open
 2576 -0111 Database is open, cannot exclusively open
 2577 -0112 Database is invalid, must be fixed first
 2578 -0113 Database left open, must run 'ufos_verify' with -c or -f option first
 2579 -0114 Index full, cannot add a new level
 2580 -0115 Access to index volume denied
 2581 -0116 Access to data volume denied
 2582 -0117 Access to logging file denied
 2583 -0120 U/FOS data volumes are full
 2584 -0121 Illegal channel number
 2585 -0122 Do not have a U/FOS database open
 2586 -0123 No database is open on this channel
 2587 -0124 No space for main key volume
 2588 -0125 No space for main data volume
 2589 -0126 Database is read-only
 2590 -0127 Already opened for read/write; cannot open for sequential
 2591 -0130 No valid primary index file
 2592 -0131 Cannot find the primary index file
 2593 -0132 Already opened for sequential, cannot open for write
 2594 -0133 On-line backup is already in progress
 2595 -0134 Problem opening/creating shadow volume
 2596 -0135 Cannot use 'big-endian' (not byteswapped) database here
 2597 -0136 Cannot use 'little-endian' (byteswapped) database here
 2598 -0137 Database is not in on-line backup mode

 2599 -0140 Unknown processing packet function
 2600 -0141 Invalid packet type (_PPKT)
 2601 -0142 Invalid keyed motion word (_KMOTN)
 2602 -0143 Invalid keyed position word (_KLOCN)
 2603 -0144 Invalid key address
 2604 -0147 Invalid data record (_DREC) value
 2605 -0150 Invalid number of volumes
 2606 -0151 Invalid split point
 2607 -0152 Invalid number of subindex levels
 2608 -0153 Inavlid maximum volume size
 2609 -0154 Invalid volume element size
 2610 -0155 Invalid database page size
 2611 -0156 Invalid number of concurrent locks; INFOS II lock/unlock error
 2612 -0157 __GEN or __APP not allowed on __WRITE
 2613 -0160 Occurence number is zero for __DUP read
 2614 -0161 Filename address pointer is invalid
 2615 -0162 A key address is invalid

 2616 -0200 Record length less than 1
 2617 -0201 Record length too large for page
 2618 -0202 Subindices are not allowed in this subindex

888

APPENDIX H - Runtime Errors

 2619 -0203 Exceeded maximum number of subindexes
 2620 -0204 Data record 2 (partial record) not allowed in this subindex
 2621 -0205 Key not found
 2622 -0206 No key path has been defined
 2623 -0207 Key already exists
 2624 -0210 Data record 1 must exist
 2625 -0211 Data record 2 must exist
 2626 -0212 No data record 1
 2627 -0213 No data record 2
 2628 -0215 Data record 1 already exists
 2629 -0216 Data record 2 already exists
 2630 -0217 Tree too deep for unlink in group
 2631 -0220 Invalid feedback value
 2632 -0225 Positioned above main index
 2633 -0226 Invalid current position
 2634 -0227 Subindex already defined
 2635 -0230 Subindex key does not exist
 2636 -0231 Subindex is not defined
 2637 -0232 End of subindex
 2638 -0233 Key does not have subindex
 2639 -0234 Current position has been deleted
 2640 -0235 Maximum number of locks exceeded
 2641 -0236 Cannot erase key, subindex defined
 2642 -0237 Data record is not locked by user
 2643 -0240 Data record (data record 1) is locked by another user
 2644 -0241 Partial record (data record 2) is locked by another user
 2645 -0242 Key too long for this subindex
 2646 -0243 Zero length key
 2647 -0244 Duplicate keys not allowed in this subindex
 2648 -0245 Cannot remove subindex with indices defined
 2649 -0246 No transaction group defined
 2650 -0247 Invalid transaction group count
 2651 -0250 Total key path length too long
 2652 -0251 A single null byte '\\0' is not a valid key

 2653 -0300 No reads allowed below this index
 2654 -0301 No writes allowed below this index
 2655 -0302 No modifications allowed below this index
 2656 -0303 No deletes allowed below this index
 2657 -0304 User not privileged to access this file
 2658 -0305 User not privileged to modify this file

 2659 -0340 Cannot find primary index for alternate index
 2660 -0341 Alternate index points to another alternate index
 2661 -0342 Alternate key indexs pointer out of bounds

 2662 -0500 Cannot find the server
 2663 -0501 Cannot create/open pipe to server
 2664 -0502 No setup acknowledgement from server
 2665 -0503 Error in writing to the server
 2666 -0504 Error in reading from the server
 2667 -0510 Allowed number of system users exceeded
 2668 -0511 Allowed number of system databases exceeded
 2669 -0512 Allowed number of databases for this user exceeded

 2670 -0550 Log file truncated
 2671 -0551 Incorrect log file revision

889

Interactive COBOL Language Reference & Developer’s Guide

 2672 -0600 Attempt to access negative page number
 2673 -0601 Page is after end of volume
 2674 -0602 Page types do not match
 2675 -0603 Page number mismatch
 2676 -0604 'KEY_NXT' value is 0
 2677 -0605 Invalid page type
 2678 -0606 Data record address is zero
 2679 -0607 Data record item number is invalid
 2680 -0610 Data item pointer is out of range
 2681 -0611 Data item is marked as deleted
 2682 -0612 Indirect address is zero
 2683 -0613 Page descriptor is zero
 2684 -0614 Insert invalid first key
 2685 -0615 Invalid subindex xref item
 2686 -0617 Invalid key volume number
 2687 -0620 Invalid data volume number
 2688 -0621 Attempt to delete subindex null key
 2689 -0622 Expanded record is not the correct length
 2690 -0623 Key page overflows allowed size
 2691 -0624 Data page is on the wrong space chain
 2692 -0625 File mode in header is wrong
 2693 -0626 Header page descriptor invalid

 2694 -0660 Error from database lseek request
 2695 -0661 Error from database read request
 2696 -0662 Error from database write request

 2697 -0700 Invalid page type request
 2698 -0701 Bad volume number in page request
 2699 -0702 Bad page number in page request
 2700 -0703 Bad page number in page request
 2701 -0704 Attempt to read part of header
 2702 -0705 Reserved
 2703 -0706 Reserved
 2704 -0707 Attempt to write page with invalid address
 2705 -0710 Attempt to flush and page address mismatch
 2706 -0711 Unable to find allocated VM page for user/db
 2707 -0712 Error when attempting to read shadow file
 2708 -0775 Exceeded maximum number of user/database opens

 2709 Unexpected error from U/FOS or INFOS II
 2710 Invalid AOS INFOS II subindex definition packet
 2711 Data record is marked as logically deleted
 2712 Partial record is marked as logically deleted
 2713 Data record read exceeds specified maximum length
 2714 Partial record read exceeds specified maximum length
 2715 Invalid partial record length
 2716 Request requires read-only access
 2717 Invalid index node size
 2718 Index filename already exists
 2719 Invalid merit factor

 2746 -0252 Transaction group already in progress
 2747 -0253 No transaction group in progress
 2748 -0254 Transaction group not initiated by this user
 2749 -0255 Invalid key length
 2750 -0310 Cannot find banner file name
 2751 -0311 No banner file present for this product

890

APPENDIX H - Runtime Errors

 2752 -0312 Banner server not found
 2753 -0313 Cannot attach to the banner server
 2754 -0314 AIM tools not allowed
 2755 -0315 Cannot get maximum number of users
 2756 -0316 Cannot allocate maximum number of users
 2757 -0317 Data has been corrupted in message queues
 2758 -0320 No message available on interprocess queue
 2759 -0321 Could not generate a valid session
 2760 -0322 Bad session ID
 2761 -0323 System access to server failed
 2762 -0324 Request denied by banner server
 2763 -0325 Corrupt or inaccessible banner name
 2764 -0326 Banner file name entry missing from configuration file
 2765 -0343 Error in target database
 2766 -0344 Error reading target database
 2767 -0345 Cannot link alternate index to another alternate index database
 2768 -0346 No more linked indices allowed for this database
 2769 -0347 Error positioning target database
 2770 -0350 Unable to rewrite database header
 2771 -0351 Unable to create alternate index symbolic link
 2772 -0352 Unable to create alternate index
 2773 -0353 Unable to write to alternate index

 2778 -0327 Unable to place message on message queue
 2779 -0330 Message send timed out
 2780 -0331 Message receive timed out
 2781 -0360 No space in shared memory table of kernel processes
 2782 -0361 No space in shared memory table of databases opened
 2783 -0362 Database request queue full
 2784 -0363 Timed out waiting on request queue
 2785 -0364 Failed to start monitor process
 2786 -0365 Shared memory tables invalid
 2787 -0552 Failed to write to log file
 2788 -0663 Error attaching to shared memory
 2789 -0664 Error accessing shared memory semaphore
 2790 -0665 Error accessing file of process locks
 2791 -0666 Error getting file status
 2792 -0667 Error removing the semaphore set
 2793 -0670 Error removing the shared memory set
 2794 -0671 Error accessing database semaphore set
 2795 -0673 Error reading page from multi-request diff file
 2796 -0674 Error from database volume unlink request
 2797 -0675 Error from database volume truncate request

 2798 -0256 Invalid subindex root node size
 2799 -0257 Database in checkpointing mode, cannot start transaction
 2800 -0260 Cannot checkpoint, as not in checkpointing mode
 2801 -0261 Can only perform a checkpoint with database closed
 2802 -0262 Cannot checkpoint, as not in explicit checkpointing mode
 2803 -0335 Cannot open database lock table volume
 2804 -0336 Failed to write to database lock table volume
 2805 -0337 Failed to read from database lock table volume
 2806 -0367 Failed to start the 'ufos_connect' process
 2807 -0560 Failed to open the network path (.unp) file
 2808 -0561 U/FOS kernel not yet implemented on this platform
 2809 -0562 Error in the network path (.unp) file
 2810 -0563 Unable to access the ipc type used by the kernel
 2811 -0564 Invalid host name specified

891

Interactive COBOL Language Reference & Developer’s Guide

 2812 -0513 Error reading the kernel configuration file
 2813 -0514 Exceeded number of user database combinations
 2814 -0530 Error setting effective user ID
 2815 -0531 Error setting effective group ID
 2816 -0532 Error setting supplementary group access list
 2817 -0553 Log in use by kernel not supporting 'ufos_new_log'
 2818 -0554 Failed to rename old log file
 2819 -0555 Failed to create a new log file
 2820 -0627 Subindex root-node page item table corrupt
 2821 -0630 Subindex root-node item number invalid
 2822 -0631 Database volumes contain an incomplete checkpoint
 2823 -0713 Error processing the multiple request differential file
 2824 -0714 Error processing subindex root node
 2825 -0715 Error expanding subindex root node
 2826 -0716 Error processing opening checkpoint

 AOS/VS system errors
 3072 No error
 3073 Illegal system command
 3074 Channel not open
 3075 Channel already open
 3076 Shared I/O request not map slot aligned
 3077 Insufficient memory available
 3078 Illegal starting address
 3079 Illegal overlay number
 3080 Illegal set time argument
 3081 No task control block available
 3082 ?XMT to address already in use
 3083 Error in user task queue table
 3084 Task ID error
 3085 Data channel map is full
 3086 System call parameter address error
 3087 Task not found for abort
 3088 Insufficient room in buffer
 3089 File space exhausted
 3090 User stack fault
 3091 Directory does not exist
 3092 Illegal filename character
 3093 File does not exist
 3094 Filename already exists
 3095 Non-directory argument in pathname
 3096 End of file
 3097 Directory delete error
 3098 Write access denied
 3099 Read access denied
 3100 Append and/or write access denied
 3101 No free channels
 3102 Release of non-active shared slot
 3103 Illegal process priority
 3104 Illegal maximum process size
 3105 Illegal process type
 3106 Console device specification error
 3107 Out of swap file room
 3108 Device already in system
 3109 Illegal device code
 3110 Error on shared partition set
 3111 Error on remap call
 3112 Illegal agent gate call

892

APPENDIX H - Runtime Errors

 3113 No PID available for this process
 3114 IPC message longer than buffer
 3115 Invalid port number
 3116 No matching send
 3117 No outstanding receive
 3118 Illegal origin port
 3119 Illegal destination port
 3120 Invalid shared library reference
 3121 Illegal record length specified
 3122 Attempt to release console device
 3123 Device already in use
 3124 Attempt to release unassigned device
 3125 Attempt to close unopen channel or device
 3126 I/O terminated by CLOSE
 3127 Line too long
 3128 Parity error
 3129 Resident process tried to create son and block
 3130 Not a directory
 3131 Shared I/O request not to shared area
 3132 Too many subordinate processes
 3133 File read error
 3134 Device timeout
 3135 Wrong I/O type for OPEN type
 3136 Filename too long
 3137 Positioning before beginning of file
 3138 Caller not privileged for this action
 3139 Simultaneous requests on same channel
 3140 Illegal file type
 3141 Insufficient room in directory
 3142 Illegal OPEN
 3143 Attempt to access process not in hierarchy
 3144 Attempt to block unblockable process
 3145 Invalid system call parameter
 3146 Attempt to start multiple agents
 3147 Channel in use
 3148 Not enough contiguous disk blocks
 3149 Stack overflow
 3150 Inconsistent bitmap data
 3151 Illegal block size for device
 3152 Attempt to ?XMT illegal message
 3153 Physical unit failure
 3154 Physical write lock
 3155 Physical unit off-line
 3156 Illegal OPEN option for file type
 3157 Too many or too few device names
 3158 Disk and file system revision numbers don't match
 3159 Inconsistent device information block (DIB) data
 3160 Inconsistent logical disk unit (LDU)
 3161 Incomplete logical disk unit (LDU)
 3162 Illegal device name type
 3163 Illogical process address space definition
 3164 LDU in use, cannot release
 3165 Too many directories in search list
 3166 Cannot get IPC data from father
 3167 Illegal library number given
 3168 Illegal record format
 3169 Too many or too few arguments to PMGR
 3170 Illegal ?GTMES parameters

893

Interactive COBOL Language Reference & Developer’s Guide

 3171 Illegal CLI message
 3172 Message receive disabled by CHARACTERISTICS/NRM
 3173 Not a console device
 3174 Attempt to exceed maximum index level
 3175 Illegal channel
 3176 No receiver waiting
 3177 Short receive request
 3178 Transmitter inoperative
 3179 Illegal username
 3180 Illegal link number
 3181 Disk positioning error
 3182 Message text longer than specified
 3183 Short transmission
 3184 Illogical histogram call
 3185 Illegal retry value
 3186 ASSIGN error - already your device
 3187 Mag tape request past logical end of tape
 3188 Packet specifies stack too small
 3189 Packet would create too many tasks
 3190 Spooler open retry count exceeded
 3191 Illegal ACL
 3192 ?STMAP buffer contains invalid or write-protected page
 3193 Partner process has not opened IPC file
 3194 FPU hardware not installed
 3195 Illegal process name
 3196 Process name already in use
 3197 Disconnect error
 3198 Process must block to pass generic files
 3199 System not installed
 3200 Maximum directory tree depth exceeded
 3201 Releasing out-of-use overlay
 3202 Resource deadlock
 3203 File is open, cannot exclusively open
 3204 File is exclusively opened, cannot open
 3205 Initialization privilege denied
 3206 Multiple ?
 3207 Illegal link
 3208 Illegal DUMP format
 3209 EXEC not available
 3210 EXEC request function unknown
 3211 EXEC's process subtree only
 3212 Request refused by system operator
 3213 Cannot dismount, was not mounted
 3214 Switch or argument value greater than 65535
 3215 Input file does not exist
 3216 Output file does not exist
 3217 LIST file does not exist
 3218 DATA file does not exist
 3219 Recursive generic file OPEN failure
 3220 No message waiting
 3221 User data area (UDA) does not exist
 3222 Illegal device type from VSGEN
 3223 AOS/VS restart of system call
 3224 Fatal user runtime error
 3225 User commercial stack fault
 3226 User floating point stack fault
 3227 User data area (UDA) already exists
 3228 Illegal screenedit request (PMGR)

894

APPENDIX H - Runtime Errors

 3229 ?SEND destination device held by ^S (CTRL-S)
 3230 Data overrun error
 3231 Control point directory max size exceeded
 3232 System or bootstrap disk not part of master logical disk (LDU)
 3233 Universal system, you can't do that
 3234 Execute access denied
 3235 Cannot initialize LDU; run FIXUP on it
 3236 File access denied
 3237 Directory access denied
 3238 Attempt to define more than one INFOS II process
 3239 INFOS II process not running
 3240 Attempt to issue MCA request while direct I/O in progress
 3241 Attempt to issue MCA direct I/O with request outstanding
 3242 Last task was killed
 3243 Resource load or release failure
 3244 Zero length filename specified
 3245 Buffer overflow
 3246 Transmission failure (too many NAKS)
 3247 Transmission failure (timeouts)
 3248 Disconnect occurred on sync line
 3249 EOT character received
 3250 Possible lost data on HASP line
 3251 Sync DCU inoperative (I/O aborted)
 3252 Conversational reply received
 3253 End of polling list reached without a response
 3254 Illegal relative terminal number
 3255 Reverse interrupt response received
 3256 Illegal line number specified
 3257 Not enough space for polling list
 3258 Contention situation while bidding
 3259 Out-of-sequence gen entry during SINIT
 3260 Request to a non-synchronous line
 3261 Not enough memory for communications buffer
 3262 Line already enabled when ?SEBL call issued
 3263 Line already disabled when ?SDBL call issued
 3264 I/O request on a disabled line
 3265 Line in session on initial I/O request
 3266 Line not in session on continue I/O request
 3267 Buffer byte count larger than system buffer
 3268 Bid error (too many NAKS)
 3269 Wait-A-Bit received (HASP line only)
 3270 User buffer byte pointer invalid
 3271 Retry count exceeded
 3272 ETX code received
 3273 Input status format error
 3274 Failure to connect error
 3275 Uninterpretable response received
 3276 ENQ received
 3277 Block check error
 3278 Initialization parameter error
 3279 Transmitter failure error
 3280 Line not multidrop
 3281 Not a control station
 3282 Polling list not defined
 3283 Inconsistent tab format
 3284 Cannot delete permanent file
 3285 System call abort
 3286 Extended context already defined

895

Interactive COBOL Language Reference & Developer’s Guide

 3287 Unreadable tape or diskette label
 3288 Incorrect labeled volume mounted
 3289 Incorrect labeled tape fileset
 3290 Incorrect file section number
 3291 Incorrect labeled tape file generation number
 3292 Incorrect labeled tape file version number
 3293 No operator available
 3294 Unknown tape label format
 3295 Extended context already initialized
 3296 Extended context not initialized
 3297 Extended context not defined
 3298 Memory release error
 3299 Illegal translation parameter
 3300 Missing or invalid argument
 3301 Not in CLI format
 3302 Illegal bias factor
 3303 CPU time limit exceeded
 3304 Error in setting max CPU limit
 3305 File element size not multiple of 4
 3306 WACK response received
 3307 Process is not a server
 3308 Connection does not exist
 3309 Connection table full
 3310 Directory in use - cannot delete
 3311 Attempt to grow a shared file
 3312 Illegal directory name specification
 3313 Network not available
 3314 Host already exist
 3315 Illegal host specification
 3316 Host does not exist
 3317 Cannot rename host entries
 3318 Empty mailbox on ?RECNW
 3319 Unable to access network in this manner
 3320 Attempt to create multiple local host
 3321 Not awaiting ?IWKUP
 3322 Illegal remote ?PROC parameter(s)
 3323 Illegal host name
 3324 Not proper for a virtual circuit
 3325 HDLC - invalid window size
 3326 Invalid frame size
 3327 SEND active

 3348 Unknown Error

 3352 AOS/VS COBOL Runtime Error Messages
 3353 Abnormal termination of a SORT/MERGE operation
 3354 Error during OPEN of a file for ACCEPT
 3355 Error during OPEN of a file for DISPLAY
 3356 Successful completion, duplicate key entry written
 3357 END OF FILE condition
 3358 INVALID KEY condition, duplicate key not permitted
 3359 INVALID KEY condition, selected record does not exist
 3360 INVALID KEY condition, relative key value is too large
 3361 I/O error (such as data check, parity error, transmission error)
 3362 Disk overflow or physical end of file (end of a tape reel)
 3363 File does not exist (OPEN error)
 3364 On access: file not open in correct mode. On OPEN: file locked or open
 3365 On access: record locked. on OPEN: exclusive open conflict

896

APPENDIX H - Runtime Errors

 3366 OPEN labeled tape error
 3367 Record accessed has been marked as logically deleted
 3368 REWRITE or DELETE attempted without executing previous READ
 3369 INFOS error has occurred for which there is no corresponding FILE STATUS
 3370 Record (from READ) is longer than maximum record length specified
 3371 DELETE ... RECORD may not be used with this RELATIVE file

 3372 Data General C runtime error messages.
 3373 Illegal argument.
 3374 Failed to open standard error file.
 3375 Illegal open type for file type.
 3376 No open channel.
 3377 Error on input occurred.

 3379 Assertion failed.
 3380 Illegal argument value passed.
 3381 Invalid mode passed to fseek or ftell.
 3382 Attempt to use a character pointer as a word pointer.
 3383 Attempt to use a word pointer as a character pointer.
 3384 Use of an illegal pointer.
 3385 End of Infos-II record.
 3386 Attempt to convert an odd character pointer to a word pointer.

 3436 Illegal SIGNAL number
 3437 Failure while initializing C environment.
 3438 Attempt to perform an illegal I/O operation.
 3439 File is not open.
 3440 File was not found.
 3441 Invalid file descriptor.
 3442 Unimplemented feature.
 3443 User ID is not in /etc/passwd.
 3444 Only the owner of the file can do that.
 3445 Access error.
 3446 Attempt to open more than 64 files simulaneously.
 3447 Illegal open mode.
 3448 'lseek' was applied to a pipe
 3449 'lseek' is illegal on this channel

 3501 Error EPERM(1) -- Not owner of file.
 3502 Error ENOENT(2) -- No such file or directory.
 3503 Error ESRCH(3) -- No such process.

 3505 Error EIO(5) -- Error in input/output.
 3506 Error ENXIO(6) -- Unknown device failure.
 3507 Error E2BIG(7) -- Argument list too long.
 3508 Error ENOEXEC(8) -- Exec format error.
 3509 Error EBADF(9) -- Bad file number.
 3510 Error ECHILD(10) -- No children.
 3511 Error EAGAIN(11) -- No more processes allowed.
 3512 Error ENOMEM(12) -- Not enough memory.
 3513 Error EACCES(13) -- Permission denied.
 3514 Error EFAULT(14) -- Bad address.

 3517 Error EEXIST(17) -- File already exists.

 3520 Error ENOTDIR(20) -- File is not a directory.

 3522 Error EINVAL(22) -- Invalid argument.

897

Interactive COBOL Language Reference & Developer’s Guide

 3524 Error EMFILE(24) -- Too many open files.

 3527 Error EFBIG(27) -- File too large.
 3528 Error ENOSPC(28) -- No space left on device.
 3529 Error ESPIPE(29) -- Seek on a pipe.

 3532 Error EPIPE(32) -- Broken pipe.
 3533 Error EDOM(33) -- Math argument out of domain of function.
 3534 Error ERANGE(34) -- Math routine produces result too large.

 3565 Signal SIGHUP (hangup) aborted program.
 3566 Signal SIGINT (interrupt) aborted program.
 3567 Signal SIGQUIT (quit) aborted program with memory dump.
 3568 Signal SIGILL (bad instruction) aborted program with memory dump.
 3569 Signal SIGTRAP (trace trap) aborted program with memory dump.
 3570 Signal SIGIOT (abort routine) aborted program with memory dump.
 3571 Signal SIGEMT aborted program with memory dump.
 3572 Signal SIGFPE (floating exception) aborted program with memory dump.
 3573 Signal SIGKILL aborted program.
 3574 Signal SIGBUS aborted program.
 3575 Signal SIGSEGV (address trap) aborted program with memory dump.
 3576 Signal SIGSYS aborted program with memory dump.
 3577 Signal SIGPIPE aborted program.
 3578 Signal SIGALRM (alarm clock) aborted program.
 3579 Signal SIGTERM (software termination) aborted program.
 3580 Signal SIGUSR1 (user defined #1) aborted program.
 3581 Signal SIGUSR2 (user defined #2) aborted program.
 3582 Signal SIGCHLD aborted program.
 3583 Signal SIGPWR aborted program.
 _
 3584 (IOUER) Illegal command
 3585 (IONMD) All volumes at maximum size
 3586 (IOCON) Continuing execution
 3587 (IOINI) Revision 5.01 of AOS/VS INFOS II error codes
 3588 (IOSPE) Illegal relative motion
 3589 (IOICE) Invalid current entry
 3590 (IOTLV) Warning - positioned above main index (top level)
 3591 (IOSNA) Subindexes not allowed
 3592 (IOSNP) Subindex not defined
 3593 (IOESI) End of subindex
 3594 (IODPE) A requestor on another channel is positioned on the key to delete
 3595 (IOKAE) Key already exists
 3596 (IONDR) Warning - data base record not present
 3597 (IODRL) Data record locked
 3598 (IOSAE) Already linked to subindex
 3599 (IOSTL) File consistency error
 3600 (IOSLO) Define subindex command would exceed max. index levels for file
 3601 (IOSST) Entry has subindex -- delete error
 3602 (IODWK) Attempt to delete entry without keyed access
 3603 (IOIRI) Index entry already points to a different record
 3604 (IOWWK) Command requires keyed access
 3605 (IOENL) Partial record locked
 3606 (IOLVR) Too many index levels
 3607
 3608 (IOKPE) Keyed positioning error
 3609 (IOIEN) Invalid entry number in index
 3610 (IOINA) Invalid node address

898

APPENDIX H - Runtime Errors

 3611 (IODIP) Delete index error -- another user is positioned in that subindex
 3612 (IOTML) Lock request exceeds maximum number of locks
 3613 (IOSYS) Unexpected system call error return
 3614 (IODNS) Duplicate key not allowed in subindex
 3615 (IOIDE) File consistency error
 3616 (IOMAP) Space management map consistency error
 3617 (IOOCC) Occurred at location
 3618 (IOACE) Channel opened read-only, or read-only ACL; cannot modify file
 3619 (IONMT) Subindex not empty
 3620 (IORTL) Key file record wrong length
 3621 (IONIO) Key not in order
 3622 (IOLPR) Illegal partial record length -- use 1 to max allowed in subindex
 3623 (IOPIU) Communication file page in use -- access denied
 3624 (IOINF) Invalid in-use flag in single message request
 3625 (IOTMU) Maximum number of users exceeded
 3626 (IOISF) Invalid single message request format
 3627 (IOMTE) Maximum number of user tasks exceeded
 3628 (IOFER) File error -- please close
 3629 (IOFE2) File error -- cannot open at this time
 3630 RESERVED ERROR CODE
 3631 (IOPOW) File opened for exclusive write, you cannot open it for write access
 3632 (IOCOI) Cannot issue inverted create on file in logging mode
 3633 (IOPCH) Invalid channel number specified
 3634 (IOPDA) ?PDAT{.D} Data record or retrieve high key byte pointer invalid
 3635 (IOPKP) ?PKPN{.B} Illegal # of keys -- use 1 to # of subindex levels in the index
 3636 (IOPLE) ?PLEN{.W} Data record bytelength exceeds database pagesize-8, or is zero
 3637 (IOPLN) Data record link words invalid for inversion
 3638 (IOIPS) ?PCCW{.D} Neither keyed nor relative processing specified
 3639 (IOPSI) ?PSID{.D} Subindex definition packet address invalid
 3640 (IOPPP) ?PPRA{.D} Partial record byte pointer invalid
 3641 (IOLKX) Lock/unlock error -- either both lock and unlock specified, or neither partial nor data record
selected
 3642 (IOPNZ) Initial packet contained nonzero reserved entries
 3643 (IORSE) Maximum request size exceeded
 3644 (IOUEE) Unexpected error -- error code exceeds 16 bits
 3645 (IOREV) Incompatible INFOS_LS.PR and INFOS_GS.PR revisions
 3646 (IOROS) File is already opened for read/write access, you cannot open it for sequential access
 3647 (IOLSS) File is already opened with locks specified, you cannot open it for sequential access
 3648 (IOSSL) File is opened for sequential access, you cannot specify any locks
 3649 (IOSWA) File is opened for sequential access, you cannot open for write access
 3650 (IORRA) Request requires read-only access
 3651 (IOKTY) ?KTYP{.D} Inconsistent key type flags
 3652 (IOKYL) ?KYLN{.B} Illegal key bytelength -- use 1 to maximum allowed in subindex
 3653 (IOKKY) ?KKYP{.D} Invalid key byte pointer
 3654 (IOKDK) Key not found in subindex
 3655 (IOKNZ) Key packet contained nonzero reserved entries
 3656 (IOKDO) Key descriptor level overflow
 3657 (IOKPR) Too many key descriptor packets for link subindex destination key path
 3658 (IOAKI) Alternate key field is invalid

 3664 (IONTS) ?FRNS{.W} Subindex definition root node size won't hold 3 key entries
 3665 (IONTL) ?FRNS{.W} Subindex definition root node size too large for page size
 3666 (IOMKL) ?FMKL{.B} Subindex definition maximum keylength exceeds ?MXKL{VS} bytes
 3667 (IOPRL) ?FPRL{.B} Subindex definition partial record length exceeds ?MXPR{VS} bytes
 3668 (IOSNZ) Subindex definition packet contained nonzero reserved entries

 3677 (IOVER) File version conflict
 3678 (IOPVR) Parameter version error -- reassemble with new user parameter files

899

Interactive COBOL Language Reference & Developer’s Guide

 3679 (IORVR) Runtime version error -- relink with new INFOS II ICALL runtime
 3680 (IODDM) Index and database must be in same parent directory
 3681 (IONIV) Not an INFOS II volume file
 3682 (IOTMO) You attempted to open more than ?MXCHN{VS} INFOS II channels
 3683 (IODNC) Directory name doesn't begin with colon -- probable runtime error
 3684 (IONLR) ?FNLR{.B} Specified maximum number of simultaneous locks exceeds ?MXLK{VS}
 3685 RESERVED ERROR CODE
 3686 (IODBF) ?FDBP{.D} Database file definition packet address invalid
 3687 (IOAMD) ?FAM1{.S} ?FAM2{.S} Access method illegal in ?FFLG{.D}
 3688 (IONIL) ?FNIL{.B} Maximum index levels illegal -- use 1 to ?MXIL{VS}
 3689
 3690 (IOIOO) Illegal or conflicting options requested
 3691 (IOPNR) INFOS II disabled; user not recognized
 3692 (IODNM) Database must be simple filename with no special characters
 3693 (IOFDP) INFOS II index file definition packet pointer invalid
 3694 (IOIVP) IVERIFY in progress
 3695 (IOLOP) Log file open request exceeds maximum number allowed
 3696 (IONCL) COMLOG process not running
 3697 (IOOVE) Runtime version error -- incompatible with current rev of system
 3698 (IOINR) Remote INFOS II communications process not running on local host
 3699 (IOINN) Runtime version error -- ICALL doesn't support INFOS II networking
 3700 (IOPNQ) Local file pathname must not be networking qualified
 3701 (IORFR) Access to remote INFOS II files restricted to VTA
 3702 (IOSMF) Runtime version error -- incompatible single message format
 3703 (IOCSM) Spurious COMLOG acknowledgement message
 3704 (IOSMR) Spurious message received
 3705 (IOFNI) Not an INFOS II index file
 3706 (IODNI) Not an INFOS II database file
 3707 (IOFNA) ?FNAM{.D} Index filename byte pointer invalid
 3708 (IODNA) ?FNAM{.D} Database filename byte pointer invalid
 3709 (IOFPA) ?FPAG{.W} Index pagesize illegal -- use 2048 or 4096 bytes
 3710 (IODPA) ?FPAG{.W} Database pagesize illegal -- use 2048 or 4096 bytes
 3711 (IOFFL) ?FFLG{.D} Reserved bits set in index FDP flag word
 3712 (IODFL) ?FFLG{.D} Reserved bits set in database FDP flag word
 3713 (IOFNV) ?FNVD{.B} Index volume count illegal -- use 1 to ?MXVOL{VS}
 3714 (IODNV) ?FNVD{.B} Database volume count illegal -- use 1 to ?MXVOL{VS}
 3715 (IOFNZ) Packet contained nonzero reserved entries
 3716 (IODNZ) Database packet contained nonzero reserved entries
 3717 (IOVVN) ?VVNP{.D} Index volume name byte pointer invalid
 3718 (IODVN) ?VVNP{.D} Database volume name byte pointer invalid
 3719 (IOVVS) ?VVSZ{.D} Index maximum volume size exceeds 1,048,576 blocks
 3720 (IODVS) ?VVSZ{.D} Database maximum volume size exceeds 1,048,576 blocks
 3721 (IOFDE) Index file does not exist
 3722 (IODDE) Database file does not exist
 3723 (IOFAE) Index filename already exists
 3724 (IODAE) Database filename already exists
 3725 (IOFAD) Index file access denied
 3726 (IODAD) Database file access denied
 3727 (IOF01) Someone has the index open, you can't open it exclusively
 3728 (IOD01) Someone has the database open, you can't open it exclusively
 3729 (IOF02) Someone has the index exclusively opened, you can't open it
 3730 (IOD02) Someone has the database exclusively opened, you can't open it
 3731 (IOVNZ) Index file definition packet contained nonzero reserved entries
 3732 (IODZN) Database file definition packet contained nonzero reserved entries
 3733 (IOFTL) Index pathname longer than ?MXPL bytes including terminator
 3734 (IODTL) Database pathname longer than ?MXPL bytes including terminator
 3735 (IOFNR) Index filename required
 3736 (IODNR) Database filename required for inversion

900

APPENDIX H - Runtime Errors

 3737 (IOFDC) File open during system or INFOS II crash -- run IVERIFY
 3738 (IODDC) Database file open during system or INFOS II crash -- run IVERIFY
 3739 RESERVED ERROR CODE
 3740 RESERVED ERROR CODE
 3741 (IOVDE) An index volume does not exist
 3742 (IODVE) A database volume does not exist
 3743 (IOVMF) Index volume merit factor out of order
 3744 (IODVM) Database volume merit factor out of order
 3745 (IOIVA) Index volume file access denied
 3746 (IODVA) Database volume file access denied

 3765 (IOITC) Regenerate with at least 3 tasks
 3766 (IONSU) Created without superuser privileges
 3767 (IONIP) Created without IPC privileges
 3768 (IOVIF) Created without special process privilege ?PVIF
 3769 (IOILL) Internal logic error
 3770 (IOTER) Terminating -- terminate users and restart INFOS II
 3771 (IOREA) Request entry @INFOS already exists
 3772 (IOPER) Initial directory must be :PER
 3773 (IOTMI) Another INFOS II running

 3776 (IOIDS) Invalid system time date.
 3777 (IOVMS) VM file space exhausted
 3778 (IOUGH) INFOS II global server forcibly terminated

 3841 (IOCPC) Differential file crashed during checkpoint -- run CHECKPOINT utility
 3842 (IOCNC) Crashed file was not checkpointing -- run IRECOVER
 3843 (IOCPT) ?TYPE{.W} Is not checkpoint packet type
 3844 (IOCND) Database file is not in differential mode
 3845 (IOCDB) Checkpoint file must be a database file
 3846 (IOCNO) File is not currently open to INFOS II
 3847 (IOODV) ?FNVD{.B} differential file volume count illegal -- use 1 to 16
 3848 RESERVED ERROR CODE
 3849 RESERVED ERROR CODE
 3850 (IOTP3) Database file is opened exclusively; you may not checkpoint
 3851 (IOOPU) File currently open to a utility or INFOS II
 3852 (IORCV) Log mode file open during system or INFOS II crash -- run IRECOVER
 3853 (IOROC) File open with read-only access during system or INFOS II crash
 3854 (IOUCR) File open to utility during system or INFOS II crash
 3855 (IOOPI) File currently open to INFOS II
 3856 (IOCDF) Differential file open during system or INFOS II crash -- run IRECOVER/DELETE
 3857 (IOCIP) Checkpoint already in progress
 3858 (IODVI) Differential volume inconsistencies; cannot restart checkpoint
 3859 (IOFNS) Database file not in standard file mode
 3860 (IOEAR) Exclusive database access required for this request
 3861 (IOCDC) Differential file crashed during checkpoint -- run IRECOVER/RESTART
 3862 (IOION) Invalid occurrence number specified
 3863 (IORLD) INFOS II request logging disabled
 3864 (IOBYE) INFOS II process shutdown
 3865 (IOINV) Invalid control message
 3866 (IOACT) INFOS II users active, termination refused
 3867 ERROR CODE RESERVED FOR FUTURE USE
 3868 ERROR CODE RESERVED FOR FUTURE USE
 3869 (IONEC) File is not in explicit checkpoint mode
 3870 (IOCCC) Cannot checkpoint until file in CC mode is closed
 3871 (IOFBD) File is being DDUMP'ed

 3877 (IODCS) Duplicate channel numbers specified

901

Interactive COBOL Language Reference & Developer’s Guide

 3878 (IOTIP) TPMS transaction in progress
 3879 (IOICC) Invalid channel count
 3880 (IOITI) Invalid TPMS transaction ID
 3881 (IONOT) File(s) not open for TPMS transactions
 3882 (IOLRQ) Logging required for TPMS transactions
 3883 (IOODC) Other opens depend on this channel
 3884 (IOTTE) Maximum number of outstanding TPMS transactions exceeded

 3888 (IONPG) Caller not privileged to issue grants on this file
 3889 (IOGPN) Grantee PID is not recognized by INFOS II
 3890 (IONMG) Caller not privileged to make this grant

 3896 (IOANS) Remote access to AOS INFOS II not supported by this revision
 3897 (IOIIR) Incompatible revisions of INFOS_LS.PR with Remote server PR
 3898 (IOTNR) No response from target node
 3899 (IOIRC) Illegal remote command
 3900 (IOCRD) Cannot return data -- illegal address
 3901 (IOMRH) Reached limit of remote hosts
 3902 (IOMRC) Reached limit of channels on remote host
 3903 (IODRS) Remote surrogate terminated
 3904 (IORNR) Remote INFOS II communications process not running on remote host
 3905 (IOPNF) Remote user profile not found
 3906 (IORNA) Remote server not accepting network requests
 3907 (IOI03) Invalid INFOS II interface array
 3908 (IOI04) First element of an argument-pair is not an interface variable
 3909 (IOI05) Second element of an argument-pair is too large
 3910 (IOI06) Second element of an argument-pair not allowed to set those bits
 3911 (IOI07) IOPEN call specifies invalid number of levels
 3912 (IOI10) First element of an argument-pair not applicable to this subroutine
 3913 (IOI11) Interface calls must have at least 2 arguments (ARRAY, ERROR)
 3914 (IOI12) INFOS II interface internal consistency error
 3915 (IOI13) F77 interface call must have 'ENDLIST' to mark end of argument list
 3916 (IOI14) INFOS II interface version error -- must use latest interface

 3936 (IONSC) No service class assigned to Client
 3937 (IORSD) Remote server terminated
 3938 (IONSA) No remote Servers available
 3939 (IORCM) Remote connections are at maximum
 3940 (IOSCN) Service class not enabled for Clients and/or Servers
 3941 (IOCAS) Client or Server could not access statistics file

 3968 (IORLC) Resource lock calls are valid only within the setup section of a request group
 3969 (IOSRL) Subindex resource locked
 3970 (IOKRL) Key resource locked
 3971 (IONPR) You cannot set position on a reserve key resource lock request
 3972 (IOCOA) A channel outside your request group is positioned on the key to resource lock
 3973 (IOCDR) You cannot access the data record without an established resource lock
 3974 (IOCPR) You cannot access the partial record without an established resource lock
 3975 (IOCKR) You cannot issue that request without an established key resource lock
 3976 (IOCSR) You cannot issue that request without an established subindex resource lock
 3977 (IOKEW) A key resource lock exists within the subindex to resource lock
 3978 (IODEW) A data record resource lock exists within the subindex to resource lock
 3979 (IOPEW) A partial record resource lock exists within the subindex to resource lock
 3980 (IOCPW) A channel outside your request group is positioned within the subindex to resource lock
 3981 (IOGIP) Request group in progress
 3982 (IOGTI) Invalid request group ID
 3983 (IONOG) File(s) not open in request group mode
 3984 (IOMAR) You cannot issue a modify request prior to the modify section of a request group

902

APPENDIX H - Runtime Errors

 3985 (IONSF) All files must be within the same file set
 3986 (IOCIG) One of the channels specified is currently active within another request group
 3987 (IOMGE) Maximum number of outstanding request groups exceeded
 3988 (IONRL) You cannot release locks in the modify section of a request group
 3989 (IOCEM) Channel count exceeds maximum allowed
 3990 (IONFM) File is not a file set member
 3991 (IOFNM) File is not a member of this file set
 3992 (IOIFL) Specified file set does not match enabled file set
 3993 (IOFNC) File(s) need to be checkpointed
 3994 (IOSFM) Files must be in same mode(s)
 3995 (IOIFM) Invalid file mode
 3996 (IODPL) Key to position on after delete is resource locked
 3997 (IOAIM) Request group is already in modify section

 4032 (IOTID) Task ID cannot be zero
 4033 (IOIPR) Incompatible packet and runtime versions
 4034 (IOIPT) Invalid packet type
 4035 (IOBRD) Bad runtime data (probably ICALL internal data is incorrect)
 4036 (IOIPP) Illegal packet position
 4037 (IOIRN) Runtime error -- invalid ICALL ring number
 4038 (IOCLI) Cannot load lower ring INFOS II PR file
 4039 (IOCFI) Cannot find path to lower ring INFOS II PR file
 4040 (IOWNP) User runtime error -- wrong number of parameters passed to ICALL32
 4041 (IONET) Not enough tasks -- allow one additional task for lower ring INFOS II
 4042 (IOUSN) ?FUSN{.D} Username byte pointer invalid

 4095 (IONIE) Not implemented error

903

Interactive COBOL Language Reference & Developer’s Guide

904

APPENDIX I - ASCII Codes

APPENDIX I. ASCII CODES

Dec Oct Hex DG Function Ctrl-code PC Function/Character
 0 000 00 Null Ctrl @ NUL space
 1 001 01 Print Screen Form Ctrl A SOH (
 2 002 02 Reverse off Ctrl B STX)
 3 003 03 Ctrl C ETX Ì
 4 004 04 Ctrl D EOT Ë
 5 005 05 Read cursor address Ctrl E ENQ Ê
 6 006 06 Ctrl F Ack Í
 7 007 07 Bell Ctrl G Bell !
 8 010 08 Cursor Home Ctrl H Backspace 3
 9 011 09 Ctrl I HTab "
 10 012 0A Newline Ctrl J Linefeed 4
 11 013 0B Erase EOL Ctrl K VTab %
 12 014 0C Erase Screen Ctrl L Form-feed &
 13 015 0D Carriage Return Ctrl M Carriage Return *
 14 016 0E Blink ON Ctrl N SO +
 15 017 0F Blink off Ctrl O SI '
 16 020 10 Write cursor addr(c,r) Ctrl P DLE <
 17 021 11 Print Screen Ctrl Q DC1 (XON) =
 18 022 12 Roll Enable Ctrl R DC2 ;
 19 023 13 Roll Disable Ctrl S DC3 (XOFF) .
 20 024 14 Underscore ON Ctrl T DC4 ¶
 21 025 15 Underscore OFF Ctrl U NAK §
 22 026 16 Reverse On Ctrl V SYN ,
 23 027 17 Cursor Up Ctrl W ETB 0
 24 030 18 Cursor Right Ctrl X CAN 8
 25 031 19 Cursor Left Ctrl Y EM 9
 26 032 1A Cursor Down Ctrl Z SUB 6
 27 033 1B Escape Ctrl [ESC 7
 28 034 1C Dim ON Ctrl \ FS 2
 29 035 1D Dim OFF Ctrl] GS :
 30 036 1E Command Header Ctrl ^ RS >
 31 037 1F Ctrl _ US ?

Dec Oct Hex DG PC
 32 040 20 space space
 33 041 21 ! !
 34 042 22 " "
 35 043 23 # #
 36 044 24 $ $
 37 045 25 % %
 38 046 26 & &
 39 047 27 ’ ’
 40 050 28 ((
 41 051 29))
 42 052 2A * *
 43 053 2B + +
 44 054 2C , (comma),
 45 055 2D - -
 46 056 2E . .
 47 057 2F / /
 48 060 30 0 0
 49 061 31 1 1
 50 062 32 2 2
 51 063 33 3 3
 52 064 34 4 4
 53 065 35 5 5
 54 066 36 6 6
 55 067 37 7 7
 56 070 38 8 8
 57 071 39 9 9
 58 072 3A : :
 59 073 3B ; ;
 60 074 3C < <
 61 075 3D = =
 62 076 3E > >
 63 077 3F ? ?

Dec Oct Hex DG PC
 64 100 40 @ @
 65 101 41 A A
 66 102 42 B B
 67 103 43 C C
 68 104 44 D D
 69 105 45 E E
 70 106 46 F F
 71 107 47 G G
 72 110 48 H H
 73 111 49 I I
 74 112 4A J J
 75 113 4B K K
 76 114 4C L L
 77 115 4D M M
 78 116 4E N N
 79 117 4F O O
 80 120 50 P P
 81 121 51 Q Q
 82 122 52 R R
 83 123 53 S S
 84 124 54 T T
 85 125 55 U U
 86 126 56 V V
 87 127 57 W W
 88 130 58 X X
 89 131 59 Y Y
 90 132 5A Z Z
 91 133 5B [[
 92 134 5C \ \
 93 135 5D]]
 94 136 5E ^ ^
 95 137 5F _ _

Dec Oct Hex DG PC
 96 140 60 < <
 97 141 61 a a
 98 142 62 b b
 99 143 63 c c
100 144 64 d d
101 145 65 e e
102 146 66 f f
103 147 67 g g
104 150 68 h h
105 151 69 i i
106 152 6A j j
107 153 6B k k
108 154 6C l l
109 155 6D m m
110 156 6E n n
111 157 6F o o
112 160 70 p p
113 161 71 q q
114 162 72 r r
115 163 73 s s
116 164 74 t t
117 165 75 u u
118 166 76 v v
119 167 77 w w
120 170 78 x x
121 171 79 y y
122 172 7A z z
123 173 7B { {
124 174 7C | |
125 175 7D } }
126 176 7E ~ ~
127 177 7F DEL -

905

Interactive COBOL Language Reference & Developer’s Guide
Dec Oct Hex DGI PC
128 200 80 Ç
129 201 81 ü
130 202 82 é
131 203 83 â
132 204 84 ä
133 205 85 à
134 206 86 å
135 207 87 ç
136 210 88 ê
137 211 89 ë
138 212 8A è
139 213 8B ï
140 214 8C î
141 215 8D ì
142 216 8E Ä
143 217 8F Å
144 220 90 É
145 221 91 æ
146 222 92 Æ
147 223 93 ô
148 224 94 ö
149 225 95 ò
150 226 96 û
151 227 97 ù
152 230 98 ÿ
153 231 99 Ö
154 232 9A Ü
155 233 9B ¢
156 234 9C £
157 235 9D ¥
158 236 9E .
159 237 9F ƒ

160 240 A0 space á
161 241 A1 é í
162 242 A2 ½ ó
163 243 A3 µ ú
164 244 A4 ² ñ
165 245 A5 ³ Ñ
166 246 A6 ¤ ª
167 247 A7 ¢ º
168 250 A8 £ ¿
169 251 A9 ª 1
170 252 AA º ¬
171 253 AB ¡ ½
172 254 AC ¿ ¼
173 255 AD © ¡
174 256 AE ® «
175 257 AF ‡ »
176 260 B0 » !

177 261 B1 « "

178 262 B2 ¶ #

179 263 B3 ™ *

180 264 B4 ƒ 1
181 265 B5 ¥ I

182 266 B6 ± M
183 267 B7 # D

184 270 B8 $ @

185 271 B9 · <
186 272 BA Ì (grave) 5

187 273 BB § 7

188 274 BC ° (degree) 8
189 275 BD ¨ (umlaut) E

190 276 BE ´ (acute) A

191 277 BF 8 ,

Dec Oct Hex DGI PC
192 300 C0 Á .

193 301 C1 À 2

194 302 C2 Â 0
195 303 C3 Ä /

196 304 C4 Ã)

197 305 C5 Å 3

198 306 C6 Æ G

199 307 C7 Ç K
200 310 C8 É 9

201 311 C9 È 6

202 312 CA Ê =
203 313 CB Ë ;

204 314 CC Í :
205 315 CD Ì 4

206 316 CE Î >

207 317 CF Ï N
208 320 D0 Ñ J

209 321 D1 Ó L

210 322 D2 Ò H

211 323 D3 Ô F
212 324 D4 Ö B

213 325 D5 Õ ?

214 326 D6 Ø C

215 327 D7 Œ O
216 330 D8 Ú P

217 331 D9 Ù -
218 332 DA Û +

219 333 DB Ü $

220 334 DC space (

221 335 DD Ÿ %

222 336 DE space '

223 337 DF space &

224 340 E0 á á
225 341 E1 à â
226 342 E2 â Ã
227 343 E3 ä ð
228 344 E4 ã Ó
229 345 E5 å ó
230 346 E6 æ ì
231 347 E7 ç ô
232 350 E8 é Ö
233 351 E9 è è
234 352 EA ê Ù
235 353 EB ë ä
236 354 EC í 4
237 355 ED ì ö
238 356 EE î å
239 357 EF ï 1
240 360 F0 ñ /
241 361 F1 ó ±
242 362 F2 ò $
243 363 F3 ô #
244 364 F4 ö !
245 365 F5 õ "
246 366 F6 ø ÷
247 367 F7 œ .
248 370 F8 ú E
249 371 F9 ù @
250 372 FA û A
251 373 FB ü /
252 374 FC â 6
253 375 FD ÿ ²
254 376 FE space #
255 377 FF space space

< Notes:
1. Decimal codes 128 - 159 for DGI are the same as their 7-bit counterparts by default.
2. DGI is as defined by a D216E+/D217/D413/D463 terminal.

906

APPENDIX J - EBCDIC Codes

APPENDIX J. EBCDIC CODES
Dec Oct Hex Char

 0 000 00 NUL
 1 001 01 SOH
 2 002 02 STX
 3 003 03 ETX
 4 004 04 PF
 5 005 05 HT
 6 006 06 LC
 7 007 07 DEL
 8 010 08
 9 011 09
 10 012 0A SMM
 11 013 0B VT
 12 014 0C FF
 13 015 0D CR
 14 016 0E SO
 15 017 0F SI
 16 020 10 DLE
 17 021 11 DC1 (XON)
 18 022 12 DC2
 19 023 13 DC3(XOFF)
 20 024 14 RES
 21 025 15 NL
 22 026 16 BS
 23 027 17 IL
 24 030 18 CAN
 25 031 19 EM
 26 032 1A CC
 27 033 1B CU1
 28 034 1C FS
 29 035 1D GS
 30 036 1E RS
 31 037 1F US

Dec Oct Hex Char

 32 040 20 DS
 33 041 21 SOS
 34 042 22 FS
 35 043 23
 36 044 24 BYP
 37 045 25 LF
 38 046 26 ETB
 39 047 27 ESC
 40 050 28
 41 051 29
 42 052 2A SM
 43 053 2B CU2
 44 054 2C DC4
 45 055 2D ENQ
 46 056 2E ACK
 47 057 2F BEL
 48 060 30
 49 061 31
 50 062 32 SYN
 51 063 33
 52 064 34 PN
 53 065 35 RS
 54 066 36 UC
 55 067 37 EOT
 56 070 38
 57 071 39
 58 072 3A
 59 073 3B CU3
 60 074 3C
 61 075 3D NAK
 62 076 3E
 63 077 3F SUB

Dec Oct Hex Char

 64 100 40 space
 65 101 41
 66 102 42
 67 103 43
 68 104 44
 69 105 45
 70 106 46
 71 107 47
 72 110 48
 73 111 49
 74 112 4A
 75 113 4B .
 76 114 4C <
 77 115 4D (
 78 116 4E +
 79 117 4F |
 80 120 50 &
 81 121 51
 82 122 52
 83 123 53
 84 124 54
 85 125 55
 86 126 56
 87 127 57
 88 130 58
 89 131 59
 90 132 5A !
 91 133 5B $
 92 134 5C *
 93 135 5D)
 94 136 5E ;
 95 137 5F ~

Dec Oct Hex Char

 96 140 60 -
 97 141 61 /
 98 142 62
 99 143 63
100 144 64
101 145 65
102 146 66
103 147 67
104 150 68
105 151 69
106 152 6A |
107 153 6B ,
108 154 6C %
109 155 6D _
110 156 6E >
111 157 6F ?
112 160 70
113 161 71
114 162 72
115 163 73
116 164 74
117 165 75
118 166 76
119 167 77
120 170 78
121 171 79 `
122 172 7A :
123 173 7B #
124 174 7C @
125 175 7D '
126 176 7E =
127 177 7F "

Dec Oct Hex Char

128 200 80
129 201 81 a
130 202 82 b
131 203 83 c
132 204 84 d
133 205 85 e
134 206 86 f
135 207 87 g
136 210 88 h
137 211 89 i
138 212 8A
139 213 8B
140 214 8C
141 215 8D
142 216 8E
143 217 8F
144 220 90
145 221 91 j
146 222 92 k
147 223 93 l
148 224 94 m
149 225 95 n
150 226 96 o
151 227 97 p
152 230 98 q
153 231 99 r
154 232 9A ^
155 233 9B
156 234 9C
157 235 9D
158 236 9E
159 237 9F

Dec Oct Hex Char

160 240 A0
161 241 A1 ~
162 242 A2 s
163 243 A3 t
164 244 A4 u
165 245 A5 v
166 246 A6 w
167 247 A7 x
168 250 A8 y
169 251 A9 z
170 252 AA
171 253 AB
172 254 AC
173 255 AD [
174 256 AE
175 257 AF
176 260 B0
177 261 B1
178 262 B2
179 263 B3
180 264 B4
181 265 B5
182 266 B6
183 267 B7
184 270 B8
185 271 B9
186 272 BA
187 273 BB
188 274 BC
189 275 BD]
190 276 BE
191 277 BF

Dec Oct Hex Char

192 300 C0 {
193 301 C1 A
194 302 C2 B
195 303 C3 C
196 304 C4 D
197 305 C5 E
198 306 C6 F
199 307 C7 G
200 310 C8 H
201 311 C9 I
202 312 CA
203 313 CB
204 314 CC
205 315 CD
206 316 CE
207 317 CF
208 320 D0 }
209 321 D1 J
210 322 D2 K
211 323 D3 L
212 324 D4 M
213 325 D5 N
214 326 D6 O
215 327 D7 P
216 330 D8 Q
217 331 D9 R
218 332 DA
219 333 DB
220 334 DC
221 335 DD
222 336 DE
223 337 DF

Dec Oct Hex Char

224 340 E0 \
225 341 E1
226 342 E2 S
227 343 E3 T
228 344 E4 U
229 345 E5 V
230 346 E6 W
231 347 E7 X
232 350 E8 Y
233 351 E9 Z
234 352 EA
235 353 EB
236 354 EC
237 355 ED
238 356 EE
239 357 EF
240 360 F0 0
241 361 F1 1
242 362 F2 2
243 363 F3 3
244 364 F4 4
245 365 F5 5
246 366 F6 6
247 367 F7 7
248 370 F8 8
249 371 F9 9
250 372 FA
251 373 FB
252 374 FC
253 375 FD
254 376 FE
255 377 FF

< Note:

907

Interactive COBOL Language Reference & Developer’s Guide

908

APPENDIX K - COBOL RESERVED Words

APPENDIX K. COBOL RESERVED WORDS

BOLD words are ANSI 85 reserved words. Trailing letter(s) after the word indicate the following:
i indicates an additional non-ANSI reserved word for ANSI 74 and ANSI 85.
q indicates an additional non-ANSI reserved word for the ISQL feature-set.
v- indicates an ANSI reserved word that is NOT reserved for VXCOBOL.
v indicates an additional non-ANSI reserved word for VXCOBOL.

Words without a trailing “i”, “v-”, “v“, or ”q” are reserved words for all ICOBOL dialects.

ABSOLUTE q
ACCEPT
ACCESS
ACCESSIBILITY v
ACTION q
ADD
ADDRESS i
ADVANCING
AFTER
ALL
ALLOCATE q
ALLOW v
ALLOWS v
ALPHABET v-
ALPHABETIC
ALPHABETIC-LOWER
v-
ALPHABETIC-UPPER
v-
ALPHANUMERIC v-
ALPHANUMERIC-EDITED
v-
ALSO
ALTER
ALTERNATE
AND
ANY v-
APPROXIMATE v
ARE
AREA
AREAS
AS q
ASC
ASCENDING
ASCII i, v
ASSIGN
AT
AUTHOR
AUTO i, v
AUTOMATIC v
AVG q

BACKGROUND i
BACKGROUND-COLOR i
BACKWARD i, v
BECOMES v
BEEP i
BEFORE
BELL i, v
BETWEEN q
BIGINT q
BINARY v-

BIT v, q
BLACK i
BLANK
BLINK
BLOCK
BLUE i
BOLD i
BOTTOM
BRIGHT i
BROWN i
BY

CALL
CANCEL
CATALOG q
CD
CF
CH
CHANNEL v
CHAR q
CHARACTER
CHARACTERS
CHECK v, q
CHECKPOINT v
CLASS v-
CLOCK-UNITS
CLOSE
COBOL
CODE
CODE-SET
COL
COLLATING
COLS q
COLUMN
COLUMNS q
COMMA
COMMAND q
COMMIT v, q
COMMON v-
COMMUNICATION
COMP
COMP-1 v
COMP-2 v
COMP-3 i, v
COMP-5 i
COMPRESSION v
COMPUTATIONAL
COMPUTATIONAL-1 v
COMPUTATIONAL-2 v
COMPUTATIONAL-3 i,
v
COMPUTATIONAL-5 i

COMPUTE
CONCURRENT v
CONFIGURATION
CONNECT v, q
CONNECTED v
CONNECTION q
CONTAINS
CONTENT
CONTIGUOUS v
CONTINUE
CONTROL
CONTROLS
CONVERT i, q
CONVERTING v-
COPY
CORR
CORRESPONDING
COUNT
CR v
CREATE v, q
CURRENCY
CURRENT v, q
CURRENT-DATE q
CURRENT-TIME q
CURRENT-TIMESTAMP
q
CURSOR i, v
CYAN i

DATA
DATA-SENSITIVE i,
v
DATE
DATE-COMPILED
DATE-WRITTEN
DAY
DAY-OF-WEEK
DBMS v
DB-EXCEPTION v
DE
DEALLOCATE q
DEBUG-CONTENTS
DEBUG-ITEM
DEBUG-LINE
DEBUG-NAME
DEBUG-SUB-1
DEBUG-SUB-2
DEBUG-SUB-3
DEBUGGING
DECIMAL-POINT
DECLARATIVES
DEFAULT i

DEFINE v
DELETE
DELIMITED
DELIMITER
DEPENDING
DESC
DESCENDING
DESTINATION
DETAIL
DIAGNOSTICS q
DICTIONARY v
DIM i
DISABLE
DISCONNECT v, q
DISK i, v
DISPLAY
DISTINCT q
DIVIDE
DIVISION
DOUBLE q
DOWN
DROP q
DUPLICATE v
DUPLICATES
DYNAMIC

EBCDIC i, v
ECHO i
EGI
ELSE
EMI
EMPTY v
ENABLE
END
END-ACCEPT i, v
END-ADD
END-CALL
END-CHECKPOINT v
END-COMMIT q
END-COMPUTE
END-CONNECT q
END-CREATE q
END-DEALLOCATE q
END-DEFINE v
END-DELETE
END-DISCONNECT q
END-DISPLAY i
END-DIVIDE
END-DROP q
END-EVALUATE v-
END-EXEC q
END-EXECUTE q

909

Interactive COBOL Language Reference & Developer’s Guide
END-EXPUNGE v
END-FETCH q
END-FINISH-REQUEST-GROUP v

END-GET q
END-IF
END-INSERT q
END-LINK v
END-LOCK-RESOURCE
v
END-MODIFY-REQUEST-GROUP v

END-MULTIPLY
END-OF-PAGE
END-PERFORM
END-PREPARE q
END-READ
END-RECEIVE v-
END-RETRIEVE v
END-RETURN
END-REWRITE
END-ROLLBACK q
END-SEARCH
END-SELECT q
END-SET q
END-START
END-START-REQUEST-GROUP v

END-STRING
END-SUBTRACT
END-UNDELETE i, v
END-UPDATE q
END-UNSTRING
END-WRITE
ENTER
ENVIRONMENT
EOL i
EOP
EOS i
EQUAL
ERASE i, v
ERROR
ESCAPE i, v
ESI
EVALUATE v-
EVEN v
EVERY
EXCEPTION
EXCLUDE v
EXCLUSIVE i, v
EXEC q
EXECUTE q
EXISTS q
EXIT
EXPIRATION v
EXPUNGE v
EXTEND
EXTERNAL

FALSE v-
FD
FEEDBACK v
FETCH q
FIELD i, v
FIELDS i, v
FILE
FILE-CONTROL

FILES v
FILESET v
FILLER
FINAL
FIND v
FINISH v
FIRST
FIX v
FIXED i, v
FLOAT q
FOOTING
FOR
FOREGROUND i
FOREGROUND-COLOR i
FORWARD i, v
FOUND q
FROM
FULL i, v
FUNCTION i, v

GENERATE
GENERATION v
GENERIC v
GET q
GIVING
GLOBAL
GO
GOBACK i, v
GREATER
GREEN i
GROUP

HAVING q
HEADER i, v
HEADING
HIERARCHICAL v
HIGH i, v
HIGH-VALUE
HIGH-VALUES
HIGHLIGHT i
HOUR q

I-O
I-O-CONTROL
ID v
IDENTIFICATION
IF
IGNORE i
IMMEDIATE i, v
IN
INDEX
INDEXED
INDICATE
INDICATOR q
INFOS v
INITIAL
INITIALIZATION v
INITIALIZE v-
INITIATE
INPUT
INPUT-OUTPUT
INSPECT
INSTALLATION

INT q
INTEGER q
INTERVAL q
INTO
INVALID
INVALIDATE v
INVERTED v
IS

JUST
JUSTIFIED

KEY
KEYBOARD i, v
KEYS v

LABEL
LABELS v
LAST
LEADING
LEFT
LENGTH
LESS
LEVELS v
LIKE q
LIMIT
LIMITS
LINAGE
LINAGE-COUNTER
LINE
LINE-COUNTER
LINES
LINK v
LINKAGE
LOCAL v
LOCK
LOCK-RESOURCE v
LOGICAL i, v
LOW i
LOW-VALUE
LOW-VALUES
LOWLIGHT i
LRU v

MAGENTA i
MANAGEMENT v
MANDATORY v
MAX q
MAXIMUM v
MEMBER v
MEMORY
MERGE
MERIT v
MESSAGE
MIN q
MINUS i
MINUTE q
MODE
MODIFY v
MODULES
MONTH q
MOVE
MULTIPLE

MULTIPLY

NAME i, v
NATIONAL q
NATIVE
NEGATIVE
NEXT
NO
NODE v
NONE v,q
NOT
NULL i,v
NULLS i
NUMBER
NUMERIC
NUMERIC-EDITED v-

OBJECT-COMPUTER
OBTAIN v
OCCURRENCE v
OCCURS
ODD v
OF
OFF
OFFSET v
OMITTED
ON
ONLY v, q
OPEN
OPTIONAL
OR
ORDER
ORGANIZATION
OTHER
OUT v
OUTPUT
OVERFLOW
OWNER v

PACKED-DECIMAL v-
PAD v, q
PADDING
PAGE
PAGE-COUNTER
PARITY v
PARTIAL v, q
PERFORM
PF
PH
PHYSICAL i, v
PIC
PICTURE
PLUS
POINTER
POSITION
POSITIVE
PRECISION q
PREPARE q
PREVIOUS i
PRINTER i, v
PRINTER-1 i, v
PRINTING
PRIOR v, q

910

APPENDIX K - COBOL RESERVED Words
PROCEDURE
PROCEDURES
PROCEED
PROGRAM
PROGRAM-ID
PROMPT i
PURGE v-

QUEUE
QUOTE
QUOTES

RANDOM
RD
READ
READY v
REAL q
RECEIVE
RECONNECT v
RECORD
RECORDING i, v
RECORDS
RED i
REDEFINES
REEL
REFERENCE
REFERENCES
RELATIVE
RELEASE
REMAINDER
REMOVAL
RENAMES
REPLACE v-
REPLACING
REPORT
REPORTING
REPORTS
REQUEST-GROUP v
REQUIRED i, v
RERUN
RESERVE
RESERVE-KEY v
RESET
RETAIN v
RETRIEVAL v
RETRIEVE v
RETURN
REVERSE i
REVERSE-VIDEO i
REVERSED
REWIND
REWRITE

RF
RH
RIGHT

ROLLBACK v, q
ROOT v
ROUNDED
ROW q
RUN

SAME
SAVE v
SCHEMA q
SCREEN i, v
SD
SEARCH
SECOND q
SECONDS v
SECTION
SECURE i, v
SECURITY
SEEK v
SEGMENT
SEGMENT-LIMIT
SELECT
SEND
SENTENCE
SEPARATE
SEQUENCE
SEQUENTIAL
SET
SIGN
SIZE
SORT
SORT-MERGE
SOURCE
SOURCE-COMPUTER
SPACE
SPACES
SPECIAL-NAMES
SQL q
SQLCA q
SQLCODE q
SQLERROR q
SQLSTATE q
SQLWARNING q
STANDARD
STANDARD-1
STANDARD-2
STANDARD-3 v
START
STATIC v
STATUS

STOP
STORE v
STRING
SUB-INDEX v
SUB-QUEUE-1
SUB-QUEUE-2
SUB-QUEUE-3
SUBSCHEMA v
SUBTRACT
SUM
SUPPRESS
SWITCH i, v
SYMBOLIC
SYNC
SYNCHRONIZED
SYSTEM v

TAB i
TABLE
TABLES q
TALLYING
TAPE
TEMPORARY v, q
TERMINAL
TERMINATE
TEST v-
TEXT
THAN
THEN
THROUGH
THRU
TIME
TIME-OUT i, v
TIMES
TIMESTAMP q
TO
TOP
TRAILER v
TRAILING
TRANSACTION
TRUE v-
TRUNCATE v
TYPE

UNDEFINED v
UNDELETE i, q
UNDERLINE i
UNDERLINED i
UNION q
UNIT
UNLOCK
UNSTRING

UNTIL
UP
UPDATE i, q
UPON
USAGE
USE
USER i, v, q
USING

VALID q
VALUE
VALUES
VARCHAR q
VARIABLE i, v
VARYING
VERIFY v
VIRTUAL v
VIRTUAL-STORAGE v
VOLUME v

WAIT v
WHEN
WHENEVER q
WHERE q
WHITE i
WITH
WITHIN v
WORDS
WORK q
WORKING-STORAGE
WRITE

YEAR q
YYYYDDD i, v
YYYYMMDD i, v

ZERO
ZEROES
ZEROS
ZONE q

+
-
*
/
**
<
<>
<=
=
>
>=

911

Interactive COBOL Language Reference & Developer’s Guide

The following words are not currently reserved words in ICOBOL but may be used in the future or are reserved
words in another manufacturer's COBOL product.

ABSENT
ACTIVE-CLASS
AUTOTERMINATE

B-AND
B-NOT
B-OR
B-XOR
BASED
BINARY-CHAR
BINARY-DOUBLE
BINARY-LONG
BINARY-SHORT
BINARY-SEQUENTIAL
BLINKING
BOOLEAN

C01
C02
C03
C04
C05
C06
C07
C08
C09
C10
C11
C12
CARD-PUNCH

CARD-READER
CASSETTE
CLASS-ID
COMP-4
COMP-6
COMPUTATIONAL-4
COMPUTATIONAL-6
CONSOLE
CONSTANT
CONVERSION
CRT

DISC

EXCEPTION-OBJECT

FACTORY
FILE-ID
FLOAT-EXTENDED
FLOAT-LONG
FLOAT-SHORT
FREE
FUNCTION-ID

INHERITS
INTERFACE-ID
INVOKE

LISTING

MANUAL
METHOD
METHOD-ID

NATIONAL-EDITED
NESTED

OBJECT
OPTIONS
OVERRIDE

PRINT
PRINTER-2
PRINTER-3
PROGRAM-POINTER
PROPERTY
PROTOTYPE

RAISE
RAISING
REMARKS
REPOSITORY
RESUME
RETRY
RETURN-CODE
RETURNING

SHARING
SORT-WORK

SOURCES
SWITCH-1
SWITCH-2
SWITCH-3
SWITCH-4
SWITCH-5
SWITCH-6
SWITCH-7
SWITCH-8
SYSIN
SYSOUT
SYSTEM-DEFAULT

TYPEDEF

UNIVERSAL
UPSI-0
UPSI-1
UPSI-2
UPSI-3
UPSI-4
UPSI-5
UPSI-6
UPSI-7
USER-DEFAULT

VALIDATE

912

APPENDIX L - System Calls

*** NOTE: New applications should avoid using these system calls and instead
use the preferred IC_xx builtins described in this document. Each system call
(except for #D) has a corresponding builtin, as indicated in the table.

APPENDIX L. SYSTEM CALLS

1. Overview

ICOBOL uses the CALL PROGRAM statement to access a set of system-defined routines. These are called system
calls and are listed in the table below. Following the table is a description of each of the calls. If the system call
provides user interaction through a menu, that interface is documented in the appropriate chapter in the Utilities
Manual.

System
Call

Function Comparable
Builtin Function

 #A Abort a program IC_ABORT_TERM

 #D Treated as a normal
CALL PROGRAM

n.a.

 #H Log off a terminal IC_HANGUP

 #L Chain to LOGON IC_LOGON

 #M Send a message IC_SEND_MSG

 #N Rename a file IC_RENAME

 #O Detach a COBOL job IC_DETATCH_PROGRAM

 #P View and change the current
status of the print spool-
ing system, including the
files in the system

IC_PRINT_STAT

 #S Shutdown the runtime system IC_SHUTDOWN

 #T Terminal Status IC_TERM_STATUS

 #W Pause for a period of time IC_DELAY

##C Compute a check block IC_CHECK_DATA

##D Get total and free disk
space

IC_GET_DISK_SPACE

##E Get an environment variable IC_GET_ENV

##F Resolve a filename or do a
directory listing

IC_DIR_LIST

##G Return a system message IC_MSG_TEXT

##I Show internal status infor-
mation

IC_SYS_INFO

##M Move file data IC_MOVE_FILE_DATA

##P Like #P but returns to pro-
gram

IC_PRINT_STAT

##S Return a serial number IC_SERIAL_NUMBER

##T Sets timeout value for AC-
CEPTs

IC_SET_TIMEOUT

##U Shutdown the runtime system IC_SHUTDOWN

For VXCOBOL, #D, #H, #L, #S, and #W are supported. #A, #M, #P, and #T will chain to logon. All other system
calls will return exception 203, “Program not found”.

913

Interactive COBOL Language Reference & Developer’s Guide

NOTE: A CALL PROGRAM "LOGON" is not the same as #L, since it will not mark the terminal as
being Inactive.

2. #A Abort a Program

The #A system call allows active terminals to be aborted either to facilitate a system shutdown or for other reasons.
Upon invocation, a terminal status window of all logged-on terminals will be displayed. You are then prompted as to
which terminal you wish to abort. Once that terminal is aborted you will see the confirmation in the status window.
Aborting a terminal will not remove it from the terminal status window but will mark the terminal as `Stopped' in the
terminal status window.

The #A system call is enabled with the Abort terminal privilege in the Program Environment configuration of the
configuration file (.cfi). If not enabled, the call will fail with an Exception Status 203 "Program not found.".

The syntax is:

CALL PROGRAM "#A"

On exit from #A, a CALL PROGRAM "#L" is performed.

On Linux, Abort communicates with ICEXEC to interrupt the appropriate process. ICEXEC uses the Linux Signal
mechanism with SIGUSR1 to shutdown the named process. An abort is just like a kill -16 from the shell to that
process.

For more on #A see the Abort utility in the Utilities Manual.

3. #H Hang Up the Terminal

The syntax is:

CALL PROGRAM "#H"

#H terminates ICOBOL like #S does.

4. #L Call LOGON

The #L system call runs the standard LOGON program and makes the terminal line Inactive in the terminal status
window. #L does not remove the terminal from the Terminal Status window. No ICISAM files should be open in
the LOGON program since the system can and will abort users executing LOGON when entered via #L or after the
initial sign-on.

The syntax is:

CALL PROGRAM "#L"

5. #M Message Broadcast

The #M system call allows the user to send a message to one, several, or all logged-on ICOBOL users, either active
or inactive on the same machine. The message will not appear on the user's console until the next opcode is executed
by that process. Thus if a user is waiting in an ACCEPT the message will not appear until that ACCEPT has been
terminated.

The #M system call is enabled with the Message sending privilege in the Program Environment configuration of the
configuration file (.cfi). If not enabled, the call will fail with an Exception Status 203 "Program not found.".

914

APPENDIX L - System Calls

Two message modes are available.

Mode 1 (Interactive Mode)

For mode 1, the syntax is:

CALL PROGRAM "#M"

Upon invocation, a terminal status window of all logged on terminals is displayed. You are then prompted for the
message that you wish to send. You are then prompted for the terminal number to send the message to. If none, the
message is sent to all logged-on users.

On exit from a Mode 1 #M, a CALL PROGRAM "#L" is performed.

For more on #M in Mode 1 see the Message Broadcast utility in the Utilities Manual.

Mode 2 (Program Mode)

For mode 2, the syntax is:

CALL PROGRAM "#M n message" or
CALL PROGRAM "#M * message"

Where
n

Specifies the terminal number to send the message to.
*

Implies all logged on terminals.
message

Is the message to be sent.

If n is an invalid terminal number or is not currently active, an Exception Status 228 "The terminal is not logged on"
is returned. If n is a terminal which is not enabled, Exception Status 229 "The terminal is not configured into the
system" is returned.

When a Mode 2 #M is finished, execution continues with the next statement in the COBOL program.

6. #N Rename a File

The #N system call allows a file to be renamed.

The syntax is:

CALL PROGRAM "#N old-filename new-filename"

Where
old-filename

Is the old filename to be renamed.
new-filename

Is the new filename.

Pathnames can be used. Separate the filenames by at least one (1) space. To rename an ICISAM file you must
rename each individual portion explicitly supplying the .XD and .NX extensions with two system calls.

Execution continues at the next statement.

The #N filenames do not go through the ICLINK link file facility.

915

Interactive COBOL Language Reference & Developer’s Guide

Old-filename and new-filename are processed as an External Filename as described on page 791, except a full
pathname is not made if a simple name is given.

7. #O Detach a COBOL program

The #O system call enables a user to start a COBOL program on another logical console (called a detached
program).

The #O system call is enabled with the Detach/Host programs privilege in the Program Environment of the
configuration file (.cfi). If not enabled, the call will fail with an Exception Status 203 "Program not found.".

The syntax is:

CALL PROGRAM "#O program-name [filename]" [USING term-id].

Where
program-name

Is a valid COBOL program name including program switches, although no spaces can separate the switches
from the program.

filename
Specifies a disk filename for the output file.

term-id
Is at least a PIC 9(5) DISPLAY field. If set to 65535, it instructs ICOBOL to start the detached program
on the next available detachable console and return that console number in term-id. If set to anything other
than 65535, ICOBOL tries to detach the COBOL program attached to that specific detached console if it is
available, otherwise an error is given. If no term-id is given, then the next available detachable console is
used.

An available detachable console is defined to be a logical console that is:

1) enabled,
2) whose device is set to NUL (on Windows) or null (on Linux), and
3) is currently not running a detached program.

If a detached program is started with no optional output file, then all output from the program will go to the null
device (bit-bucket). That is, the program output will be discarded.

All detached programs will generate an end-of-file (EOF) error on any ACCEPT or READ from the console, as the
input device will always be set to the null device.

A detached program can only execute non-screen DISPLAY statements. A screen DISPLAY will generate an error
and the program will terminate.

Possible errors for #O include:

1 Invalid operation
36 Filename is not valid (for an invalid program name)
209 Parameter mismatch (for no program name specified or if term-id is invalid, i.e., greater than 65535 or

not a number)
212 No more programs are available (if no available consoles can be found to detach this program to)
219 Invalid task number (if the console specified by term-id is not available or is in use.

The detached program will inherit the starting program's username. Its privileges are those specified for the console
on which it is running. Detached programs cannot execute any system calls or builtins that perform screen I/O.

If a detached program terminates abnormally, any error will be written to the standard output file or to the starting
program's standard error file on Linux.

916

APPENDIX L - System Calls

NOTE: A standard CALL PROGRAM error like Program Not Found, Program Too Big, etc. is not
returned by a #O because it occurs after the "detached program" has been detached from the
current program.

On Linux, the program performing the #O must have icrun in the working directory or in a directory on its PATH
variable.

8. #P and ##P Printer Control Utility

The #P and ##P system calls enable the user to view and change the current status of the print spooling system
including the files in the system, the files currently queued to a print queue or printing, and the files that have been
printed.

The #P and ##P system calls are enabled with the Printer control privilege in the Program Environment configuration
of the configuration file (.cfi). If not enabled, the call will fail with an Exception Status 203 "Program not found.".

The syntax is:

CALL PROGRAM "#P"
or

CALL PROGRAM "##P"

For more on #P, ##P, and the printer spooling system, see the Printer Control utility in the Utilities Manual.

On exit from #P, a CALL PROGRAM "#L" is performed.

On exit from ##P control is returned to the program that called it.

9. #S Stop Runtime System Execution

The #S and ##U system calls allow the program to terminate the runtime system.

The #S and ##U system calls are enabled with the System Shutdown privilege in the Program Environment
configuration of the configuration file (.cfi). If not enabled, the call will fail with an Exception Status 203 "Program
not found.".

The syntax is:

CALL PROGRAM "#S"

The #S system call terminates the currently running ICOBOL process and returns control to the process that invoked
ICOBOL. If that process was login, then the terminal is logged off the system. #H and ##U behave exactly the
same as #S. When ICOBOL has been started in Program mode (i.e., icrun program) then a STOP RUN or Fatal
Error will behave the same as #S.

917

Interactive COBOL Language Reference & Developer’s Guide

 NOTE: If any value but spaces or digits are found after the #W, a conversion error is detected and
the default value of 30 is used.

10. #T Terminal Status

The #T (Terminal Status) system call allows the user to view the status of all ICOBOL users on the machine as well
as current system information.

The #T system call is enabled with the Terminal status privilege in the Program Environment configuration of the
configuration file (.cfi). If not enabled, the call will fail with an Exception Status 203 "Program not found.".

The syntax is:

CALL PROGRAM "#T"

For more on #T see the Terminal Status utility in the Utilities Manual.

11. #W Wait for a Specified Time

The #W system call suspends program execution for a time expressed in tenths of a second. The default integer is
30, which is a three-second pause. The maximum integer is 65,535, producing a pause of 109 minutes and 13.5
seconds. No CPU time is used during the pause.

The syntax is:

CALL PROGRAM "#W[{ space }...]integer".

12. ##C Compute Check Block

The ##C extended system call is supported to allow programmers to easily calculate a CRC, LRC (XOR), or
checksum on a block of data.

The syntax is:

CALL PROGRAM "##C" USING option, polynomial, length, buffer, result

Where
option

Is a 1-byte binary, PIC 99 COMP, that holds the calculation option. Current options are:
0 for a normal CRC using the supplied polynomial,
1 for a reverse CRC using the supplied polynomial,
2 for a LRC (XOR) 8-bit calculation, and
3 for a checksum calculation.

Adding 64 to one of the above calculation options says to use the passed in result as the base to
start the calculation, otherwise zero is used.

polynomial
Is a 2-byte binary, PIC 9(4) COMP, that holds the binary value for the CRC generator polynomial.

length
Is a 2-byte, PIC 9(4) DISPLAY, which holds the length of data in the buffer on which to perform the
calculation. This cannot be larger than buffer.

buffer
Is a PIC X(n) that holds the data on which the check is to be calculated.

result
Is a 2-byte binary, PIC 9(4) COMP, that holds the calculated value as a binary number.

Some common crc polynomials are:

918

APPENDIX L - System Calls

CRC-CCITT 1021h or 4129 (base 10)
CRC-16 8005h or 32773

reverse CRC-CCITT 8408h or 33800
reverse CRC-16 A001h or 40961

The CRC-CCITT polynomial is used for XMODEM-CRC protocol.

For example, calculation option 64 would be used to calculate a CRC on a block (or file) that is larger than the buffer
by making repeated calls.

13. ##D Get Disk Space Information

The ##D extended system call is supported to allow system developers to access the total disk space allowed and the
current amount free in bytes for a disk drive (on Windows) or for a mounted file system (on Linux).

The syntax is:

CALL PROGRAM "##D" USING location, space

Where
 location

An alphanumeric item of at least the length to hold the two-character drive name (on Windows), the
mounted filesystem name (on Linux) (/, /usr, etc.), or spaces for the current drive name or filesystem you
wish to check.

space
A structure composed of two PIC 9(10) items into which ICOBOL returns the total amount of storage (in
bytes) for the given filesystem and the number of bytes currently free. The structure could look like:

01 DISK-SPACE.
02 TOTAL-BYTES PIC 9(10).
02 FREE-BYTES PIC 9(10).

If you wish to determine the default filesystem, the ##F call should be used.

Location is processed as an External Filename as described on page 791.

14. ##E Get Environment Variable

The ##E extended system call is supported to allow programmers to read the value of an environment parameter that
was set before ICOBOL started.

The syntax is:

CALL PROGRAM "##E" USING name-argument, return-argument

Where
name-argument

Is a PIC X(n) that holds the name of the environment variable to be read
return-argument

Is a PIC X(n) to which ICOBOL moves the value of the environment variable according to the rules for
MOVE.

If the environment variable named by name-argument cannot be found either in the environment or as configured in
the environment strings section of the configuration file (.cfi), an error is generated and the ON EXCEPTION clause,
if present, is executed.

919

Interactive COBOL Language Reference & Developer’s Guide

If the return-argument for the environment variable is too small to hold the full value, the value is moved and
truncated and an error is generated and the ON EXCEPTION clause, if present, is executed.

15. ##F Filename Resolution or Directory Lookup

The ##F extended system call is supported to allow system developers to:

1) resolve a simple or relative filename into a full pathname and check to see if the filename exists or
2) do a directory lookup on a given template to get the number of matches along with an optional list in a

sequential file for each file entry along with its file information (filename, filesize, attributes, last-modified).

Option 1 Filename Resolution

For option 1, the syntax is:

CALL PROGRAM "##F" USING argument-1

Where
argument-1

Is an alphanumeric item of at least 64 characters. Argument-1 should be set to the filename or template you
wish to resolve or check for existence before making the ##F call. If the filename does not exist, or the file
is a symbolic link for which the resolution does not exist, or no files match the template the Exception
Status will be set to 2 (File not found) and the ON EXCEPTION clause, if given, is executed.

Argument-1 is returned as a fully resolved filename or template including all directory specifiers that can be
up to 64 characters.

To get the default directory, argument-1 should be set to spaces; and the fully resolved pathname is returned.

On Windows, to get the default directory for any disk drive, set argument-1 to just the disk drive itself; i.e., `C:', `D:',
etc.; and the fully resolved pathname will be returned. When running in network mode, network files will be
resolved to their fully qualified network name. For example if drive D is redirected to the server
\\386MAINSERVER's E drive, the file `D:\PROGRAMS\FILE' would resolve to the fully qualified name of
`\\386MAINSERVER\E\PROGRAMS\FILE'.

When no template is given, argument-1 is processed as an External Filename as described on page 791.

Option 2 Directory Lookup

For option 2, the syntax is:

CALL PROGRAM "##F" USING argument-1, argument-2 [, argument-3]

Where
 argument-1

Is the same as for option 1 but normally will contain a template.
argument-2

Is a numeric item of at least PIC 9(5) that returns the number of file entries found by the template specified
in argument-2. If this number is zero, no files were found that matched the template provided by
argument-1. In addition, the Exception Status is set and the ON EXCEPTION clause, if given, is executed.

argument-3
Is optional and specifies the filename of the file to which each of the file entries that match the template
given by argument-1 are written. Argument-3 should be an alphanumeric item at least large enough to hold
the filename to be given.

Argument-1, when not a template, and argument-3 are processed as an External Filename as described on page 791.

920

APPENDIX L - System Calls

The file entries are written to the file as printer-records, with each entry terminated with a line-terminator. If the
count returned is greater than zero, the filename given by argument-3 is created if there is no file by that name
already, and is deleted and re-created if it already exists. If the count returned in argument-2 is zero, the file given in
argument-3 is not touched.

To read the file created above you should have an ASSIGN TO KEYBOARD in your COBOL program and read
with at least 64-byte records to get each file entry. Each filename entry will be a single line of characters terminated
by a line-terminator. Each entry can be defined as such:

01 FILE-ENTRY.
02 MODIFIED-INFO.

03 DATE-MODIFIED PIC 9(6).
03 TIME-MODIFIED PIC 9(8).

02 ACCESSED-INFO.
 03 DATE-ACCESSED PIC 9(6).

03 TIME-ACCESSED PIC 9(8).
 02 FILESIZE-BYTES PIC 9(10).

02 F-ATTRIBUTES PIC X(8).
 02 F-ATTRIBUTE-RED REDEFINES F-ATTRIBUTES.

03 READABLE-ON PIC X(1).
03 WRITABLE-ON PIC X(1).

 03 PROTECTABLE-ON PIC X(1).
 03 ARCHIVE-IT PIC X(1).
 03 DIRECTORY-TYPE PIC X(1).
 03 SYSTEM-TYPE PIC X(1).
 03 EXECUTABLE-TYPE PIC X(1).
 03 FILLER PIC X(1).
 02 FILENAME PIC X(64).

The date and time fields are exactly like ACCEPT FROM DATE (YYMMDD) and TIME (HHMMSShh)
respectively.

On Windows

The Accessed Info (ACCESSED-INFO) field is not available and will always be set to zeros(0).

The file attributes (F-ATTRIBUTES) will have an `R' in position 1 if the file can be read, a `W' in position 2 if the
file can be written to, a `P' in position 3 if it cannot be deleted, and an `A' in position 4 if it has been modified since it
was archived. Position 5 will be set to `D' if the file entry is a directory. Position 6 will be set to `S' if the file is a
system file. Otherwise the positions will be set to space.

The Read-only attribute will force position 2 (WRITABLE-ON) to be set to space and position 3
(PROTECTABLE-ON) to be set to P. The archive, directory, and system attributes match the os attributes. The
executable-type (X) will be set for directories, .EXE, .COM, and .BAT files. The filename argument will never be
more than 12 characters.

On Linux

Positions 1, 2, 3, and 7 of the file attributes are based on how the current user within his group can access each
particular file. For files that are symbolic links, the file attributes returned are for the resolution file, not the
symbolic link itself.

The file attributes (F-ATTRIBUTES) will have an `R' in position 1 if the file can be read by the current user, a `W' in
position 2 if the file can be written by the current user, and a `P' in position 3 if the file cannot be deleted by the
current user (i.e., the current user does not have Write access to the directory). Position 4 will always return a space.
Position 5 will be set to `D' if the file entry is a directory. Position 6 will be set to `S' if the file is a special character
device, block device, or other special files. Position 7 will be set to `X' if the file is executable. Otherwise the
positions will be set to space.

921

Interactive COBOL Language Reference & Developer’s Guide

If a simple filename is ever to exceed 64 characters then this structure should be increased to match the largest size a
simple name could be. ICOBOL will only write as much as needed to the temporary file.

16. ##G Return a System Message

The ##G extended system call is supported to allow system developers to pick up any of the system messages from
the message file (system.ms). These messages map one-to-one to the Exception Status received in ACCEPT FROM
EXCEPTION STATUS.

The syntax is:

CALL PROGRAM "##G" USING exc-code, return-argument

Where
exc-code

Specifies the numeric code (PIC 9(3)) of the message to be given between 0 and the maximum Exception
Status value.

return-argument
Specifies a character string of at least 60 characters. The system call will return with return-argument
holding the corresponding message for the numeric code in exc-code.

You can actually get back any message from the message file, not just those that map to Exception Status value,
provided you know the correct value.

17. ##I Internal Status Information

The ##I extended system call is supported in ICOBOL to allow internal status information for the entire ICOBOL
system to be viewed.

The ##I extended system call is enabled with the System Information privilege in the Program Environment
configuration of the configuration file (.cfi). If not enabled, the call will fail with an Exception Status 203 "Program
not found.".

The syntax is:

CALL PROGRAM "##I"

For Internal Status, ICOBOL provides a screen of statistical information about various ICOBOL parameters. For
the named resource, three numbers are displayed. These are:

In Use is the number currently in use
MaxUsed is the most this has ever been, for this invocation
Max is the maximum number configured

The MaxUsed values can be used to either raise or lower individual System Parameters in the configuration file
(.cfi), the CONFIG.SYS file (on Windows), or in the Linux Kernel (on Linux) to provide a better tuned system.

On exit from ##I, control is returned to the program that called it.

18. ##M Move File data

The ##M extended system call is supported in ICOBOL to allow files to be copied from one place to another with
various options.

922

APPENDIX L - System Calls

The syntax is:

CALL PROGRAM "##M" USING option, source-name, destination-name [, count
[, start-src-pos [, start-dst-pos]]]

Where
option

Specifies a 1-byte binary, PIC 99 COMP, composed of the following bits.

Option-bit Meaning

1 Don't erase destination if it exists

2 Write at eof (ignore start-dst-pos)

4 The destination file must exist

8 The destination file must NOT exist

Below are the useful combinations of the above option-bits.

Option
Destination file Destination

PositionDoes NOT exist Exists

0 create erase as specified

1 create don't erase as specified

3 create don't erase at eof

4 ERROR erase as specified

5 ERROR don't erase as specified

7 ERROR don't erase at eof

8 create ERROR as specified

source-name
Specifies a PIC X(n) and holds the source filename to be copied.

destination-name
Specifies a PIC X(n) and holds the destination filename to be copied. It cannot be a directory.

count
Specifies a PIC 9(n) DISPLAY, and holds an optional count for how many bytes to copy from source or
until EOF. If given, the number of bytes actually copied is returned.

start-src-pos
Specifies a PIC 9(n) DISPLAY, and holds an optional byte offset in the source file from which to start
copying. I.E., a start-src-pos of 0 is the beginning of file.

start-dst-pos
Specifies a PIC 9(n) DISPLAY, and holds an optional byte offset in the destination file to which copying
should start. If not given, the beginning of file is used.

The source file must exist and be able to be opened for binary input.

Unless you use the appropriate option, this call will allow a file to be copied upon itself with possible unintended
results.

Source-name and destination-name are processed as an External Filename as described on page 791.

19. ##P Print Spooling

The ##P extended call is the same as the #P system call with the exception that upon exiting from the Printer Control
Utility it returns to the calling program, just like a CALL. See #P for more information.

923

Interactive COBOL Language Reference & Developer’s Guide

20. ##S Return the System Serial Number

The ##S extended system call is supported to allow system developers to check for a unique serial number. This call
will return the unique runtime license serial number as provided by the license manager (ICPERMIT) from the
license description file.

The syntax is:

CALL PROGRAM "##S" USING argument

Where
argument

Should be declared as PIC 9(10).

21. ##T Set Timeout Value

The ##T extended system call allows the system developer to enable and disable timeouts for ACCEPT statements
and STOP literal statements.

The syntax is:

CALL PROGRAM "##T" [USING timeout]

Where
timeout

Specifies a numeric value (PIC 9(5)). The values 0 through 63000 set a timeout in tenths of seconds, a
65535 is interpreted to wait forever, a 65534 says to default to the value specified as the global timeout
(ICTIMEOUT), while a number between 63000 and 65534 will set the value to 63000. This value
represents the time allowed between keystrokes before the system will timeout and terminate the operation.
Setting a 0 essentially only reads the input buffer.

If no argument is specified, wait forever is set. The timeout value remains in effect whenever this program is active.
I.E., if a CALL statement is made, while in the new program the timeout is reset to that specified by the global
timeout (ICTIMEOUT) for the new program. Upon returning to the calling program, the timeout is restored to be
the value that was set before the CALL.

When an ACCEPT statement times out, ESCAPE KEY is set to 99 and no data is moved to the particular item (just
as when an ESC key is pressed).

If an invalid argument string is given, an Exception Status 209 is returned and the timeout value is not changed.

Where possible, the TIME-OUT AFTER clause on the ACCEPT statement should be used rather than the ##T
system call.

22. ##U Unconditional Shutdown

The #S and ##U system calls are enabled with the System Shutdown privilege in the Program Environment
configuration of the configuration file (.cfi).

The syntax is:

CALL PROGRAM "##U".

The ##U extended system call acts just like #S and terminates the ICOBOL process.

924

APPENDIX L - System Calls

23. System Call Errors

For those system calls that are "NOT SUPPORTED" under ICOBOL for whatever reason, the runtime system will
give an Exception Status 203 "Program not found", and the ON EXCEPTION clause, if any, is executed. This is
also true if the console issuing the system call is not privileged to do so.

925

Interactive COBOL Language Reference & Developer’s Guide

926

INDEX

INDEX

. PICTURE . 183, 185

.BAT . 510, 915

.CF. 737

.CFI 299, 415, 511, 534, 540, 554, 564, 571, 575, 588, 593-597, 711, 737, 787-790, 908, 910-913, 916, 918

.CL. 737

.CX . 537, 539, 737, 741, 742, 744, 748, 749, 760, 781, 783, 784, 809

.FA. 737

.LG . 735-737, 741, 781, 783, 825

.LGB . 735, 737

.LK . 737

.NX . 271, 274, 277, 278, 579, 737, 802, 803, 861, 864, 866, 868, 869, 909

.PQ . 571, 737, 787

.profile . 744

.PT. 737

.PTI . 732, 733, 737

.SY . 737, 743, 748, 750, 761

.TD . 737

.TDI. 300, 549, 733, 737, 810

.XD . 270, 274, 277, 579, 737, 802, 803, 861, 864, 866, 868-870, 909

.XDB . 737, 743, 748, 750, 758, 759, 813-815, 819, 822

.XDT . 737, 743, 748, 750, 758-760, 813-816, 819

.XL . 737, 870

.XLG . 737
, PICTURE . 183, 184
?CBADDR . 31, 35, 505, 507
?CBBADDR . 31, 35, 505, 508
{ } . 39, 40, 734
+ PICTURE. 183
- PICTURE . 183
* PICTURE . 183, 185
/ PICTURE . 183, 184
/dev . 790
<000> . 431, 438
<cr> . 499, 500, 585
<ff> . 499, 500
<lf> . 499, 500
<nl> . 288, 311, 499, 500, 585, 878
0 PICTURE. 183, 184
01 level 68, 126, 154, 174, 179, 189, 191, 207, 215, 216, 226, 227, 280, 284, 507, 745, 755
4GB . 31, 545, 547, 802, 857, 870
66 level . 174, 191, 743, 750
77 level . 68, 124, 171, 179, 180, 194, 206, 284, 507, 741, 745, 845, 853
88 level . 68, 124, 174, 179, 180, 195, 198, 206, 753, 845, 857, 880, 881
9 PICTURE. 183, 184
A PICTURE . 182, 183
Abort Terminal . 511, 514, 554, 596, 908
Abort terminal privilege . 511, 514, 554, 596, 908
ACCEPT statement . . 42, 216, 217, 223, 230, 231, 258, 285, 288-295, 297, 299, 346, 347, 591, 790, 853, 915, 916,

918
ACCESS MODE clause . 96, 97, 265, 470, 471
ADD statement . 255, 303
AIX . 7, 298
Alignment rules . 125, 202

927

Interactive COBOL Language Reference & Developer’s Guide

ALPHABETIC 45, 46, 84, 85, 91, 92, 94, 99, 100, 116, 117, 124, 125, 178, 182, 183, 185, 187, 203, 244, 245,
288, 291, 391, 395, 406-408, 487, 488, 613, 615, 617, 642-646, 648, 651, 661, 663, 669, 677-679, 686,

689, 690, 704, 737, 743, 758, 760, 817-819, 821, 827, 837, 838, 845, 877, 903
ALTERNATE RECORD KEY clause . 99, 100, 102, 264, 430, 472, 502
ANSI COBOL 74 . 741, 753-755
ANSI COBOL 85 . 2, 75, 751, 753-755
ANSI switch . 413, 804
AOS/VS. 28, 35, 41, 109, 111, 114, 181, 278, 509, 711, 745, 795, 796, 820, 886, 888, 890, 892
APPEND . 266, 735, 741, 781, 783, 794-796, 886
Area A . 56, 63-68, 71, 73, 75, 839
Area B . 63-67, 71, 839
ASCENDING phrase . 100, 117, 403, 404, 464, 465
ASCII . . 48, 49, 85, 114, 115, 151, 152, 158, 196, 199, 200, 404, 466, 500, 532, 542, 626, 771, 813, 837, 839, 899,

903
ASSIGN clause . 94, 104, 159, 748
ASSIGN TO DISK . 288, 349, 470
ASSIGN TO DISPLAY. 152, 349, 499
ASSIGN TO PRINTER . 152, 349, 415, 496, 499, 797, 799
AT END. . . . 257-259, 262, 268, 269, 271-275, 278-280, 404, 412, 413, 426-429, 432-435, 443, 451-453, 466, 491,

742, 748, 838, 843, 861, 863, 865
audit file . 34, 735, 736, 766, 880
Audit switch . 735, 736
AUTO clause. 217, 753
B PICTURE . 182, 183
BACKGROUND. 34, 35, 215, 216, 218, 292, 347, 733, 806-809, 871, 903
BACKGROUND-COLOR . 34, 215, 216, 218, 347, 903
backslash . 689, 690, 792
Bad code switch . 755
BELL clause . 219
big file . 547
big-endian . 196, 761
BINARY SEQUENTIAL . 112, 115
BLANK LINE. 66, 70, 215, 220, 226, 347, 746, 749, 751, 752
BLANK SCREEN. 213-215, 220, 227, 347
BLANK WHEN ZERO clause . 124, 175
BLOCK CONTAINS clause . 150, 153
BOLD . 209, 212, 214, 216, 221, 225, 235, 294, 348, 809, 814, 816, 903
BRIGHT . 221, 235, 294, 348, 714, 718-721, 903
buffers . 119, 316, 447, 497, 595, 725, 797, 869
builtins. 27, 31-35, 59, 295, 297, 300, 301, 306, 475, 505-507, 511-514, 516, 518-524, 527-532, 534-548, 551-562,

564, 568, 569, 572, 577-580, 583-586, 588-594, 596, 597, 599-603, 605, 606, 608, 610, 611, 643-652, 723,
733, 769, 787, 790, 791, 793-796, 806, 810, 811, 877, 878, 907, 910

CALL PROGRAM statement . 138, 139, 206, 258, 284, 309, 310, 312, 793, 794, 838, 907
CALL statement . 59, 60, 195, 206, 258, 261, 284, 305-307, 312, 313, 365, 385, 505, 591, 793, 794, 838, 852, 857,

918
CANCEL statement. 313, 365, 385, 793, 794
Card Format . 31, 63, 65, 733, 737, 746
Case switch . 744
CATALOG . 373, 374, 380, 381, 903
CGI . 732, 733, 873
cgiCOBOL . 299
character set. . 43, 48, 50, 56, 65, 66, 73, 75, 77, 79, 80, 82-85, 94, 123, 151, 152, 182-184, 266, 488, 613, 672, 676,

704, 711, 716, 837-840, 846, 851
character-string 39, 43, 44, 47-49, 51, 56, 65, 66, 69, 84, 86, 172, 182-188, 192, 193, 195, 202, 210, 212, 230,

232, 395, 477, 487, 838, 839, 845, 848, 850, 853
checksum. 516, 840, 845, 869, 877, 912
class. . 44, 45, 52-56, 77, 79-81, 84, 124, 135-139, 177, 202, 240-245, 257, 296, 297, 317, 322, 327, 342, 355, 356,

360, 361, 372, 394, 425, 431, 438, 449, 461, 500, 541, 613, 618-620, 622-624, 627, 637, 638, 640, 642-

928

INDEX

648, 651, 653, 656, 657, 659-661, 663, 665, 666, 668, 669, 674, 677-679, 681, 684-694, 700, 704, 705,
754, 773, 838, 851, 881, 896, 903, 905, 906

CLI . 31, 35, 505, 510, 828, 872, 888, 890
client/server . 873
CLOSE statement . . 269, 273, 313, 315, 316, 404, 405, 413, 431, 437, 467, 475, 758, 791, 805, 842-844, 847, 861,

865
CMD.EXE. 308
COBOL character set . 43, 56, 84, 85, 123, 182, 838, 840
CODE-SET clause. 83, 151, 152, 192
collating sequence . . . 51, 77, 79, 80, 83-87, 94, 96, 242, 263, 266, 402-404, 427, 434, 463, 465, 466, 471, 473, 501,

615, 626, 677, 837, 839, 843, 846, 851
color . 34, 215, 216, 218, 287, 292, 344, 347, 807, 903, 904
color-name. 218
COLUMN clause. 220, 224, 226-229, 235, 295, 349, 758
COLUMN phrase . 227, 289, 292, 346, 348, 853
comment line . 43, 44, 66, 67, 70, 73, 79, 121, 154, 746, 839, 848, 852
comment-entry. 39, 43, 44, 56, 69, 73, 75, 838, 839
compatibility mode . 755
compress mode . 349
COMPUTATIONAL . . 31, 195-197, 199, 200, 330, 345, 442, 507-509, 511, 514, 523, 533, 534, 536, 537, 539, 543,

547-549, 553, 554, 558, 559, 564, 565, 564-566, 568, 570-573, 581, 584, 588, 591, 594-597, 602, 610, 625,
641, 658, 662, 712, 714-722, 726-728, 742, 743, 746, 750, 754, 755, 758, 760, 804, 818, 819, 827, 828,

832, 833, 903, 906, 912, 917
COMPUTATIONAL-3 . 195-197, 345, 760, 818, 827, 903
COMPUTATIONAL-5 . 195-197, 543, 553, 559, 760, 818, 827, 903
COMPUTE statement . 319, 754
computer's character set. 48, 50, 56, 65, 73, 75, 84, 85, 183, 184, 488, 704, 837, 839, 846
COMSPEC . 510
condition . . . 45, 77, 81, 83, 84, 94, 124, 128, 129, 131, 132, 136-138, 142, 159, 160, 166, 173, 174, 179, 189, 195,

197, 200, 202, 203, 206, 240, 241, 243-254, 257, 258, 267-269, 271-280, 283, 284, 307, 310, 334, 335,
356, 357, 370, 387, 388, 401, 404, 412-414, 416-418, 420-423, 428-430, 434-436, 442, 443, 447, 448, 451,

452, 455, 457, 465, 466, 471, 473, 481, 484, 488, 489, 492, 497-499, 501, 502, 614, 709, 751, 758, 797,
837-840, 842-846, 848-852, 857, 861, 863, 865, 881, 890

condition-name . 45, 77, 81, 83, 84, 124, 128, 129, 131, 132, 142, 173, 174, 179, 189, 202, 203, 206, 241, 246-248,
250-253, 284, 416-418, 420-423, 451, 452, 455, 457, 758, 839, 840, 843, 848, 851

conditional expression. 240, 248, 357, 418, 451, 839, 842, 881
conditional statement. . . . 254, 257-259, 261, 278, 279, 305, 306, 310, 317, 322, 325, 327, 342, 360, 361, 372, 374,

379, 381, 387, 425, 429, 435, 443, 449, 461, 478, 489, 839, 843
config . 732, 733, 824, 916
CONFIG.SYS . 916
configuration file 299, 415, 511, 534, 540, 554, 564, 571, 575, 588, 593-597, 711, 732, 733, 737, 787-790, 806,

870, 885, 886, 908, 910-913, 916, 918
configure . 27, 810, 822, 823
console interrupt . 514, 515, 538, 540, 596, 765, 767, 775, 788, 798, 804, 868-870, 880, 881
Console interrupt privilege . 514, 515, 540
continuation line . 65, 66, 71
CONTINUE statement . 325
Control Panel. 821
CONVERT 35, 73, 286, 293, 295, 298, 301, 343, 348, 349, 734, 794-796, 801, 804, 891, 903
COPY file . 35, 155, 558, 744-747, 749, 757, 763, 835, 857
COPY Path switch. 745
COPY statement . 61, 67, 69-71, 259, 260, 747, 839, 851
CORRESPONDING phrase . 254, 255, 304, 406, 428, 435, 444, 480
CR PICTURE . 182, 183
CRC. 516, 517, 840, 867, 912, 913
cross reference. 742, 757, 758, 835
Ctrl-\ . 804
Ctrl-C . 765, 767

929

Interactive COBOL Language Reference & Developer’s Guide

Ctrl-Del . 804
Ctrl-R . 810
Ctrl-S. 889
CURRENCY. 84, 85, 185, 840
Currency PICTURE . 183, 185
CX file. 741, 748, 749, 760, 783
Data Division . 41, 45, 57, 61-63, 67, 94, 109, 111, 113, 123, 142-144, 171, 180, 203, 205-207, 243, 402, 403, 418,

443, 446, 456, 464, 496, 757, 840-843, 845, 846, 848-853
DATA RECORDS clause . 154
data-name 45, 56, 57, 90-93, 96, 97, 101-103, 109, 111, 116-118, 123, 126, 128, 129, 131, 132, 145-149, 154,

159-161, 164, 171-174, 176, 177, 180, 181, 189-191, 206, 238, 254, 284, 306, 310, 402-404, 433, 436, 438,
451, 452, 463-465, 471, 472, 483, 499, 758, 840, 841, 843, 848, 852

DATAFILE . 789, 814, 820
data-sensitive. 112, 114, 169, 562
DB PICTURE . 182, 183
DCD . 791, 869
Debug switch. 748, 750
debugging . 66, 67, 70, 71, 79, 346, 514, 597, 743, 746, 750, 761-763, 783, 833, 841, 903
debugging line . 66, 67, 70, 71, 79, 746, 841
DEBUGGING MODE . 79
decimal . . . 49, 50, 56, 77, 79-81, 84, 86, 109, 111, 123, 125, 183-188, 195-197, 199, 200, 234, 253, 256, 278, 290,

295, 348, 352, 375, 407, 409, 451, 541, 547, 551, 561, 613, 672, 674, 676, 746, 771, 774, 784, 818, 832,
837-839, 841, 844, 846, 851, 867, 877, 900, 903, 904

Declaratives. . . 57, 61, 62, 68, 109, 111, 155, 237, 238, 267, 268, 279, 370, 383, 401, 402, 418, 442, 464, 491, 493,
742, 746, 762, 841, 903

DELETE FILE statement . 339, 758, 795, 796, 805
DELETE statement . 108, 267, 281, 333-336
delete-is-physical. 108, 335, 800-802
descending. 83-85, 100, 101, 117, 181, 266, 403, 404, 464, 465, 802, 841, 903
DESCENDING phrase . 100, 117, 403, 404, 464, 465
Detach/Host program privilege . 514
detached program . 299, 534, 535, 910, 911
DG terminal. 349, 499, 726
DG/UX . 7
DIM. 216, 221, 225, 235, 294, 348, 349, 588, 716, 899, 903
DISPLAY statement 34, 215, 217, 219, 220, 224-226, 230, 235, 289, 290, 295, 343-349, 499, 534, 910
DIVIDE statement. 351, 352, 754
DUPLICATES phrase . 101-103, 264, 465, 502, 746
ELSE phrase . 387
Enhanced Auditing . 586
environment. . . 27, 31, 32, 34, 35, 45, 46, 57, 61-63, 67, 77-79, 86, 89, 141, 142, 165, 244, 246, 288, 296-299, 321,

322, 467, 496, 510, 511, 514, 520, 524, 534, 546, 554, 564, 566, 571, 585, 586, 588, 590, 593, 594, 596,
597, 608, 615, 645, 711, 712, 731, 733, 736, 738, 739, 741, 744, 753, 757, 762, 781, 783, 787, 789-791,
813, 825, 832, 835, 837, 838, 840-844, 846, 847, 850-853, 859, 867, 871, 877, 878, 891, 904, 907, 908,

910-914, 916, 918
Environment Division . 45, 57, 61-63, 67, 77-79, 86, 89, 142, 244, 246, 288, 496, 757, 837, 838, 840-844, 846, 847,

850-852
environment variable. . 31, 32, 321, 322, 510, 520, 524, 546, 566, 571, 585, 586, 590, 645, 712, 731, 733, 736, 738,

739, 744, 781, 783, 789, 825, 877, 878, 907, 913, 914
ERASE EOL . 215, 224, 293, 347, 348, 899
ERASE EOS . 215, 224, 293, 294, 347, 348
ERASE LINE . 215, 224, 293, 347, 348, 746
Error File switch . 745
ERRORLEVEL. 738
ESC . . 288, 290-292, 294, 300, 591, 606, 689, 690, 720-722, 769, 773, 774, 777, 808, 810, 859, 880, 899, 901, 918
ESCAPE KEY. 217, 290-292, 294-297, 299, 300, 548, 584, 591, 721, 773, 859, 918
Exception Status . 35, 60, 109, 111, 155, 177, 267, 276, 278, 280, 296, 297, 300, 306-308, 310, 431, 438, 493, 505,

510-514, 523, 529, 530, 532, 534, 536, 542, 543, 548, 550, 553-556, 559, 560, 563, 564, 571, 575, 577,

930

INDEX

578, 582-584, 588, 592-594, 596, 597, 601-603, 606, 610, 647, 713, 717, 720, 721, 726-728, 764, 765, 767,
769, 773, 779, 787, 788, 791, 797, 799, 805, 867, 875, 908-912, 914, 916, 918

exclusive . 3, 4, 84, 185-188, 411, 415, 430, 437, 733, 745, 747, 790, 890, 893, 895, 904
exit code . 308, 475, 510, 518, 550, 593, 735, 738, 744, 805, 878
EXIT PROGRAM statement. 59, 261, 306, 312, 313, 365, 423
EXIT statement . 363, 419
exponentiation . 239, 240, 254, 837
export . 744
extended device open . 790, 791, 797, 798
extended disk open . 415, 797, 800
extended indexed open . 801
extended open options. 295, 431, 475, 500, 562, 795-797, 806
extended PCQ open. 797, 799
extended relative open. 800
extension to ANSI COBOL. . . . 99, 108, 110, 116, 168, 169, 207, 267, 269, 272, 280, 285, 296, 309, 339, 343, 367,

415, 426, 445, 481, 483, 485, 495
external filename 105, 106, 305, 309, 339, 519, 521, 522, 558, 562, 579, 759, 791, 910, 913, 914, 917
Fatal. 109, 111, 267, 268, 300, 498, 738, 742, 747, 749, 751, 752, 765, 788, 810, 870, 873, 882, 888, 911
feature-set . 41, 42, 139, 198, 233, 260, 296, 297, 746, 903
FILE

OPTIONAL . 414
file attribute file. 737
File Status 41, 90-93, 109, 111, 139, 155, 267, 268, 277-280, 300, 336, 370, 401, 415, 431, 438, 442, 745, 758,

765, 773, 787, 790, 791, 797, 799, 805, 843, 861, 863, 865, 867, 885, 891
FILE STATUS clause . 109, 267, 758, 843
file transfer . 798
file-name . . 45, 57-59, 78, 89-94, 96, 99, 102, 116, 117, 120, 121, 131, 144-149, 151, 160, 263, 273, 279, 315, 316,

329, 330, 333-336, 339, 367, 369, 370, 400-405, 414, 426-430, 432-436, 438, 439, 441-444, 446-448, 463-
467, 469-473, 481, 483-485, 491, 492, 497, 498, 501-503, 534, 565, 568, 570, 572-575, 758, 814, 815, 842,

843, 847, 851
FILLER clause . 149, 171, 174, 176, 190, 390
filter. 374, 381, 564-566, 568, 571-575
filtering . 564, 566, 571, 574, 575
FIRST . 44, 46, 57-60, 62, 64, 66, 67, 70, 71, 73, 82, 94, 97, 100, 106, 117, 118, 126, 130, 132, 134, 142, 155, 160,

162, 166, 176, 179, 180, 186-188, 191, 196, 226, 227, 237, 239-242, 248, 261, 263, 269, 275, 278, 281,
282, 288-292, 306, 310, 311, 330, 336, 346, 348, 358, 359, 369-371, 376-378, 387, 390, 394-401, 403-406,
412-415, 419, 423, 427, 428, 430, 434, 436-438, 442, 448, 451-453, 457, 464-467, 470-473, 484, 489, 492,

498, 499, 501-503, 505, 531, 541, 568, 569, 572, 573, 584, 586, 592, 598, 599, 605, 683, 699, 700, 702,
716, 720, 721, 731, 735, 737, 743, 755, 758, 759, 764-766, 768, 771, 772, 774-777, 784, 788, 792-796,

798-802, 805, 808, 810, 823, 832, 835, 841, 844, 845, 847, 850, 859, 882, 884, 896, 904
fixed insertion . 185, 186
fixed length record . 263
fixed length records. 58, 164, 165, 168, 264, 265, 402-405, 464, 465, 467, 843
floating insertion . 185-188
Flow Control

Hardware Output . 798
Software Input . 798
Software Output . 798

For ANSI 74 . 396, 411, 412, 414
For ANSI 74 and ANSI 85 . 94-96, 106, 172, 215, 216, 255, 263, 265, 287, 288, 290, 339, 344, 345, 367, 383, 403,

415, 422, 446, 464, 510, 543, 553, 557, 600, 857, 903
For ANSI 85 . 94, 411, 414, 429
For ANSI 85 and VXCOBOL. 94, 396, 746
For VXCOBOL. 94, 106, 112, 158, 164, 177, 180, 263, 265-267, 278, 279, 288, 290, 301, 339, 403, 411, 414, 418,

446, 448, 451, 464, 465, 470, 498, 510, 746, 907
FOREGROUND . 34, 35, 215, 216, 218, 292, 347, 904
FOREGROUND-COLOR. 215, 216, 218, 347, 904
FormPrint . 27, 598, 733

931

Interactive COBOL Language Reference & Developer’s Guide

forwardslash . 792
Free-form format . 63-66
FROM clause . 215, 216, 225, 230, 288, 753, 758
FULL. 210, 212-214, 217, 269-272, 274, 276, 277, 291, 297, 505, 509, 513, 523, 544, 562, 570, 572, 579, 580,

584, 712, 745, 766, 777, 778, 819, 828, 838, 840, 848, 851, 861, 863-868, 872, 877, 882, 885, 886, 890,
904, 910, 914

function keys . 288, 290-292, 300, 721, 722, 726, 810, 859
General switch. 33, 48, 742, 743, 746
generic . 28, 39, 62, 118, 282, 734, 766, 789, 802, 872, 888, 904
global timeout . 295, 475, 549, 591, 871, 918
GMT . 739, 740, 840
GO TO statement . 61, 383, 453, 491, 753, 755
GOBACK statement . 385
Greenwich mean time . 739, 740
GUI . 27, 598, 603, 605, 608, 610, 733, 835
hard links. 415, 735
help directory . 738, 773
Help switch . 735, 736
HIGH-VALUE. 51, 84, 85, 755, 904
HIGHLIGHT. 221, 235, 294, 348, 809, 904
HTML . 840, 845
hyphen . 44, 54, 66, 71, 73, 75, 734, 743, 750, 759, 792, 838
I-O Status . 109, 166, 167, 267, 268, 271, 274-276, 278-281, 315, 334, 335, 339, 367, 414, 427, 429-431, 434-438,

446-448, 471, 481, 483, 485, 497, 498, 501, 502, 843
IC-CENTER . 32, 615, 642
IC-DECODE-URL . 32, 615, 643
IC-ENCODE-URL . 32, 615, 644
IC-GET-ENV . 32, 615, 645
IC-HEX-TO-NUM . 32, 615, 646
IC-MSG-TEXT . 616, 647
IC-NUM-TO-HEX . 32, 616, 648
IC-PID-EXISTS . 32, 616, 649
IC-SERIAL-NUMBER . 32, 650
IC-TRIM . 32, 616, 651
IC-VERSION . 32, 616, 652
IC_ABORT_TERM . 505, 511, 554, 907
IC_CENTER . 32, 505, 512
IC_CHANGE_DIR . 505, 513
IC_CHANGE_PRIV . 505, 514
IC_CHECK_DATA. 32, 505, 516, 907
IC_CLIENT_CALLPROCESS . 32, 505, 518
IC_CLIENT_DELETE_FILE . 32, 505, 519
IC_CLIENT_GET_ENV. 32, 505, 520
IC_CLIENT_GET_FILE . 32, 505, 521
IC_CLIENT_PUT_FILE. 32, 505, 522
IC_CLIENT_RESOLVE_FILE. 32, 505, 523
IC_CLIENT_SET_ENV . 32, 505, 524
IC_CLIENT_SHELLEXECUTE . 32, 505, 525
IC_COMPRESS_OFF. 34, 505, 527
IC_COMPRESS_ON . 34, 505, 528
IC_CREATE_DIR. 505, 529
IC_CURRENT_DIR . 505, 530
IC_DECODE_CSV. 32, 505, 531, 541
IC_DECODE_URL. 505, 532, 542, 643
IC_DELAY . 505, 533, 907
IC_DETACH_PROGRAM . 505, 534, 535, 790, 793, 794, 796
IC_DIR_LIST . 505, 536, 791, 795, 796, 907
IC_DISABLE_HOTKEY . 505, 537, 539, 810

932

INDEX

IC_DISABLE_INTS . 505, 538, 540
IC_ENABLE_HOTKEY. 505, 537, 539, 810
IC_ENABLE_INTS . 505, 538, 540
IC_ENCODE_CSV. 32, 505, 531, 541
IC_ENCODE_URL. 505, 532, 542, 644
IC_EXTRACT_STRING . 505, 543
IC_FULL_DATE. 297, 505, 544
IC_GET_DISK_SPACE . 505, 545, 791, 795, 796, 907
IC_GET_ENV. 505, 546, 645, 907
IC_GET_FILE_IND . 34, 505, 547
IC_GET_KEY. 505, 548, 549, 584, 723
IC_HANGUP . 35, 505, 550, 788, 907
IC_HEX_TO_NUM . 35, 505, 551, 646
IC_INFOS_STATUS_TEXT. 35, 505, 552
IC_INSERT_STRING. 505, 553
IC_KILL_TERM. 505, 554
IC_LOGON. 35, 505, 556, 788, 907
IC_LOWER. 505, 557
IC_MOVE_FILE_DATA . 505, 558, 791, 795, 796, 907
IC_MOVE_STRING. 505, 559
IC_MSG_TEXT . 300, 505, 560, 647, 877, 907
IC_NUM_TO_HEX . 35, 505, 561, 648
IC_PDF_PRINT . 32, 505, 562, 806
IC_PID_EXISTS. 35, 505, 563, 649
IC_PRINT_STAT . 505, 564, 568, 572, 787, 907
IC_QUEUE_STATUS. 35, 505, 577
IC_REMOVE_DIR . 505, 578
IC_RENAME . 505, 579, 791, 795, 796, 907
IC_RESOLVE_FILE. 505, 523, 536, 580
IC_SEND_MAIL . 31, 33, 505, 585-587
IC_SEND_MSG . 34, 505, 588, 907
IC_SERIAL_NUMBER . 505, 589, 650, 907
IC_SET_ENV . 34, 505, 590
IC_SET_TIMEOUT . 295, 475, 505, 591, 727, 907
IC_SET_USERNAME . 301, 505, 592
IC_SHUTDOWN . 35, 505, 593, 788, 907
IC_SYS_INFO . 33, 34, 505, 594, 907
IC_TERM_CTRL . 505, 596
IC_TERM_STAT . 299, 505, 597
IC_TRIM. 34, 505, 599, 651
IC_UPPER . 505, 600
IC_VERSION . 505, 601, 652
IC_WINDOW_TITLE . 33, 505, 603
IC_WINDOWS_MSG_BOX . 33, 505, 605, 606
IC_WINDOWS_SETFONT . 33, 34, 505, 608
IC_WINDOWS_SHELLEXECUTE. 34, 505, 609
IC_WINDOWS_SHOW_CONSOLE . 33, 505, 525, 609-611
ICCHECK utility. 737-739, 803
ICCODEPATH . 513, 580, 793, 794, 805
ICCONFIG utility . 549, 806-808
ICCONFIGDIR . 32, 731, 733, 739, 744, 781, 783, 807, 808
ICDATAPATH. 513, 547, 580, 795
ICDUMP . 27, 783-785
ICEDCFW utility . 549, 806, 807
ICEXEC service . 299, 511, 554, 733, 767, 787, 788, 813, 871, 908
ICFONT . 608
ICFONTSIZE . 608
ICIDE . 34, 35, 734, 737, 835, 857

933

Interactive COBOL Language Reference & Developer’s Guide

ICINFO utility . 735
ICIOS server . 734
ICISAM file 94, 99-101, 108, 117, 270, 271, 274, 277, 323, 334, 547, 556, 579, 731, 737, 746, 795, 802, 803,

823, 857, 861, 864, 866, 869, 908, 909
ICISAM reliability . 270, 271, 274, 277, 316, 803, 861, 864, 866
ICLINK utility. 519, 521-523, 534, 536, 558, 565, 566, 579, 580, 805, 810, 909
ICLOGS server . 734
ICMAKEMS utility. 552
ICNETD service . 322, 547, 732-734, 815, 816, 872
ICNETUSESHEARTBEAT . 322
ICOBOL compiler. 40, 63, 136, 291, 734, 741, 744, 746, 748, 751, 753, 754, 756, 761, 791, 814, 832
ICOBOL ODBC Driver 323, 424, 732-734, 737, 742, 743, 748, 750, 758-760, 813, 814, 822-827, 833
ICPACK utility . 737
ICPCQFILTER . 566
ICPERMIT service . 589, 734, 741, 826, 917
ICQPRW . 27, 733, 734
ICREORG utility. 802-804
ICREV utility . 298, 299, 781
ICREVSET utility . 27, 299, 781
ICROOT . 731, 733, 738, 739, 744, 781, 783, 808
ICRUN 268, 475, 537, 552, 587, 592, 595, 733, 734, 737, 741, 761-763, 787, 806, 877, 911
ICRUNRC client . 518-525, 603, 605, 608, 610
ICRUNRS server. 518-525, 734
ICRUNW . 34, 603, 605, 608
ICSCROPT . 762, 778
ICSDMODE . 711-713
ICSMTPPORT . 585, 586, 877
ICSMTPSERVER . 585, 586, 877
ICSMTPSSLPORT . 585, 586, 878
ICSMVIEW utility . 808
ICSP2 . 27, 733, 734
ICSQL . 33, 140, 878
ICSQLDSN . 321
ICSQLPWD . 321
ICSQLUSER . 321
ICSTAT utility . 731
ICTERM . 288
ICTIMEOUT. 295, 475, 549, 591, 918
ICTMPDIR . 467
Identification Division. 56, 57, 59, 61-63, 73, 75, 757, 839, 841, 842, 847, 848, 851
IF statement . 387, 388, 452
IMMEDIATE 33, 187, 258, 260, 299, 361, 362, 378, 445, 447, 495-497, 503, 620, 769, 790, 803, 904
index-name 45, 128, 129, 132, 172, 180, 181, 206, 241, 243, 260, 284, 418-420, 423, 451-453, 455, 456, 459,

460, 754, 758, 844, 849, 852, 881
INDEXED BY phrase . 129, 132, 181, 451, 453, 456, 459, 754
indexed file . 91, 92, 94, 96, 97, 99, 101, 102, 106, 107, 112, 116, 117, 147, 153, 156, 157, 169, 263, 264, 266, 267,

269, 272, 273, 275-277, 334, 335, 339, 367, 403, 411, 414, 426-428, 430, 432-434, 436, 445-447, 464, 471,
481, 483, 484, 495-497, 501, 502, 547, 746, 758, 759, 801-803, 813-815, 817, 837, 839, 843-845, 848, 849,

857, 863, 865, 869
Information switch. 747
infostat.ms . 552
Infostat.txt . 552
inline comment . 34, 66
INSPECT statement . 393, 395-398, 756
Install. 27, 732, 733, 741, 823, 824
installic . 824
Intel . 7, 28, 197, 298
Interactive COBOL 1, 6, 7, 27, 28, 31-35, 41, 182, 230, 475, 804, 810, 813, 815, 816, 822, 824, 832, 859

934

INDEX

intercept spooling . 790
internal filename . 106, 791
Intr key . 775, 788, 804
Intrinsic Functions. 27, 32, 33, 35, 135, 531, 613-615, 617, 618, 742, 748, 749
ISAM file . 270, 844
ISAM reliability . 270
ISQL 32, 33, 42, 46-48, 52-55, 124-126, 134, 139, 140, 173, 174, 198, 200, 202-204, 211, 212, 233, 234, 240,

243, 244, 246, 254, 258-260, 296-298, 317, 319, 321-323, 327, 341, 356, 357, 359, 361, 371, 373, 377,
378, 380, 389, 391, 395, 406, 407, 424, 449, 455, 456, 461, 742, 746, 749, 769, 774, 823, 825, 878, 903

ISQL COMMIT statement . 317
ISQL CONNECT statement . 321, 322
ISQL DEALLOCATE statement . 327, 341, 342
ISQL EXECUTE IMMEDIATE statement . 33, 258, 260, 361, 362, 378, 769
ISQL EXECUTE statement. 359, 360, 424
ISQL FETCH statement . 359, 371, 372, 749
ISQL GET COLUMNS statement. 373, 374
ISQL GET DIAGNOSTICS

COLUMN COUNT phrase . 32, 377, 378
COMMAND FUNCTION phrase . 377, 378
DYNAMIC FUNCTION phrase . 377, 378
MESSAGE LENGTH phrase . 377
MESSAGE TEXT phrase . 377
NUMBER phrase . 377
ROW COUNT phrase . 377, 378

ISQL GET DIAGNOSTICS statement . 141, 258, 259, 377-379
ISQL GET TABLES statement . 371, 380, 381
ISQL PREPARE statement . 327, 359, 424, 425
ISQL ROLLBACK statement . 449
ISQL SET CONNECTION statement. 258, 321, 461, 462
ISQL SQLERROR 33, 47, 133, 134, 139, 317, 322, 327, 341, 342, 359-362, 371-374, 377-381, 424, 425, 449,

461, 462, 769, 774, 905
ISQL SQLSTATE 258, 259, 317, 321, 327, 341, 359, 361, 371, 373, 380, 424, 449, 461, 905
item-name . 68
JAVA . 813, 825, 826
JUSTIFIED clause . 51, 125, 137, 178, 203, 477, 753
KEY IS phrase. 132, 180, 181, 427, 451, 452, 470
kill . 505, 554, 596, 767, 908
Kill Terminal . 554
LAST. . . 40, 44, 46, 63, 66, 67, 75, 180, 181, 185, 186, 191, 196, 217, 248, 261, 263, 273, 279, 281, 288-292, 299,

306, 311, 312, 334, 335, 345, 347, 365, 383, 385, 395, 398, 404, 405, 414, 419, 422, 429, 436, 442, 446,
447, 452, 465-467, 472, 475, 488, 489, 498, 503, 568, 569, 572, 573, 711, 725, 743, 764, 767, 769, 771,

772, 774, 777, 808, 840, 841, 850, 859, 880, 889, 904, 914
LEADING 49, 50, 54, 55, 125, 184-187, 192, 193, 200, 232, 295, 345, 348, 375, 394-399, 512, 531, 541, 555,

583, 599, 642, 646, 648, 651, 672, 676, 700, 760, 793, 814-816, 818, 823, 827, 904
LENGTH OF. . . . 33, 47-51, 94, 99, 101, 102, 114-118, 133, 138, 152, 169, 170, 181, 199, 204, 227, 242, 264, 265,

268, 271, 276, 282, 331, 378, 395, 406, 431, 437, 442, 452, 470, 472, 478, 512, 516, 531, 532, 541-543,
553, 555, 559, 570, 571, 575, 583, 599, 615, 616, 624, 642, 651, 657, 760, 801, 818, 819, 857, 861, 863,

870, 912
level-number . . 39, 45, 67, 68, 123, 124, 126, 149, 154, 171, 172, 174, 176, 179, 180, 189, 191, 195, 198, 206-208,

210, 213, 215, 255, 840, 844, 845, 848, 852, 853
library file . 737, 781
license . 3, 4, 33, 140, 515, 589, 650, 734, 741, 826, 835, 878, 917
license description file. 917
LINAGE 35, 47, 56, 130, 131, 133, 134, 138, 139, 145, 146, 149, 155, 159-161, 412, 496, 498, 499, 904
LINE clause. 220, 224, 226-229, 235, 758
LINE NUMBER . . . 159, 160, 292, 296, 297, 301, 348, 747, 751, 757, 758, 761, 763, 764, 768, 772, 774, 775, 780,

845, 880, 889
LINE phrase . 289, 292, 346, 348, 853

935

Interactive COBOL Language Reference & Developer’s Guide

LINE SEQUENTIAL . 112, 114, 431
linedraw. 711
link file . 579, 737, 789, 794-796, 909
Link Kit . 59, 307, 794
Linux 7, 27, 28, 115, 278, 298-300, 307, 308, 322, 323, 339, 367, 415, 499, 500, 505, 510, 511, 534, 535, 545,

554, 564, 565, 568-571, 574, 575, 578, 592, 595, 608, 731-735, 737, 738, 741, 743, 744, 756, 765, 767,
781, 787, 790, 792, 793, 804, 805, 813, 823, 824, 826, 867, 875, 908, 910, 911, 913, 915, 916

LISTFILE . 789
Listing file switch . 747
little-endian . 761
LOCK phrase . 283, 315, 413, 430, 437
logging. 597, 873, 882, 893, 895, 896
logical operator . 247, 249, 839, 845, 846
Logon mode . 788
Lowest console . 299
LOWLIGHT . 221, 294, 348, 904
lp . 570, 787, 790, 805
LRC. 516, 845, 912
Master Console . 299
MERGE file . . 59, 90, 93, 94, 105, 121, 144, 148, 265, 339, 367, 402, 411, 439, 443, 444, 464, 466, 842, 843, 845,

851
MERGE Statement . 61, 144, 151, 261, 402-405, 413, 443, 845, 847
Message

error . 278, 288, 291, 300, 586, 728, 733-735, 753, 773, 890, 891
message file . 552, 737, 916
Message Sending. 299, 514, 588, 596, 908
Message sending privilege . 514, 588, 596, 908
mnemonic-name . 45, 77, 79-84, 285, 287, 288, 343, 344, 455, 457, 496, 498, 846, 851
modem. 791, 798, 871
modem control. 791, 798
MOVE statement. . . 166, 184, 197, 200, 225, 255, 288, 291, 297, 299, 347, 389-391, 395, 406, 408, 428, 430, 435,

436, 439, 444, 446, 488, 489, 497, 501, 531, 754, 774
MS-DOS . 7, 795, 796
MULTIPLY statement . 409
native character set . 82-85, 94, 151, 152, 266, 846
negated combined condition . 846
negated simple condition. 846
network mode . 914
NO ADVANCING phrase . 345
No switch . 743, 748
nonnumeric item . 846
nonnumeric literal . . 44, 48, 49, 51, 66, 81-85, 94, 203, 215, 242, 287, 305, 309, 313, 321, 327, 341, 344, 359, 361,

371, 394, 424, 477, 488, 846, 849, 881
nonnumeric operand . 242
NOT ANSI . 412, 470, 472
numeric edited item. 295, 303, 319, 352, 407, 409, 479, 755
numeric item . . 125, 136, 195, 196, 201, 202, 244, 288, 291, 295, 303, 319, 352, 395, 407, 409, 479, 754, 846, 914
numeric literal . 44, 47, 49-51, 169, 202, 238, 239, 287, 303, 352, 373, 380, 407, 409, 418, 427, 459, 479, 837, 844,

846, 847, 849
numeric operand . 242
NX file. 271, 274, 277, 278, 579, 737, 802, 803, 861, 864, 866, 868, 869, 909
obsolete . 51, 56, 73, 75, 80, 120, 154, 158, 168, 265, 299, 475, 745, 846
OCCURS. . 34, 35, 44, 49, 59, 70, 71, 99-101, 126-130, 132, 133, 160, 172, 180, 181, 189, 191, 204, 210, 213, 225,

229, 237, 253-255, 260, 261, 265, 278-281, 294, 317, 322, 327, 341, 352, 360, 361, 371, 374, 379, 381,
383, 395, 396, 403, 405, 406, 408, 414, 419, 425, 429, 430, 435, 438, 443, 447, 449, 451-453, 456, 459-
461, 464, 466, 467, 471-473, 488, 491, 492, 499, 509, 535, 547, 568, 602, 623-626, 630, 639, 655, 657,

658, 716, 731, 734, 757-759, 767, 797, 801, 835, 852, 853, 857, 869, 904, 911

936

INDEX

OCCURS clause 126-129, 132, 133, 180, 181, 189, 191, 204, 225, 229, 265, 403, 405, 406, 408, 451-453, 456,
459, 464, 466, 467, 624, 657, 759, 801, 852, 857

ODBC . 33, 140, 322, 323, 374-376, 689, 690, 733, 758, 760, 813, 821-828, 830-833, 878
ODBC Administrator . 322, 323, 821, 823
On Linux . . 27, 115, 278, 299, 339, 367, 415, 499, 500, 505, 510, 511, 534, 535, 554, 571, 574, 575, 578, 592, 608,

731-735, 737, 738, 741, 743, 744, 765, 767, 781, 787, 790, 792, 793, 804, 813, 823, 867, 908, 910, 911,
913, 915, 916

ON SIZE ERROR phrase . 254, 258, 304, 319, 352, 353, 409, 480
On Windows . . 27, 28, 34, 35, 115, 339, 367, 499, 500, 505, 510, 511, 525, 534, 554, 573, 574, 592, 606, 608, 609,

611, 731, 732, 734, 735, 738, 739, 741, 743, 744, 765, 767, 787, 790, 792, 793, 813, 821, 835, 867, 910,
913-916

On Windows only . 505
OPEN statement . . . 115, 151, 160, 161, 266, 267, 269, 272, 273, 276, 279, 404, 405, 411-415, 466, 467, 471, 498,

758, 787, 795, 805, 841-844, 847, 861, 863, 865
operational sign . 125, 183, 184, 192, 193, 232, 245, 407, 613, 614, 846, 847
optional . . . 39, 42, 46, 47, 52-55, 73, 77, 79, 89-91, 94, 112, 123, 125, 129, 141, 171, 184, 192, 193, 206, 207, 232,

234, 237, 259, 260, 267, 269, 272, 275, 279, 280, 313, 315, 321, 322, 330, 334, 335, 370, 401, 404, 405,
412-414, 429, 442, 447, 451, 467, 471, 475, 481, 484, 534, 545, 550, 558, 577, 585, 593-596, 616, 642,
648, 719, 728, 734, 766, 773, 808, 814, 815, 817, 819, 838, 843, 847, 850, 863, 869, 904, 910, 914, 917

Ordinal number . 83-85, 136, 678, 679, 847, 849
ORGANIZATION clause . 112
Output file switch . 749
P PICTURE. 182, 183
PACKED-DECIMAL . 195-197, 904
paragraph-name. 45, 67, 76, 131, 237, 238, 419, 758, 847, 848
parallel. 790, 791, 798
PASS . 288, 307, 312, 349, 419, 423, 509, 531, 571, 585, 748, 766, 770, 789, 790, 811, 888
PATH. 99, 100, 102, 116, 117, 276, 282, 330, 336, 370, 401, 415, 437, 438, 442, 448, 484, 502, 503, 513, 525,

580, 608, 609, 743, 745, 781, 783, 802, 803, 805, 823-826, 847, 858, 867, 869, 871, 873, 880, 883, 885,
893, 897, 911

PCQ. 113, 415, 564-566, 568, 569, 571-575, 594, 595, 789, 797, 799
PDF Format. 806-808, 871
PERFORM statement . . 59, 61, 129, 132, 260, 261, 365, 385, 405, 416, 418-423, 456, 459, 466, 467, 491, 761, 769
period . 4, 40, 43, 44, 67-69, 84, 86, 144, 184-186, 237, 259, 260, 262, 387, 452, 548, 586, 617, 620, 681, 742, 792,

837, 838, 841-843, 847, 848, 850, 851, 907
permissions . 339, 367, 592
PICTURE 56, 84-86, 125, 171, 174, 182, 185, 186, 202, 203, 206, 215, 216, 230, 257, 288, 291, 753, 756

. PICTURE. 182, 230
, PICTURE. 39, 128, 174, 195, 198, 233
+ PICTURE . 185
- PICTURE. 185
A PICTURE. 31, 35, 43, 44, 56, 182-188, 192, 193, 195, 206, 215, 216, 232, 505, 509, 753, 838
B PICTURE . 183
CR PICTURE. 182, 185
DB PICTURE . 182, 185
P PICTURE. 182
PICTURE character-string . 124
S PICTURE . 182, 230
V PICTURE. 182

Pipe Open . 795, 805
PLUS phrase . 472
Print Pass Through . 288, 349
Print Screen . 899
Printer Control

directory . 415
file . 270, 274, 339, 367, 415, 737, 787, 797, 799, 800, 861, 863, 867
privilege . 514, 515, 564, 571, 575, 911
queues . 113, 568, 572, 577, 787, 789, 790, 799

937

Interactive COBOL Language Reference & Developer’s Guide

utility . 415, 564, 566, 568, 572, 577, 592, 787, 790, 806, 808, 911, 917
Printer control management privilege . 514, 515
PRN. 594, 789
Procedure Division . . . 42, 45, 46, 56, 57, 60-63, 67, 68, 86, 138, 139, 160, 195, 196, 199, 207, 237, 238, 257, 260-

262, 284, 306, 310, 312, 345, 365, 383, 385, 402, 418, 464, 491, 757, 841, 842, 847, 848, 850, 857
procedure-name. 237, 363, 383, 416-420, 491, 848
processes . 289, 291, 305, 307, 309, 339, 347, 594, 793, 795, 871, 885, 887, 891
Program debugging privilege . 514
program lines. 61, 62, 65, 791, 798, 839, 851
program mode . 511, 588, 788, 909, 911
program switches. 309, 311, 792-794, 910
program-name . 45, 73, 75, 298, 299, 305, 309, 493, 758, 848, 852, 910
PTS . 789
purge . 547, 844, 869, 904
QPR. 733
qualification. 47, 129-131, 139, 142, 280, 843, 881
QUEUE IS. 35, 90, 113, 577, 787, 799
Quiet switch. 735, 736
Quit key. 765, 804
radix . 123, 125, 196, 199, 254, 375
READ statement . 94, 151, 257, 258, 268-275, 277, 280, 282, 334, 335, 404, 426-432, 434-438, 446, 466, 472, 758,

775, 838, 861, 863, 865
readme. 299, 732, 733
reason code . 764-766, 771, 775, 776
RECORD clause . 42, 158, 163-166, 181, 265, 331, 428, 444, 848
RECORD KEY clause. 98-100, 102, 116-118, 264, 430, 438, 472, 473, 502
record-name. 45, 68, 131, 144, 177, 428, 435, 439, 444-448, 495-499, 501, 502, 843, 849
RECORDING MODE clause . 112, 114, 164-166, 168, 169, 754
REDEFINES . . 128, 130, 132, 172, 174, 177, 189, 199, 203, 255, 256, 284, 298, 390, 547, 548, 568, 572, 580, 581,

584, 743, 750, 758, 759, 904, 915
REDEFINES clause . 130, 132, 174, 177, 189, 203, 284, 390, 758, 759
reference modification. 33, 35, 130, 136, 256, 444, 543, 553, 559, 599, 843, 878
reference modifier . 406, 849
relation condition . 45, 138, 142, 195, 241, 248, 249, 404, 465, 614, 837, 849, 851
relational operator . 241, 242, 248, 249, 471, 473, 837, 849
relative file . . 91, 96, 97, 147, 166, 169, 263, 269-272, 274, 275, 316, 334, 335, 403, 405, 414, 426, 427, 429, 430,

432, 434, 436, 446, 447, 466, 467, 470, 471, 481, 496, 501, 800, 802, 803, 843, 844, 849, 857, 861, 863-
866, 869, 891

relative key . . 96, 97, 266, 272, 276, 280, 334, 335, 405, 427-430, 434-436, 447, 466, 467, 470, 471, 481, 501, 838,
843, 849, 857, 867-869, 890

RELATIVE KEY phrase . 96, 428, 430, 434, 436, 470, 471, 501
RELEASE statement . 439, 466
RENAMES . 124, 173, 179, 191, 255, 284, 389, 390, 743, 750, 759, 904
RENAMES clause. 124, 179, 191, 284, 389, 390, 759
REQUIRED. . . 2, 3, 39, 40, 43, 44, 46, 58, 73, 94, 123, 125, 126, 128-130, 132, 135, 136, 140, 149, 165, 171, 179-

181, 189, 196, 197, 203, 206, 207, 210, 212-215, 217, 225, 235, 291, 294, 360, 371, 375, 396, 397, 451,
506, 516, 517, 531, 540, 543, 553, 559, 585, 586, 592, 597, 613, 695, 697, 733, 734, 736, 742, 748, 749,

754, 758, 759, 766, 772, 795, 802, 807, 813-819, 822, 825, 838-845, 851, 869, 871-873, 877-879, 881, 894-
896, 905

REQUIRED clause . 217
reserved words . 35, 39, 41, 42, 44, 46, 47, 50, 842, 845, 846, 849, 850, 903, 905
RETURN statement. 166, 257, 405, 443, 444, 466, 467
Revision switch . 749
REWRITE statement. 151, 266, 269, 270, 272, 273, 275, 279, 430, 436, 437, 445-448, 758, 861, 863, 865
ROUNDED 196, 197, 253, 254, 295, 303, 304, 319, 351-353, 409, 431, 479, 480, 653, 691, 905
Run Program . 790
run unit . . . 56-59, 75, 77, 101, 103, 118, 139, 151, 152, 155, 161, 177, 305-307, 309, 312, 313, 317, 321, 322, 341,

413, 423, 424, 449, 461, 475, 498, 683, 764, 767, 810, 838, 842, 844, 850, 852, 880

938

INDEX

runtime . 27, 31, 33-35, 41, 60, 113, 135-137, 140, 153, 155, 199, 200, 206, 264, 270, 274, 277, 291, 292, 295, 298,
299, 301, 307, 310, 311, 322, 346, 348, 355, 359, 371, 373, 374, 378, 380, 381, 424, 431, 475, 499, 505,
506, 511, 512, 514, 515, 523, 538, 550, 554, 555, 582, 583, 589, 593, 601, 605, 608, 610, 611, 613, 614,
616, 650, 652, 733, 734, 741, 743, 746, 749, 750, 753, 761, 764, 766, 767, 772, 773, 787-789, 793, 796,
804-806, 808, 810, 811, 813, 822, 825, 857, 858, 861, 864, 866, 870, 877, 888, 890, 891, 894, 897, 907,

911, 917, 918
S PICTURE. 182-184
SAME clause. 121, 280, 464
SAME RECORD AREA. 58, 121, 280, 403, 428, 435, 439, 446, 497
SCHEMA . 373, 374, 380, 381, 905
SCO. 298
SCREEN DEMON . 711-713, 727
SCREEN HANDLER . 711-713, 724, 727, 810, 811, 877
SCREEN OPTIMIZER . 762
screen-data. 207, 210, 212, 215-217, 220, 221, 224-226, 230, 231, 287, 289, 290, 347
screen-group . 207, 213-219, 221, 231, 289
screen-literal . 207-209, 215, 216, 220, 221, 224, 226, 347
screen-name. 207, 215, 285, 287, 289, 290, 343, 344, 346, 347, 758, 850, 853
SEARCH ALL statement . 746
SEARCH statement . 129, 132, 243, 451-454, 839
section-name . 45, 46, 131, 237, 238, 419, 758, 848, 850
SECURE clause. 231, 294
SEPARATE CHARACTER . 172, 184, 192, 193, 211-213, 232, 407, 488
separator 40, 43, 44, 48, 67-70, 185, 186, 237, 259, 260, 262, 387, 452, 541, 674, 792, 841-843, 847, 848, 850,

852
sequential file . . 31, 35, 90, 94, 96, 104, 106, 112-114, 145, 146, 166, 168, 263, 265, 267, 269, 272, 273, 315, 339,

367, 411, 414, 415, 426, 427, 431, 432, 434, 438, 445, 447, 469, 470, 472, 495, 498, 562, 746, 754, 797,
798, 800, 805, 806, 840, 843, 850, 857, 869, 914

SER . 595, 789
services . 811
SET statement 45, 77, 81, 83, 129, 132, 137, 138, 142, 195, 200, 241, 389-391, 455-457, 459, 460, 754
shared data. 61
shared memory . 813, 871, 885
shared objects . 823, 824
SHELL . 307, 308, 510, 597, 731, 735, 744, 770, 781, 788, 805, 908
SIGN 49, 54, 55, 77, 79-81, 84, 85, 125, 136, 151, 172, 182-187, 192, 193, 195, 196, 198, 200, 211-213, 230,

232-234, 241, 242, 244-246, 290, 295, 345, 348, 352, 395, 407, 472, 488, 541, 556, 585, 603, 606, 613,
614, 616, 617, 656, 672, 674, 687, 700, 702, 755, 756, 759, 760, 771, 792, 827, 838, 840, 841, 846-848,

850-852, 877, 881, 905, 908
SIGN clause . 84, 85, 125, 184, 185, 192, 193, 232, 840
sign condition . 246, 850, 851
SIZE ERROR 136, 240, 254, 258, 259, 303, 304, 319, 351-353, 409, 479, 480, 614, 755, 804, 879, 880
SMTP . 585-587, 877, 878
Solaris . 7
SORT file . 144, 463, 851
SORT Statement . 61, 405, 413, 439, 463-467, 844, 847, 851
SORT-MERGE 59, 93, 94, 105, 121, 144, 148, 265, 402, 403, 439, 443, 444, 464, 842, 843, 851, 853, 905
SP2 . 27, 597, 598, 611, 733, 734, 873
sp2logon . 732, 733
SPECIAL-NAMES 45, 51, 77-81, 84-86, 142, 185, 244-246, 288, 344, 403, 465, 496, 672, 674, 676, 837, 838,

840, 842, 847, 851, 852, 905
Spooler

UNIX . 787, 790, 805
spooling. 787, 790, 907, 911, 917
SQL . . . 31-33, 42, 52, 53, 126, 139, 140, 199, 200, 233, 234, 298, 317, 321, 341, 359-362, 373-378, 380, 381, 424,

449, 461, 617, 689, 690, 746, 749, 769, 774, 813, 815, 822, 825-829, 833, 878, 879, 905
SQL-ADD-ESCAPES . 32, 374, 381, 617, 689
SQL-REMOVE-ESCAPES. 32, 617, 690

939

Interactive COBOL Language Reference & Developer’s Guide

SSL . 31, 585, 586
Standard COBOL . 44, 51, 56, 73, 75, 80, 120, 154, 158, 297, 344, 475, 748, 846
START statement . 96, 99, 116, 265-267, 273, 427, 434, 469, 471-473, 861, 863, 865
STOP statement. 295, 475
STRING statement . 477, 478
stty. 804
subscript . 99, 126, 128-130, 132-134, 352, 406, 444, 754, 771, 852, 881
SUBTRACT statement . 254-256, 258, 479, 837
suffixed . 100, 759, 802
SunOS . 7
super user . 871
suppress. 91, 99-101, 106, 282, 283, 293, 438, 445, 448, 496, 503, 569, 736, 751, 760, 816, 819, 841, 905
SUPPRESS WHEN clause . 760
switch 33, 34, 41, 45, 48, 63, 67, 77, 79, 81, 83, 84, 86, 106, 126, 142, 194, 241, 245, 246, 299, 301, 310, 311,

383, 413, 451, 455, 457, 491, 507, 586, 735, 736, 742-750, 752, 753, 755, 758, 759, 761, 781, 784, 785,
790, 793, 803, 804, 814, 839, 842, 846, 851, 852, 888, 905, 906

switch-name. 79, 246, 851
symbol file. 737, 743, 750, 761-763, 768, 772-776, 780, 835, 880
symbolic . 45, 51, 77, 79-84, 339, 367, 415, 509, 841, 851, 852, 873, 885, 905, 914, 915
symbolic links . 339, 367, 415, 873, 915
SYNCHRONIZED clause . 126, 194
system calls 309, 310, 312, 509, 535, 571, 769, 794, 796, 810, 869, 872, 886-889, 893, 907-914, 916-918
System Information . 299, 514, 594, 597, 602, 912, 916
System Information privilege . 514, 594, 916
System Parameters . 595, 808, 916
System Shutdown privilege . 514, 593, 911, 918
system.pq. 787
system-name . 44, 46, 839, 845, 850, 852, 853
SYSTEM-CODE. 299
tab . 35, 64-66, 287, 293, 294, 349, 531, 541, 548, 577, 584, 744, 810, 889, 905
TABLES 24, 32, 126-129, 371, 374, 378, 380, 381, 412, 749, 757, 813-815, 819, 828, 832, 885, 905
TCP . 734
TCP/IP. 734
telnet . 587
terminal description file. 549, 737, 810
Terminal number switch . 790
Terminal Status . 299, 511, 514, 554, 556, 584, 588, 596, 597, 602, 907-909, 912
Terminal status privilege . 514, 596, 597, 912
terminfo . 732, 871
text-name. 45, 69, 852
ThinClient . 32, 505, 518-525, 598, 603, 605, 606, 608, 610
ThinClient client . 505, 603, 608
THRU phrase . 203
time zone . 739, 740
TIME-OUT . 285, 287, 295, 426, 431, 548, 712, 722, 727, 905, 918
timeout. . . 141, 295, 316, 431, 438, 475, 500, 505, 548, 549, 586, 591, 712, 713, 720-722, 727, 790, 791, 797, 798,

861, 864, 866, 868, 871, 878, 887, 907, 918
TO clause . 215, 216, 225, 230, 753, 758
TRAILING . . . 192, 193, 232, 512, 524, 531, 541, 555, 583, 585, 588, 590, 599, 603, 605, 642, 646, 648, 651, 672,

676, 700, 760, 793, 815, 816, 818, 827, 903, 905
ttyname . 790
TZ . 739, 740
UNDELETE . . 108, 258, 259, 262, 267, 269, 272, 273, 276, 278, 279, 281, 334, 335, 413, 481, 483, 484, 769, 844,

861, 863, 865, 904, 905
UNDELETE statement . 279
UNDERLINE . 221, 293, 294, 348, 349, 711, 715, 905
UNDERLINED . 39, 40, 46, 47, 221, 294, 349, 714, 718-721, 905
uniqueness of reference . 45, 130, 142, 839, 843

940

INDEX

UNIX. 7, 32, 298, 568, 570, 572, 573, 820
unixODBC. 322, 323, 813, 823-826
Unixware . 298
UNLOCK statement . 283, 485
UNSTRING statement . 51, 258, 487-490
UNTIL phrase . 260, 420, 422
url . 32, 505, 525, 532, 542, 609, 615, 643, 644, 815, 822
USAGE clause. 125, 195, 196, 198, 199, 206, 233, 245
USE Statement . 238, 259, 267, 278, 279, 429, 435, 491, 492, 841
User Library . 734
USER NAME . 296, 297, 301, 321, 565, 569, 592, 762, 828
user-defined subroutine . 59
user-defined word . 44, 45, 75, 79, 80, 263, 284, 755, 837-840, 842, 844-850, 852, 853
user-id . 568-570, 572, 574, 592, 825
USING clause . 140, 215, 216, 225, 229, 230, 360, 753, 758, 879
USING phrase . 60, 195, 206, 284, 305-307, 309, 310, 312, 365, 385, 464, 466, 857
V PICTURE . 182-184
VALUE clause. 51, 59, 75, 128, 137, 171, 177, 189, 195, 202-204, 206, 215, 227, 235, 390, 391, 457, 602, 759
variable length record . 263
variable length records 58, 100, 102, 117, 164, 168, 264, 265, 402, 403, 405, 464, 465, 467, 853
variable origin . 289, 290, 346, 347, 853
VARYING phrase . 129, 132, 181, 199, 204, 265, 423, 453
virtual memory . 738
Watch Facility . 299
Watch other terminals privilege. 514, 596
WHEN phrase . 100, 357, 358, 452, 453
Windows . . . 7, 27, 28, 32-35, 115, 278, 298, 300, 307, 308, 322, 323, 339, 367, 499, 500, 505, 510, 511, 518, 525,

534, 545, 554, 564, 565, 568-570, 572-574, 587, 592, 603, 605, 606, 608-611, 731-735, 738, 739, 741, 743,
744, 763, 765, 767, 777, 784, 787, 788, 790, 792, 793, 805, 813, 821, 835, 867, 910, 913-916

Windows 10. 28
Windows 7. 28
Windows print spooler . 787
Windows printer . 790
Windows Server . 28
WITH DEBUGGING MODE clause . 79
Working-Storage 58, 117, 128, 143, 171, 174, 176, 177, 179, 202, 203, 205-207, 229, 230, 256, 285, 291, 296,

305, 309, 330, 757, 846, 850, 853, 905
WRITE statement 84, 96, 118, 160, 166, 167, 181, 257, 258, 263, 266-268, 271, 273, 275, 278, 279, 281, 282,

349, 405, 430, 436, 437, 467, 495-502, 758, 861, 863, 865
X PICTURE . 182-184
XD file. 270, 274, 277, 579, 737, 802, 803, 861, 864, 866, 868-870, 909
Z PICTURE. 182-184
ZERO . . . 40, 46, 48-51, 67-69, 86, 112, 113, 124-126, 159, 160, 164, 166, 172, 174, 175, 180, 182-187, 195, 198-

200, 203, 210, 212, 215, 216, 226, 233, 234, 237, 238, 240, 242, 244-246, 254, 256, 270, 273, 276, 278,
292, 294, 297, 300, 331, 336, 346, 348, 349, 369, 376, 378, 395, 396, 398, 406, 407, 418-420, 431, 437,
442, 448, 470, 472, 473, 478, 488, 491, 496, 498, 503, 507, 509, 510, 512, 513, 516, 530, 532, 541, 542,
548, 550, 555, 556, 564-566, 570, 571, 583, 593, 595, 598, 608, 613, 618-623, 626, 627, 630, 631, 634,
639, 656, 659, 660, 664, 665, 667, 668, 670, 671, 673, 674, 676, 683, 685, 687-691, 699, 700, 702, 717,
720, 721, 735, 736, 744, 752, 754-756, 769, 799-801, 815, 840, 841, 844, 845, 847, 849, 850, 861, 863,

865, 868, 882-884, 889, 893, 897, 905, 912, 914, 915
zero suppression . 182, 185, 187
[] . 39, 40, 213, 417, 734, 766, 792

941

Interactive COBOL Language Reference & Developer’s Guide

942

	TABLE OF CONTENTS
	PREFACE
	ENHANCEMENTS
	PART ONE - LANGUAGE REFERENCE
	I. CONVENTIONS USED IN THIS MANUAL
	A. Definition of a General Format
	1. Elements
	2. Words
	3. Level-Numbers
	4. Brackets and Braces
	5. Ellipsis
	6. Format Punctuation
	7. Use of Special Character Words in Formats
	8. Documentation Only

	B. Rules
	1. Syntax Rules
	2. General Rules

	C. ICOBOL Dialects and Feature-Sets
	1. Description of ICOBOL Dialects
	2. Notation of Dialect Differences
	3. Description of Feature-sets
	4. Notation of Feature-set Differences

	II. COBOL SOURCE PROGRAM
	A. General Description
	B. Concepts
	1. Character Set
	2. Language Structure
	2.1 Separators
	2.2 Character-Strings
	2.2.1 COBOL Words
	2.2.2 Literals
	2.2.2.1 Nonnumeric Literals
	2.2.2.2 Nonnumeric Hexadecimal Literals
	2.2.2.3 Numeric Literals
	2.2.2.4 Numeric Hexadecimal Literals
	2.2.2.5 Figurative Constant Values
	2.2.2.6 Date Literals (ISQL)
	2.2.2.7 Time Literals (ISQL)
	2.2.2.8 Timestamp Literals (ISQL)
	2.2.2.9 Interval Literals (ISQL)
	2.2.2.9.1 Year-Month Interval Literals (ISQL)
	2.2.2.9.2 Day-Time Interval Literals (ISQL)
	2.2.3 LINAGE-COUNTER
	2.2.4 PICTURE Character-Strings
	2.2.5 Comment-Entries

	3. Program and Run Unit Organization and Communication
	3.1 Program and Run Unit Organization
	3.2 Accessing Data and Files
	3.2.1 Names
	3.2.2 Objects

	3.3 Inter-program Communication
	3.3.1 Transfer of Control
	3.3.2 Passing Parameters to Programs

	3.4 Intra-program Communication
	3.4.1 Transfer of Control
	3.4.2 Shared Data

	C. Organization
	D. Structure
	E. Divisions
	F. Reference Format (Source)
	1. General Description
	2. ANSI Card Format
	3. Free-Form Format (CRT)
	4. Extended Card Format
	5. Sequence Numbers (ANSI Card Format)
	6. Continuation of Lines
	7. Blank Lines
	8. Comments
	9. Debugging Lines
	10. Division, Section, and Paragraph Formats
	10.1 Division Header
	10.2 Section Header
	10.3 Paragraph Header, Paragraph-Name, and Paragraph

	11. DATA DIVISION Entries
	12. DECLARATIVES

	G. COPY Statement

	III. IDENTIFICATION DIVISION
	A. General Description
	B. Organization
	C. PROGRAM-ID Paragraph
	D. DATE-COMPILED Paragraph

	IV. ENVIRONMENT DIVISION
	A. General Description
	B. Concepts
	C. Organization
	D. CONFIGURATION SECTION
	1. SOURCE-COMPUTER Paragraph
	2. OBJECT-COMPUTER Paragraph
	3. SPECIAL-NAMES Paragraph

	E. INPUT-OUTPUT SECTION
	1. FILE-CONTROL Paragraph
	2. File Control Entry
	3. ACCESS MODE Clause
	4. ALLOW SUB-INDEX and LEVELS Clauses (VXCOBOL)
	5. ALTERNATE RECORD KEY Clause (ANSI 74 and ANSI 85)
	6. ALTERNATE RECORD KEY Clause (VXCOBOL)
	7. ASSIGN Clause
	8. COMPRESSION Clauses (VXCOBOL)
	9. DELETE LOGICAL/PHYSICAL Clause (ANSI 74 and ANSI 85)
	10. FILE STATUS Clause
	11. INDEX SIZE, DATA SIZE Clauses
	12. INFOS STATUS Clause (VXCOBOL)
	13. ORGANIZATION Clause
	14. QUEUE Clause
	15. RECORD DELIMITER Clause (ANSI 74 and ANSI 85)
	16. RECORD KEY Clause
	17. RESERVE Clause (VXCOBOL)
	18. I-O-CONTROL Paragraph
	19. SAME Clause

	V. DATA DIVISION
	A. General Description
	B. Concepts
	1. Logical Record Concept
	1.1 Physical Aspects of a File
	1.2 Conceptual Characteristics of a File
	1.3 Record Concepts

	2. Concept of Levels
	3. Concept of Class and Category of Data
	4. Selection of Character Representation and Radix
	5. Algebraic Signs
	6. Standard Alignment Rules
	7. Item Alignment for Increased Object-Code Efficiency
	8. Table Handling
	8.1 Table Definition
	8.2 Initial Values of Tables
	8.3 References to Table Items
	8.4 Subscripting

	9. Uniqueness of Reference
	9.1 Qualification
	9.2 Subscripting
	9.3 Identifiers
	9.3.1 Identifier
	9.3.2 Function-identifier
	9.3.3 Reference-modifier
	9.3.4 Predefined-address
	9.3.5 Data-address-identifier
	9.3.6 Length-identifier
	9.3.7 LINAGE-COUNTER
	9.3.8 SQLSTATE (ISQL)

	9.4. Condition-Name

	C. Organization
	D. FILE SECTION
	1. File Description Entry/Sort-Merge Description Entry
	2. Record Description Structure
	3. Initial Values
	4. BLOCK CONTAINS Clause
	5. CODE-SET Clause
	6. DATA BLOCK and INDEX BLOCK Clauses (VXCOBOL)
	7. DATA RECORDS Clause
	8. EXTERNAL Clause
	9. FEEDBACK Clause (VXCOBOL)
	10. INDEX NODE Clause (VXCOBOL)
	11. LABEL RECORD Clause
	12. LINAGE Clause
	13. MERIT Clause (VXCOBOL)
	14. PARTIAL RECORD Clause (VXCOBOL)
	15. RECORD Clause (ANSI 74 and ANSI 85)
	16. RECORDING MODE Clause (ANSI 74 and ANSI 85)
	17. RECORDING MODE Clause (VXCOBOL)

	E. WORKING-STORAGE SECTION
	1. Noncontiguous Working Storage
	2. Working Storage Records
	3. Record Description Structure
	4. Initial Values
	5. Data Description Entry
	6. BLANK WHEN ZERO Clause
	7. Data-Name or FILLER Clause
	8. EXTERNAL Clause
	9. JUSTIFIED Clause
	10. Level-Number
	11. OCCURS Clause
	12. PICTURE Clause
	13. REDEFINES Clause
	14. RENAMES Clause
	15. SIGN Clause
	16. SYNCHRONIZED Clause
	17. USAGE Clause
	18. USAGE Clause (ISQL)
	19. VALUE Clause

	F. VIRTUAL-STORAGE SECTION (VXCOBOL)
	G. LINKAGE SECTION
	1. Noncontiguous Linkage Storage
	2. Linkage Records
	3. Initial Values

	H. SCREEN SECTION
	1. Screen Description
	2. Screen Description Entry
	3. AUTO, FULL, REQUIRED Clauses
	4. BACKGROUND-COLOR, FOREGROUND-COLOR Clauses (ANSI 74 and ANSI 85)
	5. BELL Clause
	6. BLANK Clause
	7. BLINK, BOLD/BRIGHT/HIGHLIGHT/DIM/LOWLIGHT, REVERSE/REVERSED/REVERSED-VIDEO, UNDERLINE/UNDERLINED Clauses
	8. CONVERTING Clause
	9. ERASE Clause
	10. FROM, TO, USING Clauses
	11. LINE and COLUMN Clauses
	12. OCCURS Clause
	13. PICTURE Clause
	14. SECURE Clause
	15. SIGN Clause
	16. USAGE Clause (ISQL)
	17. VALUE Clause

	VI. PROCEDURE DIVISION
	A. General Description
	1. DECLARATIVES
	2. Procedures
	3. Execution

	B. Concepts
	1. Arithmetic Expressions
	1.1 Definition of an Arithmetic Expression
	1.2 Arithmetic Operators
	1.3 Formation and Evaluation Rules

	2. Conditional Expressions
	2.1 Simple Conditions
	2.2 Complex Conditions
	2.3 Abbreviated Combined Relation Conditions
	2.4 Order of Evaluation of Conditions

	3. Common Options and Rules for Statements
	3.1 ROUNDED Phrase
	3.2 ON SIZE ERROR Phrase
	3.3 CORRESPONDING Phrase
	3.4 Arithmetic Statements
	3.5 Overlapping Operands
	3.6 Multiple Results in Arithmetic Statements
	3.7 Incompatible Data

	4. Statements and Sentences
	4.1 Conditional Statements and Sentences
	4.2 Compiler Directing Statements and Sentences
	4.3 Imperative Statements and Sentences

	5. Scope of Statements
	6. Explicit and Implicit Specifications
	6.1 Explicit and Implicit Procedure Division References
	6.2 Explicit and Implicit Transfers of Control
	6.3 Explicit and Implicit Attributes
	6.4 Scope Terminators
	6.5 Explicit Scope Terminators
	6.6 Implicit Scope Terminators

	C. File Concepts
	1. File Attributes
	1.1 Sequential Organization
	1.2 Relative Organization
	1.3 Indexed Organization
	1.4 INFOS Organization (VXCOBOL)

	2. Logical Records
	2.1 Fixed Length Records
	2.2 Variable Length Records (ANSI 74 and ANSI 85)
	2.3 Variable Length Records (VXCOBOL)

	3. File Processing
	4. Record Operations
	4.1 Sequential Access Mode
	4.2 Random Access Mode
	4.3 Dynamic Access Mode
	4.4 Open Mode
	4.5 Current Volume Pointer
	4.6 File Position Indicator

	5. File Operations
	6. Exception Handling
	6.1 I-O Status (FILE STATUS)
	6.2 I-O Status (ANSI 74)
	6.3 I-O Status (ANSI 85)
	6.4 I-O Status (VXCOBOL)
	6.5 INFOS Status (VXCOBOL)
	6.6 The At End Condition
	6.7 The Invalid Key Condition
	6.8 The File Attribute Conflict Condition
	6.9 Exception Declaratives
	6.10 Optional Phrases
	6.11 ACCEPT FROM EXCEPTION STATUS

	7. Shared Record Area
	8. INFOS File I-O Common Phrases (VXCOBOL)
	8.1 The POSITION Phrase
	8.2 The Relative Motion Phrase
	8.3 The KEY Series Phrase
	8.4 The SUPPRESS Phrase
	8.5 The LOCK/UNLOCK Phrase

	D. Header
	E. Statements
	1. ACCEPT (keyboard)
	2. ACCEPT (system)
	3. ADD
	4. CALL
	5. CALL PROGRAM
	6. CANCEL
	7. CLOSE
	8. COMMIT (ISQL)
	9. COMPUTE
	10. CONNECT (ISQL)
	11. CONTINUE
	12. DEALLOCATE (ISQL)
	13. DEFINE SUB-INDEX (VXCOBOL)
	14. DELETE
	15. DELETE FILE
	16. DISCONNECT (ISQL)
	17. DISPLAY
	18. DIVIDE
	19. EVALUATE (ANSI 74 and ANSI 85)
	20. EXECUTE (ISQL)
	21. EXECUTE IMMEDIATE (ISQL)
	22. EXIT
	23. EXIT PROGRAM
	24. EXPUNGE (VXCOBOL)
	25. EXPUNGE SUB-INDEX (VXCOBOL)
	26. FETCH (ISQL)
	27. GET COLUMNS (ISQL)
	28. GET DIAGNOSTICS (ISQL)
	29. GET TABLES (ISQL)
	30. GO TO
	31. GOBACK
	32. IF
	33. INITIALIZE (ANSI 74 and ANSI 85)
	34. INSPECT
	35. LINK SUB-INDEX (VXCOBOL)
	36. MERGE
	37. MOVE
	38. MULTIPLY
	39. OPEN
	40. PERFORM
	41. PREPARE (ISQL)
	42. READ (ANSI 74 and ANSI 85)
	43. READ (VXCOBOL)
	44. RELEASE
	45. RETRIEVE (VXCOBOL)
	46. RETURN
	47. REWRITE
	48. ROLLBACK (ISQL)
	49. SEARCH
	50. SET (ANSI 74 and ANSI 85)
	51. SET (VXCOBOL)
	52. SET CONNECTION (ISQL
	53. SORT
	54. START
	55. STOP
	56. STRING
	57. SUBTRACT
	58. UNDELETE (ANSI 74 and ANSI 85)
	59. UNDELETE (VXCOBOL)
	60. UNLOCK
	61. UNSTRING
	62. USE
	63. WRITE

	VII. BUILTINS
	A. Introduction
	1. Overview

	B. Builtins
	1. ?CBADDR
	2. ?CBBADDR
	3. ?CBSYS
	4. CLI
	5. IC_ABORT_TERM
	6. IC_CENTER
	7. IC_CHANGE_DIR
	8. IC_CHANGE_PRIV
	9. IC_CHECK_DATA
	10. IC_CLIENT_CALLPROCESS
	11. IC_CLIENT_DELETE_FILE
	12. IC_CLIENT_GET_ENV
	13. IC_CLIENT_GET_FILE
	14. IC_CLIENT_PUT_FILE
	15. IC_CLIENT_RESOLVE_FILE
	16. IC_CLIENT_SET_ENV
	17. IC_CLIENT_SHELLEXECUTE
	18. IC_COMPRESS_OFF
	19. IC_COMPRESS_ON
	20. IC_CREATE_DIR
	21. IC_CURRENT_DIR
	22. IC_DECODE_CSV
	23. IC_DECODE_URL
	24. IC_DELAY
	25. IC_DETACH_PROGRAM
	26. IC_DIR_LIST
	27. IC_DISABLE_HOTKEY
	28. IC_DISABLE_INTS
	29. IC_ENABLE_HOTKEY
	30. IC_ENABLE_INTS
	31. IC_ENCODE_CSV
	32. IC_ENCODE_URL
	33. IC_EXTRACT_STRING
	34. IC_FULL_DATE
	35. IC_GET_DISK_SPACE
	36. IC_GET_ENV
	37. IC_GET_FILE_IND
	38. IC_GET_KEY
	39. IC_HANGUP
	40. IC_HEX_TO_NUM
	41. IC_INFOS_STATUS_TEXT (VXCOBOL)
	42. IC_INSERT_STRING
	43. IC_KILL_TERM
	44. IC_LEFT
	45. IC_LOGON
	46. IC_LOWER
	47. IC_MOVE_FILE_DATA
	48. IC_MOVE_STRING
	49. IC_MSG_TEXT
	50. IC_NUM_TO_HEX
	51. IC_PDF_PRINT
	52. IC_PID_EXISTS
	53. IC_PRINT_STAT
	54. IC_QUEUE_LIST
	55. IC_QUEUE_OPERATION
	56. IC_QUEUE_STATUS
	57. IC_REMOVE_DIR
	58. IC_RENAME
	59. IC_RESOLVE_FILE
	60. IC_RIGHT
	61. IC_SEND_KEY
	62. IC_SEND_MAIL
	63. IC_SEND_MSG
	64. IC_SERIAL_NUMBER
	65. IC_SET_ENV
	66. IC_SET_TIMEOUT
	67. IC_SET_USERNAME
	68. IC_SHUTDOWN
	69. IC_SYS_INFO
	70. IC_TERM_CTRL
	71. IC_TERM_STAT
	72. IC_TRIM
	73. IC_UPPER
	74. IC_VERSION
	75. IC_WHOHAS_LOCKS
	76. IC_WINDOW_TITLE
	77. IC_WINDOWS_MSG_BOX
	78. IC_WINDOWS_SETFONT
	79. IC_WINDOWS_SHELLEXECUTE
	80. IC_WINDOWS_SHOW_CONSOLE

	VIII. INTRINSIC FUNCTIONS
	A. General Description
	1. Types of Functions
	2. Arguments
	3. Returned values
	4. Date conversion functions
	5. Summary of functions

	B. Intrinsic Functions
	1. ABS
	2. ACOS
	3. ANNUITY
	4. ASIN
	5. ATAN
	6. BYTE-LENGTH
	7. CHAR
	8. COS
	9. CURRENT-DATE
	10. DATE-OF-INTEGER
	11. DATE-TO-YYYYMMDD
	12. DAY-OF-INTEGER
	13. DAY-TO-YYYYDDD
	14. E
	15. EXP
	16. EXP10
	17. FACTORIAL
	18. FRACTION-PART
	19. HIGHEST-ALGEBRAIC
	20. IC-CENTER
	21. IC-DECODE-URL
	22. IC-ENCODE-URL
	23. IC-GET-ENV
	24. IC-HEX-TO-NUM
	25. IC-MSG-TEXT
	26. IC-NUM-TO-HEX
	27. IC-PID-EXISTS
	28. IC-SERIAL-NUMBER
	29. IC-TRIM
	30. IC-VERSION
	31. INTEGER
	32. INTEGER-OF-DATE
	33. INTEGER-OF-DAY
	34. INTEGER-PART
	35. LENGTH
	36. LOG
	37. LOG10
	38. LOWER-CASE
	39. LOWEST-ALGEBRAIC
	40. MAX
	41. MEAN
	42. MEDIAN
	43. MIDRANGE
	44. MIN
	45. MOD
	46. NUMVAL
	47. NUMVAL-C
	48. NUMVAL-F
	49. ORD
	50. ORD-MAX
	51. ORD-MIN
	52. PI
	53. PRESENT-VALUE
	54. RANDOM
	55. RANGE
	56. REM
	57. REVERSE
	58. SIGN
	59. SIN
	60. SQL-ADD-ESCAPES
	61. SQL-REMOVE-ESCAPES
	62. SQRT
	63. STANDARD-DEVIATION
	64. SUM
	65. TAN
	66. TEST-DATE-YYYYMMDD
	67. TEST-DAY-YYYYDDD
	68. TEST-NUMVAL
	69. TEST-NUMVAL-C
	70. TEST-NUMVAL-F
	71. UPPER-CASE
	72. VARIANCE
	73. WHEN-COMPILED
	74. YEAR-TO-YYYY

	IX. SCREEN HANDLER
	A. General Description
	1. Enabling the SCREEN HANDLER
	2. Summary of Calls
	3. Error Handling

	B. Calls
	1. SD_DRAW_BOX
	2. SD_DRAW_HLINE and SD_DRAW_VLINE
	3. SD_GET_IMAGE
	4. SD_GET_POS
	5. SD_MESSAGE, SD_ERROR_MESSAGE, SD_MESSAGE_ONLY
	6. SD_NEW_WINDOW
	7. SD_POP_UP_MENU
	8. SD_POP_UP_MENU2
	9. SD_READ_CHAR
	10. SD_REDRAW
	11. SD_REMOVE_WINDOW
	12. SD_RETURN_INPUT
	13. SD_SET_ACCEPT_TIMEOUT
	14. SD_SYS_ERROR_MESSAGE

	PART TWO - DEVELOPER’S GUIDE
	X. INTRODUCTION TO THE DEVELOPER’S GUIDE
	A. Overview
	B. Operating Environment
	1. General Concepts
	1.1 Communication with the Operating System
	1.2 I-O Redirection
	1.3 Environment Variables

	2. Directory Structure
	3. ICEXEC Control Program
	4. ICPERMIT License Program

	C. Command-line Conventions
	1. Switches
	2. Conventions for Defining Syntax
	3. Filename Case (upper or lower)

	D. Common Switches
	1. Overall
	2. Audit Switch
	3. Quiet Switch
	4. Help Switch

	E. Filename Extensions
	F. Exit Codes
	G. Common Environment Variables
	1. Overall
	2. ICROOT
	3. ICCONFIGDIR
	4. Executable-Name Environment Variable
	5. TZ (Windows only)

	XI. COMPILER (ICOBOL)
	A. Overview
	B. Syntax
	1. Rules
	2. Environment Variables

	C. Switches
	1. Overview
	2. Byte Alignment Switch (-B 1|2|4)
	3. COPY Sourcedir Switch (-c)
	4. COPY Path Switch (-C copydir)
	5. Dialect Switch (-D ic|vx|85)
	6. Error File Switch (-e | -E erdir)
	7. Format Switch (-F c | f | x)
	8. General Switch (-G {a|b|d|e|g|h|i|k|n|p|q|s}...)
	9. Hard Error Limit Switch (-H cnt)
	10. Information Switch (-i)
	11. Include listing options Switch (-I {g|m|p|x}...)
	12. Listing File Switch (-l | -L lsdir)
	13. Make ICODBC Data Definition Files Switch (-M dddir)
	14. No Switch (-N {h|p|s|u}...)
	15. OEM Version Switch (-o | -O rev)
	16. Program Output File Switch (-P cxdir)
	17. Revision Switch (-R 1|2|3|4|5|6|7)
	18. Statistics Switch (-s)
	19. Source lines Switch (-S)
	20. Warnings Switch (-w)
	21. ICODBC Options Switch (-X “string”)
	22. Debug Switch (-Z sydir)

	D. Messages
	1. Overview
	1.1 Format
	1.2 Examples

	2. Error Messages
	3. Warning Messages
	4. Information Messages

	E. Example Output
	F. Cross Reference Output
	G. ICODBC Support

	XII. DEBUGGING
	A. Introduction
	B. Invocation
	C. Usage
	D. Commands
	1. Overview
	2. AUDIT
	3. BREAK
	4. COMMAND
	5. DUMP
	6. ERROR RESET
	7. EXECUTE
	8. FIND
	9. GO
	10. HELP
	11. INFO
	12. LIST
	13. MOVE
	14. QUIT
	15. RERUN
	16. RUN
	17. STEP
	18. TYPE
	19. VIEW
	20. ZOOM

	E. Performance Considerations
	F. Quick Reference

	XIII. ICREVSET
	A. Introduction
	B. Syntax
	C. General Rules

	XIV. ICDUMP
	A. Introduction
	B. Syntax
	C. Rules
	D. Example

	XV. RUNTIME (ICRUN)
	A. Introduction
	B. Printer Control Utility
	C. Program Termination
	1. Overview
	2. Logon mode Termination
	2.1 Return to LOGON as Inactive
	2.2 Return to Parent Process

	3. Program mode Termination

	D. Device Support
	1. Overview
	2. General Rules
	3. Parallel Printer Ports
	4. Serial Ports

	E. Filenaming Conventions
	1. Internal Filenames
	2. External Filenames
	2.1 Rules
	2.2 Program names
	2.3 Sequential and ICISAM Filenames

	F. Extended OPEN options
	1. Overview
	2. Extended Sequential Open
	2.1 (Sequential) Extended Device Open
	2.2 (Sequential) Extended PDF Open
	2.3 (Sequential) Extended PCQ Open
	2.4 (Sequential) Extended Disk Open

	3. Extended Relative Open (ANSI 74 and ANSI 85)
	4. Extended Indexed Open

	G. ICISAM Information
	1. Overview
	2. ICISAM Versions
	3. ICISAM Reliability
	4. ICISAM Key Ordering

	H. Notes and Warnings
	I. Pipe Opens
	J. PDF GENERATION
	1. Introduction
	2. PDF Format
	3. PDF Sample

	K. HOT KEYS
	1. Introduction
	2. Construction
	3. Restrictions
	4. Example

	XVI. ICODBC Driver
	A. Introduction
	B. General Information
	C. Using the Driver
	D. Creating .XDB and XDT Files
	E. Managing Data Sources (On Windows)
	F. Managing Data Sources (On Linux)
	G. Data Types Supported
	H. Driver Limitations
	I. SQL Grammar Supported
	J. Usage Notes
	K. Debugging
	L. SYWARE

	XVII. ICIDE
	A. Introduction
	B. Use

	XVIII. GLOSSARY
	A. Introduction
	B. Definitions

	APPENDICES
	A. IMPLEMENTATION LIMITS
	B. ESCAPE KEY TABLE
	C. ANSI 74 FILE STATUS CODES
	D. ANSI 85 FILE STATUS CODES
	E. VXCOBOL FILE STATUS CODES
	F. EXCEPTION STATUS AND FILE STATUS CODES
	G. Linux Errno
	H. RUNTIME ERRORS
	I. ASCII CODES
	J. EBCDIC CODES
	K. COBOL RESERVED WORDS
	L. SYSTEM CALLS

	INDEX

